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Abstract1

Antarctic terrestrial ecosystems experience some of the most extreme growth conditions2

on Earth and are characterised by extreme aridity and sub-zero temperatures. Antarctic3

vegetation is therefore at the physiological limits of survival and, as a consequence,4

even slight changes to growth conditions are likely to have a large impact, rendering5

Antarctic terrestrial communities sensitive to climate change.6

Climate change is predicted to affect the high latitude regions first and most severely. In7

recent decades, the Antarctic has undergone significant environmental change,8

including the largest increases in ultraviolet B (UV-B; 290-320nm) radiation levels in9

the world and, in the maritime region at least, significant temperature increases. This10

review describes the current evidence for environmental change in Antarctica, and the11

impacts of this change on the terrestrial vegetation. This is largely restricted to12

cryptogams, such as bryophytes, lichens and algae; only two vascular plant species13

occur in the Antarctic, both restricted to the maritime region. We review the range of14

ecological and physiological consequences of increasing UV-B radiation levels, and of15

changes in temperature, water relations and nutrient availability. It is clear that climate16

change is already affecting Antarctic terrestrial vegetation, and significant impacts are17

likely to continue in the future. We conclude that, in order to gain a better18

understanding of the complex dynamics of this important system, there is a need for19

more manipulative, long-term field experiments designed to address the impacts of20

changes in multiple abiotic factors on the Antarctic flora.21
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1. Introduction1

The Antarctic continent is the coldest, highest, driest, windiest and most isolated2

landmass on earth. Growth conditions are therefore extreme, and plants exist at the3

physiological limits of survival. Plants are confined to the few ice-free areas, which4

constitute less than 2% of the continent. Characteristic of Antarctic growth conditions5

are low summer temperatures, a strongly seasonal climate, a very short growing season,6

continuous light in midsummer, and frequent strong winds. As a consequence of these7

severe conditions, the Antarctic flora is almost entirely cryptogamic, only two vascular8

species occur, both of which are restricted to the relatively mild Antarctic Peninsula.9

Antarctica and the detection of climate change10

Climate change is expected to impact first, and most severely, in the high latitudes11

(Callaghan et al. 1992; Vincent 1997; Walker 1997), rendering Antarctica one of the12

most significant baseline environments for the study of global climate change (Lewis13

Smith 1990b; Walton et al. 1997). Vegetation characteristics, such as simple14

community structure, and the geographic isolation of the Antarctic continent also15

contribute to the importance of this region in climate change research. The largely16

cryptogamic vegetation of continental Antarctica, dominated by bryophytes (mosses17

and liverworts) and lichens, constitutes one of the simplest ecosystems in the world, and18

therefore provides a biological study system with minimal associated ecosystem19

interactions (Lewis Smith 1988). In Antarctica, where vegetation grows at the20

physiological limit of survival, plants would be expected to show a more marked21

response to changes in growth conditions than those from less extreme climates22

(Adamson & Adamson 1992; Callaghan et al. 1997; Hansom & Gordon 1998; Melick23

& Seppelt 1997) thus enhancing the suitability of this system for the detection of24



4

environmental change. The life history characteristics of polar species (Callaghan et al.1

1992) and the precarious freeze-thaw balance, which influences many aspects of these2

ecosystems (Vincent 1997), render high latitude ecosystems vulnerable to change. In3

addition, the geographic isolation of the Antarctic continent further enhances the value4

of the vegetation of this region for climate change research, because it remains5

relatively free from the concurrent effects of anthropomorphic phenomena such as land6

use changes, weeds and pollution (Callaghan et al. 1992). It is believed that, since polar7

regions have been relatively undisturbed, small climatic shifts may have a significant8

impact on biological habitats (Melick & Seppelt 1997).9

Vegetation and phytogeographic zones10

Antarctica has been divided into three phytogeographic zones (continental, maritime11

and periantarctic; Fig. 1, Stonehouse 1989). The high latitude, Continental Antarctic, is12

the most climatically severe zone. The northwest coast of the Antarctic Peninsula and13

associated islands (including King George, South Shetlands, Sandwich and Orkney and14

Peter I Øy) make up the relatively mild Maritime Antarctic. The present review focuses15

on the continental and maritime zones.16

Despite the severe growth conditions, plants are found on the Antarctic continent17

although many species, including the two Angiosperms, are restricted to the relatively18

mild maritime zone (Table 1; Hansom & Gordon 1998; Lewis Smith 1984; Edwards19

and Smith, 1988; Longton, 1988). Outside the maritime zone the remaining20

cryptogamic vegetation is primarily limited to a few small rocky outcrops along the21

coast, the dry valleys and inland nunataks (Hansom & Gordon 1998). These continental22

areas are considered polar deserts, as the precipitation is less than 100 mm/year and is23

almost always delivered as snow (Kappen 1985a). Exacerbating the extremely dry24
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conditions are the subzero summer temperatures which lock most water away as snow1

and ice, significantly limiting plant productivity (Hansom & Gordon 1998). Despite2

limitations to growth, mosses have been reported from as far south as 84° S and3

although bryophyte fruiting events are rare in the continental Antarctic zone (Filson &4

Willis 1975; Wise & Gressitt 1965), moss sporophytes have been reported as far south5

as 77° 55' S (Seppelt et al. 1992). In addition to the relatively conspicuous mosses and6

lichens, the continental Antarctic terrestrial vegetation includes groups that are often7

overlooked, including the chasmoendolithic algae, which occur only within rock8

fissures. These organisms are widespread in coastal regions of Antarctica and are9

believed to underlie up to 20% of the rock surface in some locations (Hansom &10

Gordon 1998; Longton 1985).11

Adaptations to severe conditions12

Cryptogams are poikilohydric, and as a result, during periods of low water availability13

or freezing temperatures, they possess the ability to enter a dormant state of14

physiological inactivity through controlled dehydration of their cells. Many Antarctic15

plants can therefore survive frozen and desiccated, beneath a cover of snow, over the16

long dark winter and rehydrate during the spring thaw for the short summer growing17

season of 1-4 months (Melick & Seppelt 1997). Emerging from beneath the protective18

and insulating snow cover, these plants are exposed to the extreme conditions of the19

frigid Antarctic climate with frequent subzero temperatures, desiccating winds,20

intermittent water supply, a highly seasonal light regime, and more recently, elevated21

ultraviolet-B (UV-B; 290-320nm) radiation levels. Plant photosynthetic rates and22

consequently, growth and productivity, are greatly influenced by these environmental23

variables. Optimising photosynthesis over the short growing season depends on the24
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ability of these plants to acclimate to prevailing environmental conditions in this highly1

seasonal and variable climate (Melick & Seppelt 1994b).2

Distribution & community structure3

Antarctic plant distributions are primarily determined by environmental factors such as4

temperature (Adamson & Adamson 1992), moisture availability (Adamson & Adamson5

1992; Melick & Seppelt 1994a; Schwarz et al. 1992) and microtopography (Melick &6

Seppelt 1994a; Schwarz et al. 1992).7

Most species occurring on continental Antarctica are restricted to either the continental8

or the maritime zone and only a few species are found in both (Table 1; Hansom &9

Gordon 1998). For the cryptogamic species, lichens tend to predominate in drier, more10

exposed locations, while bryophytes are restricted to moist, sheltered refuges (Lewis11

Smith, 1988). Of the two maritime Antarctic, vascular species, the grass Deschampsia12

antarctica which grows as dense tussocks, is relatively widespread compared to the13

cushion forming pearlwort, Colobanthus quitensis, which is restricted to three localities14

(Corner 1971; Komarkova et al. 1985). The environmental conditions favourable to15

these latter species are found in sandy, mineral-rich, well-drained substrates that do not16

have a continuous supply of melt-water throughout the growing season but do have17

some moisture-holding capacity (Komarkova et al. 1985).18

Antarctic terrestrial plant communities have small stature, low biomass, low19

productivity and low species diversity (Seppelt et al. 1988). There is, however, a wide20

range of growth forms, including endolithic algae and lichens (Broady, 1981b;21

Friedmann, 1982), and epiphytes (Broady, 1981a; Seppelt and Ashton, 1978), with22

communities containing multispecies assemblages that display both vertical and23

horizontal complexities (Seppelt et al. 1988).24
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A small number of ice-free coastal areas in Antarctica support relatively rich and/or1

extensive floristic assemblages, and as a consequence these sites have been the focus of2

much research. These sites include the Windmill Islands Region, Wilkes Land, Ross3

Island, Victoria Land, and Signy Island (see Fig. 1).4

Antarctic research history and aims of this review5

Early Antarctic terrestrial studies, prior to 1965, were limited to qualitative and6

taxonomic works, and are reviewed in Lewis Smith (1984). Since the 1970s, research7

has become both more quantitative and directed towards species autecology and8

community and ecosystem processes (Lewis Smith 1984). The research on vegetation9

patterns, life history attributes and ecosystem processes has been extensively reviewed10

(e.g. Lindsay, 1978; Longton, 1979; Pickard and Seppelt, 1984; Convey, 1996; Hansom11

and Gordon, 1998; Green et al. 1999). Only a handful of review articles have been12

related to climate change, with topics including: Antarctic plants as indicators of climate13

change (Green et al. 1999), polar desert ecosystems (Vincent 1997), the ecological14

considerations of Antarctic ozone depletion (Karentz 1991) and global change research15

strategies (Weller 1992). The most relevant works are those discussing the potential16

effects of global climate change on Antarctic terrestrial ecosystems (Adamson &17

Adamson 1992; Convey 2001a; b; Kennedy 1995; 1996). These reviews have all18

identified the need for greater research into the responses of Antarctic plants to climate19

change. We focus on research published in the last decade and indicate where research20

is still required. We address how terrestrial, photosynthetic eukaryotes are likely to21

cope with climate change. In doing this, we identify the major factors currently22

influencing plant distribution and productivity in Antarctica, discuss how these factors23

are likely to change, and consider the potential impacts of such changes on the Antarctic24

flora.25
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2. UV and solar radiation1

The Antarctic ‘Ozone Hole’2

Seasonal stratospheric ozone depletion over the Antarctic continent is evident in data3

collected since the 1970s (Frederick et al. 1998; Kerr & McElroy 1993). Prior to 1978,4

ozone layer thickness was generally >300 Dobson Units (DU) over Antarctica. The5

‘ozone hole’, which is defined as the average area with an ozone thickness of <220 DU,6

develops during the austral spring (September-November) and is closely linked with the7

polar vortex (Roy et al. 1994). Ozone depletion has recently extended into the mid-8

latitudes reaching South America and the south island of New Zealand (McKenzie et al.9

1999; Stolarski et al. 1986). The largest ‘ozone holes’ were recorded between 1998-10

2001 with areas twice that of Antarctica (Fig. 2) and minimum ozone thickness reaching11

90 DU at the south pole (NASA 2002). Despite international efforts to reduce emissions12

of chlorofluorocarbons, substantial ozone depletion is expected to continue for several13

decades (Anderson et al. 1991; Shindell et al. 1998).14

Ozone depletion results in elevated UV-B levels at the earth’s surface, with a spectral15

shift to the more biologically damaging shorter wavelengths (Frederick & Snell 1988).16

As a consequence, Antarctica now experiences high UV-B levels through much of the17

spring, caused by the combined effects of the dissipating ozone hole and the approach18

of the natural annual radiation peak, the summer solstice (Frederick & Snell 1988;19

Karentz 1991; Roy et al. 1994). In Antarctic ecosystems, snow cover can offer20

protection from excess photosynthetically active radiation (PAR) and also damaging21

UV-B radiation (Marchand 1984). Furthermore, the spectral composition of sunlight22

transmitted through snow is primarily between 450 and 600 nm, with shorter and longer23

wavelengths removed (Salisbury 1984). However, these figures vary with depth and24
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density of snow cover. After snowmelt, submergence beneath water may reduce1

incident PAR. Water preferentially absorbs longer wavelengths and, although some2

attenuation of shorter wavelengths does occur, it offers only limited UV-B protection3

(Cockell & Knowland 1999). In addition to changes in incident UV-B due to4

stratospheric ozone distribution and concentration, actual UV-B experienced on the5

ground is highly variable because it is strongly influenced by cloud cover, geometry and6

albedo (Bodeker 1997).7

Impact of UV-B on Antarctic plants 8

Damage by UV-B radiation9

Absorption of UV-B radiation by plants can damage and disrupt key biological10

molecules, with an array of repercussions for the physiological functioning of the plant11

(reviewed by Greenberg et al. 1997; Jansen et al. 1998; Rozema et al. 1997; Tobin12

2003). The first line of defence is to screen UV-B radiation before it reaches the cell,13

then to minimise damage within the cells through other protective strategies, and finally14

to repair damage once it has occurred (Fig. 3; reviewed by Jansen et al. 1998; Stapleton15

1992). Since repair mechanisms are often incomplete, prevention of damage, through16

avoidance of UV-B absorption, should be more effective (Cockell & Knowland 1999).17

Damage to biological molecules can occur through direct absorption of UV-B or18

indirectly as a result of the production of reactive oxygen species (ROS; Fig. 3).19

Although such molecular effects of UV-B damage can manifest as reduced20

photosynthesis and growth of the plants, recent reviews have argued that photosynthetic21

productivity is unlikely to be significantly affected by increasing UV-B (Allen et al.22

1998) and direct effects on plant communities are likely to be subtle (Caldwell et al.23

1999).24
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Vulnerability to UV-B damage is likely to be greater in plants occurring at high1

latitudes due to the fact that they have evolved under lower UV-B conditions (Barnes et2

al. 1987; Caldwell et al. 1982; Marchant 1997). Prior to ozone depletion, polar plants3

were growing under the lowest UV-B levels on earth, and in the last few decades they4

have been exposed to similar levels as temperate plants, having little time for5

evolutionary adjustment and acclimation (Karentz 1991). Measurement of UV-B6

incident on similar altitude polar sites in 1991, showed the Antarctic site was exposed to7

150% greater UV-B than the Arctic site (Madronich et al. 1995). The annual occurrence8

of the ‘ozone hole’ also coincides with time of emergence from winter dormancy9

beneath the protective snow cover (Adamson & Adamson 1992; Karentz 1991; Wynn-10

Williams 1994), exposing plants to sudden elevations of UV-B radiation in combination11

with increased PAR and greater temperature fluctuations. Bryophytes may be12

particularly susceptible to UV-B damage because of their simple structure, with most13

having leaves which are only one cell thick and lacking protective cuticles or epidermal14

layers (Gehrke 1998; Gwynn-Jones et al. 1999; Richardson 1981). The survival of15

Antarctic plants under ‘ozone depletion’ depends on their ability to acclimate, by16

employing photoprotective mechanisms to avoid and repair UV-B damage.17

Studies investigating the impact of UV-B exposure on Antarctic vascular plants,18

bryophytes and terrestrial algae are summarized in Table 2 (photosynthetic parameters,19

growth and reproduction) and Table 3 (UV-B screening- and photosynthetic-pigments).20

The majority of studies to date have employed screens which reduce UV-B below the21

current levels. Such screens usually have confounding effects on temperature and water22

availability. The effect on precipitation, maybe less of a problem in Antarctica since23

blowing snow can still accumulate under horizontal screens, reducing the negative24

effects (Robinson 1999). However, screens with sides can elevate temperatures25
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compared with those without sides, and have larger effects on water availability by1

reducing precipitation or increasing humidity (Huiskes et al. 2000). These confounding2

factors must be considered when interpreting results, and in comparisons of screened3

with unscreened control treatments.4

There is also considerable variation in the duration of studies, with some performed5

over just one day and others over several years. Long-term studies in the Antarctic are6

difficult to maintain but given the inter-season variability in Antarctica, they are very7

important in establishing real trends in growth. We focus mostly on field studies, given8

the problems associated with reproducing natural solar radiation in controlled9

environment studies. However, in relation to induction of UV-B screening pigments or10

establishment of maximum rates of DNA damage, laboratory studies can be11

informative.12

Photosynthetic activity, growth and reproductive characteristics13

A number of studies have found that photosynthetic activity (estimated by measuring14

gas exchange or chlorophyll fluorescence) does not appear to be strongly affected by15

either reduced or elevated UV-B treatments in the two Antarctic vascular species (Table16

2). However, growth was affected in a number of ways by exposure to UV-B. The17

major impact was a reduction in cell length, leading to shorter leaves. Less branching18

and fewer leaves per shoot led to reduced plant size and biomass with effects more19

pronounced in C. quitensis than D. antarctica (Table 2). Leaves were also thicker in20

plants exposed to UV-B. Perhaps the cost of producing and maintaining thicker leaves21

explains the reductions in growth that occur in the absence of effects on photosynthesis22

(Xiong & Day 2001; Xiong et al. 2002). Long term field studies showed similar but less23

pronounced impacts of UV-B radiation compared to similar length pot studies, (Xiong24
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& Day 2001), but the latter showed high inter-annual variation and provided evidence1

of cumulative UV-B effects (Day et al. 2001).2

Exposure to UV-B accelerated plant development and led to greater numbers of3

reproductive structures in both species, although the weight of C. quitensis seed4

capsules declined with higher UV-B exposure (Table 2; Xiong et al. 2002). However,5

since these structures produced fewer spikelets and seeds, the overall reproductive effort6

was unchanged. In addition, although the final seeds produced under UV-B exposure7

were smaller, their germination rates were unaffected (Day et al. 2001).8

In two Antarctic bryophyte species (Sanionia uncinata and Bryum argenteum), no9

reductions of net photosynthesis or chlorophyll fluorescence parameters were observed10

under current levels of UV-B (Table 2). However, in a 7 d field UV-B enhancement11

study, effective photochemical quantum yield (ΦPSII) was reduced in S. uncinata12

(Table 2). In situ studies suggest that increases in screening and protective pigments13

(see below) are sufficient to protect the photosynthetic apparatus from the damaging14

impacts of UV-B radiation in bryophytes (see Table 3; Newsham et al. 2002).15

Although exposure of the terrestrial alga Prasiola crispa to elevated UV-B for 1 month16

in controlled environment cabinets led to reductions in maximum rates of oxygen17

evolution (Post & Larkum 1993), these experiments were performed at low PAR levels,18

and subsequent field studies have not supported these findings (Table 2).19

Studies of lichens in Antarctica have concentrated on the impact of excess visible20

radiation on photosynthesis and have found that, whilst photoinhibition was evident21

when lichens were water stressed (Hovenden et al. 1994), it was less likely to be a22

factor when lichens were fully hydrated (Kappen et al. 1998a). No significant effects of23

either screening or supplementation of UV-B have been observed. As with the excess24
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PAR studies, it appears that lichens are far more sensitive to moisture content and1

temperature. Perhaps these factors, which are hard to control under screening2

treatments, have tended to obscure any potential impact of UV-B (Huiskes et al. 2001;3

Lud et al. 2001b).4

To date few studies relating growth or reproduction to UV-B exposure have been5

reported for Antarctic bryophytes, lichens or algae. However, in one study of the moss6

S. uncinata, shoot biomass and length were unaffected but shoots had less branching,7

when turves were screened to reduce UV-B for 2 years (Lud et al. 2002).8

Studies of interactions between UV-B and other environmental factors (such as water9

availability and temperature) are particularly important because it is likely that there are10

interactive effects of these multiple stressors. In the Arctic, such studies have shown11

that soil microbial biota is more sensitive, than associated plants, to UV-B and CO212

(Johnson et al. 2002). These types of study highlight the fact that the most profound13

effects of UV-B on plant communities may well be indirect (Caldwell et al. 1999).14

UV-B absorbing compounds15

Pigments that absorb biologically damaging UV-B while transmitting essential PAR are16

widespread across the plant kingdom (Cockell & Knowland 1999). The primary UV-B17

absorbing pigments found in higher plants are flavonoid compounds, providing a broad18

UV-B screen (Swain 1976). UV-B absorbing pigments such as flavonoids are19

wavelength-selective UV-B screens, which can accumulate rapidly in response to high20

UV-B radiation levels (Caldwell et al. 1983). As well as their UV-B absorbing21

properties, some flavonoids (e.g. quercetin and lutonarin) with additional hydroxyl22

groups are thought to function as antioxidants, thus protecting plants against oxidative23

damage (see below; Bornmann et al. 1997). Accumulation in higher plants is primarily24
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in the epidermis, screening physiologically important molecules below (Fig. 3; Bjerke1

et al. 2002; Buffoni-Hall et al. 2002; Cuadra & Harborne 1996; Lois 1994; Robberecht2

& Caldwell 1978; Tevini et al. 1991; Vogt et al. 1991). The accumulation of UV-B3

absorbing pigments would be particularly useful in Antarctic plants because such4

passive screens could protect them from UV-B damage when physiological inactivity,5

due to desiccation or freezing, renders active repair mechanisms unavailable (Cockell &6

Knowland 1999; Lovelock et al. 1995a; b). UV-absorbing compounds have been7

investigated in a number of Antarctic terrestrial species from cyanobacteria to terrestrial8

plants. In general, cyanobacteria are protected by mycosporine-like amino acids9

(MAAs) and scytonemins, whilst terrestrial plants contain flavonoids (Fig. 3; Rozema et10

al. 2002).11

Several studies have investigated the effect of screening UV-B radiation on internal12

pigment concentrations in the two Antarctic vascular species, D. antarctica and C.13

quitensis (Table 3). These studies, performed over several years, have shown that in the14

short term (4 months), UV-B pigments may be higher under ambient rather than15

reduced UV-B radiation but this trend was not found in longer term studies (Table 3;16

Lud et al. 2001b). Elevated UV-B supplied in growth cabinets for 90 d, also failed to17

produce an increase in UV screening pigments in D. antarctica (Rozema et al. 2001).18

Leaves of both plants showed low epidermal transmittance of UV-B (4% D. antarctica,19

0.6% C. quitensis) suggesting that they may rely on wall-bound phenylpropanoids,20

which provide a spatially uniform filter, rather than on soluble UV-B pigments21

(Ruhland & Day 2000). Levels of UV-B pigments were however higher in seedlings,22

suggesting that immature plants utilise soluble pigments, whilst developed leaves23

produce compounds bound to cell walls (Ruhland & Day 2001).24
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Mosses are generally assumed to have a low capacity to produce flavonoids and tissue1

protection is usually less than in phanerogams and lichens (Callaghan et al. 1992). In a2

survey of the response of plant functional types to enhanced UV-B radiation studies,3

mosses showed no stimulation of flavonoid production (Gwynn-Jones et al. 1999).4

Most of the studies (total 6 globally) investigated arctic and periantarctic ecosystems,5

where bryophytes are amongst the dominant plants. Two of the five Antarctic6

bryophytes studied, Grimmia antarctici and Ceratodon purpureus, support this7

observation, showing low levels of UV-B absorbing compounds and no evidence of8

stimulation in response to elevated UV-B levels (Table 3). However, two recent studies9

of bryophytes in situ, that related concentrations of UV-B pigments to natural solar UV-10

B over a summer season (Dunn 2000; Lovelock & Robinson 2002; Newsham et al.11

2002); suggest that some bryophytes do produce screening pigments. Newsham et al.12

(2002) showed that UV-B absorbing pigments were induced within 24 h under naturally13

elevated UV-B in the mosses S. uncinata and Andreaea regularis and the liverwort14

Cephaloziella varians on the Antarctic Peninsula (Newsham et al. 2002; Newsham15

2003). Dunn (2000) showed that of the three dominant mosses found in the Windmill16

Islands, one (B. pseudotriquetrum) produced UV-absorbing pigments in response to17

increased UV-B radiation, whilst the other two (C. purpureus and G. antarctici) did not.18

In addition, Markham and coworkers (Table 3) demonstrated that flavonoid19

concentrations in herbarium specimens of Antarctic Bryum spp. were correlated with20

historical ozone levels (Markham et al. 1990; Markham & Given 1988). These latter21

studies show that at least for Antarctic bryophytes, the majority studied to date do22

produce sunscreens. Given the paucity of studies conducted worldwide, it is probably23

too early to conclude that this is not the case elsewhere.24
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Studies on the terrestrial alga, P. crispa, have also yielded contradictory results with1

higher levels of UV-B absorbing pigments in summer than winter but no response to2

increased UV-B in controlled environment studies, or in short term UV supplementation3

studies (Table 3). Levels of UV-absorbing pigments appear to be constitutively higher4

than most marine green algae, and screening treatments have generally resulted in5

reduced levels of all pigments rather than showing a specific effect on those absorbing6

UV-B (Lud et al. 2001a). There is also evidence of chlorophyll bleaching in the7

uppermost, exposed layers of this sheet alga, and gradients of UV-absorbing pigments8

have been observed from exposed to self shaded cell layers suggesting that the upper9

thalli confer protection to the lower layers of cells (Table 3).10

Most of the studies described above have been concerned with soluble UV-B pigments.11

However, not all pigments are soluble - some are bound to cell walls (Ruhland & Day12

2000). There is therefore a general need for further studies to investigate the role that13

such insoluble flavonoids might play in UV screening in Antarctic plants.14

Photosynthetic and photoprotective pigments15

Photo-oxidative damage can also occur as a result of UV-B radiation, with detrimental16

effects on DNA, photosynthetic pigments and membrane integrity (Fig. 3; Middleton &17

Teramura 1993; Murphy 1983; Renger et al. 1989; Tevini 1993; Tevini & Teramura18

1989). Since any excess radiation (PAR or UV) can lead to the production of ROS,19

photosynthetic pigments adjust to optimise absorption of sunlight whilst avoiding20

photodamage. This acclimation of pigments involves changes in the relative21

concentration of light-harvesting pigments (especially chlorophylls), and antioxidant22

and photoprotective pigments that can reduce the likelihood of chlorophyll photo-23

oxidation (such as zeaxanthin and ß-carotene; Demmig-Adams et al. 1996; Young24
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1991). If UV-screening compounds are unable to sufficiently reduce UV penetration,1

these carotenoids may be able to minimise the damage to macromolecules (Fig. 3).2

Comparison between studies of the levels of chloroplast pigments is complicated by3

variation in the extraction procedures used, and in the analytical techniques applied to4

separate and quantify these pigments. In studies of higher plants, sequential, and often5

multiple, extractions in 80% and 100% acetone are required to obtain accurate6

quantification of the various carotenoids and chlorophylls (Lovelock & Robinson7

2002). However, in phytoplankton studies, methanol extractions are more common8

(Wright et al. 1991) and many studies of Antarctic bryophytes and vascular plants have9

utilised this extraction method (Table 3). Direct comparison of methanol and acetone10

extractions for various algae and plant species revealed that these solvents are equally11

efficient for extraction of xanthophylls and chlorophylls, but that acetone was more12

effective for extraction of the more hydrophobic carotenes (Dunn and Robinson,13

submitted). Some of the differences observed between studies may therefore be due to14

the different extraction methodologies employed.15

For the two Antarctic vascular plants, studies have either shown a reduction in16

chlorophyll under reduced UV-B radiation or no effect on chlorophyll concentration17

(Table 3). The ratio of carotenoid to chlorophyll was higher in UV-B exposed plants in18

some studies but not in others (Table 3).19

In continental Antarctica, low temperatures and low water availability often limit20

photosynthesis, while long summer days provide excess light, thus increasing the21

potential for photoinhibition and photodamage (Adamson et al. 1988). Photoinhibition22

is reported to severely limit productivity in Antarctic bryophytes and photo-oxidative23

chlorophyll bleaching has been observed (Adamson & Adamson 1992; Post et al.24

1990). High levels of photoprotective and antioxidant carotenoids have been observed25
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in some Antarctic mosses, and it appears that species with low levels of UV-B1

absorbing pigments accumulate higher levels of carotenoids, suggesting the possibility2

that bryophytes can use alternative mechanisms of UV protection (Fig. 3; Lovelock &3

Robinson 2002; Robinson et al. 2001). Dunn (2000) found that, in all species studied,4

the xanthophyll cycle pigments increased with increasing radiation and the de-5

epoxidation status was negatively correlated with plant water content and air6

temperature, indicating strong stress responses. These increases cannot be attributed to7

UV-B radiation alone since high levels of xanthophylls might relate purely to combined8

stress from PAR, drought and temperature (Lovelock 1995a; b). However Newsham et9

al. (2002) reported significant changes in carotenoid concentration in response to10

natural UV-B radiation for both S. uncinata and C. varians. An overall increase in total11

carotenoids in response to elevated UV-B was reported for both S. uncinata and A.12

regularis, but decreases in lutein and zeaxanthin were counteracted by increases in13

neoxanthin and violaxanthin in C. varians. Chlorophyll content showed a negative14

correlation with radiation for two moss species (G. antarctica and B. pseudotriquetrum)15

but no obvious relationship was seen for C. purpureus, S. uncinata or C. varians (Dunn16

2000; Lud et al. 2002; Newsham et al. 2002).17

Studies of plants grown in controlled, elevated UV-B environments are needed to18

clarify the relationship between carotenoid concentrations and exposure to UV-B19

radiation, and to establish if these pigments have a role in UV-B protection. If20

carotenoids are found to be important in UV protection, it is likely to be as antioxidants21

since they are unlikely to have a direct screening role. Such studies could also be used22

to investigate if UV-B screening pigments can be induced in Antarctic bryophytes.23
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DNA damage and repair1

Direct damage to DNA results from absorption of photons, with 98% of the resulting2

damage occurring in the form of pyrimidine dimers, which prevent replication and gene3

transcription and thus have the potential to be mutagenic and disrupt cellular4

metabolism (Mitchell & Karentz 1993; Taylor et al. 1997). Of these pyrimidine dimers,5

75% of those produced under natural sunlight are in the form of cyclobutyl pyrimidine6

dimers (CPDs), with the remainder being (6-4) photoproducts (6-4PP; Mitchell & Nairn7

1989). Both forms of damage can be repaired in plants by either light-dependent8

(photorepair) reactions, catalysed by photolyases, or by excision repair which is light-9

independent (Britt 1999). Excision repair is ‘error prone’ in all systems, while10

photoreactivation cannot take place in the dark and is vulnerable to temperature11

extremes. Damage prevention is therefore a necessary part of UV-B protection (Murphy12

1983; Taylor et al. 1997). Accumulation and repair of pyrimidine dimers has been13

studied in a number of plant species but there are few published studies of such14

experiments involving Antarctic plants. Cyclobutyl pyrimidine dimers have been15

shown to accumulate in the Antarctic terrestrial alga, P. crispa, exposed to both natural16

and elevated UV-B radiation (Lud et al. 2001a), whilst CPDs accumulated only in17

response to elevated UV-B radiation in S. uncinata (Lud et al. 2002). Preliminary18

studies in our laboratories have found that C. purpureus accumulates both 6-4PP and19

CPDs over the course of a 24-hour cycle in Antarctica. There was no direct correlation20

between the amount of DNA damage and incident UV-B levels although there is21

evidence from both field and laboratory studies that desiccation may result in DNA22

photoproduct accumulation (Duncan & Tobin 2002). There is also evidence of high23

somatic variation in Antarctic bryophytes (Skotnicki et al. 2000), which suggests that24

DNA damage is sustained by these plants. However, it is not clear at this stage whether25
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such damage is related to increased UV-B exposure or induced by other factors such as1

desiccation or freezing. Field studies such as those performed by Rousseaux et al.2

(1999), which have found increased accumulation of DNA photoproducts in South3

American species exposed to naturally elevated UV-B, would be highly appropriate.4

3. Elevated CO25

The atmospheric concentrations of greenhouse gases, such as carbon dioxide, have been6

rising over the last few decades (Houghton et al. 2001). Despite considerable research7

effort being focussed on this issue worldwide (see for example, Drake et al. 1997), no8

research appears to have been conducted to investigate the ecological impact of rising9

CO2 levels in Antarctic terrestrial ecosystems.10

The only relevant work to date is a study by Tarnawski et al. (1992) on the dominant11

moss species in the Windmill Islands, G. antarctici. This showed that, whilst small12

cushions growing in dry sites might be CO2 limited for much of the summer, high CO213

levels were achieved throughout the summer in the turf form common to moist sites and14

making up most of the biomass of this species. Although an increase in ambient CO215

levels, as a result of global climate change, might alleviate CO2 limitations in certain16

populations, a significant increase in overall productivity seems likely only if water17

availability increases (see below).18

Evidence from a non-Antarctic system, suggests that elevated CO2 may increase the19

temperature optimum for photosynthesis in mosses (Silvola 1985). The interactions of20

increased CO2 with increasing and decreasing water and temperature therefore require21

investigation before we can attempt to predict the effect of elevated CO2 on these22

communities.23
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4. Temperature1

Evidence 2

The most recent report by the Intergovernmental Panel on Climate Change (IPCC)3

estimates that the global surface temperature has increased 0.6°C since the late 19th4

century, with a 95% confidence interval of 0.4 to 0.8°C (Houghton et al. 2001).5

Climate models predict a rise in global average surface temperatures of 1.5 to 4.5 ˚C in6

response to doubling of greenhouse gas concentrations (Tokioka 1995). Temperature7

increases are predicted to predominately impact on the high latitudes in winter, largely8

due to sea ice-albedo and snow-albedo feedbacks (Tokioka 1995). Other polar feedback9

loops, which contribute to the heightened sensitivity of the high latitude regions, include10

those involving sea-ice extent and temperature, for which evidence is provided from the11

Antarctic Peninsula region (King 1994; Smith et al. 1996).12

Predictions for escalating temperatures are supported by meteorological evidence from13

the Antarctic Peninsula region, where temperatures have increased over the last half-14

century, by 1 ºC in summer (Fowbert & Lewis Smith 1994; Lewis Smith 1990b; Lewis15

Smith 1994) and 4-5 ºC in winter (Smith et al. 1996). These substantial temperature16

increases appear to have already triggered ice-albedo feedback loops, evidence for17

which is provided from Signy Island, where there has been a 35% reduction in ice cover18

(Lewis Smith 1990b).19

However, temperature trends for the Antarctic continent as a whole are not so clear. A20

recent, detailed analysis using meteorological data (1957-1998) from stations21

throughout the Antarctic region and satellite data (1979-1998) for the Antarctic22

continent found contrasting trends. The 45 y record in the meteorological data showed23

an overall increase of 0.012+0.008 ºC y-1 but a decline of 0.008+0.025 ºC y-1 over the24
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past 20 y. The recent 20-y trend is supported by the satellite data for the same period,1

which showed a more severe decline in temperature of 0.042+0.067 ºC y-1 (Comiso2

2000). Similar fluctuations have been detected in the Windmill Islands region, East3

Antarctica; average temperatures increased 0.086 ºC y-1 from 1960 to the mid-1980s and4

then declined 0.010 ºC y-1 to the mid-1990s (Melick & Seppelt 1997). Evidence of a5

cooling trend for continental Antarctica has also been provided in a recent study that6

analyzed meteorological records throughout Antarctica for the period 1966-2000 (Doran7

et al. 2002). Contrary to the predictions of increasing global temperatures, and8

measured warming trends of the maritime Antarctic, these studies suggest a recent9

cooling trend for the Antarctic continent. However, since Antarctic temperature trends10

vary spatially, seasonally and interdecadally, we believe that it is impossible at this11

stage to confirm consistent warming or cooling of the continent and for the purposes of12

this review we will concentrate on the likely impacts of increasing temperature (see also13

Turner et al. 2002;Walsh et al. 2002).14

Alien invasion 15

The ameliorating growth conditions provided by rising maritime Antarctic temperatures16

increase the threat of invasion by alien species in this region. Evidence from Signy17

Island has shown that there is a continuous immigration of sporomorphia from South18

America (Lewis Smith 1991) and exotic pollen and spores have also been detected on19

the continent (Kappen & Straka 1988; Linskens et al. 1993). Particular species (Melick20

et al. 1994b) and sites (Selkirk et al. 1997) have been identified as having greater21

potential for invasion. In addition to the potential for species from outside Antarctica22

to colonise the continent, expansion of species ranges within Antarctica is also a23

possibility, and five native Antarctic species (Table 4) have been identified as potential24
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long-distance dispersers (Convey & Lewis Smith 1993). Under ameliorating climatic1

conditions, alien species invasion to the Antarctic may cause detrimental disruptions to2

the current ecological balance in these sensitive communities (Green et al. 1999,3

Walther et al. 2002). Although not yet determined experimentally, sporophyte4

production in bryophytes is thought to be limited by the low Antarctic temperatures5

(Filson & Willis 1975; Seppelt et al. 1992), so an increase in temperature is likely to6

result in an increase in sexual reproduction events, and consequently, an increase in7

spore production and dispersal within continental Antarctica. Combined with8

ameliorating growth conditions, the likelihood of colonisation by new populations of9

native and alien species is projected to increase under a warmer climate.10

Ecological Impacts 11

Substantial evidence is available to suggest that plant community dynamics are12

changing in response to recent warming for the maritime Antarctic (Table 4). On Signy13

Island, the steady rise in summer air temperatures since the late 1940s, and the14

consequent reduction in ice cover, have provided more favourable growth conditions15

and new areas for colonisation, respectively (Lewis Smith 1990b). There have been16

changes in abundance and area of the Antarctic vascular species, D. antarctica and C.17

quitensis (Fowbert & Lewis Smith 1994; Lewis Smith 1990b; Lewis Smith 1994). A18

26-year survey in the Argentine Islands archipelago, western Antarctic Peninsula, found19

a species-specific correlation with warming; D. antarctica showed a considerable20

increase in colony numbers and a 25-fold increase in area of each colony while no21

additional C. quitensis colonies were recorded and only a 5-fold increase in area was22

observed (Fowbert & Lewis Smith 1994). Day et al. (1999) conducted a manipulative23

field experiment, increasing the ambient temperatures for these species over two24
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consecutive growing seasons. They also detected species-specific responses, but the1

direction was opposite to that found in the field survey. When growth was measured in2

terms of leaf and shoot length, leaf production and foliar cover, warming improved the3

growth of C. quitensis and reduced growth in D. antarctica (Day et al. 1999). Both4

species showed more advanced development of reproductive structures, at the time of5

census, as a result of the experimental warming treatment.6

In the absence of long-term, field-based monitoring of plant communities on the7

continent, predictions for the impact of temperature change on the distribution of8

species can only be based on laboratory experiments and/or indirect evidence (Table 4).9

Perhaps the most direct evidence for the ecological impact of temperature on10

continental vegetation is provided by a manipulative growth experiment from the11

Windmill Islands, demonstrating the regeneration potential of continental Antarctic12

moribund moss. This study showed that in samples with up to 75% crustose lichen13

encrustation, moribund moss regeneration was faster at 18 ºC than at 2 ºC (Melick &14

Seppelt 1997).15

It is thought that the extremely low temperatures that are characteristic of the Antarctic16

environment are the primary factor limiting Antarctic terrestrial vegetation to17

predominantly cryptogams. Antarctic vegetation is often limited to sites maintaining18

relatively high temperatures, which tend to be sheltered from cold winds, have high19

levels of solar radiation, and consequently high levels of snow and ice melt (Kappen20

1985a; Seppelt & Ashton 1978; Shimizu 1977). Lichen vegetation, for example, tends21

to be particularly rich on north facing rock sites (Kappen 1985a) where temperatures are22

consistently warmer. Sheltered sites are also where fruiting events, which occur23

relatively rarely in Antarctica, have been observed (Filson & Willis 1975). Increasing24

temperatures on the continent are likely to see an expansion of the area suitable for25
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reproduction, vegetation colonisation and survival. Long-term monitoring of continental1

Antarctic terrestrial vegetation is crucial for accurate measurement and predictions of2

vegetation dynamics in response to future temperature regimes.3

Photosynthetic physiology 4

The response of vegetation to elevated temperatures varies across species and regions.5

There is evidence available to suggest that both increases and decreases to productivity6

may occur (Table 4). Since the prevailing low temperatures throughout the Antarctic7

biome are generally considered to limit net photosynthesis (Pn) for most of the growing8

season, warming conditions would therefore be expected to increase primary9

productivity (Xiong et al. 1999). Increased Pn under elevated temperatures has been10

demonstrated, for example, in three continental moss species (Lewis Smith 1999) and11

the two maritime vascular species (Xiong et al. 2000). There is, however, a wealth of12

literature that suggests increasing temperatures may cause declines in Pn (Table 4). This13

has been demonstrated for both mosses and vascular plants. Laboratory experiments14

using the maritime moss, S. uncinata, showed that over a temperature range of 0 to 2015

ºC, net photosynthesis remains low but dark respiration steadily increases (Nakatsubo16

2002). Low temperatures thus appear to be important for positive net carbon balance in17

this species, and increasing temperatures may reduce carbon gain by increasing18

respiratory loss (Nakatsubo 2002). Declines in Pn with increasing temperatures also19

occur for those species exhibiting increased photoinhibition under conditions of20

increasing temperatures, as has been demonstrated by field measurements of some21

continental Antarctic moss species (Kappen et al. 1989).22

In addition, a rise in temperature will cause an increase in the duration and frequency of23

supra-optimal temperature events, during which photosynthesis is often depressed.24
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Laboratory measurements of the maritime vascular species, D. antarctica show a1

pronounced decline in photosynthetic rates at supra-optimal temperatures (>12 ºC), with2

negligible photosynthesis at 35 ºC (Vining et al. 1997). In the field, both D. antarctica3

and C. quitensis have negligible midday net photosynthetic rates at canopy air4

temperatures greater than 20 ºC, whilst high rates of midday net photosynthesis are5

obtained at temperatures of less than 10 ºC. Accompanying laboratory experiments6

verified that high temperatures, not visible irradiance, were responsible for the7

photosynthetic depression observed (Xiong et al. 1999). Currently canopy air8

temperatures exceed 20ºC for less than 1% of diurnal periods (Day et al. 1999) and9

midday photosynthetic depression events are uncommon. The temperature at which10

conditions become supra-optimal for photosynthesis varies between species (Table 4).11

Cited values of optimal temperatures range from 10 ºC in D. antarctica (Xiong et al.12

1999) to 20-25 ºC in a maritime moss species (Rastorfer 1972).13

The data available show that although plant surface temperatures may exceed 40 ºC14

during the growing season (Lewis Smith 1986; Lewis Smith 1988), these elevated15

temperatures are not sustained (Xiong et al. 1999). A continental study recorded moss16

surface temperatures above 13 ºC less than 5% of the time and below 2.5 ºC17

approximately 60% of the time (Longton 1974). Exceptionally high temperatures are18

often accompanied by large diel fluctuations, an extreme example of which exceeded 5019

ºC (-9.2 to 42.8 ºC) in a continental Antarctic moss species (Lewis Smith 1988).20

Despite the evidence of photosynthetic depression during elevated temperatures, it has21

been demonstrated that, at least in the two maritime vascular species, increasing22

vegetative growth outweighs declines in photosynthetic rates under these high growth23

temperatures (Xiong et al. 2000).24
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The lack of experimental, field-based manipulation of temperature, due to the difficulty1

of performing such experiments in the severe Antarctic climate, limits our knowledge in2

this area. However, open-top chambers have been successfully used to increase soil3

temperatures by +2.2 ºC at 10 cm depth and +5.2 ºC at the surface (Marion et al. 1997).4

In addition, experimental manipulation of growth conditions has shown that some5

species have a greater potential for plasticity of optimal temperatures in response to6

elevated temperatures. Collins (1977), demonstrated that the maritime moss species,7

Drepanocladus uncinatus and Polytrichum alpestre, showed optimal temperatures for8

net photosynthesis of 15 ºC and 5-10 ºC, respectively when grown under a temperature9

regime similar to field conditions. When grown at warmer temperatures, the optimal10

temperature for D. uncinatus remained at 15 ºC, whilst that for P. alpestre increased to11

15 ºC. Species such as P. alpestre that show a relatively plastic response to increased12

temperatures may be better equipped to cope with future field temperature increases13

(Collins 1977).14

Experimental manipulation of temperature in the field has been achieved as a side effect15

of UV-B screening experiments, thus providing an opportunity to investigate the effect16

of elevated temperature (e.g. Huskies et al. 2001). Despite the challenge of conducting17

this kind of work in the severe Antarctic environment, well-designed experiments of18

this type are possible and are badly needed.19

Impact of increased freeze-thaw20

Temperature fluctuations that cause plant tissues to cyclically freeze and thaw may be21

more damaging than exposure to cold temperatures alone (Kennedy 1993) and there is22

some evidence that these events are increasing in frequency (Lovelock 1995a; b).23
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Continental Antarctic species can survive repeated freeze-thaw events (Melick &1

Seppelt 1992), while maritime species appear to be less tolerant (Davey 1997b).2

Tolerance of freeze-thaw events involves interactions with other environmental3

parameters, such as water availability. For example, desiccation prior to freezing4

reduces damage to the photosynthetic apparatus and protection from freeze-thaw can be5

provided by snow cover, which acts as an insulator (Lovelock 1995a: b). If climate-6

warming results in reductions in snow cover, Antarctic plants may be more exposed to7

damage by freeze-thaw events in the future. Since freeze-thaw cycles reduce plant8

productivity and survival (Table 4), increases in the frequency and/or magnitude of the9

temperature differential of freeze-thaw cycles on the Antarctic continent are likely to10

have negative impacts on the Antarctic flora.11

5 Precipitation and water relations12

The predominance of extreme cold across the Antarctic continent locks most water13

away in the form of snow and ice, resulting in the Antarctic being the largest desert on14

Earth. Biologically available water is in the form of melt water, and it is confined to the15

summer months. Melt water can be derived from freshly deposited snow, or from16

melting of permanent snow and ice banks. A fine balance between the snow regime and17

melt patterns is crucial in maintaining water availability to these exceedingly dry18

habitats. A discussion of precipitation and water relations must therefore also consider19

snow relations. Incorporating the variables of temperature, precipitation and melt, we20

suggest a model that predicts the impact of climate change on water availability in21

Antarctic ecosystems (Fig. 4). Three possible paths are suggested; two scenarios lead to22

increasing aridity, whilst the third results in either unchanged or increased water23

availability. If an increase in the area of permanent snow cover were the result of the24

final scenario, a concomitant loss of habitat for plants would occur.25
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Evidence 1

Climate warming is predicted to increase global precipitation and evaporation levels by2

3 to 15% (Tokioka 1995). Two types of precipitation occur: (1) from cumuli-form3

clouds, which will increase globally in response to climate change, and (2) from strati-4

form clouds, which will decrease with climate change. The effect of climate change on5

global precipitation patterns will therefore be a decrease in precipitation area, while6

precipitation amount will increase (Tokioka 1995).7

Under a global warming climate scenario, snow accumulation in Antarctica is predicted8

to increase (Ye & Mather 1997). However, measurement of continental soil moisture9

levels shows that continental Antarctic moisture content is decreasing (Doran et al.10

2002). In the Windmill Islands, East Antarctica, the presence of moribund moss is11

considered indicative of a drying trend, which corresponds with glaciological and12

geomorphological evidence of isostatic uplift since the last glacial maximum (Melick &13

Seppelt 1997).14

Ecological Impacts15

Studies from across the Antarctic biome have established a correlation between water16

availability and species distributions (Table 5). The majority of these studies have17

investigated broad-scale patterns, covering large spatial scales and incorporating the18

majority of vegetation types or species (Bolter et al. 2000; Broady 1989; Lewis Smith19

1986; Lewis Smith 1990a; Melick et al. 1994a; Melick & Seppelt 1997; Nakanishi20

1977; Rudolph 1963; Seppelt & Ashton 1978; Seppelt et al. 1988; Shimizu 1977).21

Examination of broad-scale patterns may be appropriate in regions undergoing rapid22

change, such as the Periantarctic (Adamson et al. 1988; Frenot et al. 1997; Smith and23

Steenkamp, 1990) and the Antarctic Peninsula (Lewis Smith 1990b). On the continent,24
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however, where growth rates are slow, fine-scale studies, working with selected1

vegetation components such as lichens (Inoue 1989; Kappen 1985a), bryophytes (Lewis2

Smith 1999; Schwarz et al. 1992; Selkirk & Seppelt 1987) or single species (Kappen et3

al. 1998b) will probably be required to detect community change.4

Relatively few studies of the relationship between water availability and vegetation5

distribution have included modern, quantitative statistical analyses (Table 5). Studies6

from the continent that have employed such methods have generally found positive7

associations between fine-scale distribution patterns and water availability (Leishman &8

Wild 2001) or factors affecting water availability (Ryan & Watkins 1989).9

Increasing aridity10

Antarctic terrestrial ecosystems will suffer increasing aridity if temperatures increase,11

causing elevated melts but precipitation is insufficient to counteract the increased melt,12

resulting in net depletion of permanent snow and ice reserves (Fig. 4).13

The ecological impact of increasing aridity in Antarctica has received very little14

attention (Table 5). One exception is the work by Melick and Seppelt (1997), who15

suggested that the drying trend evident in the Windmill Islands, East Antarctica, is16

driving an expansion of lichen-dominated vegetation in the region, whilst the17

bryophytes are contracting to lower-lying areas with more reliable moisture supply.18

Increasing water availability19

In Antarctic habitats, increases in water availability are likely to result if temperature20

increases are coupled with increased precipitation, equal to or exceeding the elevated21

melt, thus improving melt water availability and maintaining permanent snow and ice22

reserves (Fig. 4).23
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As is the case for increasing aridity, the ecological impacts of increasing water1

availability in Antarctica have received very little research attention. The regeneration2

potential of moribund moss (encrusted with up to 75% lichen cover) is greatest under3

permanently wet conditions, and regeneration potential is less under experimental4

irrigation regimes that provide reduced water availability (Melick & Seppelt 1997).5

It appears that no experimental tests of the influence of water availability on relative6

species distributions in Antarctica have yet been published.7

Studies that have surveyed vegetation patterns in relation to water content have tended8

to be short-term with most conducted during only one summer season (Table 5). One9

ongoing study has employed a multivariate statistical approach, to test for differences in10

species distributions within bryophyte communities in the Windmill Islands and to11

correlate any differences to environmental parameters such as water content (Wasley.12

unpublished).13

Physiological Impacts 14

Increasing aridity15

Under a climate change scenario of increasing aridity, lichens may have a greater16

chance of survival than other groups of cryptogamic organisms, as they are particularly17

well adapted to dry conditions (Table 5). Uptake of water by lichen in Antarctica, is18

largely from snow deposited on their surfaces (Schroeter et al. 1994) which, even at19

subzero temperatures, is adequate for rehydration (Schroeter et al. 1997; Schroeter &20

Scheidegger 1995). The water relations of lichens under snow and ice has been21

reviewed by Kappen (1993; 2000).22

Increasing aridity will subject vegetation to increasing frequency, severity, and duration23

of desiccation events. Levels of tolerance of desiccation vary across the Antarctic24
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biome and between species and vegetation types (Table 5). Some regions and species1

will therefore be more severely affected than others under conditions of increasing2

aridity. The maritime region appears to support some desiccation-sensitive species,3

particularly in hydric habitats, and these might be expected to be particularly vulnerable4

(Davey 1997a; b; c). On the continent, lichens are likely to survive increasing aridity as5

they show extraordinarily high levels of tolerance of desiccation and are capable of6

reactivating photosynthetic activity via uptake of water vapour (Hovenden & Seppelt7

1995b; Lange & Kappen 1972). Continental Antarctic bryophytes are not likely to be as8

tolerant of increasing aridity as lichens, but also have the ability to survive desiccation9

events. Species-specific differences in tolerance of desiccation have been detected for10

three moss species from the Windmill Islands, East Antarctica (Robinson et al. 2000),11

with the endemic , G. antarctici, more likely to be adversely affected by drying climatic12

conditions than the cosmopolitan species tested.13

Other impacts of increasing aridity include morphological changes such as reduced14

bryophyte leaf size (Table 5). In addition to the direct effects of increasing aridity,15

reductions in water availability may cause alterations to other environmental16

parameters. For example, it has been observed that dry habitats are characterised by17

higher temperatures and larger temperature fluctuations than moist habitats (Melick &18

Seppelt 1994b).19

Increasing water availability20

Water is generally limiting in Antarctic terrestrial ecosystems and increases in water21

availability are likely to induce significant biological effects. In general the evidence22

suggests that net photosynthesis and growth are currently limited by water availability23

(Table 5). However certain plant groups offer exceptions to this. As previously noted,24
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lichens can achieve physiologically optimal water contents through contact with snow,1

but at water contents greater than optimal, a depression of net photosynthesis occurs2

(Hovenden et al. 1994; Kappen & Breuer 1991). Although it is clear that water uptake3

directly from melting snow is a very important source of water for lichens (Schroeter et4

al. 1994; Schroeter et al. 1997), an increase in precipitation levels that cause more5

frequent periods of supra-optimal water contents may have a negative impact (Huiskes6

et al. 2000).7

In addition to altering rates of net photosynthesis, a range of morphological,8

physiological and biochemical changes are likely to occur if water availability9

increases, as is evident in the differences that have been measured between plants from10

wet and dry habitats in continental Antarctica (Table 5). Vegetation from wet sites, for11

example, has been found to have higher water contents at full hydration (Robinson et al.12

2000), higher chlorophyll concentrations (Kappen et al. 1989; Melick & Seppelt13

1994a), higher concentrations of soluble carbohydrates (Melick & Seppelt 1994a;14

Robinson et al. 2000), nitrogen and potassium (Fabiszewski & Wojtun 2000), higher15

turf CO2 concentrations (Tarnawski et al. 1992) higher rates of nitrogen fixation (Davey16

1982; Davey & Marchant 1983), higher production rates, and a wider temperature range17

for maximal net photosynthesis (Kappen et al. 1989). On the negative side,18

photosynthetic efficiency declines at higher tissue water contents (Robinson et al. 2000)19

and tissues freeze at higher temperatures (Melick & Seppelt 1994a) in samples collected20

from wet sites compared to those from dry sites.21

Water may be less universally limiting in the relatively moist maritime Antarctic (Table22

5). Whilst some xeric species from Signy Island were occasionally water-limited23

(Davey 1997c), there are several sites on Signy Island where photosynthesis was not24

water-limited (Collins 1977). When the photosynthetic rates of a range of xeric and25
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hydric species from this island were compared, under laboratory conditions, no1

difference between habitats was detected (Convey 1994).2

As is the case with the impact of changes to other environmental parameters, the impact3

of increasing water availability is likely to be species-specific and show variation across4

the Antarctic biome (Table 5). Whilst many studies have compared sites with naturally5

occurring variations in water content, publications produced from field manipulations of6

water availability are lacking. The absence of such studies is probably due to the7

associated difficulty of conducting field manipulations of this nature in the severe8

Antarctic environment.9

One final point to consider with respect to the impact of increasing water availability in10

Antarctic terrestrial ecosystems, is the interaction between water content and freezing.11

Evidence suggests that desiccation, prior to freezing, may improve plant survival at low12

temperatures (Kennedy 1993; Lovelock 1995a; b). Increased damage during freezing13

events may therefore occur if Antarctic habitats receive an increase in water availability.14

Changes to snow regime15

A fine balance with respect to the snow regime may be particularly important to lichen16

survival in Antarctica. Although moisture from summer snowmelt is utilised by lichens17

(Kappen 2000), a persistent summer snow cover can cause lichen mortality (Benedict18

1990; Lewis Smith 1990b; Melick & Seppelt 1997). Snow cover throughout winter,19

maintaining dark conditions with temperature close to zero, caused negative carbon20

balance in lichens (Kappen 2000). This may mean that lichens would be particularly21

disadvantaged by an increase in snow cover as a result of climate change (Kappen22

2000).23
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6. Interactions between water, temperature and nutrients 1

Changes to environmental parameters, such as temperature, CO2 and water availability,2

are likely to have a synergistic effect on productivity and nutrient cycling, resulting in3

alterations to the current balance of the nutrient cycle. Perhaps due to the difficulties4

associated with detecting environmental change of this nature, there are no published5

studies relating nutrient availability to climate change in Antarctica.6

Nutrient cycling in the Antarctic is relatively slow, due to the restraints imposed on7

biological activity by low temperatures and extreme aridity. Antarctic terrestrial8

habitats often have low nutrient availability, but the communities that they support are9

generally not nutrient-limited (Table 6). Nutrient requirements for Antarctic vegetation10

are exceptionally low, such that nitrogen levels in precipitation (Greenfield 1992a) are11

sufficient for growth of cryptogams, particularly lichens. However nutrient availability12

does play a role in determining patterns of species distributions in Antarctica (Table 6).13

Nutrient availability in Antarctic terrestrial ecosystems is patchy with high14

concentration of nutrients in the vicinity of bird and seal colonies, whilst elsewhere15

nutrients are limited to that deposited in precipitation (Greenfield 1992a; b) Two studies16

in particular have demonstrated positive correlations between vegetation patterns and17

nutrient availability associated with nutrient inputs from birds (Gremmen et al. 1994;18

Leishman & Wild 2001). Current nutrient availability can be determined by site history.19

Abandoned penguin rookeries, for example, can produce relatively nutrient rich20

habitats, thus affecting local species compositions (Hovenden & Seppelt 1995a).21

Knowledge of terrestrial site history can therefore be important in understanding current22

vegetation patterns.23
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In continental Antarctica, release of nutrients from organic matter is primarily microbial1

and is relatively slow (Smith & Steenkamp 1992). In the Periantarctic, rates of inorganic2

nutrient release from plant litter are enhanced by a suite of macroinvertebrates (Smith &3

Steenkamp 1992) which are absent on the continent.4

Nitrogen fixation by the cyanobacteria, N. commune, occurs during the Antarctic5

summer. Fixation rates are dependent on water availability and temperature conditions;6

fixation ceases below –7 ºC (Davey & Marchant 1983), with rates highest in areas of7

high water content (Davey 1982). N. commune and moist associations of moss-Nostoc8

are estimated to contribute 52 and 119 mg N m-2 yr-1 to the terrestrial ecosystem,9

respectively (Davey & Marchant 1983). These results suggest that warmer, wetter10

conditions are more favourable for nitrogen fixation.11

If photosynthesis and growth rates of Antarctic plants increase, in response to greater12

water availability and/or temperature increases, the demand for nutrients will increase,13

leading to the development of a nutrient-limited system. Nutrient inputs through14

precipitation and biological fixation of nitrogen are known to be too small to meet the15

current demands of plants in Periantarctic ecosystems (Smith & Steenkamp 1992). The16

capacity to increase nutrient availability under future climatic conditions might also be17

limited by low continental soil fauna diversity.18

7. Conclusions19

Climate change has already impacted on Antarctic plants. Temperature increases in the20

maritime Antarctic have led to changes in the distribution of native plants and increased21

the opportunities for alien species to invade. Current levels of UV-B have been shown22

to reduce growth of the two vascular species suggesting that ozone depletion may be23

having a negative effect on these plants. Although negative effects of UV-B are24
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ameliorated by UV-screening compounds in many Antarctic plants, increased levels of1

these compounds may lead to indirect effects on nutrient cycling.2

This review has suggested scenarios for the Antarctic flora under global climate change.3

Comprehensive predictions are complicated by both the lack of certainty in the4

prediction of changes to abiotic variables, and by the lack of long-term studies5

investigating recent changes to the flora. Although manipulative, long-term and6

quantitative research has been undertaken in recent years, there is a particular need for7

studies that address the impact of combinations of abiotic factors. Given the slow rate of8

change in these ecologically extreme communities, a commitment to long-term studies9

such as those planned and occurring as part of the Scientific Committee on Antarctic 10

Research, Regional Sensitivity to Climate Change program are essential to investigate11

both the response of key species and of key assemblages.12
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Table 1. Estimated contribution of plant groups to terrestrial plant biodiversity of
Antarctica.

Phytogeographic zone Angiosperms Mosses Liverwort
s

Lichens Macro-
fungi

References

Continental - 30 1 125 2 (Lewis Smith 1984)
Maritime 2 75 25 150 22+ (Lewis Smith 1984)
Total 2 85 25 200+ 28 (Longton, 1985)
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Table 2. Summary of effects of UV-B radiation on photosynthetic parameters, growth and reproduction in Antarctic plants and terrestrial
algae.

Plant
group and
Species

Duration and
type of study

Photosynthetic parameters Growth Reproduction References

Vascular
plants
D. antarctica 2m field

screening
study

Reducing UVR improved growth. (Day et al.
1999)

4m field
screening
study

Leaves longer (cells elongated) under reduced
UVR.

(Ruhland &
Day 2000)

4m field
screening
study (pot
grown)

O2 evolution not affected on area
basis but higher on both
chlorophyll and leaf mass basis
under reduced UV-BR. ΦPSII
higher under reduced UV-BR but
Fv/Fm not affected.

Total leaf area, tillar length and total biomass
increased with reduced UV-BR. Leaves thinner
under reduced UV-BR.

(Xiong &
Day 2001)

4y screening
study

Leaf elongation faster with reduced UV. Overall no change per unit area.
Slower development and reduced
number of panicles under reduced
UV-BR - offset by more spikelets.
Larger seeds under reduced UV-
BR but germination rates similar.

(Day et al.
2001)

1m and 2y
screening
studies

No effect of screening on ΦPSII
or Fv/Fm.

(Huskies et
al. 2001; Lud
et al. 2001b)

7d UV-BR
field
enhancement

No change in ΦPSII. (Montiel et
al. 1999)

90d enhanced
UV-BR,
controlled
environment

No change in ΦPSII, Amax or dark
respiration.

Shoot length reduced, more branching of shoots
and thicker leaves under increased UV-BR.
Overall no effect on RGR.

(Rozema et
al. 2001)

C. quitensis 2m field Some indications of improved growth under (Day et al.
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screening
study

reduced UV-BR. 1999)

4m field
screening
study (pot
grown)

Similar 63d
study

O2 evolution not affected on area
basis but higher under reduced
UV-BR on both chlorophyll and
leaf mass basis. Midday ΦPSII
slightly higher under reduced
UV-BR but Fv/Fm not affected.

Total leaf area, cushion diameter and total
biomass increased with reduced UV-BR.
Leaves thinner under reduced UV-BR.

RGR and NAR higher under reduced UV-BR.
Higher shoot biomass, more branching and
more leaves per shoot, larger leaves and greater
leaf longevity under lower UV-BR. Leaf area
higher, but total leaf biomass unchanged, due to
lower SLM with reduced UV-BR.

Higher reproductive biomass,
capsules heavier under reduced
UV-BR.

(Xiong &
Day 2001)

(Xiong et al.
2002)

Summer
season
screening

Seedlings produce more leaves and branches
and have greater leaf area if grown under
reduced UV-BR.

No effect of UV-BR on seedling
survival.

(Ruhland &
Day 2001)

4y screening
study

Increased leaf length, branching, cushion
diameter, aboveground biomass and numbers of
green leaves per shoot with reduced UV-BR.

Overall no change per unit area.
Slower development and reduced
number of capsules with reduced
UV-BR - offset by more seeds.
Larger seeds under reduced UV-
BR but germination rates similar.

(Day et al.
2001)

7d UV-BR
field
enhancement

No change in ΦPSII. (Montiel et
al. 1999)

Bryophytes
B. argenteum 8h screening

study
No effect on Pn or Fv/Fm. (Green et al.

2000)
S. uncinata 1m screening

study
No effect on ΦPSII. (Huskies et

al. 2001)
4-6w study in
situ

No effect of naturally increased
UV-BR on Fv/Fm.

(Newsham et
al. 2002)

7d UV-BR field
enhancement

ΦPSII reduced. (Montiel et
al. 1999)

2d UV-BR
field

No effect on Pn, Fv/Fm or ΦPSII. (Lud et al.
2002)
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enhancement
2y screening
study

No effect on biomass or short length. Less
branching under reduced UV-BR.

(Lud et al.
2002)

C. exiliflora Density of thylakoids greater in
shaded plants.

(Post & Vesk
1992)

Algae
P. crispa 1m enhanced

UV-BR,
controlled
environment

Reduced Amax. (Post &
Larkum
1993)

1m screening
study

No effect on ΦPSII. (Huskies et
al. 2001)

2d enhanced
UV-BR

No effect on gas exchange. (Lud et al.
2001a)

Abbreviations: Amax light saturated rate of photosynthesis, d day, Fv/Fm optimal efficiency of PSII, h hour, m month, NAR net assimilation rate, ΦPSII quantum yield of
PSII, Pn net photosynthesis, RGR relative growth rate, UV-BR ultraviolet-B radiation, w week, y year
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Table 3. Summary of effects of UV-B radiation on UV-B screening and photosynthetic pigments in Antarctic plants and terrestrial algae.

Plant Group and
Species

Duration and
type of study

UV-B absorbing pigments Chlorophylls Carotenoids References

Vascular plants
D. antarctica 2 & 4 m field

screening
study

No effect. No change over 2 m. (Day et al.
1999)

4 m field
screening
study (pot
grown)

Lower under reduced UV-BR. Lower under reduced
UV-BR.

Total car. lower under reduced UV-BR
(methanol extract).

(Ruhland &
Day 2000;
Xiong &
Day 2001)

2 y screening
study

No effect. No effect. No effect. (Lud et al.
2001b)

90 d enhanced
UV-BR,
controlled
environment

No effect. (Rozema et
al. 2001)

C. quitensis 2 m field
screening study

No effect. No effect. (Day et al.
1999)

63 d & 4 m
field screening
study (pot
grown)

Soluble pigments, measured on area basis,
lower under reduced UV-BR.

No change over 63 d. Total car. reduced after 4 m (methanol
extract).

(Ruhland &
Day 2000;
Xiong &
Day 2001;
Xiong et al.
2002)

Summer
season
screening

Trend for lower UV-B screening pigments in
seedlings grown under reduced UV-BR.

Trend for higher chl. in
seedlings grown under
reduced UV-BR.

(Ruhland &
Day 2001)

Mosses
B. psuedotriqetrum 6 m study in

situ
High relative to other moss species and
positively correlated with UV-BR.

High relative to other
moss species. Negative
correlation with TSR.

VAZ positively correlated with TSR and WC.
De-epoxidation status of VAZ negatively
correlated with WC and air temp.
B-car positively correlated with WC and air
temp (acetone extract).

(Dunn 2000)

B. argenteum Correlation between flavonoid concentration (Markham et
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in herbarium specimens of plants collected
from Ross Sea area and historic UV-BR
levels.

al. 1990)

Bryum spp Generally show ability to accumulate
flavonoids.

(Adamson &
Adamson
1992;
Markham &
Given 1988)

C. purpureus 6 m study in
situ

Low relative to other moss species, no
correlation with TSR.
Anthocyanin pigments high on chl. Basis.

Low relative to other
moss species.
No correlation with TSR.

VAZ positively correlated with TSR and WC.
De-epoxidation status negatively correlated
with WC and air temp.
B-car. positively correlated with WC and air
temp.

(Dunn 2000)

G. antarctici 6 m study in
situ

Low relative to other moss species, no
correlation with TSR.

Greatest range compared
to other moss species.
Strong negative
correlation with TSR and
positive correlation with
WC.

VAZ positively correlated with TSR
negatively correlated with WC. De-
epoxidation status negatively correlated with
WC and air temp.
B-car. negatively correlated with WC,
positively correlated with air temp.

(Dunn 2000)

S. uncinata 4-6 w study in
situ

Increased pigments under naturally elevated
UV-BR.

Unaffected by ozone
depletion.

Increased total car. under naturally elevated
UV-BR. Higher N and B-car (acetone extract).

(Newsham
et al. 2002)

2 y screening No effect. (Lud et al.
2002)

C. varians 4-6 w study in
situ

Increased pigments under naturally elevated
UV-BR.

Unaffected by ozone
depletion.

Increased total car. under naturally elevated
UV-BR. Higher N and V but lower L and Z.

(Newsham
et al. 2002)

A. regularis 4-6 w study in
situ

Increased pigments under naturally elevated
UV-BR.

Increased total car. under naturally elevated
UV-BR.

(Newsham
2003)

Algae
P. crispa ssp
antarctica

Higher relative to chl. in summer versus
winter. Higher UV screening pigments in
upper portions of thalli.

Evidence of chl.
bleaching in top layer of
thalli.

TCar/chl increased under elevated UV-BR
(methanol extract).

(Post &
Larkum
1993)

Reduced under UV-A or UV-B screens
relative to unscreened controls. Pigments
lowest under snow (Dec) increased until
March then declined.

(Jackson &
Seppelt
1997)

4 w controlled
chamber

No effect. Reduced under elevated
UV-BR.

(Post &
Larkum
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elevated UV-
BR

1993)

1-2 d
enhanced or
reduced UV-
BR

No effect. Most car. did not change under screening
treatments, V decreased under reduced UB-
BR but no Z found (methanol extract).

(Lud et al.
2001a)

Abbreviations: A antheraxanthin, ß-car ß-carotene, chl chlorophyll, car carotenoid, d day, h hour, L lutein, m month, N neoxanthin, NAR net assimilation rate, TSR total
solar radiation, UV ultraviolet, UV-BR ultraviolet-B radiation, V violaxanthin, VAZ xanthophyll cycle pigments, w week, WC water content, y year, Z zeaxanthin
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Table 4. Summary of effects of Temperature on Antarctic vascular plants, bryophytes and terrestrial algae.
Sc

en
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Impact
Nature of
impact

Major Results
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/L
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References

Current, low, Antarctic temps limit sporophyte production. B C F (Filson & Willis
1975; Seppelt et al.
1992)

Physiol-
ogical

Sporophyte production higher at high latitudes than previously expected. Relatively high in micro-
oases.

B M F (Lewis Smith &
Convey 2002)

Supply of pollen and spores to Antarctica. V
B
L
F

C
M

FC/
L

(Lewis Smith 1991;
Linskens 1993;
Kappen & Straka
1988)

Vestfold Hills are at greater risk of alien invasion than the Ross Sea Region. B C FC/
L

(Selkirk et al. 1997)

Some species have greater potential for invasion than others. B C FC/
L

(Melick et al. 1994b)

Increased
risk of
alien
invasion

Ecological

5 native Antarctic species identified as potential long-distance colonists. B M FC/
L

(Convey & Lewis
Smith 1993)

Species-specific response to increasing summer air temps (1944-92): species distributions 1964-90 -
Deschampsia antarctica increased in area 25-fold + increased colony numbers, Colobanthus
quitensis increased in area 5-fold, no new colonies.

V M F (Fowbert & Lewis
Smith 1994)

D. antarctica and C. quitensis: increased number of individuals and populations during 27-year
monitoring period.

V M F (Lewis Smith 1994)

Manipulative field experiment: Warming increased C. quitensis growth (increased leaf production,
shoot production and foliar cover). Warming decreased growth of D. antarctica (decreased leaf
length, leaf production and foliar cover). Improved sexual reproduction in both species.

V M F (Day et al. 1999)

Antarctic veg often limited to sites maintaining relatively high temps which tend to be sheltered from
cold winds, have high levels of solar radiation, and consequently high levels of snow and ice melt.

B
L

C F (Kappen 1985a;
Seppelt & Ashton
1978; Shimizu 1977)

With up to >75% crustose lichen encrustation, moribund moss regeneration faster at 18 ˚C than at 2
˚C.

B
L

C FC/
L

(Melick & Seppelt
1997)

Altered
distribution

Ecological

Lichen veg particularly rich on north facing rock sites, where temps are consistently warmer. L C
M

R (Kappen 1985a)

In
cr

ea
se

d
T

em
pe

ra
tu

re

Increased
productivity

Physiol-
ogical

D. antarctica and C. quitensis grown at 7, 12 or 20 ˚C: despite Pn being highest in plants grown at 12
˚C, all measures of growth (RGR, total biomass, leaf area, LAR and leaf mass ratio) were greatest in

V M L (Xiong et al. 2000)
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20 ˚C grown plants
Pn increased with increased temp (tested up to 20 ºC). Species differences: Bryum argenteum >
Bryum pseudotriquetrum > Ceratodon purpureus.

B C FC/
L

(Lewis Smith 1999)

D. antarctica and C. quitensis: negligible midday field Pn at canopy air temp >20 ˚C, but high Pn at
temps <10 ˚C. Lab tests show high temp, not visible irradiance, was responsible for Pn depression.

V M F+
L

(Xiong et al. 1999)

D. antarctica pronounced decline in Pn at supra-optimal temps(>12 ˚C), Pn negligible at 35 ˚C. V M L (Vining et al. 1997)
Increased photoinhibition with increased temp. B C F (Kappen et al. 1989)

Reduced
productivity

Physiol-
ogical

Sanionia uncinata: dark respiration decreased as temp increased (tested range: 0 – 20 ˚C). Low temps
important for positive carbon balance: climate warming may reduce carbon gain by increasing
respiratory loss.

B M L (Nakatsubo 2002)

Morpholog-
ical changes

Physiol-
ogical

D. antarctica: leaf anatomy shows plastic response to changes in growth conditions. V M FC/
L

(Romero et al. 1999)

C. quitensis optimal leaf temp for Pn 14 ˚C, D. antarctica 10 ˚C. Continued warming: increased
frequency of supraoptimal temps, but canopy temps currently average 4.3 ˚C and remain < optimal
for 86% of diurnal periods during the growing season. Continued warming will usually increase Pn.

V M FC/
L

(Xiong et al. 1999)

Optimum temp for Pn: D. antarctica 13 ˚C, C. quitensis 19 ˚C. V M L (Edwards & Lewis
Smith 1988)

Optimal temp regime (day/night) 22/15 ºC for a moss species. B C FC/
L

(Longton 1981)

Pn highest at 15 ˚C for B. argenteum (measured over temp range –8 to 21 ˚C). B C L (Green et al. 2000)
Polytrichum alpestre: optimum temp 5-10 ˚C or 15 ˚C, depending on growth conditions.
Drepanocladus uncinatus: 15 ˚C, regardless of growth conditions. Species-specific response to temp:
P. alpestre showed ability to acclimate to changed temps.

B M L (Collins 1977)

4 species: differing responses to 5-25 ºC temp range. General trend: Pn increased with increasing
temp. D. uncinatus shows 20-25 ºC optimum.

B M L (Rastorfer 1972)

Pn maximal at 20-25 ºC for B. argenteum: and 15-20 ºC for Umbilicaria aprina. B
L

C FC/
L

(Green et al. 1998)

Physiolog-
ical ranges

Physiol-
ogical

Lichen phycobionts (from 6 species of lichen): optimal temp 15 ºC. L
P

C L (Schofield &
Ahmadjian 1972)

Moss surface temps measured over 13 d period) >10 ºC 44%, >20 ºC 24% of the time. B C F (Lewis Smith 1988)

Moss surface temp reached 17 ºC (1 d observation). B C F (Seppelt & Ashton
1978)

P. alpestre, 80% of summer: -5 to +5 ˚C. B M F (Collins 1977)
B. pseudotriquetrum: field thallus temp up to 27 ˚C. B M F (Schlensog &

Schroeter 2000)
Hourly microclimate measurements 1972-4: Polytrichum surface temps >+5 ˚C and <-15 ˚C
uncommon (<15% of measurements). Absolute max & min temps: +35 ˚C and –26.5 ˚C.

B M F (Walton 1982)

Surface
temps can
reach
relatively
high levels,
but are not
sustained
throughout
the
growing

Physiol-
ogical

Andreaea gainii and Usnea antarctica: thallus temps in the range 0 ˚C – 15 ˚C, which is thought to B M F (Schlensog &
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be almost optimal for Pn in both species. L Schroeter 2000)
When lichens were wet, and photosynthetically active, surface temps exceeded air temps but
remained less than 10 ºC.

L C F (Kappen 1985c)

Measured surface and air temps + irradiance (5 weeks), showed lichen growth conditions to be
relatively warm: rock surface & hydrated lichen up to 19 ˚C higher than air, overall rock surface temp
averaged 5.5 ˚C warmer than air.

L
R

C F (Kappen et al.
1998b)

season

Within soil and plant habitats: spring/summer (Nov-Mar) minimum daily temps close to 0 ˚C. S M L (Davey et al. 1992)
Field moss surface temps (56 d measurement): >0 ºC >80% of the time, >10 ºC 25% of the time. B C F (Lewis Smith 1999)
Field moss surface temps (27 d measurement): < 5% of readings >13 ºC, ~60% <2.5 ºC. B C F (Longton 1974)
Extreme surface temp diurnal fluctuation of –9.2 to 42.8 ºC. B C F (Lewis Smith 1988)
Moss and lichen summer temps higher than, and fluctuate more than, air temps (measured over 5 d).
Exposed lichen surface temp recorded to fluctuate >30 ºC during a 5 h period.

B
L
E

C F (Melick & Seppelt
1994b)

Moss surface temp range (~17 ºC to ~0 ºC) greater than range of air temps (~4 ºC to ~-2 ºC), during 1
d of observation.

B
S
A

C F (Seppelt & Ashton
1978)

Lichen temp higher (with greater fluctuations) than the relatively stable air temp (~28 h diurnal plot).
Air temp ~0 ºC, lichen temp ~0-35 ºC.

L C F (Inoue 1989)

Diurnal fluctuations greater at ground level than in air above or soil below. E C F (Longton 1974)

Surface
temps and
fluctuations
are often
greater than
ambient

Physiol-
ogical

Surface temp (rock) greater, with greater fluctuations, than air temps. E C F (Rudolph 1966)
Increased loss of soluble carbohydrates, species differences in % loss. B C FC/

L
(Melick & Seppelt
1992)

Physiol-
ogical

P. alpestre: repeated freeze-thaw cycles caused a greater reduction in gross PS than constant freezing
over the same time period. Frequency of freeze-thaw significant impact: 12h cycles, more damage
than 24 or 48h cycles.

B M L (Kennedy 1993)

In
cr

ea
se

d
fr

ee
ze

-
th

aw

Increased
damage

Environ-
mental

Spring/summer (Nov-Mar) few freeze-thaw cycles, those that occurred were not severe. Authors
suggest that freeze-thaw cycling is unlikely to currently limit organism survival during summer: if
freeze-thaw increases in frequency or severity, this may change.

S M F (Davey et al. 1992)

Abbreviations: DR dark respiration, d day, LAR Leaf area ration, ΦPSII quantum yield of PSII, Pn net photosynthesis, PS photosynthesis, RGR relative growth rate, temp
temperature, veg Vegetation, Plant group codes: V vascular plants, B bryophytes, M moss, L lichen, L(P) lichen phycobiont, A algae, F fungi, C cyanobacteria, S soil.
Location codes: C Continental Antarctic, M = Maritime Antarctic. Study Type: F Field based, L Laboratory based, FC/L Field Collected / Laboratory analyses, R Review,
M-FD Model, based on field data, M-LD Model, based on laboratory data
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Table 5. Summary of effects of precipitation and water relations on Antarctic vascular plants, bryophytes and terrestrial algae.
Sc

en
ar

io

Impact
Nature of
Impact

Major Results

P
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oc
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F
ie
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/

L
ab

References

Changes to
species
distribution

Ecological Presence of moribund moss is indicative of a drying trend: lichen-dominated veg is
expanding in area, whilst bryophyte communities are contracting, to lower lying areas with
reliable moisture supply.

B
L

C F (Melick & Seppelt 1997)

ΦPSII highest at intermediate WC. L C F (Hovenden et al. 1994)
Capable of absorbing water from air. Modeled using field data. L C F+L (Hovenden & Seppelt

1995b)
Desiccated thalli able to reactivate Pn after uptake of water vapor from air. L C FC/L (Lange & Kappen 1972)

Lichens most
likely to
survive:
adapted to dry
conditions

Physiol-
ogical

Metabolic activity in thalli rehydrated from snow at subzero temps (-4ºC). L C L (Schroeter et al. 1997)
3 bryophyte species (Windmill Islands, East Antarctica) show species-specific responses to
desiccation. Grimmia antarctici (endemic to Antarctica) appears least tolerant of
desiccation and is therefore likely to be adversely affected by an increase in frequency,
duration and/or severity of desiccation events.

B C FC/L (Robinson et al. 2000)

Maritime species from a variety of habitats (hydric, mesic, xeric) showed differences in
gross PS: hydric species are drought sensitive.

B M FC/L (Davey 1997a)

Recovery from desiccation faster in xeric than hydric species, but no correlation between
habitat and final degree of recovery.

B M FC/L (Davey 1997c)

Maritime moss species from a variety of habitats (hydric, mesic, xeric) showed increased
penetration of light into the moss as drying occurs, reducing loss of productivity during
periods of desiccation.

B M FC/L (Davey & Ellis-Evans
1996)

Maritime liverwort (Marchantia berteroana) sensitive to desiccation, recovery of gross PS
limited to approximately 10%.

B M FC/L (Davey 1997b)

Requires
extreme
tolerance of
desiccation

Physiol-
ogical

Continental Antarctic lichens were capable of tolerating, and recovering from, desiccation L C FC/L (Lange & Kappen 1972)
↑ Temperature
fluctuations

Physiol-
ogical

Exposed lichen thalli reached greater temps, with greater fluctuations, than moist moss bed.
Measured temps only, no measurement of moisture.

B
L

C F (Melick & Seppelt
1994b)

Bryum inconnexum: Leaf size smaller and more diversified in dry habitats that in moist
habitats. Leaf shape independent of water status.

B C FC/L (Nakanishi 1979)

G. antarctici: comparison of wet and dry sites - differences in turf and gametophyte
morphology. Dry site: shorter shoots, leaves smaller and more tightly packed, cell size and
number greater.

B C FC/L (Wilson 1990)

In
cr

ea
se

d
A

ri
di

ty

Morphological
impact

Physiol-
ogical

Growth form and water relations related to habitat occupied. Andreaea and Grimmia
species (small cushions) have low evaporation rates and take up water readily from any part
of shoot: occupy dry sites. Drepanocladus uncinatus ranges in growth form and has a wide
ecological amplitude in relation to water supply.

B M FC/L (Gimingham & Lewis
Smith 1971)
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Distribution of moss species correlated with moisture availability. Quantification of %
cover of species along hydrological gradient - no quantification of moisture content.
Histograms of % cover along transects. Description of trends.

B C F (Lewis Smith 1999)

Distribution of moss species and Nostoc influenced by water level - e.g. Pottia shows
significant correlation with the drier habitat of hummocks. Semi-quantitative, largely
mapping of waterline on transects. Some statistical analysis performed.

B C F (Schwarz et al. 1992)

Moss community types correlated with nature of moisture supply. B C F (Shimizu 1977)
Distribution of moss species correlated with moisture availability. Quantification of both
species distribution and water availability.

B C F +
FC/L

(Selkirk & Seppelt 1987)

Windmill Islands: 4 major veg groups, correlated with water availability: pure bryophyte
communities highest water availability, lichen communities lowest.

B
L

C F (Melick & Seppelt 1997)

Veg community types have different WCs. Quantitative measurements (moisture content in
variety of community types), descriptive analysis.

B
L

C F (Lewis Smith 1990)

Distribution of some moss sociations related to pattern of water supply (based on type of
water supply: small, medium or large snow drift, lake-shore, seepage or stream).
Quantification of veg patterns (development of sociations) + each veg quadrat assigned 1 of
6 water supply types. Veg + water data tabulated together - but analysis descriptive only.

B
L

C F (Nakanishi 1977)

Moss species diversity and abundance positively correlated with soil WC. B
L

C F +
FC/L

(Leishman & Wild 2001)

Fine-scale (intra-transect) plant dispersion patterns determined primarily by physical factors
affecting water availability (amount of drift snow available and the effects of shelter and
shade on evaporation rates).

B
L
A

C F (Ryan & Watkins 1989)

Soil WC highest in areas with moss veg. Quantitative measurements, no analysis of data. B
L
A

C F +
FC/L

(Bolter et al. 2000)

Correlations
with species
distribution

Ecological

Buellia frigida (crustose lichen) distribution explained by frequency and duration of
meltwater moistening, of rock surface. Qualitative observations and some quantification.

L C F (Kappen et al. 1998b)

Ecological With up to 75% crustose lichen encrustation, moribund moss regeneration potential greatest
in permanently moist samples. Regeneration potential reduced in samples irrigated weekly
and non-existent in samples irrigated fortnightly.

B
L

C FC/L (Melick & Seppelt 1997)

14 bryophyte species (from hydric, mesic or xeric sites): broadscale community patterns
explained by water availability, but other factors must be important in determining fine
scale patterns of species distribution (within habitats of similar water availability).

B M FC/L (Davey 1997a)

Liverwort (M. berteroana), low tolerance of desiccation, therefore limited to relatively mild
habitats. If conditions become wetter, might expand into new areas that are currently too
severe.

B M L (Davey 1997b)
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se

d
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bi

lit
y

Experimentally
determined
impact of
water on
species
distributions

Physiol-
ogical

Water availability determines the stability of lichen symbiosis: in wet habitats the free-
living algal and intermediate forms became dominant.

L
A

M FC/L (Huskies et al. 1997a)
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Increased Pn and larger temp range for Pn in mesic versus xeric moss. B C F +
FC/L

(Kappen et al. 1989)

Mesic (compared to xeric) species showed largest growth increments under a range of WCs.
Generally, species-specific responses to water availability (measured growth increments,
lateral shoot production, leaf density and size, optimal WC etc.).

B M FC/L (Fowbert 1996)

13 moss species, 1 liverwort: Xeric species gross PS currently often water-limited. B M FC/L (Davey 1997c)
Liverwort (M. berteroana) desiccation had highly adverse effect on photosynthetic capacity,
with only about 10% recovery after dehydration.

B M L (Davey 1997b)

↑ Pn and
growth

Physiol-
ogical

Andreaea gainii and Usnea antarctica: xeric fellfield species, only water source
precipitation, active only for about 40% and 31% of the time respectively.

B
L

M F (Schlensog & Schroeter
2000)

↓ Pn and
growth

Physiol-
ogical

Field manipulations (3 lichen species): Depression of Pn at supra-optimal WC (optimum
WC for Pn was 75-115% dwt). Current climate: conditions of supra-optimal WC relatively
rare.

L C F (Kappen & Breuer 1991)

G. antarctici: No difference in photosynthetic physiology between wet and dry sites. B C FC/L (Wilson 1990)No impact on
Pn

Physiol-
ogical 14 moss species on Signy Is., no relationship between habitat (xeric versus hydric) and

photosynthetic performance (rates of gross PS, Pn or DR).
B M FC/L (Convey 1994)

Higher concentrations of nitrogen and potassium. V
B
L
A

M FC/L (Fabiszewski & Wojtun
2000)

Higher turf CO2. B C FC/L (Tarnawski et al. 1992)

Higher WCs at full hydration and at 50% photosynthetic efficiency. B C FC/L (Robinson et al. 2000);

Higher production rates and a wider temp range for Pn. B C F +
FC/L

(Kappen et al. 1989)

Higher chlorophyll concentrations. B
L

C F +
FC/L

(Kappen et al. 1989;
Melick & Seppelt 1994a)

Higher levels of soluble carbohydrates. B
L

C FC/L (Melick & Seppelt 1994a;
Robinson et al. 2000)

Higher rates of nitrogen fixation. B
C

C F +
FC/L

(Davey 1982; Davey &
Marchant 1983)

Characteristics
of wet habitats
(compared to
dry habitats):
Continental
Antarctica

Physiol-
ogical

Higher tissue freezing points. L C FC/L (Melick & Seppelt
1994a)

At some sites at least water was not limiting Pn. B M F (Collins 1977)

Pn in xeric species, often water-limited. B M FC/L (Davey 1997c)

Signy Is.,
Maritime
Antarctica

Rates of Pn for a range of xeric and hydric species showed no difference between habitats. B M FC/L (Convey 1994)
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Differences in species tolerance of desiccation:, G. antarctici was least tolerant, Ceratodon
purpureus most tolerant and B. pseudotriquetrum intermediate.

B C L (Robinson et al. 2000)

Lichen (Mastodia tesselata) and its free-living phycobiont (Prasiola crispa): when
occurring in symbiosis as a lichen, decline in Pn, measured when hydrated, no change in Pn

in either the free-living algae, or an intermediate form of the lichen and alga.

L
A

M FC/L (Huskies et al. 1997a)

Species
specific
differences in
physiological
response

Physiol-
ogical

Rates of uptake and loss of water measured for 6 lichen species. Differences between
species detected and thought to be due to differences in thalli morphology and anatomy.

L M F+L (Huskies et al. 1997b)

Steep decrease in moss moisture content as distance from snow patch increased. B C F +
FC/L

(Lewis Smith 1990)Ecological

Positive correlation between veg cover and extension and duration of shallow snow cover. B,
L

C F (Kappen et al. 1990)

Permanent
snow banks
an important
moisture
source Physiol-

ogical
Lichens photosythetically active when moistened by snowfall or by run-off from snow melt. L C F (Hovenden et al. 1994)

WC of lichens resulting from contact with snow was frequently near the optimum for Pn. L C F (Kappen & Breuer 1991)
Lichens have total reliance on snow as a water supply. L C F (Hovenden et al. 1994)
Quantum flux density under 15cm snow can reach light saturation for Pn of U. sphacelata at
0ºC.

L C F (Kappen & Breuer 1991)

Lichen productivity possible when snow covered: light compensation point low at low
temps. Indirect quantification.

L C F +
FC/L

(Lange & Kappen 1972)C
ha

ng
es

to
sn

ow
re

gi
m

e

Snow cover
positive
impacts

Physiol-
ogical

Up to 20% of the photosynthetically active radiation penetrates 20cm of winter snow. Sn M F (Walton 1982)

Abbreviations: DR dark respiration, dwt dry weight, ΦPSII quantum yield of PSII, Pn net photosynthesis, PS photosynthesis, temp temperature, veg Vegetation, WC water
content. ↑ increasing, ↓ decreasing. Plant group codes and Study Type as in Table 4.
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Table 6. Summary of effects of nutrients on Antarctic vascular plants, bryophytes and terrestrial algae.
Sc
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io Impact
Nature of
impact

Major Results
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References

Field survey of broadscale veg patterns. Environmental influences observed and described.
Crustose lichens: abundant at sites with nutrient input from skuas. Snow algae occurred in areas
fertilized by birds. Prasiola crispa (algae) is nitrophilous and common in the vicinity of bird
colonies.

B
L
A

C F (Broady 1989)

Coarse-scale (inter-transect) analysis of plant dispersal patterns showed significant responses
along bird-influence gradients. Quantitative statistical analysis of veg and environmental data.

B
L
A

C F (Ryan & Watkins
1989)

Field observations suggested that nitrogenous debris was a major factor in influencing the
distribution of the veg components. Data presented as a veg map of the study area, no
quantitative statistical analysis.

B
L
A

C F (Rudolph 1963)

Determined distribution of veg (using 1km grid squares). Description of field observations:
nutrients (probably N & P) from bird nest sites have positive influence on distribution, biomass
and species diversity of terrestrial lithic algae, mosses and lichens.

B
L
A

C F (Seppelt et al.
1988)

Distribution of macroscopic terrestrial cryptogams determined by type of N compounds and the
concentration of water-soluble salts.

B
L
A

C F+
L

(Schofield &
Ahmadjian 1972)

Positive relationship between lichens (diversity and abundance) and soil nutrients, P more
influential than N. Soil nutrients not significantly associated with moss diversity or abundance.
Quantitative statistical analysis of veg and environmental data.

B
L

C FC/
L +
F

(Leishman & Wild
2001)

Field survey of veg patterns (aerial photography + ground truthing). Quantitative analysis of soil
characteristics (conductivity, pH, total N and total P). Mosses and lichens absent, and terrestrial
algae P. crispa dominant, in eutrophic sites near bird colonies.

B
L

C F +
FC/
L

(Melick et al.
1994a)

Measured nutrient contents for a range of veg samples: description of relationship between moss
communities and total N and C. P. crispa distribution influenced by P availability. Text in
Japanese, figures suggest no quantitative statistical analysis.

B
A

C FC/
L+
F

(Yamanaka & Sato
1977)

Species composition and distribution of lichen communities influenced by organic nutrients
supplied by sea bird excrement. Some quantification of veg patterns (determined sociations).
Nutrient relations descriptive (related to observed vicinity of bird nests).

L C F (Nakanishi 1977)

Suggests nutrient enrichment from birds explains relatively rich coastal communities. L C F (Kappen 1985b)

Increased
nutrient
availability

Relative
species
distribution

Ecological

Well-developed lichens around rookeries or nests of sea birds (except where wind-blown sea-
spray is significant). Based on veg mapping and observations of environment.

L C F (Inoue 1989)
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Quantitative measurement of substratum chemistry and veg cover along a transect. Lack of
effect of nutrients on distribution of major lichen species, but several minor species restricted to
nutrient-rich zones (nutrient source: ancient penguin rookery). Relationship between chemical
and veg data descriptive.

L C FC/
L+
F

(Hovenden &
Seppelt 1995a)

Species distributions within veg complexes related to factors indicating nutrient status (Cl- and
NH4

+ concentration, distance from sea) as well as a range of microclimate variables. Although
canonical correspondent analyses found a large amount of the variation could not be explained by
these factors. Concentration of Cl-, NH4

+ and PO4

2- correlated with distribution of lichen
complexes: Usnea complex – low whilst Mastodia-Rinodina complex – high salt concentration.

L M F (Gremmen et al.
1994)

Soil nutrients not limiting to growth of alien vascular species. V C L (Rudolph 1966)
High mobility of plant nutrients in Signy Island ecosystem. K and Ca provided by rock
weathering, Na and Mg from the ocean, phosphorous and nitrogen from fauna. Direct droppings
and drainage particularly important for distribution of N.

V
B

M FC/
L

(Allen et al. 1967)

Soils under moss favourable for soil respiration. Moss appears to act as a sink for nutrients
originating from bird nests.

B
S

C FC/
L

(Cocks et al. 1998)

Fellfield plants and soils obtain substantial quantities of N from atmospheric precipitation. In the
absence of other limitations, precipitation N would allow an annual biomass increase for U.
antarctica of 14% at Deception Is. and 7% at Ross Is.

B
L
S

C
M

FC/
L

(Greenfield 1992a)

Precipitation N major N input to fellfield biota (Cape Bird and Signy Island). C
M

FC/
L

(Greenfield 1992b)

U. sphacelata highly efficient at scavenging inorganic N from snow meltwater, capturing 92 and
87% of NO3

- and NH4

+, respectively.
L C FC/

L
(Crittenden 1998)

No change
to nutrient
availability

Nutrients
currently
non-
limiting

Physiol-
ogical

Nutrients not limiting to veg: K, Mg and P values often extraordinarily high. S C FC/
L

(Beyer et al. 2000)

Changed
nutrient
availability

Species-
specific
differences
in nutrient
relations

Physiol-
ogical

Measured differences in annual nitrogen content trends for two lichen species: U. sphacelata and
Umbilicaria decussata.

L C FC/
L

(Hovenden 2000)

Abbreviations: veg Vegetation, Plant group codes and Study Type as in Table 4
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Figure legends

Figure 1. Map of Antarctica. The Maritime Antarctic is the area to the left of the dashed

line. The Periantarctic islands are found north of the limit of sea ice and bounded by the

polar front. Locations where much of the research described in this review was

conducted include; Signy Island, Maritime Antarctic, Windmill Islands, Wilkes Land

and Ross Island. Victoria Land.

Figure 2. Depth and area of the Antarctic ozone layer from 1980-2002 showing (a)

minimum ozone concentration (Dobson Units) between 60-90 ˚S and (b) area of the

springtime Antarctic ozone hole (ozone depth <220 DU, data represent 30 d mean with

vertical lines showing minimum and maximum area). The area of the Antarctic

Continent is shown for comparison. Data were collected from the following spacecraft;

the Nimbus 7 Total ozone monitoring spectrophotometer (TOMS; 1979 and 1992), the

Meteor 3 TOMS (1993 and 1994) and the Earth probe TOMS (1996-2000). No TOMS

was in orbit in 1995. Figure redrawn from NASA (2002).

Figure 3. Diagram to show potential effects of UV-B radiation on plant cells, showing

screening, sites of damage and mechanisms of protection.

Figure 4 Schematic model of impact of climate change on water availability in

Antarctic ecosystems.
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