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Living optical random neural network with three
dimensional tumor spheroids for cancer
morphodynamics
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M. Papi3,4✉ & C. Conti 1,2✉

Optical neural networks process information at the speed of light and are energetically

efficient. Photonic artificial intelligence allows speech recognition, image classification, and

Ising machines. Modern machine learning paradigms, as extreme learning machines, reveal

that disordered and biological materials may realize optical neural networks with thousands

of nodes trained only at the input and at the readout. May we use living matter for machine

learning? Here, we employ living three-dimensional tumor brain models to demonstrate a

random optical learning machine (ROM) for the investigation of glioblastoma. The tumor

spheroid act as a computational reservoir. The ROM detects cancer morphodynamics by

laser-induced hyperthermia, quantifies chemotherapy, and cell metabolism. The ROM is a

sensitive noninvasive smart probe for cytotoxicity assay and enables real-time investigation

of tumor dynamics. We hence design and demonstrate a novel bio-hardware for optical

computing and the study of light/complex matter interaction.
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B
rain-inspired complex and disordered systems are emerging
as computing reservoirs in machine learning, neuro-
morphic computing, image processing, and cryptography1.

In conventional deep neural networks (D-NNs), the training
becomes demanding as the number of nodes growths2,3. For this
reason, new architectures containing a large number of untrained
random nodes—a computing reservoir—are very appealing.
Theorems and numerical experiments show that random NNs
preserve the functionalities of D-NNs4,5. Random NNs include
the extreme-learning machine6 (ELM), and deep reservoir com-
puting (D-RC)7. Random NNs do not require the precise control
of each of the deep computational layers and are trained only at
the input and output layers. Random NNs enable new hardware
with thousands of nodes and are rapidly emerging in classical and
quantum optical computing8–14. Optical neuromorphic comput-
ing processes information at the speed of light15–19, and recently,
photonic spin-glasses and Ising machines have been experimen-
tally demonstrated20–25. Random optical-learning machines
(ROMs) may also have innovative and surprising applications
in biophysics and medicine, because any biological system
may act as a reservoir for mixing light signals and perform
computations26.

Here, we demonstrate that a tumor-based ROM is a novel
approach to investigate cancer morphodynamics under the action
of external stimuli as hyperthermia and chemotherapy. We show
that a ROM may output information for tumor diagnosis and
drug efficacy, which seems competitive with more conventional
approaches, as biochemical assays and confocal imaging. Our
living random optical neural network has thousands of cells
acting as wave-mixing nodes made of glioblastoma cells, which
form a large-scale computing reservoir and enable the detection
of tumor morphodynamics. The biocomputing optical system
measures biophysical quantities, as cancer metabolism, which
commonly requires invasive methods.

Results
Tumor models as optical computing reservoirs. A tumor is a
population of abnormal cells with temporally unrestricted
growth. Most tumors are composed of different types of cells with
remarkable variety in metastatic ability and chemotherapy resis-
tance27. The spatial features of the tumor architecture are fun-
damental markers of cancer growth and invasiveness behavior28.
We use three-dimensional (3D) tumor models (3DTMs) or
spheroids29, which are used in oncology and are a platform for
studying complex cell-to-cell interactions and anti-cancer ther-
apeutics. For light, a 3DTM is a time-evolving complex assembly
of disordered scattering cells and—as we demonstrate here—
discloses applications for optical computation. In our biophotonic
hardware, the 3DTM cellular layers are the diffractive deep layers
of the ROM (Fig. 1). By exploiting structured light propaga-
tion30,31, we show that the ROM can perform programmed
functions6.

In optical NNs, the many signals composing a laser beam32,33

are mixed by using waveguides17, or in free-space16, and
processed by a nonlinear operation at detection. Figure 1
compares the conventional optical D-NN architectures with the
ROM. In the reported optical-learning machines16 (Fig. 1a), the
trained internal matrix W and the biases B are implemented by
tunable waveguide devices17 or customized diffractive layers16. In
our design, we realize the input layer by an iteratively trained
spatial light modulator (SLM), and the light propagates through
the random layers of the 3DTM (Fig. 1b). The number, position,
size, and optical properties (such as absorption and refraction) of
the complex assembly of tumor cells determine the time-
dependent internal weights of the reservoir.

Tumor model fabrication and laser-induced hyperthermia. We
use glioblastoma cells to form brain cancer models fabricated
following a common protocol29 for 3D spheroids (see “Meth-
ods”). Among 3D cell culture systems, we use non-scaffolded 3D
spheroid cultures34. If compared with in vivo tumors, the
spheroid mimics heterogeneity, internal structures growth kinetic,
and, remarkably, drug response28. We consider both static and
time-evolving 3DTMs. The evolution is either induced all-
optically by nonlinear optical (thermal) effects due to an infra-
red laser pump (used to simulate hyperthermia) or freely evol-
ving, due to the spontaneous cancer growth (eventually hampered
by chemotherapy).

Optical reservoir computing with tumor spheroids. Figure 2
details the internal organization of the ROM. One can identify
different kind of layers that convert the signal from the optical to
the electronic domain. The values Ai of the light intensity on the
SLMʼs segments are the components of the input vector x. The
SLM and the optical input state realize an optical convolutional

layer whose output is the hidden state vector hð1Þ. The 3DTM acts
as a disordered untrained layer with output given by the hidden

state vector hð2Þ. The optical output of the 3DTM is imaged on

the charge-coupled device (CCD) camera (output hð3Þ), which
performs a nonlinear function by measuring the laser intensity.
The digital image form the CCD is the input to an electronic
pooling convolutional network35, which produces the signals
denoted as g1, g2, …, gn. Each of these signals is an average over
the pixels on a camera segment. The output of the system is the
linear combination y ¼

Pn
i¼1 βigi xð Þ, as in the ELM6. A proper

choice of the training coefficients at the readout β1; β2; :::; βn
enables to implement a target function. For a single output spot,
only one βi is non-zero, for two spots we retain two βi, etc. The
number n of βi (i.e., the number of “output nodes”) is a parameter
optimized to realize a given target function. All the configuration
variables, as the number of SLM segments, the optical setup
(magnification, numerical aperture, etc.) are the “hyperpara-
meters” of the network. Therefore, the output signal is a function
of the many variables of the ROM, as the laser intensity profile,
the structure and refractive properties of the 3DTM, the optical
setup, the CCD and SLM parameters. Proper training enables to
extract relevant biophysical information from the device [see
Supplementary Notes 1 and 2].

In the training phase, after a proper choice of the βi, we
optimize the SLM weights for a target output intensity y. The
3DTM is left untrained as a large-scale computing reservoir. The
3DTM mixes its input signal into many signals by deflecting in
random directions the modulated input beam. We remark that,
although in general the spheroid has a nonlinear optical response
(mainly because of the thermal heating due to the input signal)
and absorbs a portion of the input light, in our scheme the 3DTM
performs a linear transformation on the input field. In sections I
and II of the SI, we report the simplest model for the 3DTM in
terms of Maxwell equations. We find that the spheroid acts on the
input signal as a neural network layer, which weights are random
complex coefficients.

Although we do not train the internal layer (which would
require the individual control of thousands of cells), we perturb
the 3DTM by control stimuli: (i) the IR laser pump and (ii) the
addition of chemotherapy. As shown in the bottom panels of
Fig. 2 (and detailed in the section II of the SI), external
perturbations are mathematically equivalent to adding further
random layers to the reservoir. One has an additional layer for
each control input, and can turn on and off the additional
internal random layers by switching on and off the corresponding
perturbation. Further perturbations, such as mechanical stress,
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can also be adopted. Figure 2 shows that the perturbed ROM is a
random network in which the signal tunnels through many
random untrained layers7. In the linear regime we consider, this
transformation is described by a random linear function.
Alternatively, the network can be viewed as a modified single-

layer perceptron in which all the weights change by coupling with
an additional part of the network represented by external
perturbations. In general, the fact that not all channels are
retrieved (unidirectional flow) and the 3DTM can present weak
nonlinearity, opens possibilities for building a “deep” network.
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Fig. 1 Deep and random optical neural networks. a Conventional optical deep neural network (D-NN) with multiple layers (L1, …, LN). Each point is a

neuron trained to perform a function between input and output planes with data Xn, as in diffractive optical networks16 and nanophotonic neural

networks17. Bn and Wn are the bias and the linear transfer matrix at each layer n. F is a nonlinear activation function. The network is ordered with bias at

each node (indicated by different colors). b Biophotonic random optical-learning machine (ROM): a random neural network with the tumor spheroid as a

computing reservoir. Three-dimensional (3D) representation of the reservoir layers by z-stack confocal microscopy images of the tumor spheroid. In the

input, a spatial light modulator (SLM) with feedback by the output layer tailors the input signal. The internal layers are random multicellular assemblies,

which are not controlled or trained. Each cell is a scattering center with a complex transfer function. Owing to the biological nature of the reservoir, the

internal weights change because of tumor spontaneous and stimulated evolution.
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response time and metabolism. The corresponding mathematical expressions of the ROM states are also indicated. The network can be continuously

retrained to follow the dynamics of the 3DTM on slow time scales. In the bottom panels, external perturbations on the 3DTM, such as infrared (IR) laser

pumping and chemotherapy, introduce further random layers and change the computing reservoir.
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However, studies show that reservoir computing also works with
linear activation functions7 and hereafter we model our results
according to this case.

Figure 3a shows the experimental implementation of the
biophotonic ROM (see “Methods” and section II of the SI).
Figure 3b shows the training stage for a fixed spot image (the
3DTM is fixed by a chemical treatment). The fixed spheroids still
retain some level of elasticity but the output pattern is stable over
the time scales of interest (several minutes). Our goal is to train
the system in a way such that the output signal computes relevant
biophysical parameters of the 3DTM.

Sensing the thermal-response by the ROM. We first consider
glioblastoma 3DTM that are chemically fixed (see “Methods”)
and do not evolve with time, and we demonstrate morphology
alterations by inducing hyperthermia. Infrared (IR) laser-induced
temperature variations in brain tissue are studied in many
applications, such as imaging and cancer therapy36,37. There are
several open questions concerning the temperature response in
cell assemblies. Temperature can affect gene expression and
development. Specifically, the thermo-response may enact ther-
modynamic transitions whose physiological relevance is still
unknown38.

To induce changes in the fixed spheroid, we use an IR pump
beam that locally heats the cells (“Methods” and Supplementary
Note 3). By affecting the internal structure of the reservoir
through thermally activated changes in the refractive index and
geometry, the IR laser modifies the output of the ROM (Fig. 4a).
As the cancer spheroid changes morphology, the single-point
target image moves and blurs39, and the intensity autocorrelation
decreases. Similarly, a simple speckle-pattern correlation techni-
que does not allow tracking of the structural changes since the
output intensity rapidly decorrelates as the perturbation is
activated (see Supplementary Fig. 8). Using recurrent training,
we continuously change the SLM weights to keep constant
the output (Fig. 4b). The continuous control allows us to
maintain a high signal-to-noise ratio at the machine output (see
Supplementary Fig. 8) and enables us to follow the network
dynamics on a longer time scale.

Recurrent training is commonly adopted in D-NN to follow
signals varying on multiple time scales as in speech recogni-
tion3,40. To evidence the ability of the device to keep the signal
level at the maximum, Fig. 4c shows the weights of the ROM
versus time. From the time-dependent output of the ROM, we
evaluate the tumor thermal-response time when varying the
pump power (Fig. 4d and Supplementary Note 4). This quantity
is the time scale characterizing structural rearrangement of the
tumor network to a rapid temperature change, i.e., the average
time taken by the 3DTM to equilibrate its structure. We are hence
able to measure the response of the 3DTM at various IR pump
levels, information which is extremely relevant to understand heat
exchanges in tumor assemblies. It is relevant to note that the
induced structural changes are irreversible, i.e., when no feedback
is present and after the pump is removed, the output pattern does
not return to a configuration correlated to the initial state.

Confocal microscopy analysis of laser-induced hyperthermia.
To compare the measurement of the 3DTM thermal-response
obtained with the ROM with a conventional optical approach, we
show in Fig. 5a the confocal optical images (COI) obtained on the
same sample used as computing reservoir. We investigate DAPI-
stained COI measurements obtained both with and without IR
irradiation, reproducing the external stimulus that the 3DTM has
inside the ROM. We find that fluorescence optical imaging does
not reveal any change in the nuclei morphological configuration,
as also confirmed by further analysis reported in the Supple-
mentary Notes 6 and 7. At variance with the ROM, confocal
microscopy does not detect structural changes induced by
hyperthermia and does not provide any information on the
thermal-response time or its dependence on the IR pump. As
shown in Fig. 5b, we analyze the statistical distribution of various
morphological features of DAPI-stained nuclei extracted from
COI and we does not find any appreciable effect of the IR pump.

The ROM has a very high capability to sense small tumor
internal changes. In fact, the output of the biophotonics neural
network contains information arriving from each elementary
portion (nodes) of the sample volume. This fact explains how
internal alterations that are not resolved by direct imaging are

L1
L2

P1

spatial light
modulator matrix

P2

L3

OBJ1

OBJ2

CCD

SH

tumor
spheroid

IR 
pump 
laser

CW
laser

a b

c

training

different optical functions

SLM

x

y

10

20

30

40

5

10

15

20

5

10

15

5

10

15

20

25
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mixed by the spheroid. Insets show a trained phase mask on the SLM and a representative confocal image of a central plane of a 3D tumor model (3DTM)

labeled with diamidine-fenilindolo (in cyan, marks cell nuclei) and Phalloidin (in red, marks cells actin cytoskeleton). A charge-couple device (CCD) camera

detects the transmitted light. b Intensity distribution (arb. units) in the output plane during training for an input wave that is initially randomly shaped and

reaches the target shape for any spheroid by a proper fixing of the input weights. c The ROM performs different optical transformations, such as focusing
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instead detected at the ROM output. Morphological variations are
beyond the resolution limit of our confocal microscopy analysis
(~200 nm) and, therefore, not quantifiable by this optical probe.
Monitoring these thermal changes in cells would requires more
complex optical methods with their own difficulties, such as
optical diffraction tomography41. Previous investigations38 were
able to reveal strong volume variations of cell nuclei in response
to laser-induced temperature changes with an amplitude
comparable to our experiments, but these observations refer to
isolated nuclei in suspension in an optical stretcher38.

Conventional optical characterization of the living 3DTM. We
then consider living 3DTM evolving with time. In the study of
3DTM morphodynamics, biophysical quantities as the metabo-
lism are extremely relevant. For example, the effect of che-
motherapy on the number of self-reproducing cells provides a
measure of therapy efficacy. It is critical to understand the
minimal amount of chemotherapy that influences tumor growth.
During the tumor self-replication, the number of cells and their
morphology change, and this impacts the 3DTM metabolism
(denoted M hereafter). Figure 6a shows the images of a single
3DTM sample as time varies. The control sample (CTRL) has not
been treated with chemotherapy, and it shows the way the tumor
freely evolves and self-reproduces. Figure 6a shows a repre-
sentative spheroid (CIS) treated by chemotherapy (cisplatin
80 µg/ml). Owing to the cytotoxic action of chemotherapeutics
(“Methods”)42, we observe a reduced growth (Fig. 6) as the nat-
ural evolution is counter-balanced by the apoptotic effect of the
cisplatin. However, despite minor differences, the small cisplatin
concentration does not substantially impact the information

retrieved by the optical methods. Figure 6b, c reports intensity
histograms of the images in Fig. 6a (i.e., the number of pixels
within the spheroid having a certain intensity level); broader
distributions reveal a lower cell density and indicate that the
chemotherapy limitedly hampers the tumor growth. Figure 6d
compares the calculated area for CTRL and CIS versus time. The
two signals are distinguishable; however, the optical microscopy
characterization provides a limited accuracy in determining the
effect of cisplatin.

We obtain a more accurate measurement of the metabolism by
resorting to fluorescence quantification of cells metabolic activity.
Figure 6e reports the growth of the measured metabolism versus
time (see “Methods”). The CIS sample presents a reduced
metabolism due to the drug action, whereas, in the absence of
chemotherapy (CTRL sample), the metabolism increases with the
number of cells. We remark that the metabolism analysis in
Fig. 6e requires laborious steps and labeling on several different
samples (see “Methods”). As we demonstrate in the following, the
same information is retrieved by using a living 3DTM in the
ROM, which furnishes accurate and time-resolved information
but leaves the sample unperturbed.

Characterization of the living 3DTM by the ROM. To
demonstrate the tracking of the morphodynamics by the ROM,
we realize the optical network with living 3DTM for the CTRL
and CIS samples. We observe that, in the presence of recurrent
training, the machine output follows the 3DTM dynamics
(Fig. 7a, b) and needs to be continuously retrained to maintain
the maximum intensity in the output target. The ROM can track
cellular processes in the 3DTM beyond the pure unconstrained
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growth, but also with the presence of cisplatin. The output signal
increases on large time scales (Fig. 7c). This dynamics results
from the 3DTM growth and it is an outcome of an enhanced
metabolism, as confirmed by monitoring the spheroid with
conventional methods (Fig. 6d, e)43.

Previous work has shown that the output of a random optical
process in an evolving environment corresponds to the so-called
persistence time TP of transmitted speckle44. In our case, the
persistence time is determined by the time scale of the 3DTM
internal changes (cell positions and refractive properties). TP
scales linearly with the efficiency of the target image formation44

(see Supplementary Notes 4 and 5). We use this quantity as a
precursor for detecting tissue structural and metabolic changes.
The measured TP is reported in Fig. 7c. The trend of TP for CTRL
and CIS is remarkably distinct (at variance with the area signals in
Fig. 6d), which demonstrates the high sensitivity of the ROM. By
analyzing the TP in Fig. 7c, we obtain evidence of the fact that the
output of the machine is a direct indication of the metabolism.
Figure 7d shows TP as a function of the metabolism (measured by
the conventional method in Fig. 6e). It is notable that the two
metabolism signals in Fig. 6e collapse in a single master curve
when plotting them in terms of TP. The two samples have the
same metabolism at different instants (the CTRL evolve freely,
while chemotherapy hampers the CIS; hence the CIS needs longer
times to growth), but the ROM gives the same output when the
two metabolisms are comparable. The continuously trained
network gives a direct measure of metabolism.

These results demonstrate that the ROM can directly provide
biophysical information of the 3DTM. The recurrent training of
the network enables to follow non-invasively the time-evolution
of the relevant biophysical observables. The computation
performed by the ROM indicates if and how fast the tumor is

changing in response to an external stimulus. The result can be
applied to discriminate the effect of different chemotherapy
treatments by separating treatments with different concentra-
tions, or effectiveness, even though without distinguishing the
specific features of the therapy. The ROM is a noninvasive
tracking method since it does not require any mechanical or
chemical modification of the 3DTM sample. In contrast,
fluorescence microscopy in Fig. 5 is not label-free and
metabolism measurements in Fig. 6e requires cell treatment
(see “Methods”).

Once established that the ROM can compute the spheroid
metabolism, we can show that it provides a time-dependent
characterization and it is much more sensitive than a standard
optical microscopy characterization as that reported in Fig. 6a. By
comparing the signals in Fig. 6d (conventional optical micro-
scopy) and 7d (trained ROM), one sees that the ROM can
distinguish by at least one order of magnitude the dynamics of the
CIS and CTRL in the initial time interval when the imaging
method do not reveal statistically relevant changes. The
effectiveness of the ROM outcome does not depend on the
3DTM size. On the contrary, in microscopy, to detect area
variations for spheroids with larger sizes it is necessary to increase
the microscope field of view, thus losing resolution. The living
ROM hence furnishes real-time scalable information on the
tumor dynamics with a sensitivity considerable larger than
obtainable by monitoring structural parameters with a confocal
microscopy approach.

Discussion
Nowadays various methods are being developed to characterize
tumor spheroids, including immunohistochemistry, confocal
laser scanning microscopy, and two-photon microscopy28. All
these techniques have various advantages, but also many draw-
backs. The most significant limitations of the pathological ana-
lysis of tumor morphology—commonly adopted for biopsies
from patients—28are the artifacts of the cutting process, the
variability in staining and the batch effects and the lack of
information about dynamics. Live imaging is being improved to
follow cell dynamics, but dyes, probes, and phototoxic routines
modify native cell behavior34. Our random optical-learning
machine furnish—after proper training—direct time-resolved
structural information, which is real-time, label-free, and extre-
mely sensitive, as it depends on thousands of scattering events
and interference processes occurring in the entire volume of
the 3DTM.

We demonstrated an hybrid biological/photonic computational
hardware. The use of biological matter in photonic devices is not
only relevant for understanding fundamental processes in tumor
dynamics but allows us to explore evolving cellular assemblies as
new architectures for computing. May we realize computing
devices with biological systems? May we use biophotonic random
neural networks to study fundamental processes in tumor evo-
lution, and assessing the therapy efficacy? Our demonstration is
an essential step in answering these and related questions.
Although, as a sensing method, our approach does not allow
distinguishing external stimulus, it furnishes a quantitative
response on the time scale of the ongoing process that may be
challenging to obtain non-invasively with other techniques. On
the other hand, tracking by the ROM can be further developed to
differentiate various applied perturbations by coupling with
additional probes to increase the dimensionality of the output
signal. For instance, through an additional broadband input
source and performing also spectral measurements during
recurrent training we could discriminate between two different
processes inducing the same metabolism.
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Fig. 5 Optical microscopy characterization of nuclei before and during

infrared (IR)-induced hyperthermia cannot reveal details that are

accessible by our random optical-learning machine (ROM). a Confocal

microscopy of spheroids labeled with 4’6-diamidino-2-phenylindole (DAPI)

before and during irradiation with IR pulses (30 s after turning on the IR

laser). Each dot in the figure is a cell, and scale bar is 30 µm.

b Morphological features of cell nuclei before (“pre”, blue) and during

(“post”, red) irradiation with IR pulses by image analysis with FIJI

software43. Histograms show that statistically significant alterations of

nuclei nearest neighbor distances (Nnd), nuclei area, aspect ratio,

circularity and solidity after hyperthermia treatment are not observable.
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Moreover, leveraging on the universality of random neural
networks45, one can imagine developing specially- trained ROM
for properties as spatial heterogeneities in the tumor dynamics by
using multipoint correlations in the output signals or resolving
processes in different time scales. The use of multimode fibers for
coupling light with the sample would allow to miniaturize the
device and to employ it in conditions more close to in vivo
situations. The ROM and its many possible developments open
several possibilities for new computational systems, novel diag-
nostic equipment, and - more in general—for the application of
photonic and artificial intelligence to the study of living complex
systems.

Methods
Tumor spheroids growth. Three-dimensional tumor models have been prepared
as reported in ref. 29 using human glioblastoma cell line U-87 MG (ATCC® HTB-
14™) cultured in Dulbecco’s Modified Eagle Medium with 10% fetal bovine serum
at 37 °C, 5% CO2. For forming the spheroids, 2500 cells have been seeded into
ultra-low-adherence round-bottomed 96-well plates and immediately centrifuged
(300 × g, 2 min) obtaining a suspended loose cell aggregate. After 4 days, tight
spheroidal cell aggregates had formed. Depending on the experiments, spheroids
have been analyzed in two possible states, namely fixed or living state. Fixed

spheroids have been prepared with formaldehyde (3.7%) and glutaraldehyde (2.5%)
mixture for 30 min and then washed with phosphate-buffered saline (PBS). Living
spheroids have not been processed to monitor real-time response to therapy.

Chemotherapy treatment. Spheroids treated with different concentrations
(10–80 μg/ml) of Cisplatin (Accord Healthcare) were imaged with a multi-well
plate reader (Cytation 3, Biotek) at controlled temperature (37 °C) over time to
analyze spheroid growth from bright-field images. Image analysis has been per-
formed using INSIDIA ImageJ Macro29.

Optical experimental setup. Light from a continuous-wave (CW) laser source
with wavelength λ= 532 nm is expanded and made to impinge on a twisted
nematic liquid crystal reflective modulator (SLM, Holoeye LC-R 720). The active
area of the SLM is divided into N= 72 × 72 independent blocks (100 pixels per
block) forming the set of controlled input modes (input layer). Using a suitable
combination of incident and analyzed polarizations (polarizers P1 and P2), the
SLM is set into a phase-mostly modulation mode with <10% residual intensity
modulation. Phase-modulated light is imaged through a 1:3 demagnifying telescope
(lens L1 and L2) on the back-focal plane of a long working distance objective
(OBJ1, 50x, NA= 0.55), so that the phase of each block of the SLM matches a
wavevector at the entrance of the sample. The 3 mW beam is focused inside the
cancer spheroid, and the intensity transmitted in a plane 1.5 mm apart is imaged
on a CCD camera by a collecting objective (OBJ2, 20x, NA= 0.25). During the
experiments, the tumor spheroid is embedded in a physiological water solution and
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kept at room temperature. The morphological structure of the quenched tumor
spheroid, ~450 µm sized, has been fixed during growth, which makes the biological
sample optically stationary over the measurement time (several minutes, see
Supplementary Fig. 8). A CW near-infrared laser source (λ= 1064 nm, tunable
from 0.1 to 3W maximum power) is used as a pump beam to induce cancer
morphodynamics (laser-induced hyperthermia) by means of mechanical defor-
mations mediated by the optical absorption of water molecules. Thermo-optical
effects are in fact the principal source of local variations of the index of refraction
profile on the micrometric scale in the visible range, dominating over other photo-
induced effects. The entire specimen, consisting of the 3DTM embedded in
~100 mm3 physiological solution, undergoes temperature variations in the interval
1–20 °C ( ± 3 °C, measured with a custom-made system employing a IR tempera-
ture sensor) above room temperature when the pump power is varied. The
structural changes induced by the IR laser are irreversible except that for low pump
powers (<0.2W). Once the pumping conditions are fixed, the temporal features of
the dynamics are repeatable.

Electronic equipment. The morphodynamic processes we probe, from hyper-
thermia to chemotherapeutics effects, occur on a time scale ranging from 102 to
105 s, where ultra-fast optoelectronic feedback is not necessary. In our setting, the
overall iteration time is ~0.2 s, this indicating that dynamic biological processes in
the living tumor spheroids do not considerably affect light scattering on smaller
time scales. We employ a high-speed SLM with a maximum refresh frame rate of
180 Hz (response time up to 3 ms) connected to a PC via DVI interface and
programmed using MATLAB. The iteration time is thus set by the CCD frame rate
(maximum 60 fps) at exposure times of tens of milliseconds. However, it can be
lowered to a few milliseconds by different technologies for light modulation and
data transfer and processing.

Training method. The generic input state is a combination of the N optical modes
with arbitrary phases from 0 to 2π and gives a low-intensity speckle-pattern as
output (Fig. 3). Training of the optical random neural network is achieved by a
feed-forward algorithm that minimizes a cost function expressed in terms of a
target local intensity distribution in the transmission plane (output layer). Speci-
fically, at each iteration of the algorithm, we randomly select a cluster of input
modes and adjust the corresponding phases with a π/5 resolution on the SLM; the
change is stored only if the cost function decreases, that is, if the intensity detected

on specific groups of the CCD pixel (target) increases. As the algorithm converges,
random clusters of decreasing size are selected to avoid trapping into local com-
putational minima. After the training stage (in Fig. 3b we limit to ~103 iterations),
the input layer encodes the proper distribution of modes (input weights) that
mixed by the deep multicellular layers performs the specific operation. These
photonic input-output functions are extremely sensitive to changes in the reservoir
structure (the multicellular network of the 3DTM) and can be exploited for
monitoring and sensing its morphology. When the ROM operates with feedback
on, this training algorithm runs while the spheroid changes morphology over time,
adapting the input phases on the SLM to maintain the output target. The Sup-
plementary Note 5 reports further information on the training algorithm. The
persistence time in Fig. 7 for both CTRL and CIS is normalized to the initial value
for the sake of comparison. The initial value of TP for CTRL is 52 s, and for CIS is
28 s.

Confocal microscopy imaging and analysis. To verify if light treatment impaired
spheroid structure, the hyperthermia experiment was performed on fixed spheroids
stained with 4',6-diamidine-2-fenilindolo (DAPI, Sigma Aldrich) under a Confocal
Microscope (Nikon A1 MP). z-stacks of each spheroid have been acquired
(Δy= 1 µm) and analyzed with FIJI software43. A set of nuclei morphology
describers have been retrieved from confocal images, i.e., nearest neighbor distance,
area, circularity (4π × Area/Perimeter2), the aspect ratio of the nucleus fitted ellipse
(major axis/minor axis) ranges from 0 (infinitely elongated polygon) to 1 (perfect
circle). The aspect ratio of the particle’s fitted ellipse (Major Axis/Minor Axis), and
solidity (Area/convex area). Labeling of actin cytoskeleton has been obtained by
Alexa Fluor 647 phalloidin (Life Technologies), according to the manufacturer
protocol. In Fig. 6a, optical microscopy is performed without any fluorescent dye to
avoid photobleaching on long times. Histograms in Fig. 6b, c have been calculated
by using ImageJ, function Analyze >Histogram. Pixel intensity in 8-bit images goes
from 0 (dark pixels inside spheroids) to 255 (white pixels of transmitted light of
background).

Statistical analysis. Each experiment has been repeated on biological replicates
and errors in Figs. 6 and 7 are given by three replicates. Each microscopy images is
measured over three technical replicates to average on intensity fluctuations. In
conventional optical characterization methods, data statistics were analyzed by
calculating the t-test between two groups, and one-way analysis of variance
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(ANOVA) for multiple groups with post-hoc Bonferroni test (GraphPad Prism v7,
GraphPad Software Inc.). Unless otherwise noted, all results were expressed as the
mean ± s.d. A value of p < 0.05 was considered statistically significant. Power
analysis was not conducted to determine sample size, and investigators were not
blinded.

Metabolism measurement. CellTiter-Blue® Cell Viability Assay (Promega) was used
to assess cell viability of spheroids after chemotherapeutic treatment. Twenty micro-
liters of a reagent to each 100 μl of the medium in the 96-well containing spheroids was
used. A blank well (medium and drug alone) was prepared to subtract the background.
This assay allows prolonged incubation time without affecting cell viability; we opti-
mized the incubation time to 3 h to allow deep penetration of the reagent in the
spheroid core. Experiments have been done in triplicate. This assay is based on the
ability of living cells to convert a dye (resazurin) into a fluorescent product (resorufin)
emitting at 590 nm. Nonviable cells rapidly lose metabolic capacity and thus do not
generate the signal. Resazurin can penetrate cells, where it becomes reduced to the
resorufin, as a result of the action of several different enzymes. The fluorescent
resorufin dye can then diffuse out of cells and into the surrounding medium. The
metabolism in Figs. 6 and 7 is normalized to the initial values for both CTRL and CIS
for the sake of comparison. The initial fluorescence values are for CTRL is 42, and for
the CIS is 34 in arbitrary units.

Data availability
The data that support the plots and other findings of this paper are available from the

corresponding author upon reasonable request.

Code availability
The codes are available from the corresponding author upon reasonable request.
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