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LK, LJ, Dual Intuitionistic Logic, and Quantum Logic

Hiroshi Aoyama

Abstract In this paper, we study the relationship among classical logic, intu-

itionistic logic, and quantum logic (orthologic and orthomodular logic). These

logics are related in an interesting way and are not far apart from each other, as

is widely believed. The results in this paper show how they are related with each

other through a dual intuitionistic logic (a kind of paraconsistent logic). Our

study is completely syntactical.

1 Introduction

The aim of this paper is to show the relationship among the classical logic, the in-

tuitionistic logic, and the quantum logic. Takeuti says in his paper [15], “quantum

logic is drastically different from the classical logic or the intuitionistic logic.” It

is, however, unclear how drastically different these logics are from each other. To

answer this question syntactically, we use the formalization of sequent calculus. For

the axioms and inference rules of the classical logic LK and those of the intuitionistic

logic LJ, we refer the reader to Takeuti [16].

Sequent calculi are attractive in the sense that we can obtain various pieces of

logical information from their structures. If we regard Gentzen’s LK as the most

basic sequent calculus, we can obtain a number of logically interesting sequent cal-

culi from it, for example, by dropping some of the inference rules, by changing the

forms of some or all of its inference rules, or by introducing new logical connectives

together with inference rules associated with them. These changes usually result in

a great diversity of nonclassical logics; see Paoli [10], Restall [12], and Schroeder-

Heister and Došen [14].

The sequent calculi to be studied in the present paper are also obtained from LK

by making some changes or others. The so-called dual intuitionistic logic, a kind

of paraconsistent logic, plays a crucial role in this paper. A few logicians have con-

sidered it; see Czermak [4], Goodman [6], and Urbas [17]. Their systems are all
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in the form of sequent calculus. Our dual intuitionistic logic DI is different from

the three systems they considered. It is completely dual of LJ. LJ is obtained from

LK by restricting sequents so that they contain at most one formula in their succe-

dents. DI is obtained from LK by restricting sequents so that they contain at most

one formula in their antecedents. Such restrictions on sequents naturally yield an

interesting translation mapping between extensions of LJ and DI. This mapping also

plays an important role in this paper. In Section 2, we will define the system DI more

specifically and show some important properties about it.

We first fix the language for the sequent calculi to be studied below.

Definition 1.1 The language for the sequent calculi to be studied in this paper

consists of the following symbols:

1. Predicate constants with n argument-places (n ≧ 0) : pn
0 , pn

1 , pn
2 , . . .

2. Individual constants: c0, c1, c2, . . .

3. Free variables: a0, a1, a2, . . .

4. Bound variables: x0, x1, x2, . . .

5. Logical symbols: ∧,∨,→,∀, ∃

6. Auxiliary symbols: ( , ) , ,(comma)

Terms consist of individual constants and free variables. Well-formed formulas

(wffs) are defined as usual. In a sequent Ŵ⇒ 1, the antecedent Ŵ and the succedent

1 are both finite sequences of zero or more formulas unless otherwise stated. Proofs

(formal proofs) are also defined in the usual way. If a sequent Ŵ ⇒ 1 is provable

in a sequent calculus S, we write ‘S ⊢ Ŵ ⇒ 1’. We use Ŵ,1,3, and 5 to express

sequences of wffs and α, β, γ, δ, λ, and π to express wffs.

2 The System DI

Definition 2.1 DI has the following axioms and rules of inference:

1. Axioms α ⇒ α

2. Inference Rules (Ŵ consists of at most one wff.)

Structural Rules

WL
⇒ 1

α ⇒ 1
WR

Ŵ⇒ 1

Ŵ ⇒ 1,α

CR
Ŵ⇒ 1,α, α

Ŵ ⇒ 1,α
ER

Ŵ ⇒ 1,α, β,3

Ŵ ⇒ 1,β, α,3

Cut
Ŵ ⇒ 1,α α ⇒ 3

Ŵ ⇒ 1,3
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Logical Rules (t is a term and a is a free variable.)

¬L
⇒ 1,α

¬α ⇒ 1
¬R

α ⇒ 1

⇒ 1,¬α

∧L
α ⇒ 1

α ∧ β ⇒ 1

β ⇒ 1

α ∧ β ⇒ 1
∧R

Ŵ⇒ 1,α Ŵ ⇒ 1,β

Ŵ ⇒ 1,α ∧ β

∨L
α ⇒ 1 β ⇒ 1

α ∨ β ⇒ 1
∨R

Ŵ ⇒ 1,α

Ŵ ⇒ 1,α ∨ β

Ŵ ⇒ 1,β

Ŵ⇒ 1,α ∨ β

→L
⇒ 1,α β ⇒ 3

α→ β ⇒ 1,3
→R

α ⇒ 1,β

⇒ 1,α→ β

∀L
α(t)⇒ 1

∀xα(x)⇒ 1
∀R

Ŵ ⇒ 1,α(a)

Ŵ ⇒ 1,∀xα(x)
(t is an arbitrary term.) (a does not appear in the lower sequent.)

∃L
α(a)⇒ 1

∃xα(x)⇒ 1
∃R

Ŵ⇒ 1,α(t)

Ŵ⇒ 1, ∃xα(x)
(a does not appear in the lower sequent.) (t is an arbitrary term.)

DI is very close to Urbas’s system LDJ in Urbas [17]. In fact, these two systems are

the same except that the latter has the following two rules of inference in place of the

rule→R above: (Ŵ consists of at most one wff.)

→R(U) : 1
α⇒ 1

⇒ 1,α→ β
→R(U) : 2

Ŵ ⇒ 1,β

Ŵ ⇒ 1,α→ β

We list some of the important sequents which are provable in DI.

Proposition 2.2 The following sentential sequents are provable in DI:

1. ⇒ α ∨ ¬α

2. ¬¬α ⇒ α

3. ¬α ⇒ ¬¬¬α

4. α→ β ⇒ ¬α ∨ β

5. α→ ¬β ⇒ β → ¬α

6. ¬α→ ¬β ⇒ β → α

7. ¬(α ∧ β)⇒ ¬α ∨ ¬β

8. ¬α ∨ ¬β ⇒ ¬(α ∧ β)

9. α ∧ (β ∨ γ )⇒ (α ∧ β) ∨ (α ∧ γ )

10. (α ∧ β) ∨ (α ∧ γ )⇒ α ∧ (β ∨ γ )

11. α ∨ (β ∧ γ )⇒ (α ∨ β) ∧ (α ∨ γ )

12. (α ∨ β) ∧ (α ∨ γ )⇒ α ∨ (β ∧ γ ).

Thus the law of excluded middle and the distributive laws hold in DI. Similarly we

have the following two propositions.

Proposition 2.3 The following sequents are provable in DI: (‘Ŵ ⇔ 1’ indicates

that Ŵ ⇒ 1 and 1⇒ Ŵ. In (6), (8), (10), and (11), the variable x does not appear

in β.)
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1. ∀xα(x)⇒ ∃xα(x)

2. ¬∀xα(x)⇔ ∃x¬α(x)

3. ¬∀x¬α(x)⇒ ∃xα(x)

4. ¬∃xα(x)⇒ ∀x¬α(x)

5. ∃x¬¬α(x)⇒ ¬¬∃xα(x)

6. ∀x(α(x) ∧ β)⇔ ∀xα(x) ∧ β

7. ∀x(α(x) ∧ β(x))⇔ ∀xα(x) ∧ ∀xβ(x)

8. ∃x(α(x) ∨ β)⇔ ∃xα(x) ∨ β

9. ∃x(α(x) ∨ β(x))⇔ ∃xα(x) ∨ ∃xβ(x)

10. ∀x(α(x) ∨ β)⇔ ∀xα(x) ∨ β

11. ∃x(α(x) ∧ β)⇒ ∃xα(x) ∧ β.

Proposition 2.4 The following derived rules of inference hold in DI:

1.
α ⇒ β

¬β ⇒ ¬α

2.
⇒ α ⇒ α→ β

⇒ β

3.
α ⇒ 1

¬¬α ⇒ 1

4.
⇒ 1,α

⇒ 1,¬¬α
.

As a sequent calculus, DI satisfies the cut elimination theorem.

Theorem 2.5 The rule Cut is eliminable from DI.

Proof The proof is routine. �

Corollary 2.6 DI has the subformula property and is consistent.

The following sequents are not in general provable in DI:

1. α ⇒ ¬¬α

2. α ∧ ¬α ⇒

3. α ⇒ (β → α)

4. α ∧ (α→ β)⇒ β.

In LJ, the sequents ‘α ⇒ ¬¬α’ and ‘α ∧ ¬α ⇒ ’ are provable but the sequents

‘¬¬α ⇒ α’ and ‘ ⇒ α ∨ ¬α’ are not. On the other hand, the latter two are

provable in DI but the former are not. This kind of duality suggests a translation be-

tween the two systems. Czermak studied such a translation between LJ and his dual

intuitionistic system DJ in [4]. Urbas refined it in [17] and presented a translation

between LJ and his dual intuitionistic system LDJ. His method was to extend LDJ

to LDJ−̇ and LJ to LJ−̇. These new systems contain additional rules of inference for

a new logical symbol −̇. LDJ−̇ is the system LDJ with the following two inference

rules (Ŵ contains at most one wff ):

(a)
α ⇒ 1,β

α
�

− β ⇒ 1

(b)
Ŵ ⇒ 1,α β ⇒ 3

Ŵ⇒ 1,3, α
�

− β
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LJ−̇ is the system LJ with the following three inference rules (1 contains at most

one wff):

(c)
α, Ŵ ⇒ 1

α
�

− β,Ŵ ⇒ 1

(d)
Ŵ ⇒ β

α
�

− β,Ŵ⇒

(e)
Ŵ⇒ α β,5⇒

Ŵ,5⇒ α
�

− β

He then defined a translation mapping between LDJ−̇ and LJ−̇. Goodman uses the

symbol −̇ as the pseudo-difference operator in [6] and suggests reading it as “but

not.” Urbas uses it so that ‘α−̇β’ expresses that α excludes β.

DI is a kind of paraconsistent logic because sequents of the form ‘α∧¬α ⇒ ’

are not in general provable in it. Thus it is not always provable that α ∧ ¬α ⇒ β,

for every wff β. We can, however, find sequents of the form ‘α ∧ ¬α ⇒ ’

which are provable in DI. To mention a few: ‘(α → α) ∧ ¬(α → α) ⇒ ’

and ‘(α ∨ ¬α) ∧ ¬(α ∨ ¬α)⇒ ’.

We now consider a translation mapping between DI and LJ. We first extend DI

and LJ by adding the logical symbol −̇ and inference rules associated with it as Urbas

did. The resulting systems are DI+ and LJ+, respectively.

Definition 2.7 DI+ is obtained from DI by adding the two inference rules:

−̇L
α ⇒ 1,β

α
�

− β ⇒ 1

−̇R
Ŵ⇒ 1,α β ⇒ 3

Ŵ ⇒ 1,3, α
�

− β
(Ŵ consists of at most one wff.)

Definition 2.8 LJ+ is obtained from LJ by adding the two inference rules:

−̇L
α,Ŵ ⇒ β

α
�

− β,Ŵ⇒

−̇R
Ŵ ⇒ α β,5⇒

Ŵ,5⇒ α
�

− β

The following is the translation mapping due to Czermak and Urbas.

Definition 2.9 The translation mapping ∗ between DI+ and LJ+ is defined as in

(1) – (4) below:

1. Wffs:

A∗ = A for each atomic wff A, (¬α)∗ = ¬α∗,

(α ∧ β)∗ = β∗ ∨ α∗, (α ∨ β)∗ = β∗ ∧ α∗,

(α→ β)∗ = β∗
�

− α∗, (α
�

− β)∗ = β∗→ α∗,

(∀xα(x))∗ = ∃x(α(x))∗, (∃xα(x))∗ = ∀x(α(x))∗

2. Sequences of wffs:

For each sequence Ŵ = α1, α2, . . . , αn(n ≧ 0),

Ŵ∗ = (αn)∗, . . . , (α2)
∗, (α1)

∗

3. Sequents:

For each sequent Ŵ ⇒ 1, (Ŵ ⇒ 1)∗ = 1∗ ⇒ Ŵ∗
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4. Inference rules:

For each inference rule I =
S1, . . . , Sn−1

Sn

(n = 2, 3),

I ∗ =
(Sn−1)

∗, . . . , (S1)
∗

(Sn)∗

Then we can easily show the following.

Proposition 2.10 For any wff α, sequence Ŵ, sequent Ŵ ⇒ 1, and inference rule

I of DI+ (and of LJ+), we have α∗∗ = α,Ŵ∗∗ = Ŵ, (Ŵ ⇒ 1)∗∗ = Ŵ ⇒ 1, and

I ∗∗ = I .

Theorem 2.11 DI+ ⊢ Ŵ ⇒ 1 if and only if LJ+ ⊢ (Ŵ ⇒ 1)*, where Ŵ contains

at most one wff.

We now consider the relation between DI and LDJ. In our formal proofs below, we

will omit writing applications of the inference rule ER (and EL, if any). Also, we

often indicate successive applications of WR (WL) and combinations of applications

of ∨R and CR (∧L and CL) by writing a double line between the upper sequent and

the lower sequent.

Proposition 2.12 The rule→R(U):1 of LDJ holds in DI.

Proof

α ⇒ α

α ⇒ β, α

α⇒ 1 ⇒ α→ β, α

⇒ 1,¬α ¬α ⇒ α→ β

⇒ 1,α→ β

�

As Czermak ([4], p. 473) and Urbas ([17], p. 442) remark, the sequent ‘ ⇒ α →

(β → α)’ is not provable in DI and thus ‘α ⇒ (β → α)’ is not either, as we

mentioned above. Therefore, we can easily obtain this proposition.

Proposition 2.13 The rule→R(U):2 of LDJ does not hold in DI.

The following proposition is proved in [17], p. 443.

Proposition 2.14 (Urbas) The rule→R of DI holds in LDJ.

Then we can obtain the following theorem.

Theorem 2.15 Let DI# be the system obtained from DI by adding axioms of the

form ‘α ⇒ (β → α)’. Then LDJ = DI#, that is, LDJ ⊢ Ŵ ⇒ 1 if and only if DI#

⊢ Ŵ ⇒ 1, where Ŵ consists of at most one wff.

3 DI and LK

Sequents of the forms ‘α ⇒ ¬¬α’ and ‘α ∧ (α → β) ⇒ β’ are not in general

provable in DI. These, however, play important roles in connecting DI to LK. To

this end, we first make some definitions.
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Definition 3.1 DIdnr is defined to be the system obtained from DI by adding axioms

of the form ‘α ⇒ ¬¬α’. DImp is the system obtained from DI by adding axioms of

the form ‘α ∧ (α → β) ⇒ β’. DI+ is the system obtained from DI by adding the

following rule of inference, which we will call ‘RT’:

α ⇒ ¬β

β ⇒ ¬α
.

The three systems defined above are all equivalent to LK. We first need to do some

preliminary work.

Proposition 3.2 The following hold:

1. DIdnr ⊢ ¬α ∧ β ⇒ ¬(α ∨ ¬β);

2. DIdnr ⊢ β ∨ ¬(α ∧ γ )⇒ α→ β,¬γ ;

3. DIdnr ⊢ (α→ β) ∧ γ ∧ π ⇒ ¬(α ∨ ¬γ ) ∨ (β ∧ π);

4. DIdnr ⊢ ∀x¬α(x)⇒ ¬∃xα(x).

Given a sequent Ŵ ⇒ 1, where both Ŵ and 1 are finite, possibly empty, sequences

of wffs, it is a simple fact that LK ⊢ Ŵ⇒ 1 if and only if LK ⊢
∧∧

Ŵ ⇒ 1, where

‘
∧∧

Ŵ’ indicates the conjunction of all the wffs in Ŵ. When Ŵ is empty,
∧∧

Ŵ is also

empty. Now we can prove the following theorem.

Theorem 3.3 DIdnr = LK, that is, DIdnr ⊢
∧∧

Ŵ ⇒ 1 if and only if LK

⊢
∧∧

Ŵ⇒ 1.

Proof (⇒) This is trivial since DI is a subsystem of LK and since LK

⊢ α ⇒ ¬¬α.

(⇐) We need to show that all the inference rules of LK hold in DIdnr. We only

check the rule→L. We set γ =
∧∧

Ŵ and π =
∧∧

5.

(→L of LK)
Ŵ ⇒ 1,α β,5⇒ 3

α→ β,Ŵ,5⇒ 1,3
.

We only need to show that the following equivalent rule holds in DIdnr:

γ ⇒ 1,α β ∧ π ⇒ 3

(α→ β) ∧ γ ∧ π ⇒ 1,3
.

Using Proposition 3.2(3), we have
γ ⇒ 1,α

⇒ 1, α,¬γ

⇒ 1, α ∨ ¬γ

¬(α ∨ ¬γ )⇒ 1 β ∧ π ⇒ 3

¬(α ∨ ¬γ )⇒ 1,3 β ∧ π ⇒ 1,3

(α→ β) ∧ γ ∧ π ⇒ ¬(α ∨ ¬γ ) ∨ (β ∧ π) ¬(α ∨ ¬γ ) ∨ (β ∧ π)⇒ 1, 3

(α→ β) ∧ γ ∧ π ⇒ 1, 3 �

Theorem 3.4 DIdnr = DImp = DI+.

Proof We show that

1. DImp ⊢ α ⇒ ¬¬α,

2. DI+ ⊢ α ∧ (α→ β)⇒ β, and

3. the inference rule RT holds in DIdnr.
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We freely use Proposition 2.2.

(1) ¬α ⇒ ¬α

⇒ ¬α→ ¬α

α ⇒ ¬α→ ¬α ¬α→ ¬α ⇒ α→ ¬¬α

α ⇒ α α ⇒ α→ ¬¬α

α ⇒ α ∧ (α→ ¬¬α) α ∧ (α→ ¬¬α)⇒ ¬¬α

α ⇒ ¬¬α

(2) α ⇒ α

⇒ α,¬α β ⇒ β

α→ β ⇒ β,¬α

⇒ β,¬α,¬(α→ β)

¬β ⇒ ¬α,¬(α→ β)

¬β ⇒ ¬α ∨ ¬(α→ β) ¬α ∨ ¬(α→ β)⇒ ¬(α ∧ (α→ β))

¬β ⇒ ¬(α ∧ (α→ β))

α ∧ (α→ β)⇒ ¬¬β ¬¬β ⇒ β

α ∧ (α→ β)⇒ β

(3) α ⇒ ¬β

⇒ ¬β,¬α

β ⇒ ¬¬β ¬¬β ⇒ ¬α

β ⇒ ¬α

�

It is interesting to notice that DI ⊢ ⇒ α→ ¬¬α, as the following proof shows:

¬α ⇒ ¬α

α⇒ α ⇒ ¬¬α,¬α

α ⇒ ¬¬α, α α ⇒ ¬¬α,¬α

⇒ α→ ¬¬α, α ⇒ α→ ¬¬α,¬α

¬α ⇒ α→ ¬¬α ¬¬α⇒ α→ ¬¬α

⇒ ¬α ∨ ¬¬α ¬α ∨ ¬¬α ⇒ α→ ¬¬α

⇒ α→ ¬¬α

This shows that it is not always true that DI ⊢ ⇒ α → β implies DI ⊢ α ⇒ β,

although the converse holds trivially.

In passing, we here mention the well-known relation between LK and LJ using

the following definition.

Definition 3.5 LJdnl is defined to be the system obtained from LJ by adding axioms

of the form ‘¬¬α ⇒ α’. LJ+ is the system obtained from LJ by adding the following

rule of inference, which we will call ‘IT’:

¬α ⇒ β

¬β ⇒ α
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As before, we note a simple fact that given a sequent Ŵ ⇒ 1, where both Ŵ and

1 contain a finite number of wffs, LK ⊢ Ŵ ⇒ 1 if and only if LK ⊢ Ŵ ⇒
∨∨

1,

where ‘
∨∨

1’ indicates the disjunction of all the wffs in 1. When 1 is empty,
∨∨

1

is also empty. Then the following two theorems are easy to obtain.

Theorem 3.6 LJdnl = LK, that is, LJdnl ⊢ Ŵ ⇒
∨∨

1 if and only if LK

⊢ Ŵ ⇒
∨∨

1.

Theorem 3.7 LJdnl = LJ+.

4 DI and GO

Nishimura [9] presents a sequent calculus version of Goldblatt’s orthologic O [5],

which is a propositional logic. The following is his system GO, where Ŵ and 1 in a

sequent Ŵ ⇒ 1 are (possibly infinite or empty) sets of wffs. In this section and the

next, we assume that the language is propositional and does not contain the logical

symbol ‘→’.

Definition 4.1 GO consists of the following axioms and rules of inference:

1. Axioms α ⇒ α

2. Inference Rules

Structural Rules

Extension
Ŵ ⇒ 1

5,Ŵ ⇒ 1,3
Cut

Ŵ ⇒ 1,α α,5⇒ 3

Ŵ,5⇒ 1,3

Logical Rules

¬L
Ŵ ⇒ 1,α

¬α,Ŵ ⇒ 1
¬R

α ⇒ 1

¬1⇒ ¬α
(¬1 =df {¬β | β ∈ 1})

¬¬L
α,Ŵ ⇒ 1

¬¬α,Ŵ ⇒ 1
¬¬R

Ŵ ⇒ 1,α

Ŵ ⇒ 1,¬¬α

∧L
α,Ŵ ⇒ 1

α ∧ β,Ŵ⇒ 1

β,Ŵ⇒ 1

α ∧ β,Ŵ⇒ 1
∧R

Ŵ⇒ 1,α Ŵ ⇒ 1,β

Ŵ ⇒ 1,α ∧ β

In GO, ‘α ∨ β’ is defined to be ‘¬(¬α ∧ ¬β)’. As usual, we use the symbol ‘0’ to

express the unprovability of a sequent. We then have the following proposition.

Proposition 4.2 The following hold:

1. GO ⊢ α ∧ ¬α ⇒ ;

2. GO ⊢ ⇒ α ∨ ¬α;

3. GO 0 α ∧ (β ∨ γ )⇒ (α ∧ β) ∨ (α ∧ γ );

4. GO 0 (α ∨ β) ∧ (α ∨ γ )⇒ α ∨ (β ∧ γ ).
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The converse sequents of (3) and (4) are provable in GO. As Nishimura remarks, if

we replace ¬R of GO with the following rule ¬Rc,

¬Rc
α,Ŵ ⇒ 1

Ŵ ⇒ 1,¬α
,

the resulting system is the classical propositional logic. Cutland and Gibbins [3] also

consider adding to GO the two rules of inference ¬R† and ∨L†:

¬R†
Ŵ ⇒ 1

¬1⇒ ¬Ŵ
∨L†

α⇒ 1 β ⇒ 1

α ∨ β ⇒ 1

They prove the following theorem in [3], p. 227.

Theorem 4.3 (Cutland and Gibbins) The following hold:

1. GO+ ‘α ∨ β ⇒ α, β’ is equivalent to the classical propositional logic;

2. GO+ ¬R† is equivalent to the classical propositional logic;

3. GO+ ∨L† is equivalent to the classical propositional logic.

In order to investigate the relationship between DI and the orthologic, we reformulate

GO to the following sequent calculus LO, where Ŵ and 1 in a sequent Ŵ ⇒ 1

express finite sequences (not sets) of formulas and ¬1 is defined to be the same

sequence of formulas as 1 except that each formula in 1 is negated.

Definition 4.4 LO consists of the following axioms and rules of inference:

1. Axioms α ⇒ α, ¬¬α ⇒ α , α ⇒ ¬¬α

2. Inference Rules

Structural Rules

WL
Ŵ ⇒ 1

α,Ŵ ⇒ 1
WR

Ŵ ⇒ 1

Ŵ⇒ 1,α

CL
α, α, Ŵ ⇒ 1

α,Ŵ ⇒ 1
CR

Ŵ ⇒ 1,α, α

Ŵ⇒ 1,α

EL
Ŵ, α, β,5⇒ 1

Ŵ,β, α,5⇒ 1
ER

Ŵ ⇒ 1,α, β,3

Ŵ ⇒ 1,β, α,3

Cut
Ŵ⇒ 1,α α,5⇒ 3

Ŵ,5⇒ 1,3

Logical Rules

¬L
Ŵ⇒ 1,α

¬α,Ŵ ⇒ 1
¬R

α ⇒ 1

¬1⇒ ¬α

∧L
α,Ŵ ⇒ 1

α ∧ β,Ŵ ⇒ 1

β,Ŵ ⇒ 1

α ∧ β,Ŵ ⇒ 1
∧R

Ŵ ⇒ 1,α Ŵ ⇒ 1,β

Ŵ ⇒ 1,α ∧ β

∨L
α⇒ 1 β ⇒ 1

α ∨ β ⇒ 1
∨R

Ŵ ⇒ 1,α

Ŵ⇒ 1,α ∨ β

Ŵ ⇒ 1,β

Ŵ ⇒ 1,α ∨ β
(1 contains at most one wff.)
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For LO, we may use the rules ¬¬L and ¬¬R of GO instead of the pair of double

negation axioms ‘¬¬α ⇒ α’ and ‘α ⇒ ¬¬α’, respectively. Now, since Nishimura

shows that if GO ⊢ Ŵ⇒ 1, then there exists a finite subsequent Ŵ′ ⇒ 1′ of Ŵ⇒ 1

such that GO ⊢ Ŵ′ ⇒ 1′, it is easy to show the following.

Proposition 4.5 GO = LO.

In LO, the restriction on 1 in the rule∨L that it contains at most one wff is essential;

otherwise, LO would become the classical logic as Theorem 4.3(3) shows. We now

have this proposition.

Proposition 4.6 The following hold for LO:

1. LO ⊢ Ŵ ⇒ 1 iff LO ⊢
∧∧

Ŵ ⇒ 1.

2. If the rule ¬R of LO is replaced by the following rule ¬Rs, the resulting

system will be the classical propositional logic.

¬Rs
α ⇒ 1

⇒ 1,¬α

Proof (1) is trivial. For (2), we first set γ =
∧∧

Ŵ for Ŵ in¬Rc. Then, by using (1),

it is enough to show that the following version of the rule ¬Rc holds in the resulting

system:

¬Rc
α ∧ γ ⇒ 1

γ ⇒ 1,¬α

It is simple:

α ⇒ α

⇒ α,¬α γ ⇒ γ

γ ⇒ ¬α, α γ ⇒ ¬α, γ

γ ⇒ ¬α, α ∧ γ α ∧ γ ⇒ 1

γ ⇒ 1,¬α �

We now prove the disjunction theorem for LO.

Definition 4.7 A sequent Ŵ ⇒ 1 is called normal if its succedent 1 contains at

most one wff. A formal proof in LO is called normal if each sequent appearing in it

is normal.

The disjunction theorem is an easy corollary of the following normal form theorem,

whose proof is similar to that for GO in Nishimura [9].

Theorem 4.8 If LO ⊢ Ŵ ⇒ 1, then there is a normal subsequent Ŵ ⇒ 1′ of

Ŵ ⇒ 1 such that Ŵ⇒ 1′ has a normal proof in LO.

Corollary 4.9 Let Ŵ ⇒ 1 be a sequent such that 1 is not empty. Then LO

⊢ Ŵ ⇒ 1 if and only if for some α in 1, LO ⊢ Ŵ ⇒ α.

In order to connect LO with DI, we put the restriction on LO that the antecedents of

sequents contain at most one formula, and the resulting system will be denoted as

‘LO− ’. It is this.
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Definition 4.10 LO− consists of the following axioms and rules of inference:

1. Axioms α ⇒ α, ¬¬α ⇒ α, α ⇒ ¬¬α

2. Inference Rules (Ŵ contains at most one wff.)

Structural Rules The same as those of DI.

Logical Rules

¬L
⇒ 1,α

¬α ⇒ 1
¬R

α ⇒ 1

¬1⇒ ¬α
(1 contains at most one wff.)

∧L
α⇒ 1

α ∧ β ⇒ 1

β ⇒ 1

α ∧ β ⇒ 1
∧R

Ŵ⇒ 1,α Ŵ ⇒ 1,β

Ŵ ⇒ 1,α ∧ β

∨L
α⇒ 1 β ⇒ 1

α ∨ β ⇒ 1
∨R

Ŵ ⇒ 1,α

Ŵ ⇒ 1,α ∨ β

Ŵ⇒ 1,β

Ŵ⇒ 1,α ∨ β
(1 contains at most one wff.)

Definition 4.11 DI −P is the propositional part of DI which lacks the rules →L

and→R. Thus the language of DI −P is propositional and lacks the logical symbol

‘→’.

The difference of inference rules between LO− and DI −P is that the rules ¬R and

∨L of the former system can only be applied to those sequents whose succedent

contains at most one wff, although there is no such restriction on the corresponding

two rules of the latter system. Now we have the following.

Proposition 4.12 The following sequents are provable in LO and in LO− :

1. α ∧ β ⇔ ¬(¬α ∨ ¬β),

2. α ∨ β ⇔ ¬(¬α ∧ ¬β),

3. ¬(α ∧ β)⇔ ¬α ∨ ¬β,

4. ¬(α ∨ β)⇔ ¬α ∧ ¬β.

Proposition 4.13 The following hold for LO− :

1. LO− ⊢ ⇒ α ∨ ¬α iff LO− ⊢ α ∧ ¬α ⇒ ;

2. The distributive laws hold in LO− +‘α ∨ β ⇒ α, β’;

3. LO− 0 α ∨ β ⇒ α, β;

4. LO− ⊢ ⇒ α,¬α iff (LO− ⊢ ⇒ α ∨ ¬α and LO− ⊢ α ∨ β ⇒ α, β);

5. LO− 0 ⇒ α,¬α;

6. LO− ⊢ α ∧ ¬α ⇒ iff the inference rule
γ ⇒ 1,α

¬α ∧ γ ⇒ 1
holds in LO− .

Proof (1) (⇒)

¬α⇒ ¬α α ⇒ ¬¬α

α ∧ ¬α⇒ ¬α α ∧ ¬α ⇒ ¬¬α

α ∧ ¬α⇒ ¬α ∧ ¬¬α ¬α ∧ ¬¬α ⇒ ¬(α ∨ ¬α) ⇒ α ∨ ¬α

α ∧ ¬α ⇒ ¬(α ∨ ¬α) ¬(α ∨ ¬α)⇒

α ∧ ¬α⇒
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(⇐)

¬¬α⇒ α ¬α ⇒ ¬α

¬α ∧ ¬¬α⇒ α ¬α ∧ ¬¬α ⇒ ¬α

¬(α ∨ ¬α)⇒ ¬α ∧ ¬¬α ¬α ∧ ¬¬α ⇒ α ∧ ¬α

¬(α ∨ ¬α)⇒ α ∧ ¬α α ∧ ¬α ⇒

¬(α ∨ ¬α)⇒

⇒ ¬¬(α ∨ ¬α) ¬¬(α ∨ ¬α)⇒ α ∨ ¬α

⇒ α ∨ ¬α

(2) Add sequents of the form ‘α∨β ⇒ α, β’ as axioms to LO− . Then we can prove

the distributive law ‘α ∧ (β ∨ γ )⇒ (α ∧ β) ∨ (α ∧ γ )’:

α ⇒ α

α⇒ α α ⇒ β, α β ∨ γ ⇒ β, γ

α ∧ (β ∨ γ )⇒ α α ∧ (β ∨ γ )⇒ β, α α ∧ (β ∨ γ )⇒ β, γ

α ∧ (β ∨ γ )⇒ α, α ∧ γ α ∧ (β ∨ γ )⇒ β, α ∧ γ

α ∧ (β ∨ γ )⇒ α ∧ β, α ∧ γ

α ∧ (β ∨ γ )⇒ (α ∧ β) ∨ (α ∧ γ )

Similarly, we can obtain the rest of the distributive laws in LO− + ‘α ∨ β ⇒ α, β’.

(3) Since some of the distributive laws do not hold in LO, they do not, either, in the

subsystem LO− . This implies from (2) that LO− 0 α ∨ β ⇒ α, β.

(4) (⇒)

⇒ α,¬α ⇒ β,¬β

⇒ α, β,¬α ⇒ α, β,¬β

⇒ α, β,¬α ∧ ¬β

α ∨ β ⇒ ¬(¬α ∧ ¬β) ¬(¬α ∧ ¬β)⇒ α, β

α ∨ β ⇒ α, β

Showing that LO− ⊢ ⇒ α ∨ ¬α is trivial.

(⇐)
⇒ α ∨ ¬α α ∨ ¬α ⇒ α,¬α

⇒ α,¬α

(5) This is from (3) and (4).

(6) (⇒)

¬α ⇒ ¬α

γ ⇒ 1,α ¬α ∧ γ ⇒ ¬α

¬α ∧ γ ⇒ 1,α ¬α ∧ γ ⇒ 1,¬α

¬α ∧ γ ⇒ 1,α ∧ ¬α α ∧ ¬α ⇒

¬α ∧ γ ⇒ 1

(⇐) Trivial. �
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Although it seems unlikely that the sequent ‘α∧¬α ⇒ ’ is provable in LO− , we

do not know for sure that LO− 0 α ∧ ¬α ⇒ . We leave this problem open for

now. In what follows, we assume that ‘α ∧ ¬α ⇒ ’ is unprovable in LO− . We

now make a few more definitions.

Definition 4.14

1. LO−e is the system LO− + ‘ ⇒ α,¬α’.

2. LO−c is the system LO− + ‘α ∧ ¬α ⇒ ’.

3. DI −d
P is the system DI −P + ‘α ⇒ ¬¬α’.

We can then obtain the following theorem.

Theorem 4.15 If LO ⊢ Ŵ ⇒ 1, then LO−e ⊢
∧∧

Ŵ⇒ 1.

The converse of the above theorem does not hold since all the distributive laws hold

in LO−e but some of them do not in LO. We can also show the next two theorems

easily.

Theorem 4.16 LO ⊢ Ŵ ⇒ 1 if and only if LO−c ⊢
∧∧

Ŵ ⇒ 1.

Theorem 4.17 LO−e ⊢ Ŵ⇒ 1 if and only if DI −d
P ⊢ Ŵ ⇒ 1, where Ŵ contains

at most one wff.

Thus LO is equivalent to LO−c and so is LO−e to DI −d
P . Moreover, we can show

that LO−e is equivalent to the propositional part of LK, which we will denote by

‘LKP ’. We need a preliminary work to show this.

Proposition 4.18 The following hold:

1. Let Ŵ consist of at most one wff. Then, LO− ⊢ Ŵ ⇒
∨∨

1 if

LO− ⊢ Ŵ ⇒ 1;

2. LO− +‘α ∨ β ⇒ α, β’ ⊢
∨∨

1⇒ 1, where 1 is not empty;

3. LO− +‘α ∨ β ⇒ α, β’ ⊢ (¬α ∨ β) ∧ γ ∧ π ⇒ (¬α ∧ γ ) ∨ (β ∧ π).

We now define ‘α→ β’ by ‘¬α ∨ β’ in LO−e . Then we can prove the equivalence

of LO−e and LKP .

Theorem 4.19 LO−e ⊢
∧∧

Ŵ ⇒ 1 if and only if LKP ⊢ Ŵ⇒ 1.

Proof (⇒) Trivial.

(⇐) We need to show that all the inference rules of LKP hold in LO−e . We here

consider the rules →L and →R of LKP . ¬L of LKP holds in LO−e because of

Proposition 4.13(6). We set γ =
∧∧

Ŵ and π =
∧∧

5.

(→ L)
γ ⇒ 1,α β ∧ π ⇒ 3

(¬α ∨ β) ∧ γ ∧ π ⇒ 1,3
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Using the rule ¬L of LKP, we can obtain ‘¬α ∧ γ ⇒ 1’ from the upper sequent

‘γ ⇒ 1,α’. We also have ‘
∨∨

1 ∨
∨∨

3⇒ 1,3’ by Proposition 4.18(2). Using

Proposition 4.18, we have

¬α ∧ γ ⇒ 1 β ∧ π ⇒ 3

¬α ∧ γ ⇒ 1,3 β ∧ π ⇒ 1,3

¬α∧γ⇒
∨∨

1∨
∨∨

3 β∧π⇒
∨∨

1∨
∨∨

3

(¬α∨β)∧γ ∧π⇒(¬α∧γ )∨(β∧π) (¬α∧γ )∨(β∧π)⇒
∨∨

1∨
∨∨

3

(¬α∨β) ∧γ ∧π⇒
∨∨

1∨
∨∨

3
∨∨

1∨
∨∨

3⇒1, 3

(¬α ∨ β) ∧ γ ∧ π ⇒ 1,3

(→ R)
α ∧ γ ⇒ 1,β

γ ⇒ 1,¬α ∨ β

This is simple:

⇒ α,¬α

γ ⇒ α,¬α, β γ ⇒ γ

γ ⇒ α,¬α ∨ β γ ⇒ γ,¬α ∨ β α ∧ γ ⇒ 1,β

γ ⇒ ¬α ∨ β, α ∧ γ α ∧ γ ⇒ 1,¬α ∨ β

γ ⇒ 1,¬α ∨ β,¬α ∨ β

γ ⇒ 1,¬α ∨ β �

5 Orthomodular Logic and Dual Orthomodular Logic

In the first half of this section, we will consider LJ −P , a subsystem of LJ, and DO− ,

the dual system of LO− . In the second half, we will consider the dual orthologic DO

and the dual orthomodular logic DOM, which can be obtained from DO by adding

an inference rule for the dual orthomodular law. DOM might be called the “dual

quantum logic.”

In this section, when we use the translation mapping * from Definition 2.9, we

will omit the clauses for ‘α → β’, ‘α−̇β’, ‘∀xα(x)’, and ‘∃xα(x)’ in (1) thereof.

Since most of the results of this section are the duals of those in Section 4 and can

be proved dually, we will often omit their proofs.

5.1 LJ
−

P
We first consider intuitionistic analogs of DI −P and LO−. LJ −P is the

system obtained from the propositional part of LJ by eliminating the two rules for

the implication symbol ‘→’, that is,→L and→R . We list it here for convenience.

Definition 5.1 LJ −P consists of the following axioms and rules of inference:

1. Axioms α ⇒ α

2. Inference Rules (1 contains at most one wff.)
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Structural Rules

WL
Ŵ ⇒ 1

α,Ŵ ⇒ 1
WR

Ŵ ⇒

Ŵ ⇒ α

CL
α, α, Ŵ ⇒ 1

α,Ŵ ⇒ 1
EL

Ŵ, α, β,5⇒ 1

Ŵ,β, α,5⇒ 1

Cut
Ŵ ⇒ α α,5⇒ 1

Ŵ,5⇒ 1

Logical Rules

¬L
Ŵ ⇒ α

¬α,Ŵ ⇒
¬R

α,Ŵ ⇒

Ŵ⇒ ¬α

∧L
α,Ŵ ⇒ 1

α ∧ β,Ŵ ⇒ 1

β,Ŵ ⇒ 1

α ∧ β,Ŵ⇒ 1
∧R

Ŵ ⇒ α Ŵ⇒ β

Ŵ ⇒ α ∧ β

∨L
α,Ŵ ⇒ 1 β,Ŵ⇒ 1

α ∨ β,Ŵ ⇒ 1
∨R

Ŵ⇒ α

Ŵ⇒ α ∨ β

Ŵ ⇒ β

Ŵ ⇒ α ∨ β

We introduce a few more definitions.

Definition 5.2 DO− is the system obtained from LJ −P as follows:

1. Add axioms of the forms: ¬¬α ⇒ α, α⇒ ¬¬α

2. (i) Replace ¬L of LJ −P with
Ŵ ⇒ α

¬α ⇒ ¬Ŵ
, where Ŵ contains at most one

wff.

(ii) ∧R of LJ −P is so restricted that Ŵ contains at most one wff.

Definition 5.3

1. LJ −d
P is the system LJ −P + ‘¬¬α⇒ α’.

2. DO−c is the system DO− + ‘α,¬α ⇒ ’.

3. DO−e is the system DO− + ‘ ⇒ α ∨ ¬α’.

As we have been assuming that LO− 0 α ∧¬α⇒ , we also assume dually that

DO− 0 ⇒ α ∨¬α. Using the translation mapping *, we can easily establish the

following theorem.

Theorem 5.4 Assume that Ŵ contains at most one wff. Then

1. DI −P ⊢ Ŵ ⇒ 1 iff LJ −P ⊢ (Ŵ⇒ 1)* ;

2. DI −d
P ⊢ Ŵ ⇒ 1 iff LJ −d

P ⊢ (Ŵ ⇒ 1)* ;

3. LO− ⊢ Ŵ⇒ 1 iff DO− ⊢ (Ŵ ⇒ 1)* ;

4. LO−c ⊢ Ŵ⇒ 1 iff DO−e ⊢ (Ŵ ⇒ 1)* ;

5. LO−e ⊢ Ŵ⇒ 1 iff DO−c ⊢ (Ŵ ⇒ 1)* .

Thus, LJ −P , LJ −d
P , DO− , DO−e , and DO−c are the dual systems of, respectively,

DI −P , DI −d
P , LO− , LO−c , and LO−e . The following is an easy proposition for

LJ −P .
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Proposition 5.5 The following hold:

1. LJ −P ⊢ α ⇒ ¬¬α;

2. LJ −P ⊢ α, β ⇒ α ∧ β;

3. LJ −P ⊢ Ŵ ⇒ 1 iff LJ −P ⊢
∧∧

Ŵ⇒ 1, where 1 contains at most one wff.

We also have the dual of Proposition 4.13.

Proposition 5.6 The following hold:

1. DO− ⊢ ⇒ α ∨ ¬α iff DO− ⊢ α ∧ ¬α ⇒ ;

2. The distributive laws hold in DO− + ‘α, β ⇒ α ∧ β’;

3. DO− 0 α, β ⇒ α ∧ β;

4. DO− ⊢ α,¬α ⇒ iff (DO− ⊢ α∧¬α ⇒ and DO− ⊢ α, β ⇒ α∧β);

5. DO− 0 α,¬α ⇒ ;

6. DO− ⊢ ⇒ α ∨ ¬α iff the inference rule
α,Ŵ ⇒ δ

Ŵ ⇒ δ ∨ ¬α
holds in DO− .

From Proposition 5.6(1) and (4), we obtain the following theorem.

Theorem 5.7 If DO−e ⊢ Ŵ ⇒ 1, then DO−c ⊢ Ŵ ⇒ 1, where 1 contains at

most one wff.

Using Proposition 5.5, we can easily prove the dual of Theorem 4.17.

Theorem 5.8 DO−c =LJ −d
P ; that is, DO−c ⊢ Ŵ ⇒ 1 if and only if LJ −d

P

⊢ Ŵ ⇒ 1, where 1 contains at most one wff.

Moreover, we can show that DO−c = LKP . For this, we need a preliminary work.

Proposition 5.9 The following hold.

1. Let 1 consist of at most one wff. Then, DO− ⊢
∧∧

Ŵ ⇒ 1 if DO−

⊢ Ŵ ⇒ 1.

2. DO− +‘α, β ⇒ α ∧ β’ ⊢ Ŵ ⇒
∧∧

Ŵ, where Ŵ is not empty.

3. DO−c ⊢ ¬α ∨ β, (δ ∨ α) ∧ (λ ∨ ¬β)⇒ δ ∨ λ.

We now define ‘α→ β’ by ‘¬α ∨ β’ in DO−c . Then we can prove the equivalence

of DO−c and LKP .

Theorem 5.10 DO−c ⊢ Ŵ ⇒
∨∨

1 if and only if LKP ⊢ Ŵ ⇒ 1.

Proof (⇒) Trivial.

(⇐) We need to show that all the inference rules of LKP hold in DO−c . We here

consider the rules¬L,¬R,→L, and→R of LKP . We set δ =
∨∨

1 and λ =
∨∨

3.

(¬L)
Ŵ⇒ δ ∨ α

¬α,Ŵ ⇒ δ

Using Proposition 5.6(4), we have

α,¬α ⇒

δ,¬α ⇒ δ ∧ ¬α α,¬α ⇒ δ ∧ ¬α

Ŵ ⇒ δ ∨ α δ ∨ α,¬α ⇒ δ ∧ ¬α δ ⇒ δ

¬α,Ŵ ⇒ δ ∧ ¬α δ ∧ ¬α ⇒ δ

¬α,Ŵ ⇒ δ
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(¬R)
α, Ŵ ⇒ δ

Ŵ ⇒ δ ∨ ¬α

This is from Proposition 5.6(1), (4), and (6).

(→ L)
Ŵ⇒ δ ∨ α β,5⇒ λ

¬α ∨ β,Ŵ,5⇒ δ ∨ λ

From the upper sequent Ŵ⇒ δ∨α, we have Ŵ,5⇒ δ∨α and then
∧∧

Ŵ∧
∧∧

5⇒

δ ∨ α, by Proposition 5.9(1). From β,5 ⇒ λ, we have 5 ⇒ λ ∨ ¬β, by (¬R)

above, from which we obtain Ŵ,5 ⇒ λ ∨ ¬β and then
∧∧

Ŵ ∧
∧∧

5 ⇒ λ ∨ ¬β,

by Proposition 5.9(1), again. Then, using Proposition 5.9(2) and (3), we have this:

∧∧
Ŵ ∧

∧∧
5⇒ δ ∨ α

∧∧
Ŵ ∧

∧∧
5⇒ λ ∨ ¬β

∧∧
Ŵ∧

∧∧
5⇒ (δ∨α)∧(λ∨¬β) ¬α∨β, (δ∨α)∧(λ∨¬β)⇒δ∨λ

Ŵ,5⇒
∧∧

Ŵ ∧
∧∧

5
∧∧

Ŵ ∧
∧∧

5,¬α ∨ β ⇒ δ ∨ λ

¬α ∨ β,Ŵ,5⇒ δ ∨ λ

(→ R)
α, Ŵ ⇒ δ ∨ β

Ŵ⇒ δ ∨ (¬α ∨ β)

We can obtain this rule by (¬R) above. �

5.2 DO and DOM We now define the dual system of LO, which we will call the

Dual Orthologic (DO, for short).

Definition 5.11 Let DO be the system obtained from LO as follows:

1. Axioms and structural inference rules are the same as those of LO.

2. Logical rules

¬L
Ŵ ⇒ α

¬α⇒ ¬Ŵ
¬R

α,Ŵ ⇒ 1

Ŵ ⇒ 1,¬α

∧L
α,Ŵ ⇒ 1

α ∧ β,Ŵ ⇒ 1

β,Ŵ ⇒ 1

α ∧ β,Ŵ ⇒ 1
∧R

Ŵ ⇒ α Ŵ ⇒ β

Ŵ ⇒ α ∧ β
(Ŵ contains at most one wff.)

∨L
α,Ŵ ⇒ 1 β,Ŵ ⇒ 1

α ∨ β,Ŵ⇒ 1
∨R

Ŵ ⇒ 1,α

Ŵ ⇒ 1,α ∨ β

Ŵ ⇒ 1,β

Ŵ⇒ 1,α ∨ β

The following proposition is almost trivial.

Proposition 5.12 DO ⊢ Ŵ ⇒ 1 if and only if DO ⊢ Ŵ ⇒
∨∨

1.

Then we have the dual of Theorem 4.16.

Theorem 5.13 DO ⊢ Ŵ ⇒ 1 if and only if DO−e ⊢ Ŵ⇒
∨∨

1.

Finally, we consider the orthomodular logic, or the quantum logic. Nishimura added

the following rule of inference to his system GO to obtain GOM:

0-modular
¬β ⇒ ¬α ¬α, β ⇒

¬α ⇒ ¬β
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We use the following rule OM, which is equivalent to his 0-modular rule in GO or in

LO:

OM
α ⇒ β ¬α, β ⇒

β ⇒ α

We then define the dual of the rule OM, which we will call “Dual-OM”:

Dual-OM
⇒ ¬α, β β ⇒ α

α ⇒ β

Definition 5.14

1. LOM (Orthomodular Logic) is the system LO + OM.

2. DOM (Dual Orthomodular Logic) is the system DO + Dual-OM.

By Proposition 4.5, it is clear that LOM=GOM. Also, by the translation mapping *,

it is easy to see that DOM is the dual of LOM. Thus we have the following.

Theorem 5.15 The following hold:

1. LOM = GOM;

2. LOM ⊢ Ŵ ⇒ 1 iff DOM ⊢ (Ŵ ⇒ 1)*.

6 Concluding Remarks

DI+ and LJ+ can be regarded as isomorphic systems by the translation mapping

(isomorphism) *. With this mapping, DI and LJ are related dually, though not

completely. When we consider the relation between DI and LO, the two systems

DI −P and LO− become very important and some sequents like ‘ ⇒ α,¬α’,

‘α ∧ ¬α ⇒ ’, and ‘α ∨ β ⇒ α, β’ play important roles for connecting DI with

LO. Especially, the last one can be regarded as the key sequent for the distributive

laws.

This paper contains only syntactical considerations of various logics in the form

of sequent calculus and we also need to consider their model theoretic properties

and relations. We point out one thing here. As the translation mapping * shows,

the logical connective→ of LJ corresponds to the pseudo-difference operator −̇ of

DI+, which is not in DI. This means that the “dual” algebra of a complete Heyting

algebra, that is, the complete Brouwerian algebra is not a proper model for DI. For

the Brouwerian algebras, see McKinsey and Tarski [8] and Goodman [6]. Rauszer

[11] and Goré [7] might also be useful.

We can finally indicate the relationship among the major systems considered in

this paper, diagrammatically. In the diagram below, ‘A→ B’ indicates that the sys-

tem B is an extension of A; ‘A = B’ indicates that A is equivalent to B ; and ‘A←→

B’ indicates that A and B are the duals according to the translation mapping *. The

system LB in the diagram is the sequent calculus obtained from LK by restricting

sequents so that both the antecedent and the succedent of a sequent are singular. The

cut elimination theorem holds for LB, which is shown in Aoyama [1]. Similar dia-

grams of logical systems have been presented in [17], [10], Sambin et al. [13], Chiara

and Giuntini [2], and so on. They show interesting relations among various logical

systems and seem to suggest very promising ideas of research both syntactical and

semantical.
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