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Abstract This article considers the problem of refreshing a dataset. More precisely, given a
collection of nodes gathered at some time (webpages, users from an online social network)
along with some structure (hyperlinks, social relationships), we want to identify a significant
fraction of the nodes that still exist at present time. The liveness of an old node can be tested
through an online query at present time. We call LiveRank a ranking of the old pages so
that active nodes are more likely to appear first. The quality of a LiveRank is measured by
the number of queries necessary to identify a given fraction of the active nodes when using
the LiveRank order. We study different scenarios from a static setting where the LiveRank is
computed before any query is made, to dynamic settings where the LiveRank can be updated
as queries are processed. Our results show that building on the PageRank can lead to efficient
LiveRanks, for web graphs as well as for online social networks.

1. INTRODUCTION

One of the main challenges for large networks data mining is dealing with the high
dynamics of huge datasets; not only are these datasets difficult to gather, but they tend to
become obsolete very quickly.

In this article, we are interested in the evolution at a large time scale of any large
corpus available online. Our primary focus will be the Web, but our approach encompasses
any online data with similar linkage enabling crawling, such as P2P networks or online
social networks. We thus focus on batch crawling, in which, starting from a completely
outdated snapshot of a large graph such as the Web, we want to identify a significant fraction
of the nodes that are still alive now. The interest is twofold.

First, many old snapshots of large graphs are available today. Reconstructing roughly
what remains from such archives could result in interesting studies of the long-term evo-
lution of these graphs. For large archives, from which one is interested in a particular type
of pages, recrawling the full set of pages can be prohibitive. We propose a procedure to
identify as quickly as possible a significant fraction of the still-alive pages. Further selection
can then be made to identify a set of pages suitable for the study and then to crawl them.
Such techniques would be especially interesting when testing the liveness of an item is
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much lighter than downloading it completely. This is, for instance, the case for the Web
with HEAD queries compared to GET queries. If a large amount of work has been devoted
to maintaining a fresh set of crawled pages, little attention has been paid to the coverage of
a partial recrawling of a fairly old snapshot.

Second, some graphs tend to be harder to crawl with time. For instance, Twitter has
continuously restricted its capacity to be crawled. Performing a full scan was possible a
few years ago [14], but it can be prohibitively long nowadays. New techniques must thus
be developed for identifying efficiently active accounts in such settings.

1.1. Problem Formulation

Given an old snapshot, our goal is to identify a significant fraction of the items that
are still alive or active now. The cost we incur is the number of fetches that are necessary to
attain this a goal. A typical cost measure will be the average number of fetches per active
item identified. The strategy for achieving this goal consists in producing an ordering for
fetching the pages. We call LiveRank an ordering such that the items that are still alive tend
to appear first. We consider the problem of finding an efficient LiveRank in three settings:
static when it is computed solely from the snapshot and the link relations recorded at that
time; sampling-based when a sampling is performed in a first phase, allowing adjustment
of the ordering according to the liveness of sampled items; or finally, dynamic when it is
incrementally computed as pages are fetched.

1.2. Contribution

We propose various LiveRank algorithms based on the graph structure of the snapshot.
We evaluate them on two Web snapshots (from 10 to 20 millions nodes) and on a Twitter
snapshot (40 million nodes). We propose several propositions based on the graph structure
of the snapshot. We show that a rather simple combination of a small sampling phase and
PageRank-like propagation in the remainder of the snapshot allows us to gather from 15%
to 75% of the active nodes with a cost that remains within a factor of two from the optimal
ideal solution.

1.3. Related Work

The process of crawling the Web has been extensively studied. A survey is given by
Olston and Najork [22].

We focus here on batch crawling, for which the process starts from a given set of
pages and terminates at some point.

This is classically opposed to incremental crawling for which pages are continuously
fetched. In incremental crawling, one of the main tuning procedures is to balance between
fetching new pages and refreshing old ones: the former increases coverage and the latter
increases freshness. Both types might allow the discovery of new links to unknown new
pages (old pages can change). The problem of incremental crawling has been extensively
studied [9], and a thorough study on refreshing policies, and one of the first formalizations
of freshness was proposed by [9]. They show the counterintuitive result that adapting the
frequency of crawl proportionally to the frequency of change works poorly with respect to
the overall freshness of the fetched copy from the Web. The results have been extended with
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more elaborated variations of freshness. For instance, information longevity [23] considers
the evolution of fragments of the content of a page.

The issue we investigate here is closer to a problem introduced by [10]: sampling is
used to estimate the frequency of change per site and then to fetch a set of pages such that
the overall change ratio of the set is maximized. The technique consists in estimating the
frequency of page change per site and to crawl first sites with high frequency of change.
This technique was improved slightly [26] by clusterizing the pages according to several
features: not only their site (and other features read from the URL) but also content based
features and linkage features (including PageRank and incoming degree). A change ratio
per cluster is then estimated through sampling, and clusters are downloaded in descending
order of the estimated values. More recently, a similar approach was investigated [25] using
learning techniques and avoiding the use of sampling.

Note that these approaches mainly focus on highly dynamic pages and use various
information about pages, whereas we are interested in stable nodes and we use only the
graph structure, which is lighter.

With a slightly different objective, [11] investigated how to discover new pages while
minimizing the average number of fetches per new page found. Their work advocates for a
greedy cover heuristic when a small fraction of the new pages has to be discovered quickly.
However, they recommend a heuristic based on out-degrees for gathering a large fraction
of the new pages. Their framework is close to ours and inspired the cost function used in
this study.

A related problem consists in estimating which pages are really valid among the
“dangling” pages on the frontier of the crawled Web (those that are pointed by crawled
pages but that were not crawled themselves). In [12] it is proposed to take this into account
in the PageRank computation. In a similar trend, [3] propose to compute a “decay” score
for each page by refining on the proportion of dead links in a page. Their goal is to
identify poorly updated pages. This score could be an interesting measure for computing
a LiveRank, however, its computation requires the identification of dead links. It is, thus,
not clear how to both estimate it and at the same time try to avoid testing the liveness of
possibly many dead pages.

Although recrawling policies have been extensively studied for web graphs, other
sources of online data such as social networks are not as thoroughly covered. Yet, it
is possible to similarly crawl such networks. For example, one can explore the Twitter
network by fetching information about user accounts that are linked by the follower–
followee relations. However, crawling is much more restricted because all the data is
possessed by a single company. This makes our approach even more relevant in such
contexts where gathering a large amount can take an extensively long time.

Interestingly, [20] shows, among various observations, a correlation between number
of followers and PageRank. To the contrary, the activity of a user measured in number of
tweets seems to be correlated more to his number of followees than his number of follow-
ers. First reported Twitter crawls include [16, 19, 20]. Recently, [13, 14] have presented
preliminary studies on a complete picture of a Twitter social graph. The authors themselves
claim that such extensive crawling becomes more and more difficult with time because
Twitter tends to restrict its white list of IPs authorized to query its API at a high rate.
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1.4. Roadmap

In the next section, we propose a simple metric to evaluate the quality of a LiveRank
and we introduce several classes of possible LiveRank solutions. In Section 3, we introduce
three datasets, two from the .uk Web and one from Twitter, and we expose how a ground
truth was computed for them. Finally, in Section 4, we benchmark our LiveRanks against
the datasets and discuss the results.

2. MODEL

Let G = (V,E) be a graph obtained from a past crawl of a structured network. For
example, G can represent
� A web graph with V representing the crawled pages and E the hyperlinks: for i, j in

V , (i, j ) is in E if and only if there is a hyperlink to j in i. For web graphs, edges are
always directed;

� A social network with V representing the users and E social relationships between
them. For social networks, edges can be undirected (symmetric relationships such as
friendship) or directed (asymmetric relationship such as follower/followee).

Let n denote the size of V . At the present time, only a subset of G is still active.
The meaning of active depends of the context and needs to be defined: alive pages for web
graphs, nonidle users for social networks, etc. We call a the function that tells if nodes are
active: a(X) denotes the active nodes from X ⊂ V , whereas ā(X) stands for X \ a(X). Let
na be |a(V )|.

The problem we need to solve is how to crawl a maximum number of pages from
a(V ) with a minimal crawling cost. In particular, one would like to avoid crawling too
many pages from ā(V ). If a were known, the task would be easy, but testing the activity of
a node obviously requires crawling it. This is the rationale for the notion of LiveRank.

2.1. Performance Metric

Formally, any ordering can be seen as a LiveRank, so we need some performance
metrics to define good LiveRanks that succeed in ranking the pages from a(V ) first.
Following [11], we define the LiveRank cost as the average number of node retrievals
necessary to obtain an active node, after a fraction 0 < α ≤ 1 of the active nodes has been
retrieved.

In detail, let Li represent the i first pages returned by a LiveRank L, and let i(L, α)
be the smallest integer such that |a(Li )|

na
≥ α. The cost function of L, which depends on α,

is then defined by:

cost(L, α) = i(L, α)

αna

.

A few remarks on the cost function:
� It is always at greater than or equal to 1. An ideal LiveRank would perfectly separate

a(V ) from the rest of the nodes, so its cost function would be 1. Without precognition,
this requires testing all pages, which is exactly what we would like to avoid. The cost
function allows us to capture this dilemma.
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� Keeping a low cost becomes difficult as α gets close to 1: without some clairvoyant
knowledge, capturing almost all active nodes is almost as difficult as capturing all
actives nodes. For that reason, one expects that when α gets close to 1, the set of nodes
any real LiveRank will need to crawl will tend to V , leading to an asymptotical cost n

na
.

This will be verified in Section 4.
� Finally, one might have noticed that the cost function uses na = |a(V )|, for which an

exact value requires a full knowledge of active nodes. This is not an issue here because
we will perform our evaluation on datasets in which a is known. For use on datasets
without ground truth, one could either use an estimation of na based on a sampling or use
a nonnormalized cost function (for instance the fraction of active nodes obtained after i

retrievals).

2.2. PageRank

Many of the LiveRanks proposed here are based on some variants of PageRank.
PageRank is a link analysis algorithm introduced in [24] and used by the Google Internet
search engine. It assigns a numerical importance to each page of a web graph. It uses the
structural information from G to attribute importance according to the following (informal)
recursive definition: a page is important if it is referenced by important pages. Concretely,
to compute PageRank value, denoted by the row vector Y , one needs to find the solution of
the following equation:

Y = dYA + (1 − d)X, (2.1)

where A is a substochastic matrix derived from the adjacency matrix of G, d < 1 is a
so-called damping factor (often set empirically to d = 0.85), and X � 0 is a zap vector;
X represents a kind of importance by default that is propagated from nodes to nodes
according to A with a damping d.

Computation of PageRank vectors has being widely studied. Several specific solutions
were proposed and analyzed [21, 4] including the power method [24], adaptation [17],
extrapolation [15, 18], the adaptive online method [2], etc.

We now present the different LiveRanks that we will consider in this article. We
broadly classify them in to three classes: static, sample-based, and dynamic.

2.3. Static LiveRanks

Static LiveRanks are computed offline using uniquely the information from G. That
makes them very basic, but also very easy to use in a distributed way: given p crawlers of
similar capacities, if L = (l1, . . . , ln), simply assign the task of testing node li to crawler i

mod p.
We propose the following three static LiveRanks:
Random permutation. (R) will serve both as a reference and as a building block

for more advanced LiveRanks. R ignores any information from G, so its cost should be in
average n

na
, with a variance that tends to 0 as α tends to 1. We expect good LiveRanks to

have a cost function significantly lower than cost(R).
Decreasing Indegree ordering. (I ) is a simple LiveRank that we expect to behave

better than a random permutation. Intuitively, a high indegree can mean some importance,
and important pages may be more robust. Also, older nodes should have more incoming
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edges (in terms of correlation), so high-degree nodes can correspond to nodes that were
already old at the time G was crawled, and old nodes might last longer than younger ones.
Sorting by degree is the easiest way to exploit these correlations.

PageRank ordering. (P ) pushes forward the indegree idea. The intuition is that
nodes that are still active are likely to point toward nodes that are also still active, even
considering only old edges. This suggests using a PageRank-like importance ranking. In
absence of further knowledge, we propose to use the solution of (2.1) using d = .85 (typical
value for web graphs) and X uniform on V .

Note that it is very subjective to evaluate PageRank as an importance ranking, because
importance should be ultimately validated by humans. However, the quality of PageRank
as a static LiveRank is straightforward to verify, for instance, using our cost metric.

The possible existence of correlation between Indegree (or PageRank) and activity
will be investigated in Section 3.3.

2.4. Sample-Based LiveRanks

Using a LiveRank consists in crawling V in the prescribed order. During the crawl,
the activity function a becomes partly available, and the obtained information could be used
to enhance the retrieval. Following that idea, we consider here a two-step, sample-based
approach: we first fix a testing threshold z and test z items following a static LiveRank
(such as R, I , or P ). For the set Z of nodes tested, called sample set or training set, a(Z)
is known, which allows us to recompute the LiveRank of the remaining untested nodes.

Because the sampling uses a static LiveRank, and the adjusted new LiveRank is static
as well, sample-based LiveRanks are still easy to use in a distributed way because the
crawlers need to receive crawl instructions on only two occasions.

Notice that in the case of the sampling LiveRank being a random permutation, |a(Z)| n
z

can be used as an estimate for na . This can, for instance, be used to decide when to stop
crawling if we desire to identify αna active nodes in a(V ).

2.4.1. Simple Adaptive LiveRank (Pa). When a node is active, we can assume it
increases the chance that nodes it points to in G are also active, and that activity is transmitted
somehow through hyperlinks. Following this idea, a possible adaptive LiveRank consists
in taking for X in (2.1) the uniform distribution on a(Z). This diffusion from such an initial
set can be seen as a kind of breadth-first traversal starting from a(Z), but with a PageRank
flavor.

2.4.2. Double Adaptive LiveRank (P+/−
a ). The simple adaptive LiveRank does

not use the information given by ā(Z). One way to do this is to calculate an “anti”-PageRank
based on ā(Z) instead of a(Z). This ranking would represent a kind of diffusion of idleness,
the underlying hypothesis being that idle nodes point to nodes that tend to be idle, too. As a
result, we obtain a new LiveRank by combining these two PageRanks. After having tested
several possible combinations not discussed in this article, we empirically chose to weight
each node by the ratio of the two sample-based PageRanks, after having set all null entries
of the anti-PageRank equal to the minimal nonnull entry.

2.4.3. Active-site First LiveRank (ASF). To compare with previous work, we
propose the following variant inspired by the strategy for finding pages that have changed
in a recrawl [11]. Their algorithm is based on sampling for estimating page change rate
for each website and then crawling sites by decreasing change rate. In details, active-
site first (ASF) consists in partitioning Z into websites determined by inspecting the
URLs. We thus obtain a collection Z1, . . . , Zp of sets. For each set Zi corresponding
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to some site i, we obtain an estimation |a(Zi)|/|Zi | of its activity (i.e., the fraction of
active pages in the site). We then sort the remaining URLs by decreasing site activity.
Of course, this technique works only for web graphs and can hardly be adjusted to other
networks.

2.5. Dynamic LiveRanks

Instead of using the acquired information just one time after the sampling, Dynamic
LiveRanks are continuously computed and updated on the fly along the entire crawling
process. On the one hand, this gives them real-time knowledge of a, but on the other hand,
as the dynamic LiveRank might evolve all the time, they can create synchronization issues
when used by distributed crawlers.

As for sample-based LiveRanks, dynamic LiveRanks use a training set Z of z nodes
from a static LiveRank. This allows bootstraping the adjustment by giving a nonempty
knowledge of a and prevents the LiveRank from focusing on only a small subset of V .

Breadth-first search (BFS) With BFS, we aim at taking direct advantage of the possible
propagation of activity. The BFS queue is initialized with the (uncrawled) training set Z.
The next node to be crawled is popped from the queue following first-in-first-out (FIFO)
rule. If the selected node appears to be active, all of its uncrawled outgoing neighbors are
pushed to the end of the queue. When the queue is empty, we pick the unvisited node with
highest PageRank.1

Active indegree (AI) BFS uses a simple FIFO queuing to determine the processing
order. We now propose AI, which provides a more advanced node-selection scheme. For
AI, each node in the graph is associated with an activity score value indicating how many
reported active nodes point to it. These values are set to zeros at the beginning and are
always kept up-to-date. AI is initialized by testing Z: each node in a(Z) will increment the
associated values of its outgoing neighbors by one. After Z is tested, the next node to be
crawled is simply the one with the highest activity score (in case of equality, to keep things
consistent, we pick the node with the highest PageRank). Whenever a new active node is
found, we update the activity scores of its untested neighbors.

With Dynamic LiveRank, it is natural to think of a last variant, a dynamic PageRank-
based strategy in which the PageRank vector is recursively computed. Starting from a
uniform distribution on a(Z), we obtain X in (2.1). Then a new teleportation vector is
constructed as a uniform distribution on largest value entries of X, i.e., those which are
considered probably active after the first diffusion of a(Z). The process continues and X is
updated iteratively. However, after some experimentations, we realized that this method is
not efficient because it cannot escape from the locality of a(Z).

3. DATASETS

We chose to evaluate the proposed LiveRanks on existing datasets of the Web and
Twitter available on the webgraph platform [8, 6, 5]. In this section, we present the datasets,
describe how we obtained the activity function a, and observe the correlations between a,
indegree, and PageRank.

1We tested several other natural options and observed no significant impact.
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Status Description Number of Pages Percentage
Code HTTP 404 Page not found 6, 467, 219 34.92%
No answer Host not found 4, 470, 845 24.14%
Code HTTP 301 Redirection 3, 455, 923 18.66%
Target 301 Target of redirection 20, 414 0.11%
Code HTTP 200 Page exists 2, 365, 201 12.77%
True 200 Page really exists 1, 164, 998 6.29%
Others (403,. . . ) Other error 1, 761, 298 9.51%
Total Graph size 18, 520, 486 100%

Table I Status of webpages in uk-2002, crawled in December 2013.

3.1. Web Graph Datasets

For the study of web graphs, we focused on snapshots of the British domain .uk.
3.1.1. uk-2002 Dataset. The main dataset we use is the web graph uk-20022

from UbiCrawler [5]. This 2002 snapshot contains 18,520,486 pages and 298,113,762
hyperlinks.

The preliminary task is to determine a. For web graphs, it describes the liveness of
the pages of the snapshot. For each URL, we have performed a GET request and hopefully
obtained a corresponding HTTP code. Our main findings are these:
� One third of the total pages are no longer available today, the server returns error 404.
� One fourth have a DNS problem (which probably means the website is also dead).
� For one fifth of the cases, the server sends back the redirection message 301. Most

redirections for pages of an old site lead to the root of a new site. If we look at the
proportion of distinct pages alive at the end of redirections, it is as low as 0.1%.

� Less than 13% of pages return the code 200 (success). However, we found out that half
of them actually display some text mentioning that the page was not found. To handle
this issue, we have fully crawled all the pages of the dataset with code 200 and filtered
out pages whose title or content have either Page Not Found or Error 404.

The results are summarized in Table I. In the end, our methodology led to finding
1,164,998 alive pages, accounting for 6.4% of the dataset.

3.1.2. uk-2006 Dataset. The settings of uk-2002 are rather adversarial (old snap-
shot with relatively few alive pages), so we wanted to evaluate the impact of LiveRanks
on shorter time scales. In absence of fresh-enough available datasets, we used the DELIS
dataset [7], a series of twelve continuous snapshots3 starting from 06/2006 to 05/2007 (one-
month intervals). We set G to the first snapshot (06/2006). It contains 31,316,403 nodes
and 813,807,972 hyperlinks. We then considered the last snapshot (05/2007) as “present
time,” setting the active set a(V ) as the intersection between the two snapshots. With this
methodology, we hope to have a good approximation of a after a one-year period. For this
dataset, we obtained na = 11, 142, 177 “alive” nodes, representing 35.56% of the graph.

2http://law.di.unimi.it/webdata/uk-2002/
3http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/
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Figure 1 Statistics of the twitter-2010 dataset.

3.2. Twitter Dataset

Finally, we used the dataset twitter-2010, first introduced in [20].4 The graph
contains roughly 42 million Twitter user accounts and 1.5 billion follower–followee rela-
tionships among them. Arcs in the graph are directed from followers to followees: there
is an arc from node x to y if user x follows y. This orientation convention is in line with
a PageRank approach: a user is important when followed by important users. Note that
information (tweets) traverses arcs in the opposite direction, from followees to followers.

We consider that a user is active if he/she has posted a tweet recently. For that purpose,
we can query the Twitter interface to recover the timestamp of the last tweet of the user
associated with a given identifier. Recovering the timestamps of all 41 millions users using
Twitter API [1] would be extremely slow: when we made our measurements (05/2014),
an authorized Twitter account was limited to 350 API requests/hour so querying all the
accounts would have taken 13 years. Although this is one of the main reasons for designing a
good LiveRank, we still need a full crawl to build a ground truth. To overcome this obstacle,
we worked around the API limitation by using a browser-like crawler to recover each user
timeline as if a regular browser were connecting to Twitter front servers. This is possible
because the timestamp of the last entry can easily be scrapped from the HTML structure
of the returned documents. However, such an approach becomes much more difficult for
complex queries and might also be detected and prevented by Twitter in the future.

Having tested all nodes, we found three main categories of users corresponding to
those who (i) no longer exist, (ii) have no tweet at all, and (iii) have tweeted at least once
before the crawling time. Figure 1 shows the relative proportion of each category.

For users with at least one tweet, we extracted the timestamp of their last tweet. After
considering the cumulative distribution of last-tweet timestamps, we arbitrarily decided to
set the activity threshold to six months: a user is active if he/she has tweeted during the
last six months. With these settings, we obtained a list of 7,300,399 (17.53%) active users,
serving as ground truth for LiveRank evaluation.

3.3. Correlations

The rationale behind the LiveRanks (I) and (P) is the assumption that the activity of
nodes is correlated to the graph structure of the snapshot, so that a node with high indegree
or PageRank has more chances to stay active.

4http://law.di.unimi.it/webdata/twitter-2010/
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Figure 2 Impact of liveness to Indegree/PageRank distribution for uk-2002.

To validate this, we plot in Figure 2 the cumulative distribution of indegree
(Figure 2a) and PageRank (Figure 2b) for alive, dead, and all pages of the uk-2002 dataset.
We observe that the curve for active nodes is slightly shifted to the right compared to the
other curves in the figure active users tend to have slightly higher indegree and PageRank
than the overall population. The bias is larger for PageRank, suggesting that LiveRank (P)
should perform better than LiveRank (I) for web graphs.

Figure 3 presents the same results for the twitter-2010 dataset. Although the curves
are qualitatively similar, the bias comparison is not as clearly in favor of PageRank.

We will now measure how this bias impacts the cost function of corresponding
LiveRanks.

4. LIVERANKS EVALUATION

After having proposed several LiveRanks in Section 2 and described our datasets in
the previous section, we can now benchmark our proposals.

All our evaluations are based on representations of the cost functions. In each plot,
the x-axis indicates the fraction α of active nodes we aim to discover, and the y-axis
corresponds to the relative cost of the crawl required to achieve that goal. A low curve
indicates an efficient LiveRank. As said previously, an ideal LiveRank would achieve a
constant cost of 1; a random LiveRank is quickly constant with an average cost n/na; any
nonclairvoyant LiveRank will tend to cost n/na as α goes to 1.

Figure 3 Impact of activity to Followers/PageRank for twitter-2010.
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Figure 4 Main results on static and sample-based LiveRanks (uk-2002).

4.1. Evaluation on Web Graphs

We focus here mainly on the uk-2002 dataset. Unless otherwise specified, the training
set contains the z = 100, 000 pages of higher (static) PageRank.

4.1.1. Static and Sample-based LiveRanks. We first evaluate the results of
static and sample-based LiveRanks. The results are displayed in Figure 4. For static
LiveRanks, we see as expected that a random ordering gives an almost constant cost
equal to n

na
≈ 15.6. Indegree ordering (I) and PageRank (P) significantly outperform this

result, PageRank being the best of the three: it is twice more efficient than random for small
α, and still performs approximately 30% better when up to α = 0.6. We then notice that
we can get much better costs with sample-based approaches, the double-adaptive LiveRank
P

+/−
a giving a significant improvement over the simple-adaptive one, Pa . The use of P

+/−
a

allows improving the ordering by a factor of 6 approximately around α = 0.2 with a cost
of 2.5 fetches per active node found. The cost for gathering half of the alive pages is less
than 4, and for 90% it stays under 10.

4.1.2. Quantitative and Qualitative Impact of the Training Set. We study
in Figure 5 the impact of the training sets on sample-based LiveRanks. Results are shown
for P

+/−
a but similar results were obtained for Pa .
Figure 5a shows the impact of the size z of the sampling set (sampling the top

PageRank pages). We observe some trade-off: as the sampling set grows larger, the initial
cost increases because the sample does not use any fresh information, but it results in a
significant increment of efficiency in the long run. For this dataset, taking a large training
set (z = 500, 000) allows reducing the cost of the crawl for α ≥ 0.4, and maintains a cost
less than 4 for up to 90%.

Another key aspect of the sampling phase is the qualitative choice of the sample set.
Using z = 100, 000, we can observe in Figure 5b that the performance of double adaptive
P

+/−
a is further improved by using a random sample set rather than selecting it according to

the PageRank or by decreasing indegree. We believe that the reason is that a random sample
avoids a locality effect in the sampling set because high PageRank pages tend to concentrate
in some local parts of the graph. To verify that, we tried to modify Indegree and PageRank
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Figure 5 Impact of the training set (uk-2002).

selection to avoid the selection of neighbor pages. The results (not displayed here) show a
significant improvement while staying less efficient than using a random sample.

To summarize, double-adaptive LiveRank through random sampling seems to offer
a very low cost, within a factor of 2 from optimal for a large range of values α.

4.1.3. Dynamic LiveRanks. We then consider the performance of fully dynamic
strategies, using the double-adaptive LiveRank with random training set as a benchmark.
The results are displayed in Figure 6a. We see that BFS and AI perform similarly to double
adaptive P

+/−
a for low α and can outperform it for large α (especially BFS). BFS begins to

significantly outperform double-adaptive LiveRank for α ≥ 0.5. However, if one needs to
gather half of the active pages or fewer, double-adaptive is still the best candidate because
it is much simpler to operate, especially with a distributed crawler.

Additionally, Figure 6b shows the impact of different sampling sets on BFS and AI.
Except for high values of α where a random sampling outperforms other strategies, the type
of sampling does not seem to affect the two dynamic LiveRanks as much as was observed
for the double-adaptive LiveRank.

4.1.4. uk-2006 Dataset. We have repeated the same experiments on the dataset
uk-2006, in which the update interval is only one year. Figure 7 shows the results for static
and sample-based LiveRanks, using z = 200, 000 (because the dataset is larger) and random
sampling. The observations are qualitatively quite similar to uk-2002. The main difference
is that all costs are lower due to a higher proportion of alive pages ( n

na
≈ 2.81). The

Figure 6 Performance of dynamic LiveRanks (uk-2002).
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double-adaptive version still gives the lower relative cost among static and sample-based
LiveRanks, staying under 1.4 for a wide range of α.

Figure 7 uk-2006 main evaluation results.

4.1.5. Comparison with a Site-based Approach. To benchmark with tech-
niques from previous work for finding webpages that have been updated after a crawl,
Figure 8 compares double-adaptive P

+/−
a to ASF with random sampling. The number of

random pages tested in each site and the overall number of tests are the same for both meth-
ods. Note that given the budget z, it was not possible to sample small websites. Unsampled
websites are crawled after the sampled ones.

We see that for α greater than 0.9, ASF performs like a random LiveRank. This
corresponds to the point at which all sampled websites have been crawled. That effect
aside, the performance of ASF is not as good as that of double-adaptive LiveRank for
earlier α. In the end, ASF beats P

+/−
a for only a small range of α, between 0.7 and 0.85,

and the gain within that range stays limited.

Figure 8 Comparison with active-site first LiveRank (uk-2002).
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Figure 9 Main results on static and sample-based LiveRanks (twitter-2010).

4.2. Evaluation on Twitter

As discussed before, the Twitter graph has structural properties distinct from web
graphs. In this part we analyze how these differences affect the performance of LiveRanks.

4.2.1. Static and Sampled-based LiveRanks. Figure 9 compares the static
and sample-based LiveRanks. A first observation is that the double-adaptive LiveRank
P

+/−
a performs very poorly compared to the other LiveRanks, including Indegree I. It

indicates that if the intuition of some death propagation was relevant for web graphs (it was
a convenient way to spot dead websites for instance), this is not the case for Twitter: the
fact that followers become inactive does not seem to have an impact on the activity of the
followees. In the end, the simple adaptive LiveRank Pa has the best performance, closely
followed by the static LiveRanks (P) and (I). Each of the three of them has a cost function
that seems to grow roughly linearly between 2 and 4 as α goes from 0 to 0.6.

4.2.2. Quantitative and Qualitative Impact of the Training Set. In
Figure 10a, we vary the size of the training set, ranging from z = 200, 000 to z =1,000,000.
Results indicate that the cost function is almost not affected by z as long as it is high
enough. Compared to the results observed on web graphs, this means that taking a large
training set

Figure 10 Impact of the training set (twitter-2010).
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Figure 11 Performance of dynamic LiveRanks (twitter-2010).

(i) will not burden the cost function for small α. This likely comes from the fact that the
sampling set is PageRank-based by default, and the static PageRank is already close to
the best LiveRank we can get;

(ii) will not improve the performance for large α either, meaning that no significantly useful
knowledge is obtained after some threshold. This relative independence with respect
to z is another qualitative difference compared to web graphs.

Figure 10b shows the impact of training set types on simple-adaptive LiveRank
Pa . Unlike web graphs, where random sampling dominates others, in social networks the
training set filled by PageRank is the best, whereas the random seed is worse. This can
be interpreted as a result of a weaker structural locality (i.e., no highly correlated clusters
such as websites for web graphs), so that activeness is more concentrated around important
Twitter individual users who should be considered as soon as possible.

4.2.3. Dynamic LiveRanks. In Figure 11a, we compare the simple-adaptive
PageRank Pa with the dynamic LiveRanks. All of them are initialized with default values
(PageRank sampling of size z = 100, 000). Pa stays the best option: it is slightly better
than AI and much more efficient than BFS. However, for web graphs, dynamic LiveRanks
could still be preferred for some settings, it seems that in the context of Twitter it is never
the case, especially considering their deployment complexity in a distributed crawler.

Finally, Figure 11b indicates the impact of different training sets on the two dynamic
LiveRanks. It confirms that the combination of AI and a PageRank-ordered training set
gives the best results for that type of LiveRanks, which is still not enough to compete
against Pa .

5. CONCLUSION

In this article, we investigated how to efficiently retrieve large portions of alive pages
from an old crawl using orderings we called LiveRanks. We observed that PageRank is a
good static LiveRank, which can be significantly improved by first testing a small fraction
of the pages for adjustment in a sample-based approach.

Compared to previous work on identifying modified pages, our technique performs
similarly for a given large desired fraction (around 80%) when compared to the LiveRank
algorithm inspired by the technique in [10]. However, outside that range, our method
outperforms this technique. Interesting future work could reside in using our techniques
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for the problem exposed in [10] (identification of pages that have changed) and comparing
them with the website sampling approach.

Another advantage of our technique is the possibility that it can be applied to more
general types of structured networks, such as Twitter. However, it seems that the choice of
an appropriate LiveRank is closely related to the type of network.

Interestingly, we could not get significant gain when using fully dynamic LiveRanks.
As noticed before, each of the two phases of the sample-based approach can be easily
parallelized through multiple crawlers, whereas this would be much more difficult with a
fully dynamic approach. The sample-based method could, for example, be implemented
with in two rounds of a simple map-reducing program, whereas the dynamic approach
requires continuous exchanges of messages between the crawlers.

Our work establishes the possibility of efficiently recovering a significant portion of
the active nodes of an old snapshot and advocates for the use of an adaptive sample-based
PageRank for obtaining an efficient LiveRank.

To conclude, we emphasize again that the LiveRank approach proposed in this article
is very generic, and its field of applications is not limited to web graphs or Twitter. It can
be straightforwardly adapted to any online data with similar linkage that enables crawling.
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