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Abstract
Control and bribery are settings in which an external agent seeks to influence the outcome of

an election. Constructive control of elections refers to attempts by an agent to, via such actions as
addition/deletion/partition of candidates or voters, ensure that a given candidate wins. Destructive
control refers to attempts by an agent to, via the same actions, preclude a given candidate’s victory.
An election system in which an agent can sometimes affect the result and it can be determined in
polynomial time on which inputs the agent can succeed is said to be vulnerable to the given type
of control. An election system in which an agent can sometimes affect the result, yet in which it is
NP-hard to recognize the inputs on which the agent can succeed, is said to be resistant to the given
type of control.

Aside from election systems with an NP-hard winner problem, the only systems previously
known to be resistant to all the standard control types were highly artificial election systems cre-
ated by hybridization. This paper studies a parameterized version of Copeland voting, denoted by
Copeland� , where the parameter � is a rational number between 0 and 1 that specifies how ties are
valued in the pairwise comparisons of candidates. In every previously studied constructive or de-
structive control scenario, we determine which of resistance or vulnerability holds for Copeland�

for each rational � , 0 ≤ � ≤ 1. In particular, we prove that Copeland0.5, the system commonly
referred to as “Copeland voting,” provides full resistance to constructive control, and we prove
the same for Copeland� , for all rational � , 0 < � < 1. Among systems with a polynomial-time
winner problem, Copeland voting is the first natural election system proven to have full resistance
to constructive control. In addition, we prove that both Copeland0 and Copeland1 (interestingly,
Copeland1 is an election system developed by the thirteenth-century mystic Llull) are resistant to
all standard types of constructive control other than one variant of addition of candidates. More-
over, we show that for each rational � , 0 ≤ � ≤ 1, Copeland� voting is fully resistant to bribery
attacks, and we establish fixed-parameter tractability of bounded-case control for Copeland� .

We also study Copeland� elections under more flexible models such as microbribery and ex-
tended control, we integrate the potential irrationality of voter preferences into many of our results,
and we prove our results in both the unique-winner model and the nonunique-winner model. Our
vulnerability results for microbribery are proven via a novel technique involving min-cost network
flow.

c©2009 AI Access Foundation. All rights reserved.
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1. Introduction

This section gives some history and an outline of our results.

1.1 Some Historical Remarks: Llull’s and Copeland’s Election Systems

Elections have played an important role in human societies for thousands of years. For example,
elections were of central importance in the democracy of ancient Athens. There citizens typically
could only agree (vote yes) or disagree (vote no) with the speaker, and simple majority-rule was in
effect. The mathematical study of elections, give or take a few discussions by the ancient Greeks
and Romans, was until recently thought to have been initiated only a few hundred years ago, namely
in the breakthrough work of Borda and Condorcet—later in part reinvented by Dodgson (see, e.g.,
McLean and Urken, 1995, for reprints of these classic papers). One of the most interesting results of
this early work is Condorcet’s (1785) observation that if one conducts elections with more than two
alternatives then even if all voters have rational (i.e., transitive) preferences, the society in aggregate
can be irrational (indeed, can have cycles of strict preference). Nonetheless, Condorcet believed
that if there exists a candidate c such that c defeats each other candidate in head-to-head contests
then c should win the election (see, e.g., page 114 of McLean and Urken, 1995). Such a candidate
is called a Condorcet winner. Clearly, there can be at most one Condorcet winner in any election,
and there might be none.

This understanding of history has been reconsidered during the past few decades, as it has been
discovered that the study of elections was considered deeply as early as the thirteenth century (see
Hägele and Pukelsheim, 2001, and the citations therein regarding Ramon Llull and the fifteenth-
century figure Cusanus, especially the citations that in Hägele and Pukelsheim, 2001, are numbered
3, 5, and 24–27). Ramon Llull (b. 1232, d. 1315), a Catalan mystic, missionary, and philosopher
developed an election system that (a) has an efficient winner-determination procedure and (b) elects
a Condorcet winner whenever one exists and otherwise elects candidates that are, in a certain sense,
closest to being Condorcet winners.

Llull’s motivation for developing an election system was to obtain a method of choosing
abbesses, abbots, bishops, and perhaps even the pope. His election ideas never gained public accep-
tance in medieval Europe and were long forgotten.

It is interesting to note that Llull allowed voters to have so-called irrational preferences. Given
three candidates, c, d, and e, it was perfectly acceptable for a voter to prefer c to d, d to e, and e
to c. On the other hand, in modern studies of voting and election systems each voter’s preferences
are most typically modeled as a linear order over all candidates. (In this paper, as is common
when discussing elections, “linear order” implies strictness, i.e., no tie in the ordering; that is,
by “linear order” we mean a strict, complete order, i.e., an irreflexive, antisymmetric, complete,
transitive relation.) Yet allowing irrationality is very tempting and natural. Consider Bob, who
likes to eat out but is often in a hurry. Bob prefers diners to fast food because he is willing to
wait a little longer to get better food. Also, given a choice between a fancy restaurant and a diner
he prefers the fancy restaurant, again because he is willing to wait somewhat longer to get better
quality. However, given the choice between a fast-food place and a fancy restaurant Bob might
reason that he is not willing to wait so much longer to be served at the fancy restaurant and so
will choose fast food instead. Thus regarding catering options, Bob’s preferences are irrational in
our sense, i.e., intransitive. When voters make their choices based on multiple criteria—a very
common and natural occurrence both among humans and software agents—such irrationalities can
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occur. Another example where irrationality might naturally occur, as suggested by a referee, is
the case when each voter is a delegate of some group (having an odd number of members), and
between each pair of alternatives each delegate votes for whichever alternative a majority of his or
her constituents prefers among that pair.

Llull’s election system is remarkably similar to what is now known as “Copeland elec-
tions” (Copeland, 1951), a more than half-century old voting procedure that is based on pairwise
comparisons of candidates: The winner (by a majority of votes—in this paper “majority” always,
as is standard, means strict majority) of each such head-to-head contest is awarded one point and
the loser is awarded zero points; in ties, both parties are (in the most common interpretation of
Copeland’s meaning) awarded half a point; whoever collects the most points over all these con-
tests (including tie-related points) is the election’s winner. In fact, the point value awarded for ties
in such head-to-head majority-rule contests is treated in two ways in the literature when speaking
of Copeland elections: half a point (most common) and zero points (less common). To provide a
framework that can capture both those notions, as well as capturing Llull’s system and the whole
family of systems created by choices of how we value ties, we propose and introduce a parame-
terized version of Copeland elections, denoted by Copeland� , where the parameter � is a rational
number, 0≤ � ≤ 1, and in the case of a tie both candidates receive � points. So the system widely
referred to in the literature as “Copeland elections” is Copeland0.5, where tied candidates receive
half a point each (see, e.g., Saari and Merlin, 1996, and Merlin and Saari, 1997; the definition used
by Conitzer, Sandholm, & Lang, 2007, can be scaled to be equivalent to Copeland0.5). Copeland0,
where tied candidates come away empty-handed, has sometimes also been referred to as “Copeland
elections” (see, e.g., Procaccia, Rosenschein, and Kaminka, 2007, and Faliszewski, Hemaspaandra,
Hemaspaandra, and Rothe, 2007, an early version of this paper). The above-mentioned election
system proposed by Ramon Llull in the thirteenth century is in this notation Copeland1, where tied
candidates are awarded one point each, just like winners of head-to-head contests.1 The group stage
of the FIFA World Cup finals is in essence a collection of Copeland

1
3 tournaments.

At first glance, one might be tempted to think that the definitional perturbation due to the param-
eter � in Copeland� elections is negligible. However, it in fact can make the dynamics of Llull’s
system quite different from those of, for instance, Copeland0.5 or Copeland0. Specific examples
witnessing this claim, both regarding complexity results and regarding their proofs, are given at the
end of Section 1.3.

Finally, we mention that a probabilistic variant of Copeland voting (known as the Jech method)
was defined already in 1929 by Zermelo (1929) and later on was reintroduced by several other re-
searches (see, e.g., Levin and Nalebuff, 1995, for further references and a description of the Jech
method). We note in passing that the Jech method is applicable even when it is fed incomplete infor-
mation. In the present paper, however, we do not consider incomplete-information or probabilistic
scenarios, although we commend such settings as interesting for future work.

1. Page 23 of Hägele and Pukelsheim 2001 indicates in a way we find deeply convincing (namely by a direct quote of
Llull’s in-this-case-very-clear words from his Artifitium Electionis Personarum—which was rediscovered by those
authors in the year 2000) that at least one of Llull’s election systems was Copeland1, and so in this paper we refer to
the both-candidates-score-a-point-on-a-tie variant as Llull voting.

In some settings Llull required the candidate and voter sets to be identical and had an elaborate two-stage tie-
handling rule ending in randomization. We disregard these issues here and cast his system into the modern idiom
for election systems. (However, we note in passing that there do exist some modern papers in which the voter and
candidate sets are taken to be identical, see for example the work of and references in Altman and Tennenholtz, 2007.)
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1.2 Computational Social Choice

In general it is impossible to design a perfect election system. Arrow (1963) famously showed that
there is no social choice system that satisfies a certain small set of arguably reasonable requirements,
and later Gibbard (1973), Satterthwaite (1975), and Duggan and Schwartz (2000) showed that any
natural election system can sometimes be manipulated by strategic voting, i.e., by a voter revealing
different preferences than his or her true ones in order to affect an election’s result in his or her
favor. Also, no natural election system with a polynomial-time winner-determination procedure
has yet been shown to be resistant to all types of control via procedural changes. Control refers to
attempts by an external agent (called “the chair”) to, via such actions as addition/deletion/partition
of candidates or voters, make a given candidate win the election (in the case of constructive control,
Bartholdi, Tovey, and Trick, 1992) or preclude a given candidate’s victory (in the case of destructive
control, Hemaspaandra, Hemaspaandra, and Rothe, 2007a).

These obstacles are very discouraging, but the field of computational social choice theory grew
in part from the realization that computational complexity provides a potential shield against ma-
nipulation/control/etc. In particular, around 1990, Bartholdi, Tovey, and Trick (1989a), Bartholdi
and Orlin (1991), and Bartholdi et al. (1992) brilliantly observed that while we perhaps might not
be able to make manipulation (i.e., strategic voting) and control of elections impossible, we could
at least try to make such manipulation and control so computationally difficult that neither voters
nor election organizers will attempt it. For example, if there is a way for a committee’s chair to set
up an election within the committee in such a way that his or her favorite option is guaranteed to
win, but the chair’s computational task would take a million years, then for all practical purposes
we may feel that the chair is prevented from finding such a set-up.

Since the seminal work of Bartholdi, Orlin, Tovey, and Trick, a large body of research has been
dedicated to the study of computational properties of election systems. Some topics that have re-
ceived much attention are the complexity of manipulating elections (Conitzer & Sandholm, 2003,
2006; Conitzer et al., 2007; Elkind & Lipmaa, 2005; Hemaspaandra & Hemaspaandra, 2007; Pro-
caccia & Rosenschein, 2007; Meir, Procaccia, Rosenschein, & Zohar, 2008) and of controlling
elections via procedural changes (Hemaspaandra et al., 2007a; Hemaspaandra, Hemaspaandra, &
Rothe, 2007b; Meir et al., 2008; Erdélyi, Nowak, & Rothe, 2008b). Recently, Faliszewski, Hema-
spaandra, and Hemaspaandra (2006a) introduced the study of the complexity of bribery in elections.
Bribery shares some features of manipulation and some features of control. In particular, the briber
picks the voters he or she wants to affect (as in voter control problems) and asks them to vote as he
or she wishes (as in manipulation). (For additional citations and pointers, see the recent survey Fal-
iszewski, Hemaspaandra, Hemaspaandra, and Rothe, 2009.)

In this paper we study Copeland� elections with respect to the computational complexity of
bribery and procedural control; see Faliszewski, Hemaspaandra, and Schnoor 2008 for a study of
manipulation within Copeland� .

The study of election systems and their computational properties, such as the complexity of
their manipulation, control, and bribery problems, is an important topic in multiagent systems.
Agents/voters may have different, often conflicting, individual preferences over the given alterna-
tives (or candidates) and voting rules (or, synonymously, election systems) provide a useful method
for agents to come to a “reasonable” decision on which alternative to choose. Thus elections can be
employed in multiagent settings and also in other contexts to solve many practical problems. As just
a few examples, we mention that Ephrati and Rosenschein (1997) use elections for planning, Ghosh,
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Mundhe, Hernandez, and Sen (1999) develop a recommender system for movies that is based on
voting, and Dwork, Kumar, Naor, and Sivakumar (2001) use elections to aggregate results from
multiple web-search engines. In a multiagent setting we may have hundreds of elections happening
every minute and we cannot hope to carefully check in each case whether the party that organized
the election attempted some procedural change to skew the results. However, if it is computationally
hard to find such procedural changes then we can hope it is practically infeasible for the organizers
to undertake them.

A standard technique for showing that a particular election-related problem (for example, the
problem of deciding whether the chair can make his or her favorite candidate a winner by influencing
at most k voters not to cast their votes) is computationally intractable is to show that it is NP-hard.
This approach is taken in almost all the papers on computational social choice cited above, and
it is the approach that we take in this paper. One of the justifications for using NP-hardness as a
barrier against manipulation and control of elections is that in multiagent settings any attempts to
influence the election’s outcome are made by computationally bounded software agents that have
neither human intuition nor the computational ability to solve NP-hard problems.

Recently, Conitzer and Sandholm (2006), Procaccia and Rosenschein (2007), Homan and
Hemaspaandra (to appear), and McCabe-Dansted, Pritchard, and Slinko (2008) have studied the
frequency (or sometimes, probability weight) of correctness of heuristics for voting problems. Al-
though this is a fascinating and important direction, it does not at this point remove the need to study
worst-case hardness. Indeed, we view worst-case study as a natural prerequisite to a frequency-of-
hardness attack: After all, there is no point in seeking frequency-of-hardness results if the problem
at hand is in P to begin with. And if one cannot even prove worst-case hardness for a problem,
then proving “average-case” hardness is even more beyond reach. Also, current frequency results
have debilitating limitations (for example, being locked into specific distributions; depending on un-
proven assumptions; and adopting “tractability” notions that declare undecidable problems tractable
and that are not robust under even linear-time reductions). These models are arguably not ready for
prime time and, contrary to some people’s impression, do not imply (and do not have the goal of
implying, since they are studying frequency of hardness) average-case polynomial runtime claims.
Erdélyi, Hemaspaandra, Rothe, and Spakowski (2007) and Homan and Hemaspaandra (to appear)
provide discussions of some of these issues. Regarding the recent work of Friedgut, Kalai, and
Nisan (2008) (see also Xia and Conitzer, 2008a, 2008b), that very interesting work is not on con-
trol, and the lower bounds proven there do not show that one can manipulate most of the time,
but rather that work provides lower bounds that unfortunately go to zero as the number of voters
increases, for the case there studied. Of course, the limitations of current results on frequency of
hardness surely do not mean that the direction is not interesting; clearly, the field should do its best
to go beyond those limitations.

1.3 Outline of Our Results

The goal of this paper is to study Copeland� elections from the point of view of computational social
choice theory, in the setting where voters are rational and in the setting where voters are allowed
to have irrational preferences. (Note: When we henceforward say “irrational voters,” we mean that
the voters may have irrational preferences, not that they each must.) We study the issues of bribery
and control and we point the reader to Faliszewski et al. 2008 for work on manipulation. (Very
briefly summarized, the work of Faliszewski et al., 2008, on manipulation of Copeland� elections
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shows that for all rational � , 0 < � < 1, � �= 1
2 , the coalitional manipulation problem in unweighted

Copeland� elections, even for coalitions of just two manipulators, is NP-complete. Some of the
constructions of the present paper have been adopted or adapted in that paper in order to prove
results about manipulation.)

Bribery and control problems have some very natural real-life interpretations. For example,
during presidential elections a candidate might want to encourage as many of his or her supporters
as possible to vote (“get-out-the-vote” efforts): control via addition of voters; elections can be held
at an inconvenient date for a group of voters (e.g., a holiday) or at a hard-to-reach location (e.g.,
requiring one to own a car, or such that getting to the location involves passing dangerous areas):
control via deleting voters; one can choose voting districts in a way favorable to a particular candi-
date or party (gerrymandering): control via partitioning voters; one can introduce a new candidate
to the election in the hope that he or she will steal votes away from the opponents of one’s favorite
candidate without affecting the favorite candidate’s performance: control via adding candidates. All
the other control scenarios that we study also have natural interpretations.

Similarly, bribery is a natural and important issue in the context of elections. We stress, how-
ever, that bribery problems do not necessarily need to correspond to cheating or any sort of illegal
action. One could view bribery problems as, for example, problems of finding the minimum num-
ber of voters who can switch the result of the election and, thus, as problems of finding coalitions,
especially if one assigns prices to voters to measure the difficulty of convincing a particular voter to
join the coalition (see, e.g., Faliszewski, 2008, for an example of a bribery problem where such an
interpretation is very natural).

It is quite natural to study control and bribery both in constructive settings (where we want to
make our favorite candidate a winner) and in destructive settings (where we try to prevent a candi-
date from winning). In the context of real-life elections, one often hears voters speaking of which
candidate they hope will win, but one also often hears voters expressing the sentiment “Anyone but
him.” The constructive and destructive settings correspond to actions that agents belonging to these
groups might be interested in.

One of the main achievements of this paper is to classify which of resistance or vulnerabil-
ity holds for Copeland� in every previously studied control scenario for each rational value of � ,
0 ≤ � ≤ 1. In doing so, we provide an example of a control problem where the complexity of
Copeland0.5 (which is the system commonly referred to as “Copeland”) differs from that of both
Copeland0 and Copeland1: While the latter two problems are vulnerable to constructive control
by adding (an unlimited number of) candidates, Copeland0.5 is resistant to this control type (see
Section 2 for definitions and Theorem 4.10 for this result).

In fact, Copeland (i.e., Copeland0.5) is the first natural election system (with a polynomial-time
winner problem) proven to be resistant to every type of constructive control that has been proposed
in the literature to date. This result closes a 15-year quest for a natural election system fully resistant
to constructive control.2

2. A referee wondered whether (and speculated that) virtually every common rule (other than plurality and Condorcet,
said the referee, although actually plurality displays breathtakingly many resistances itself, albeit not all the construc-
tive resistances) would display just as broad resistance to control as does Copeland, were one to obtain results for
those rules. This of course is an open issue, but we see no reason to think it will be the case (and approval voting
already provides a counterexample, see Hemaspaandra et al., 2007a). And even if that were the case and most other
rules resisted as many control types, we suspect that the pattern of which types are resisted will differ among the
rules, although it is the case that the four “quadrants” (of constructive/destructive and voter/candidate do seem to
often stand or fall as a block). That pattern seems to us something that is of natural importance, since one’s choice
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We also show that Copeland� is resistant to both constructive and destructive bribery, for both
the case of rational voters and the case of irrational voters. Our hardness proofs work for the case
of unweighted voters without price tags (see Faliszewski et al., 2006a) and thus, naturally, apply
as well to the more involved scenarios of weighted unpriced voters, unweighted priced voters, and
weighted priced voters.

To prove our bribery results, we introduce a method of controlling the relative performances of
certain voters in such a way that, if one sets up other restrictions appropriately, the legal possibilities
for bribery actions are sharply constrained. We call our approach “the UV technique,” since it is
based on dummy candidates u and v. The proofs of Theorems 3.2 and 3.4 are particular applications
of this method. We feel that the UV technique will be useful, even beyond the scope of this paper,
for the analysis of bribery in other election systems based on head-to-head contests.

We also study Copeland� elections under more flexible models such as “microbribery” (see Sec-
tion 3.2) and “extended control” (see Section 4.3). We show that Copeland� (with irrational voters
allowed) is vulnerable to destructive microbribery and to destructive candidate control via providing
fairly simple greedy algorithms. In contrast, our polynomial-time algorithms for constructive micro-
bribery are proven via a technique involving min-cost network flows. To the best of our knowledge,
this is the first application of min-cost flows to election problems. We believe that the range of ap-
plicability of flow networks to election problems extends well beyond microbribery for Copeland�

elections and we point the reader to a recent, independent paper by Procaccia, Rosenschein, and
Zohar (2008)3 and to a paper by Faliszewski (2008) for examples of such applications.

We also mention that during our study of Copeland control we noticed that the proof of an
important result of Bartholdi et al. (1992, Theorem 12), namely, that Condorcet voting is resistant
to constructive control by deleting voters, is invalid. The invalidity is due to the proof centrally
using nonstrict voters, in violation of Bartholdi et al.’s (1992) (and our) model, and the invalidity
seems potentially daunting or impossible to fix with the proof approach taken there. We note also
that Theorem 14 of the same paper has a similar flaw. In Section 5 we validly reprove their claimed
results using our techniques.

As mentioned in Section 1.1, Copeland� elections may behave quite differently depending on
the value of the tie-rewarding parameter � . We now give concrete examples to make this case.
Specifically, proofs of results for Copeland� occasionally differ considerably for distinct values
of � , and in some cases even the computational complexity of various control and manipulation
problems (for the manipulation case see Faliszewski et al., 2008) may jump between P membership
and NP-completeness depending on � . Regarding control, we have already noted that Theorem 4.10
shows that some control problem (namely, control by adding an unlimited number of candidates)
for Copeland� is NP-complete for each rational � with 0 < � < 1, yet Theorem 4.11 shows that
same control problem to be in P for � ∈ {0,1}. To give another example involving a different

of election rule should probably (along with many other factors that should influence rule choice) be shaped by the
strength of the rule with respect to resisting the types of attacks one expects the system to be faced with. For exam-
ple, Copeland is exceedingly strong—in fact, perfect—with respect to the constructive control types studied here. In
contrast, plurality, Condorcet, and approval are not (Bartholdi et al., 1992; Hemaspaandra et al., 2007a), and we can’t
speak to the issue of as yet unstudied systems. And as to what holds for other rules, we suspect that the dream-case
path would be to find broad results that in one stroke reveal the control-resistance patterns of whole classes of election
systems. For example, see Hemaspaandra and Hemaspaandra 2007, which does essentially that for manipulation of
scoring systems.

3. Procaccia et al. (2008) independently of our work in Faliszewski et al. 2007 used a similar technique in their work
regarding the complexity of achieving proportional representation.
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control problem, namely control by partition of candidates with the ties-eliminate tie-handling rule
(see Section 2), we note that the proofs of Theorem 4.15 (which applies to � = 1 for this control
problem within Copeland� ) and of Theorem 4.16 (which applies to all rational � with 0 ≤ � < 1
for the same problem) differ substantially. Regarding constructive microbribery, the vulnerability
constructions for � = 0 (see Lemma 3.13) and � = 1 (see Lemma 3.15) significantly differ from
each other, and neither of them works for tie-rewarding values other than 0 and 1. The above
remarks notwithstanding, for most of our results we show that it is possible to obtain a unified—
though due to this uniformity sometimes rather involved—construction that works for Copeland�

for every rational � , 0≤ � ≤ 1.

1.4 Organization

This paper is organized as follows. In Section 2, we formalize the notion of elections and in partic-
ular of Copeland� elections, we introduce some useful notation, and we formally define the control
and bribery problems we are interested in. In Section 3, we show that for each rational � , 0≤ � ≤ 1,
Copeland� elections are fully resistant to bribery, both in the case of rational voters and in the case
of irrational voters. On the other hand, if one changes the bribery model to allow “microbribes” of
voters (a fine-grained approach to bribery, in which the more one changes a voter’s vote, the more
one has to pay the voter), we prove vulnerability for each rational � , 0 ≤ � ≤ 1, in the irrational-
voters destructive case and for some specific values of � in the irrational-voters constructive case. In
Sections 4.1 and 4.2, we present our results on procedural control for Copeland� elections for each
rational � with 0≤ � ≤ 1. We will see that very broad resistance holds for the constructive-control
cases. Section 4.3 presents our results on fixed-parameter tractability of bounded-case control for
Copeland� . Section 5 provides valid proofs for several control problems for Condorcet elections
(studied by Bartholdi et al., 1992) whose original proofs were invalid due to being at odds with the
model of elections used in Bartholdi et al. 1992. We conclude the paper with a brief summary in
Section 6 and by stating some open problems.

If every proof were included in this paper, it would be extremely long and difficult to read.
Nonetheless, it is of course important to make proofs available for our claims. We have han-
dled this as follows. We have made available as Faliszewski, Hemaspaandra, Hemaspaandra, and
Rothe 2008b a full technical report version of this paper, with complete and detailed proofs of essen-
tially every result. And in the current article, for proofs that would be repetitive or tedious relative
to other proofs that we do include here, we simply have not included those proofs here and have
instead included in their place a pointer to the detailed proof of the result in the full technical report
version.

2. Preliminaries

This section defines many of the notions we use in this paper, such as various election systems,
election problems, and hardness notions.

2.1 Elections: The Systems of Llull and Copeland

An election E = (C,V ) consists of a finite candidate set C= {c1, . . . ,cm} and a finite collection V of
voters, where each voter is represented (individually, except later when we discuss succinct inputs)
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via his or her preferences over the candidates. An election system (or an election rule) is a rule that
determines the winner(s) of each given election, i.e., a mapping from pairs (C,V ) to subsets of C.

We consider two ways in which voters can express their preferences. In the rational case (our
default case), each voter’s preferences are represented as a linear order over the set C,4 i.e., each
voter vi has a preference list ci1 > ci2 > · · · > cim , with {i1, i2, . . . , im} = {1,2, . . . ,m}. In the irra-
tional case, each voter’s preferences are represented as a preference table that for every unordered
pair of distinct candidates ci and c j in C indicates whether the voter prefers ci to c j (i.e., ci > c j) or
prefers c j to ci (i.e., c j > ci).

Some well-known election rules for the case of rational voters are plurality, Borda count, and
Condorcet. Plurality elects the candidate(s) that are ranked first by the largest number of voters.
Borda count elects the candidate(s) that receive the most points, where each voter vi gives each
candidate c j as many points as the number of candidates c j is preferred to with respect to vi’s
preferences. A candidate ci is a Condorcet winner if for every other candidate c j it holds that ci

is preferred to c j by a majority of voters. Note that each election instance will have at most one
Condorcet winner.

In this paper, we introduce a parameterized version of Copeland’s (1951) election system, which
we denote by Copeland� , where the parameter � is a rational number between 0 and 1 that specifies
how ties are rewarded in the head-to-head majority-rule contests between any two distinct candi-
dates.

Definition 2.1 Let � , 0≤ � ≤ 1, be a rational number. In a Copeland� election, for each head-to-
head contest between two distinct candidates, if some candidate is preferred by a majority of voters
then he or she obtains one point and the other candidate obtains zero points, and if a tie occurs then
both candidates obtain � points. Let E = (C,V ) be an election. For each c ∈C, score�E (c) is (by
definition) the sum of c’s Copeland� points in E. Every candidate c with maximum score�E (c) (i.e.,
every candidate c satisfying (∀d ∈C)[score�E (c)≥ score�E (d)]) wins.

Let Copeland�Irrational denote the same election system but with voters allowed to be irrational.

As mentioned earlier, in the literature the term “Copeland elections” is most often used for the
system Copeland0.5 (e.g., Saari and Merlin, 1996, Merlin and Saari, 1997, and a rescaled version
of Conitzer et al., 2007), but has occasionally been used for Copeland0 (e.g., Procaccia et al., 2007,
and Faliszewski et al., 2007, an early version of this paper). As mentioned earlier, the system
Copeland1 was proposed by Llull in the thirteenth century (see the literature pointers given in the
introduction) and so is called Llull voting.

We now define some notation to help in the discussion of Copeland� elections. Informally put,
if E = (C,V ) is an election and if ci and c j are any two candidates in C then by vsE(ci,c j) we mean
the surplus of votes that candidate ci has over c j. Formally, we define this notion as follows.

Definition 2.2 Let E = (C,V ) be an election and let ci and c j be two arbitrary candidates from C.
Define the relative vote-score of ci with respect to c j by

vsE(ci,c j) =
{

0 if ci = c j

‖{v ∈V | v prefers ci to c j}‖−‖{v ∈V | v prefers c j to ci}‖ otherwise.

4. In this paper, we take “linear order” to mean a strict total order. This is a common convention within voting theory,
see, e.g., the book Austen-Smith and Banks 2000. However, we mention that in the field of mathematics the term
“linear order” is typically taken to allow nonstrictness, i.e., to allow ties.
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So, if ci defeats c j in a head-to-head contest in E then vsE(ci,c j) > 0, if they are tied then
vsE(ci,c j) = 0, and if c j defeats ci then vsE(ci,c j)< 0. (Throughout this paper, “defeats” excludes
the possibility of a tie, i.e., “defeats” means “(strictly) defeats.” We will say “ties-or-defeats” when
we wish to allow a tie to suffice.) Clearly, vsE(ci,c j) =−vsE(c j,ci). We often speak, in the plural,
of relative vote-scores when we mean a group of results of head-to-head contests between particular
candidates.

Let � , 0 ≤ � ≤ 1, be a rational number. Definition 2.1 introduced score�E (c), the Copeland�

score of candidate c in election E. Note that for each candidate ci ∈C,

score�E (ci) = ‖{c j ∈C | ci �= c j and vsE(ci,c j)> 0}‖
+�‖{c j ∈C | ci �= c j and vsE(ci,c j) = 0}‖.

In particular, we have score0
E(ci)= ‖{c j ∈C | ci �= c j and vsE(ci,c j)> 0}‖, and score1

E(ci)= ‖{c j ∈
C | ci �= c j and vsE(ci,c j) ≥ 0}‖. Note further that the highest possible Copeland� score in any
election E = (C,V ) is ‖C‖−1.

Recall that a candidate ci ∈ C is a Copeland� winner of E = (C,V ) if for all c j ∈ C it holds
that score�E (ci)≥ score�E (c j). (Clearly, some elections can have more than one Copeland� winner.)
A candidate ci is a Condorcet winner of E if score0

E(ci) = ‖C‖− 1, that is, if ci defeats all other
candidates in head-to-head contests.

In many of our constructions to be presented in the upcoming proofs, we use the following
notation for rational voters.

Notation 2.3 Within every election we fix some arbitrary order over the candidates. Any occurrence
of a subset D of candidates in a preference list means the candidates from D are listed with respect
to that fixed order. Occurrences of

←−
D mean the same except that the candidates from D are listed in

the reverse order.

For example, if C = {a,b,c,d,e}, with the alphabetical order being used, and D = {a,c,e} then
b > D > d means b > a > c > e > d, and b >

←−
D > d means b > e > c > a > d.

2.2 Bribery and Control Problems

We now describe the computational problems that we study in this paper. Our problems come in two
flavors: constructive and destructive. In the constructive version the goal is to determine whether,
via the bribery or control action type under study, it is possible to make a given candidate a winner
of the election. In the destructive case the goal is to determine whether it is possible to prevent a
given candidate from being a winner of the election.

Let E be an election system. In our case, E will be either Copeland� or Copeland�Irrational, where
� , 0 ≤ � ≤ 1, is a rational number. The bribery problem for E with rational voters is defined as
follows (Faliszewski et al., 2006a).

Name: E -bribery and E -destructive-bribery.

Given: A set C of candidates, a collection V of voters specified via their preference lists over C, a
distinguished candidate p ∈C, and a nonnegative integer k.

Question (constructive): Is it possible to make p a winner of the E election resulting from (C,V )
by modifying the preference lists of at most k voters?
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Question (destructive): Is it possible to ensure that p is not a winner of the E election resulting
from (C,V ) by modifying the preference lists of at most k voters?

The version of this problem for elections with irrational voters allowed is defined exactly like
the rational one, with the only difference being that voters are represented via preference tables
rather than preference lists, and the briber may completely change a voter’s preference table at unit
cost. At the end of the present section, Section 2.2, we will describe the variants based on seeking to
make p be (or to preclude p from being) a unique winner. Later in the paper we will study another
variant of bribery problems—a variant in which one is allowed to perform microbribes: bribes for
which the cost depends on each preference-table entry change, and the briber pays separately for
each such change.

Bribery problems seek to change the outcome of elections via modifying the reported prefer-
ences of some of the voters. In contrast, control problems seek to change the outcome of an election
by modifying the election’s structure via adding/deleting/partitioning either candidates or voters.
When formally defining these control types, we use the following naming conventions for the cor-
responding control problems. The name of a control problem starts with the election system used
(when clear from context, it may be omitted), followed by CC for “constructive control” or by DC
for “destructive control,” followed by the acronym of the type of control: AC for “adding (a limited
number of) candidates,” ACu for “adding (an unlimited number of) candidates,” DC for “deleting
candidates,” PC for “partition of candidates,” RPC for “run-off partition of candidates,” AV for
“adding voters,” DV for “deleting voters,” and PV for “partition of voters.” All the partitioning
cases (PC, RPC, and PV) are two-stage elections, and we here use both tie-handling rules of Hema-
spaandra et al. (2007a) for first-stage subelections in these two-stage elections. In particular, for all
the partitioning cases, the acronym PC, RPC, and PV, respectively, is followed by the acronym of
the tie-handling rule used in first-stage subelections, namely TP for “ties promote” (i.e., all winners
of first-stage subelections are promoted to the final round of the election) and TE for “ties eliminate”
(i.e., only unique winners of first-stage subelections are promoted to the final round of the election,
so if there is more than one winner in a given first-stage subelection or there is no winner in a given
first-stage subelection then that subelection does not move any of its candidates forward).

We now formally define our control problems. These definitions are due to Bartholdi et al.
(1992) for constructive control and to Hemaspaandra et al. (2007a) for destructive control.

Let E be an election system. Again, E will here be either Copeland� or Copeland�Irrational, where
� , 0≤ � ≤ 1, is a rational number. We describe our control problems as if they were for the case of
rational preferences, but the irrational cases are perfectly analogous, except for replacing preference
lists with preference tables.

CONTROL VIA ADDING CANDIDATES

We start with two versions of control via adding candidates. In the unlimited version the goal of the
election chair is to introduce candidates from a pool of spoiler candidates so as to make his or her
favorite candidate a winner of the election (in the constructive case) or prevent his or her despised
candidate from being a winner (in the destructive case). As suggested by the name of the problem,
in the unlimited version the chair can introduce any subset of the spoiler candidates (none, some, or
all are all legal options) into the election.

Name: E -CCACu and E -DCACu (control via adding an unlimited number of candidates).
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Given: Disjoint sets C and D of candidates, a collection V of voters specified via their preference
lists over the candidates in the set C∪D, and a distinguished candidate p ∈C.

Question (E -CCACu): Is there a subset E of D such that p is a winner of the E election with voters
V and candidates C∪E?

Question (E -DCACu): Is there a subset E of D such that p is not a winner of the E election with
voters V and candidates C∪E?

The definition of E -CCACu was (using different notation) introduced by Bartholdi et al. (1992).
In contrast with the other control problems involving adding or deleting candidates or voters, in the
adding candidates problem Bartholdi, Tovey, and Trick did not introduce a nonnegative integer k
that bounds the number of candidates (from the set D) the chair is allowed to add. We feel this
asymmetry in their definitions is not well justified,5 and thus we define a with-change-parameter
version of the control-by-adding-candidates problems, which we denote by ACl (where the “l”
stands for the fact that part of the problem instance is a limit on the number of candidates that can
be added, in contrast with the model of Bartholdi et al., 1992, which we denote by ACu with the “u”
standing for the fact that the number of added candidates is unlimited, at least in the sense of not
being limited via a separately input integer). The with-parameter version is the long-studied case
for AV, DV, and DC, and we in this paper will use AC as being synonymous with ACl, and will thus
use the notation AC for the rest of this paper when speaking of ACl. We suggest this as a natural
regularization of the definitions and we hope this version will become the “normal” version of the
adding-candidates problem for further study. However, we caution the reader that in earlier papers
AC is used to mean ACu.

In the present paper, we will obtain results not just for ACl but also for the ACu case, in order
to allow comparisons between the results of this paper and those of earlier works.

Turning now to what we mean by AC (equivalently, ACl), as per the above definition in E -CCAC
(i.e., E -CCACl) we ask whether it is possible to make the distinguished candidate p a winner of
some E election obtained by adding at most k candidates from the spoiler candidate set D. (Note that
k is part of the input.) We define the destructive version, E -DCAC (i.e., E -DCACl), analogously.

Name: E -CCAC and E -DCAC (control via adding a limited number of candidates).

Given: Disjoint sets C and D of candidates, a collection V of voters specified via their preference
lists over the candidates in the set C∪D, a distinguished candidate p ∈C, and a nonnegative
integer k.

Question (E -CCAC): Is there a subset E of D such that ‖E‖≤ k and p is a winner of the E election
with voters V and candidates C∪E?

Question (E -DCAC): Is there a subset E of D such that ‖E‖ ≤ k and p is not a winner of the E
election with voters V and candidates C∪E?

5. Bartholdi et al. (1992) are aware of this asymmetry. They write: “To a certain extent the exact formalization of
a problem is a matter of taste. [. . . ] we could equally well have formalized [the problem of control via adding
candidates] to be whether there are K or fewer candidates to be added [. . . ] It does not much matter for the problems
we discuss, since both versions are of the same complexity” (Bartholdi et al., 1992). In contrast, the complexity of
the problems studied here crucially hinges on which formalization is used, and we thus define both versions formally.
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CONTROL VIA DELETING CANDIDATES

In constructive control via deleting candidates, the chair seeks to ensure that his or her favorite
candidate p is a winner of the election by suppressing at most k candidates. In the destructive variant
of this problem, the chair’s goal is to block p from winning by suppressing at most k candidates other
than p.6

Name: E -CCDC and E -DCDC (control via deleting candidates).

Given: A set C of candidates, a collection V of voters represented via preference lists over C, a
distinguished candidate p ∈C, and a nonnegative integer k.

Question (E -CCDC): Is it possible to by deleting at most k candidates ensure that p is a winner of
the resulting E election?

Question (E -DCDC): Is it possible to by deleting at most k candidates other than p ensure that p
is not a winner of the resulting E election?

CONTROL VIA PARTITION AND RUN-OFF PARTITION OF CANDIDATES

Bartholdi et al. (1992) gave two types of control of elections via partition of candidates. In both
cases the candidate set C is partitioned into two groups, C1 and C2 (i.e., C1∪C2=C and C1∩C2= /0),
and the election is conducted in two stages. For control via run-off partition of candidates, the
election’s first stage is conducted separately on each group of candidates, C1 and C2, and the group
winners that survive the tie-handling rule compete against each other in the second stage. In control
via partition of candidates, the first-stage election is performed on the candidate set C1 and those of
that election’s winners that survive the tie-handling rule compete against all candidates from C2 in
the second stage.

In the ties-promote (TP) model, all first-stage winners within a group are promoted to the final
round. In the ties-eliminate (TE) model, a first-stage winner within a group is promoted to the final
round if and only if he or she is the unique winner within that group.

Although these only loosely correspond to real-world settings, let us give a rough example re-
garding the case of run-off partition of candidates. Consider a department, with a powerful director,
that is trying to decide among a collection of alternatives. It is certainly plausible that the direc-
tor might announce that she had divided the candidates into two groups, that the entire department
would vote separately among the candidates in each group, and that then only those candidates who
moved forward from those votes (under whatever tie-handling rule was being used, if there were
ties) would compete in the final election, in which the entire department would again vote. (How

6. A referee asked whether control by adding candidates, if redefined to require adding not at most a certain number
of candidates but instead at least a certain number of candidates, can cover the forthcoming notion (which is the
standard notion) of control by deleting (at most a certain number of) candidates. The answer is that that seems not to
be the case. Consider an election with thirty candidates in which we ask whether a certain constructive control goal
can be reached via deleting at most five candidates. Note that reframing this as a twenty-candidate election in which
one tries to reach some goal by adding at least five candidates from a ten-candidate spoiler set doesn’t make sense,
as there is no one particular twenty-candidate election from which to start; there are far too many possibilities. The
referee similarly asked about representing addition of candidates by a new notion of deleting candidates that put a
lower bound on the number of deletions, but that attempt seems also to fail, in that case for the different reason that
in the deletion case one might delete not just what originally were spoiler candidates but one might delete candidates
from the core election of the addition case, and that is not allowed.
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convincingly the director could do this would of course depend on the director’s power and how
well the director could think up a justification for her partition of the candidates. Clearly some par-
titions may be easy to justify, e.g., “Let’s regarding whom to hire in our academic computer science
department first vote separately among the fresh-Ph.D. candidates and among the more senior hiring
candidates,” and some may be harder to justify except as executive fiat.)

Name: E -CCRPC and E -DCRPC (control via run-off partition of candidates).

Given: A set C of candidates, a collection V of voters represented via preference lists over C, and
a distinguished candidate p ∈C.

Question (E -CCRPC): Is there a partition of C into C1 and C2 such that p is a winner of the two-
stage election where the winners of subelection (C1,V ) that survive the tie-handling rule
compete against the winners of subelection (C2,V ) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system E .

Question (E -DCRPC): Is there a partition of C into C1 and C2 such that p is not a winner of the
two-stage election where the winners of subelection (C1,V ) that survive the tie-handling rule
compete against the winners of subelection (C2,V ) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system E .

The above description defines four computational problems for a given election system E :
E -CCRPC-TE, E -CCRPC-TP, E -DCRPC-TE, and E -DCRPC-TP. Note that it is in concept possi-
ble in the TE case for all candidates, due to ties, to be eliminated in the first round here, in which
case the overall election would have no winner.

Name: E -CCPC and E -DCPC (control via partition of candidates).

Given: A set C of candidates, a collection V of voters represented via preference lists over C, and
a distinguished candidate p ∈C.

Question (E -CCPC): Is there a partition of C into C1 and C2 such that p is a winner of the two-stage
election where the winners of subelection (C1,V ) that survive the tie-handling rule compete
against all candidates in C2? Each subelection (in both stages) is conducted using election
system E .

Question (E -DCPC): Is there a partition of C into C1 and C2 such that p is not a winner of the
two-stage election where the winners of subelection (C1,V ) that survive the tie-handling rule
compete against all candidates in C2? Each subelection (in both stages) is conducted using
election system E .

This description defines four computational problems for a given election system E :
E -CCPC-TE, E -CCPC-TP, E -DCPC-TE, and E -DCPC-TP.

CONTROL VIA ADDING VOTERS

In the scenario of control via adding voters, the chair’s goal is to either ensure that p is a winner (in
the constructive case) or ensure that p is not a winner (in the destructive case) via causing up to k
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additional voters to participate in the election. The chair can draw the voters to add to the election
from a prespecified collection of voters (with given preferences).

This can very loosely model such real-world situations as get-out-the-vote efforts. For example,
suppose a campaign has enough money and volunteers to drive up to one hundred from a set of a
thousand car-less elderly people to the polling place, and has to decide which ones to choose.

Name: E -CCAV and E -DCAV (control via adding voters).

Given: A set C of candidates, two disjoint collections of voters, V and W , represented via prefer-
ence lists over C, a distinguished candidate p, and a nonnegative integer k.

Question (E -CCAV): Is there a subset Q, ‖Q‖ ≤ k, of voters in W such that the voters in V ∪Q
jointly elect p ∈C as a winner according to system E ?

Question (E -DCAV): Is there a subset Q, ‖Q‖ ≤ k, of voters in W such that the voters in V ∪Q do
not elect p as a winner according to system E ?

The reason we do not have an “unlimited” control notion here, or anywhere else except for
ACu, is that ACu is historically a special case. The seminal paper Bartholdi et al. 1992 defined all
addition/deletion problems in (only) the limited version, in which there is number k limiting the
additions/deletions, except that their paper, describing this as a matter of individual taste, defined
addition of candidates in (only) the unlimited version. We consider the limited versions of all the
addition/deletion problems by far the more natural, and so we study those, as did Bartholdi, Tovey,
and Trick in every case other than addition of candidates. However, to allow comparison with earlier
papers, we keep as a defined control type the case of ACu.

CONTROL VIA DELETING VOTERS

In the control via deleting voters case the chair seeks to either ensure that p is a winner (in the
constructive case) or prevent p from being a winner (in the destructive case) via blocking up to k
voters from participating in the election.

This very loosely models vote suppression. For example, consider the case where a given cam-
paign can afford to send to the doors of at most k voters a smooth-talking operative who will so
demoralize them that they won’t bother to vote.

Name: E -CCDV and E -DCDV (control via deleting voters).

Given: A set C of candidates, a collection V of voters represented via preference lists over C, a
distinguished candidate p ∈C, and a nonnegative integer k.

Question (E -CCDV): Is it possible to by deleting at most k voters ensure that p is a winner of the
resulting E election?

Question (E -DCDV): Is it possible to by deleting at most k voters ensure that p is not a winner of
the resulting E election?
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CONTROL VIA PARTITION OF VOTERS

In the case of control via partition of voters, the following two-stage election is performed. First,
the voter set V is partitioned into two subcommittees, V1 and V2. The winners of election (C,V1)
that survive the tie-handling rule compete against the winners of (C,V2) that survive the tie-handling
rule. Again, our tie-handling rules are TE and TP (ties-eliminate and ties-promote).

This control type is a bit harder than most others to imagine in the real world, but as a somewhat
contrived example, consider the following case. In a given organization, the director splits her
workers into two study groups (and let us say she can choose the partition as she likes, either because
she is a powerful director, or because she is a good enough manager to make up a justification for
any division) to each study a problem and to each propose what it thinks is the best alternative.
And then the entire organization comes together to vote among those alternatives chosen in the first
round (that survive the tie-handling rule in the case of ties).

Name: E -CCPV and E -DCPV (control via partition of voters).

Given: A set C of candidates, a collection V of voters represented via preference lists over C, and
a distinguished candidate p ∈C.

Question (E -CCPV): Is there a partition of V into V1 and V2 such that p is a winner of the two-
stage election where the winners of election (C,V1) that survive the tie-handling rule compete
against the winners of (C,V2) that survive the tie-handling rule? Each subelection (in both
stages) is conducted using election system E .

Question (E -DCPV): Is there a partition of V into V1 and V2 such that p is not a winner of the two-
stage election where the winners of election (C,V1) that survive the tie-handling rule compete
against the winners of (C,V2) that survive the tie-handling rule? Each subelection (in both
stages) is conducted using election system E .

UNIQUE WINNERS AND IRRATIONALITY

Our bribery and control problems were each defined above only for rational voters and in the
nonunique-winner model, i.e., asking whether a given candidate can be made, or prevented from
being, a winner. Nonetheless, we have proven all our control results both for the case of nonunique
winners and (to be able to fairly compare them with existing control results, which are in the unique-
winner model) unique winners (a candidate is a unique winner if he or she is a winner and is the only
winner). Similarly, all our bribery results are proven both in the unique-winner model and (to be
able to fairly compare them with existing bribery results in the literature) in the nonunique-winner
model. In addition to the rational-voters case, we also study these problems for the case of voters
who are allowed to be irrational. As mentioned earlier, in the case of irrational voters, voters are
represented via preference tables rather than preference lists.

2.3 Graphs

An undirected graph G is a pair (V (G),E(G)), where V (G) is the set of vertices and E(G) is the
set of edges and each edge is an unordered pair of distinct vertices.7 A directed graph is defined

7. In this paper, the symbols E and V are generally reserved for elections and voters, except the just-introduced “over-
loading” of them to mean sets of edges and vertices in a given graph. The intended meaning of E and V will be clear
from the context, even when our proofs involve multiple elections and graphs.
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analogously, except that the edges are represented as ordered pairs. For example, if u and v are
distinct vertices in an undirected graph G then G either has an edge e= {u,v} that connects u and v
or it doesn’t. On the other hand, if G is a directed graph then G either has an edge e′ = (u,v) from
u to v, or an edge e′′ = (v,u) from v to u, or both e′ and e′′, or neither e′ nor e′′.

For a directed graph G, the indegree of a vertex u∈V (G) is the number of G’s edges that enter u
(i.e., the number of edges of the form (v,u) in E(G)). Similarly, the outdegree of u ∈ V (G) is the
number of edges that leave u (i.e., the number of edges of the form (u,v) in E(G)).

2.4 NP-Complete Problems and Reductions

Without loss of generality, we assume that all problems that we consider are encoded in a natural,
efficient way over the alphabet � = {0,1}. We use the standard notion of NP-completeness, defined
via polynomial-time many-one reductions. We say that a computational problem A polynomial-time
many-one reduces to a problem B if there exists a polynomial-time computable function f such that

(∀x ∈ �∗)[x ∈ A ⇐⇒ f (x) ∈ B].

A problem is NP-hard if all members of NP polynomial-time many-one reduce to it. Thus, if
an NP-hard problem A polynomial-time many-one reduces to a problem B, then B is NP-hard as
well. A problem is NP-complete if it is NP-hard and is a member of NP. When clear from context
we will use “reduce” and “reduction” as shorthands for “polynomial-time many-one reduce” and
“polynomial-time many-one reduction.”

Our NP-hardness results typically follow via a reduction from either the exact-cover-by-3-sets
problem or from the vertex cover problem (see, e.g., Garey and Johnson, 1979). These are well-
known NP-complete problems, but we define them here for the sake of completeness.

Name: X3C (exact cover by 3-sets).

Given: A set B = {b1, . . . ,b3k}, k ≥ 1, and a family of sets S = {S1, . . . ,Sn} such that for each i,
1≤ i≤ n, it holds that Si ⊆ B and ‖Si‖= 3.

Question: Is there a set A⊆ {1, . . . ,n}, ‖A‖= k, such that
⋃

i∈A Si = B?

The set A about which we ask in the above problem is called an exact cover of B. It is a “cover”
because every member of B belongs to some Si such that i ∈ A, and it is “exact” because each
member of B belongs to exactly one Si such that i ∈ A.

Whenever we consider instances of the X3C problem, we assume that they are well-formed, that
is, we assume that they follow the syntactic requirements stated in the above “Given” field (e.g., the
cardinality of the set B is indeed a multiple of three). We apply this convention of considering only
syntactically correct inputs to all other problems as well. Let A be some computational problem
and let x be an instance of A. When we consider an algorithm for A, and input x is malformed,
then we can immediately reject. When we are building a reduction from A to some problem B, then
whenever we hit a malformed input x we can output a fixed y not in B. (In our reductions B is never
�∗, so this is always possible.)

Copeland� elections can often be considered in terms of appropriate graphs. This representation
is particularly useful when we face control problems that modify the structure of the candidate
set, since in this case operations on an election directly translate into suitable operations on the
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corresponding graph. For candidate control problems, we—instead of using reductions from X3C—
construct reductions from the vertex cover problem. A vertex cover of an undirected graph G is a
subset of G’s vertices such that each edge of G is adjacent to at least one vertex from that subset.

Name: VertexCover.

Given: An undirected graph G and a nonnegative integer k.

Question: Is there a set W such that W ⊆ V (G), ‖W‖ ≤ k, and for every edge e ∈ E(G) it holds
that e∩W �= /0?

2.5 Resistance and Vulnerability

Not all election systems can be affected by each control type; if not, the system is said to be immune
to this type of control. For example, if a candidate c is not a Condorcet winner then it is impossible
to make him or her a Condorcet winner by adding candidates (see Bartholdi et al., 1992, and Hema-
spaandra et al., 2007a, for more such immunity results). However, for Copeland� elections it is easy
to see that for each type of control defined in Section 2.2 there is a scenario in which the outcome of
the election can indeed be changed via conducting the corresponding control action. If an election
system is not immune to some type of control (as witnessed by such a scenario), the election system
is said to be susceptible to that control type.

Proposition 2.4 For each rational number � , 0≤ � ≤ 1, Copeland� is susceptible to each type of
control defined in Section 2.2.

We say that an election system (Copeland� or Copeland�Irrational, in our case) is resistant to a
particular attack (be it a type of control or of bribery) if the appropriate computational problem is
NP-hard and susceptibility holds.8 On the other hand, if the computational problem is in P and
susceptibility holds, then we say the system is vulnerable to this attack. Because of how our bribery
and control problems are defined, the vulnerability definition merely requires that there exist a
polynomial-time algorithm that determines whether a successful bribe or control action exists on a
given input. However, in every single one of our vulnerability proofs we will provide something
far stronger. We will provide a polynomial-time algorithm that actually finds a successful bribe or
control action on each input for which a successful bribe or control action exists, and on each input
where no successful bribe or control action exists will announce that fact.

The notions of resistance and vulnerability (and of immunity and susceptibility) for control
problems in election systems were introduced by Bartholdi et al. (1992), and we here follow the
definition alteration of Hemaspaandra et al. (2007b) of resistance from “NP-complete” to “NP-
hard,” as that change is compelling (because under the old definition, NP-completeness, things could

8. It is true that for some unnatural election systems immunity to bribery holds, e.g., the election system “Every candi-
date is a winner” is immune to all types of bribery. However, our Copeland� -type systems are all susceptible to all
the bribery types we look at in this paper, so we won’t further explicitly discuss or state susceptibility for the bribery
cases.

A referee asked whether the definition of resistance could be equivalently stated as simply requiring the appro-
priate computational problem to be NP-hard. That seems not to yield the same notion, both because P �=NP is not yet
a known result, and so one doesn’t know that NP-hard problems cannot possibly be in P, and more subtly because sus-
ceptibility is defined in terms of changing outcomes while the corresponding control problem’s NP-hardness (which
in part determines its resistance) is related to what the outcome is (regardless of what it started as).
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actually become nonresistant by being too hard, which is not natural). However, for all resistance
claims in this paper NP-membership is clear, and so NP-completeness in fact does hold.

3. Bribery

In this section we present our results on the complexity of bribery for the Copeland� election sys-
tems, where � is a rational number with 0 ≤ � ≤ 1. Our main result, which will be presented in
Section 3.1, is that each such system is resistant to bribery, regardless of voters’ rationality and of
our mode of operation (constructive versus destructive). In Section 3.2, we will provide vulnerabil-
ity results for Llull and Copeland0 with respect to “microbribery.”

3.1 Resistance to Bribery

Theorem 3.1 For each rational � , 0≤ � ≤ 1, Copeland� and Copeland�Irrational are resistant to both
constructive and destructive bribery, in both the nonunique-winner model and the unique-winner
model.

We prove Theorem 3.1 via Theorems 3.2, 3.4, and 3.5 below. Our proofs employ an approach
that we call the UV technique. For the constructive cases, this technique proceeds by constructing
bribery instances where the only briberies that could possibly ensure that our favorite candidate p
is a winner involve only voters who rank a group of special candidates (often the group will contain
exactly two candidates, u and v) above p. The remaining voters, the bystanders so to speak, can be
used to create appropriate padding and structure within the election. The destructive cases follow
via a cute observation regarding the dynamics of our constructive cases.

The remainder of this section is devoted to proving Theorem 3.1. We start with the case of
rational voters in Theorems 3.2 and 3.4 below and then argue that the analogous results for the case
of irrational voters follow via, essentially, the same proof.

Theorem 3.2 For each rational number � , 0 ≤ � ≤ 1, Copeland� is resistant to constructive
bribery in the unique-winner model and to destructive bribery in the nonunique-winner model.

Proof. Fix an arbitrary rational number � with 0 ≤ � ≤ 1. Our proof provides reductions from
the X3C problem to, respectively, the unique-winner variant of constructive bribery and to the
nonunique-winner variant of destructive bribery. Our reductions will differ regarding only the spec-
ification of the goal (i.e., regarding which candidate we attempt to make a unique winner or which
candidate we prevent from being a winner) and thus we describe them jointly as, essentially, a single
reduction.

Our reduction will produce an instance of an appropriate bribery problem with an odd number
of voters, and so we will never have ties in head-to-head contests. Thus our proof works regardless
of which rational number � with 0≤ � ≤ 1 is chosen.

Let (B,S ) be an instance of X3C, where B= {b1,b2, . . . ,b3k}, S is a collection {S1,S2, . . . ,Sn}
of three-element subsets of B with

⋃n
j=1 S j = B, and k ≥ 1. If our input does not meet these condi-

tions then we output a fixed instance of our bribery problem having a negative answer.
Construct a Copeland� election E = (C,V ) as follows. The candidate set C is {u,v, p} ∪B,

where none of u, v, and p is in B. The voter set V contains 2n+4k+1 voters of the following types.
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1. For each Si, we introduce one voter of type (i) and one voter of type (ii):

(i) u > v > Si > p > B−Si,

(ii)
←−−−
B−Si > p > u > v >

←−
Si .

2. We introduce k voters for each of the types (iii)-1, (iii)-2, (iv)-1, and (iv)-2:

(iii)-1 u > v > p > B,
(iii)-2 v > u > p > B,

(iv)-1 u >
←−
B > p > v,

(iv)-2 v >
←−
B > p > u.

3. We introduce a single type (v) voter:

(v) B > p > u > v.

We have the following relative vote-scores:

1. vsE(u,v) = 2n+ 1 ≥ 2k+ 1, where the inequality follows from our assumption
⋃n

j=1 S j = B
(which implies n≥ ‖B‖/3= k),

2. vsE(u, p) = vsE(v, p) = 2k−1,

3. for each i ∈ {1,2, . . . ,3k}, vsE(u,bi) = vsE(v,bi)≥ 2k+1,

4. for each i ∈ {1,2, . . . ,3k}, vsE(bi, p) = 1, and

5. for each i, j ∈ {1,2, . . . ,3k} with i �= j, |vsE(bi,b j)|= 1.

For example, to see that vsE(u,bi) ≥ 2k+ 1 for each i ∈ {1,2, . . . ,3k}, note that each bi is in
at least one S j because of

⋃n
j=1 S j = B, so the voters of types (i) and (ii) give u an advantage of at

least two votes over bi. Furthermore, the voters of types (iii)-1, (iii)-2, (iv)-1, and (iv)-2 give u an
advantage of 2k additional votes over each bi, and the single type (v) voter gives each bi a one-vote
advantage over u. Summing up, we obtain vsE(u,bi) ≥ 2+ 2k− 1 = 2k+ 1. The other relative
vote-scores are similarly easy to verify.

These relative vote-scores yield the following Copeland� scores or upper bounds on such scores:

1. score�E (u) = 3k+2,

2. score�E (v) = 3k+1,

3. for each i ∈ {1,2, . . . ,3k}, score�E (bi)≤ 3k, and

4. score�E (p) = 0.

To prove our theorem, we need the following claim.

Claim 3.3 The following three statements are equivalent:

1. (B,S ) ∈ X3C.
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2. Candidate u can be prevented from winning via bribing at most k voters of E.

3. Candidate p can be made a unique winner via bribing at most k voters of E.

Proof of Claim 3.3. (1) implies (2): It is easy to see that if (B,S ) ∈ X3C then there is a bribe
involving k or fewer voters that prevents u from being a winner: It is enough to bribe those type (i)
voters that correspond to a cover of size k to report p as their top choice (while not changing
anything else in their preference lists): p > u > v > Si > B−Si. Call the resulting election E ′. In E ′

the following relative vote-scores change: vsE ′(p,u) = vsE ′(p,v) = n+k− (n−k)−2k+1= 1 and
vsE ′(p,bi) ≥ 1 for each i ∈ {1,2, . . . ,3k}, while all other relative vote-scores remain unchanged.
Thus score�E ′(p) = 3k+ 2, score�E ′(u) = 3k+ 1, score�E ′(v) = 3k, and score�E ′(bi) < 3k for each
i ∈ {1,2, . . . ,3k}, so p defeats all other candidates and is the unique winner. In particular, this bribe
(of at most k voters in E) ensures that u is not a winner.

(2) implies (3): Suppose that there is a bribe involving k or fewer voters that prevents u from
being a winner. Note that u defeats everyone except p by more than 2k votes in E. This means that
via bribery of at most k voters u’s score can decrease by at most one. Thus, to prevent u from being
a winner via such a bribery, we need to ensure that u receives a Copeland� score of 3k+1 and some
candidate other than u gets a Copeland� score of 3k+ 2, that is, that candidate defeats everyone.
Neither v nor any of the bi’s can possibly obtain a Copeland� score of 3k+ 2 via such a bribery,
since bribery of at most k voters can affect only head-to-head contests where the relative vote-scores
of the participants are at most 2k. Thus, via such a bribery, u can be prevented from winning only if
p can be made a (in fact, the unique) winner of our election.

(3) implies (1): Let W be a set of at most k voters whose bribery ensures that p is a unique
winner of our election. Thus we know that ‖W‖ = k and that W contains only voters who rank
both u and v above p (as otherwise p would not defeat both u and v), which is the case only for
voters of types (i), (iii)-1, and (iii)-2. Furthermore, a bribery that makes p the unique winner has to
ensure that p defeats all members of B; note that the type (iii)-1 and (iii)-2 voters in E already rank
p above all of B. Thus, via a simple counting argument, W must contain exactly k type (i) voters
that correspond to a size-k cover of B. ❑ Claim 3.3

Since our reduction is computable in polynomial time, Claim 3.3 completes the proof of
Theorem 3.2. ❑

Theorem 3.4 For each rational � , 0≤ � ≤ 1, Copeland� is resistant to constructive bribery in the
nonunique-winner model and to destructive bribery in the unique-winner model.

The proof of Theorem 3.4, which follows the same general structure as the proof of
Theorem 3.2,9 for reasons of space and nonrepetitiveness is not included here but can be found
in the full TR version (Faliszewski et al., 2008b).

9. Since the proof of Theorem 3.4 is slightly more involved, let us briefly mention its key differences from the proof of
Theorem 3.2. Starting from an X3C instance (B,S ) with ‖B‖= 3k, we in this case construct an election E = (C,V )
with two more candidates (i.e., C = {p,s, t,u,v}∪B) and with V having, in addition to the voter types similar to
those in the proof of Theorem 3.2, 20k “normalizing” voters of eight subtypes. The unique winner of E is s, and the
only candidate who is able to prevent s from being the unique winner via at most k voters being bribed is p. The
construction ensures that (B,S ) ∈ X3C exactly if at most k voters can be bribed such that p and s tie for winner,
which simultaneously handles the nonunique-winner constructive case and the unique-winner destructive case.
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The proofs of the above theorems have an interesting feature. When we discuss bribery, we
never rely on the fact that the voters are rational. Thus we can allow the voters to be irrational and
form Copeland�Irrational-bribery and Copeland�Irrational-destructive-bribery instances simply by deriv-
ing the voters’ preference tables from the voters’ preference lists given in the above proofs. It is
easy to see that the proofs remain valid after this change; in the proofs we assume that each bribed
voter, after the bribery, prefers p to all other candidates, but we do not make any further assumptions
(and, in particular, we do not use linearity of the preferences). Thus we have the following corollary
to the proofs of Theorems 3.2 and 3.4.

Theorem 3.5 For each rational number � , 0 ≤ � ≤ 1, Copeland�Irrational is resistant to both con-
structive bribery and destructive bribery, in both the nonunique-winner model and the unique-
winner model.

Theorems 3.2, 3.4, and Theorem 3.5 together constitute a proof of Theorem 3.1 and establish
that for each rational � , 0 ≤ � ≤ 1, Copeland� and Copeland�Irrational possess broad—essentially
perfect—resistance to bribery regardless of whether we are interested in constructive or destructive
results. However, the next section shows that this perfect picture is, in fact, only near-perfect when
we consider microbribes, which don’t allow changing the complete preferences of voters at once but
rather change the results of head-to-head contests between candidates in the voters’ preferences. We
will show that there is an efficient way of finding optimal microbriberies for the case of irrational
voters in Copeland� elections.

3.2 Vulnerability to Microbribery for Irrational Voters

In this section we explore the problems related to microbribery of irrational voters. In standard
bribery problems, which were considered in Section 3.1, we ask whether it is possible to ensure that
a designated candidate p is a winner (or, in the destructive case, to ensure that p is not a winner)
via modifying the preference tables of at most k voters. That is, we can at unit cost completely
redefine the preference table of each voter bribed. So in this model, we pay for a service (namely,
the modification of the reported preference table) and we pay for it in bulk (when we buy a voter,
we have secured his or her total obedience). However, sometimes it may be far more reasonable
to adopt a more local approach in which we have to pay separately for each preference-table entry
flip—to pay more the more we alter a vote.

Throughout the remainder of this section we will use the term microbribe to refer to flipping
an entry in a preference table, and we will use the term microbribery to refer to bribing possibly
irrational voters via microbribes. Recall that by “irrational voters” we simply mean that they are
allowed to have, but not that they must have, irrational preferences.

For the study of microbribery, we consider irrational voters to clearly be the natural model to
study. After all, one is changing (and measuring the overall change in terms of the number of
changes in) pairwise preferences, and such changes can easily move one from a rational preference
to an irrational preference. (We mention in passing that one could define versions of this problem
for the case of rational voters in various ways, e.g., allowing only changes that stay on rational
profiles. But that seems a far less natural model to use for the microbribery problem.)

For each rational � , 0≤ � ≤ 1, we define the following two problems.

Name: Copeland�Irrational-microbribery and Copeland�Irrational-destructive-microbribery.
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Given: A set C of candidates, a collection V of voters specified via their preference tables over C,
a distinguished candidate p ∈C, and a nonnegative integer k.

Question (constructive): Is it possible, by flipping at most k entries in the preference tables of
voters in V , to ensure that p is a winner of the resulting election?

Question (destructive): Is it possible, by flipping at most k entries in the preference tables of voters
in V , to guarantee that p is not a winner of the resulting election?

We can flip multiple entries in the preference table of the same voter, but we have to pay sep-
arately for each flip. The microbribery problems for Copeland�Irrational are very similar in flavor to
the so-called bribery′ problems for approval voting that were studied by Faliszewski et al. (2006a),
where unit cost for flipping approvals or disapprovals of voters are paid. However, the proofs for
Copeland�Irrational seem to be much more involved than their counterparts for approval voting. The
reason is that Copeland�Irrational elections allow for very subtle and complicated interactions between
the candidates’ scores.

Before we proceed with our results, let us define some notation that will be useful throughout
this section. Let E be an election with candidate set C = {c1,c2, . . . ,cm} and voter collection V =
{v1,v2, . . . ,vn}. We define two functions, wincostE and tiecostE , that describe the costs of ensuring
a victory or a tie of a given candidate in a particular head-to-head contest.

Definition 3.6 Let E = (C,V ) be an election and let ci and c j be two distinct candidates in C.

1. By wincostE(ci,c j) we mean the minimum number of microbribes that ensure that ci defeats
c j in their head-to-head contest. If ci already wins this contest then wincostE(ci,c j) = 0.

2. By tiecostE(ci,c j) we mean the minimum number of microbribes that ensure that ci ties with
c j in their head-to-head contest, or � if E has an odd number of voters and thus ties are
impossible.

Our first result regarding microbribery is that destructive microbribery is easy for
Copeland�Irrational. Since this is the paper’s first vulnerability proof, we take this opportunity to
remind the reader (recall Section 2.5) that although the definition of vulnerability requires only that
there be a polynomial-time algorithm to determine whether a successful action (in the present case, a
destructive microbribery) exists, we will in each vulnerability proof provide something far stronger,
namely a polynomial-time algorithm that both determines whether a successful action exists and
that, when so, finds a successful action (e.g., for our flow algorithms later on, the successful action
will be implicit in the flow computed).

Theorem 3.7 For each rational � , 0≤ � ≤ 1, Copeland�Irrational is vulnerable to destructive micro-
bribery in both the nonunique-winner model and the unique-winner model.

Proof. Fix an arbitrary rational number � with 0 ≤ � ≤ 1. We give an algorithm for
Copeland�Irrational, for destructive microbribery in the nonunique-winner model. (We omit the analo-
gous algorithm for the unique-winner case.)

Let E = (C,V ) be the input election where C = {p,c1,c2, . . . ,cm} and V = {v1,v2, . . . ,vn},
and let k be the number of microbribes that we are allowed to make. We define the predicate
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M(E, p,ci,k) to be true if and only if there is a microbribery of cost at most k that ensures that ci’s
score is higher than that of p. Our algorithm computes M(E, p,ci,k) for each ci ∈C and accepts if
and only if it is true for at least one of them. We now describe how to compute M(E, p,ci,k).10

By applying appropriate minimum-cost microbriberies to E, we obtain elections E1, E2, and E3

that are identical to E except that

1. in E1, p defeats ci in their head-to-head contest,

2. in E2, p loses to ci in their head-to-head contest, and

3. in E3, p ties ci in their head-to-head contest (we disregard E3 if the number of voters is odd
and thus ties are impossible).

Let k1, k2, and k3 be the minimum costs of microbriberies that transform E to E1, E to E2, and E to
E3, respectively. Such microbriberies involve only the head-to-head contest between p and ci. We
define the predicate M′(E ′, p,ci,k′), where E ′ ∈ {E1,E2,E3} and where k′ is an integer, to be true if
and only if there is a microbribery of cost at most k′ that does not involve the head-to-head contest
between p and ci but that ensures that ci’s Copeland�Irrational score is higher than p’s. It is easy to see
that

M(E, p,ci,k) ⇐⇒ (
M′(E1, p,ci,k− k1)∨M′(E2, p,ci,k− k2)∨M′(E3, p,ci,k− k3)

)
.

Thus it is enough to focus on the problem of computing M′(E ′, p,ci,k′).
Let (E ′,k′) be one of (E1,k− k1), (E2,k− k2), and (E3,k− k3). Define promoteE ′(ci,w′,w′′, t),

where ci ∈C is a candidate and w′, w′′, and t are nonnegative integers, to be the minimum cost of a
microbribery that, when applied to E ′, increases ci’s Copeland�Irrational score by w′+(1−�)w′′+�t
via ensuring that

1. ci wins an additional w′ head-to-head contests against candidates in C−{p} that used to
defeat ci originally,

2. ci wins an additional w′′ head-to-head contests against candidates in C−{p} with whom ci

used to tie originally, and

3. ci ties an additional t head-to-head contests with candidates in C−{p} that used to defeat ci

originally.

If such a microbribery does not exist then we set promoteE ′(ci,w′,w′′, t) to be � . It is an easy
exercise to see that promoteE ′ is computable in polynomial time by a simple greedy algorithm.

We define demoteE ′(ci, �
′, �′′, t) to be the minimum cost of a microbribery that, when applied to

election E ′, decreases p’s score by �′+��′′+(1−�)t via ensuring that

1. p loses an additional �′ head-to-head contests to candidates in C−{ci}whom p used to defeat
originally,

2. p loses an additional �′′ head-to-head contests to candidates in C−{ci} with whom p used to
tie originally, and

10. We stress that we have optimized our algorithm for simplicity rather than for performance.
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3. p ties an additional t head-to-head contests with candidates in C−{ci}whom p used to defeat
originally.

If such a microbribery does not exist then we set demoteE ′(ci, �
′, �′′, t) to be � . Note that demoteE ′

can be computed in polynomial time using an algorithm similar to that for promoteE ′ .
Naturally, the microbriberies used implicitly within promoteE ′(ci,w′,w′′, t ′), within

demoteE ′(ci, �
′, �′′, t ′′), and within transforming E to E ′ are “disjoint,” i.e., they never involve

the same pair of candidates. Thus M′(E ′, p,ci,k′) is true if and only if there exist integers
w′,w′′, �′, �′′, t ′, t ′′ ∈ {0,1, . . . ,m} such that

score�E ′(ci)+(w′+ �′+(1−�)(t ′′+w′′)+�(t ′+ �′′))− score�E ′(p)> 0

and
promoteE ′(ci,w′,w′′, t ′)+demoteE ′(ci, �

′, �′′, t ′′)≤ k.

There are only polynomially many combinations of such w′,w′′, �′, �′′, t ′, and t ′′, and we can try them
all. Thus we have given a polynomial-time algorithm for M′(E ′, p,ci,k′). Via the observations given
at the beginning of our proof this implies that M(E, p,ci,k) is computable in polynomial time and
the proof is complete. ❑

The above destructive-case algorithm and approach is fairly straightforward; in the destructive
case we do not need to worry about any side effects of promoting c and demoting p. The constructive
case is more complicated, but we still are able to obtain polynomial-time algorithms via a fairly
involved use of flow networks to model how particular points shift between candidates. In the
remainder of this section we restrict ourselves to the values � ∈ {0,1} or settings where the number
of voters is odd and so ties never happen. We remind the reader that Copeland1 and Copeland1

Irrational,
respectively, refer to Llull voting.

A flow network is a network of nodes with directed edges through which we want to transport
some amount of flow from the source to the sink (these are two designated nodes). Each edge e
can carry up to c(e) units of flow, and transporting each unit of flow through e costs a(e). In the
min-cost-flow problem we have a target flow value F , and the goal is to find a way of transporting F
units of flow from the source to the sink, while minimizing the cost. (If there is no way of achieving
target flow F , the cost in effect is infinite.)

We now define the notions related to flow networks more formally. Let N = {0,1,2, . . .} and
Z= {. . . ,−2,−1,0,1,2, . . .}.

Definition 3.8 1. A flow network is a quintuple (K,s, t,c,a), where K is a set of nodes that
includes the source s and the sink t, c : K2 → N is the capacity function, and a : K2 → N is
the cost function. We assume that c(u,u) = a(u,u) = 0 for each node u ∈ K, and that at most
one of c(u,v) and c(v,u) is nonzero for each pair of distinct nodes u,v ∈ K. We also assume
that if c(u,v) = 0 then a(u,v) = 0 as well.

2. Given a flow network (K,s, t,c,a), a flow is a function f : K2 → Z that satisfies the following
conditions:

(a) For each u,v ∈ K, we have f (u,v)≤ c(u,v), i.e., capacities limit the flow.
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(b) For each u,v ∈ K, we have f (u,v) =− f (v,u).11

(c) For each u∈K−{s, t}, we have � v∈K f (u,v) = 0, i.e., the flow is conserved in all nodes
except the source and the sink.

3. The value of flow f is:
flowvalue( f ) = �

v∈K

f (s,v).

The particular flow network we have in mind will always be clear from the context and so
we will not indicate it explicitly (we will not write it explicitly as a subscript to the func-
tion flowvalue).

4. The cost of flow f is defined as:

flowcost( f ) = �
u,v∈K

a(u,v) f (u,v).

That is, we pay the price a(u,v) for each unit of flow that passes from node u to node v.

Given a flow network (K,s, t,c,a) we will often use the term edges to refer to pairs of distinct
nodes (u,v) ∈ K2 for which c(u,v)> 0.

Below we define the min-cost-flow problem, which is well known from the literature. The
definition we employ here is not the most general one but will suffice for our needs. (Readers
seeking a broader discussion of the problem may wish to see, for example, the monograph Ahuja,
Magnanti, and Orlin, 1993.)

Definition 3.9 We define the min-cost-flow problem as follows: Given a flow network (K,s, t,c,a)
and a target flow value F, find a flow f that has value F (if one exists) and has minimum cost among
all such flows, or otherwise indicate that no such flow f exists.

The min-cost-flow problem has a polynomial-time algorithm.12 There is a large body of work
devoted to flow problems and we will not even attempt to provide a complete list of references
here. Instead, we again point the reader to the excellent monograph Ahuja et al. 1993, which
provides descriptions of polynomial-time algorithms, theoretical analysis, and numerous references
to previous work on flow-related problems. We also mention that the issue of flows is so prevalent in
the study of algorithms that the textbook Cormen, Leiserson, Rivest, and Stein 2001, on its page 787,
contains an exposition of the min-cost-flow problem.

Coming back to the study of constructive microbribery for Llull and Copeland0, with irrational
voters allowed, we now present the following result.

Theorem 3.10 For � ∈ {0,1}, Copeland�Irrational is vulnerable to constructive microbribery, in both
the nonunique-winner model and the unique-winner model.

11. Note that each flow is fully defined via its nonnegative values. Whenever we speak of a flow (e.g., when defining
some particular flows) we will just speak of its nonnegative part.

12. The min-cost-flow problem is often defined in terms of capacity and cost functions that are not necessarily limited
to nonnegative integer values and so the corresponding flows are not restricted to integer values either. However,
crucially for us, it is known that if the capacity and cost functions have integral values (as we have assumed) then
there exist optimal solutions to the min-cost-flow problem that use only integer-valued flows and that can be found in
polynomial time.
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Edge Parameters

e= (s,ci),
where ci ∈C

c(e) = score�E (ci)
a(e) = 0

e= (ci,c j),
where ci,c j ∈C and vsE(ci,c j)> 0

c(e) = 1
a(e) = wincostE(c j,ci)

e= (c0, t)
c(e) = T
a(e) = 0

e= (ci, t),
where i > 0 and ci ∈C

c(e) = T
a(e) = B

every other edge e
c(e) = 0
a(e) = 0

Figure 1: Edge capacities and costs for min-cost-flow instance I(T ), built from election E.

We prove Theorem 3.10 via Lemmas 3.11 through 3.16 below, which cover three cases: (a) an
odd number of voters, where all Copeland�Irrational elections with 0 ≤ � ≤ 1 are identical due to the
lack of ties, (b) Copeland1

Irrational with an even number of voters, and (c) Copeland0
Irrational with an

even number of voters. These lemmas only discuss the nonunique-winner model but in each case it
is easy to see how to change the algorithms and proofs to make them work for the unique-winner
model.

Lemma 3.11 For each rational � with 0≤ � ≤ 1, there is a polynomial-time algorithm that solves
the constructive microbribery problem for Copeland�Irrational elections with an odd number of voters
(in the nonunique-winner model).

Proof. Our input is a nonnegative integer k (the budget) and an election E = (C,V ), where the
candidate set C is {c0,c1, . . . ,cm}, the number of voters is odd, and p = c0 is the candidate whose
victory we want to ensure via at most k microbribes. Note that we interchangeably use p and c0 to
refer to the same candidate, since it is sometimes convenient to be able to speak of p and all other
candidates uniformly. As the number of voters is odd, ties never occur. Thus any candidate ci has
the same Copeland�Irrational score for each rational value of � , 0≤ � ≤ 1. Fix an arbitrary such � .

We give a polynomial-time algorithm for the constructive microbribery problem. A high-level
overview is that we try to find a threshold value T such that there is a microbribery of cost at most
k that transforms E into E ′ such that (a) p has score�E ′ exactly T , and (b) every other candidate has
score�E ′ at most T .

Let B be a number that is greater than the cost of any possible microbribery within E (e.g.,
B= ‖V‖ ·‖C‖2+1). For each possible threshold T , we consider a min-cost-flow instance I(T ) with
node set K = C∪{s, t}, where s is the source and t is the sink, the edge capacities and costs are
specified in Figure 1, and the target flow value is

F = �
ci∈C

score�E (ci) =
‖C‖(‖C‖−1)

2
.
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Voter 1 : c0 > c1 > c2 > c3

Voter 2 : c3 > c2 > c1 > c0

Voter 3 : c2 > c0 > c3 > c1

vsE(ci,c j) c0 c1 c2 c3

c0 0 1 −1 1
c1 −1 0 −1 −1
c2 1 1 0 1
c3 −1 1 −1 0

Figure 2: Sample election E for Example 3.12 in the proof of Lemma 3.11.

c1

c2

c3

ts

c0
(2,0)

(0,0)

(1,0)

(3,0)

(1,1)

(1,1)

(1,1)

(T,0)

(T,49)

(T,49)

(T,49)

(1,1)

(1,1)

(1,1)

Figure 3: Flow network I(T ) corresponding to the instance (E,c0,k) of Example 3.12.

Example 3.12 For illustration, consider the following example. Suppose the given election E has
four candidates and three voters, and the preference tables of the voters (who each happen to be
rational in this example) can be obtained from their preference orders that are shown in Figure 2,
which also gives the corresponding values of vsE(ci,c j) for each pair of candidates. Thus we have
score�E (c0) = 2, score�E (c1) = 0, score�E (c2) = 3, and score�E (c3) = 1. Suppose further that we are
allowed to perform one microbribe, so k = 1. Clearly, one microbribe that changes the preference
of the third voter from c2 > c0 to c0 > c2 will flip the outcome of their head-to-head contest from c2

winning to c0 winning, which is enough to reach our goal of making c0 win the election, and this is
of course the cheapest possible successful microbribery. Finally, note that in this example we have
B= 49.

For each threshold T with 0 ≤ T ≤ 3, the flow network I(T ) corresponding to this instance
(E,c0,k) of the constructive microbribery problem is shown in Figure 3, and we have a target flow
value of F = 6. Every edge e in this flow network is labeled by the pair (c(e),a(e)) of numbers that
give the capacity and the cost of edge e, respectively.

To continue the proof of Lemma 3.11, note that with an odd number of voters, constructive
microbribery in Copeland�Irrational simply requires us to choose for which pairs of distinct candidates
we want to flip the outcome of their head-to-head contest in order to ensure p’s victory. Thus it
is sufficient to represent a microbribery M as a collection of pairs (ci,c j) of distinct candidates for
whom we need to flip the result of their head-to-head contest from ci winning to c j winning. Clearly,
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given such a collection M, the cheapest way to implement it costs

�
(ci,c j)∈M

wincostE(c j,ci).

A crucial observation for our algorithm is that we can directly translate flows to microbriberies
using the following interpretation. Let f be a flow (as per Definition 3.8 with all edge flows being in-
tegers) of value F within instance I(T ). The units of flow that travel through the network correspond
to Copeland�Irrational points. For each ci ∈C, we interpret the amount of flow that goes directly from
s to ci as the number of Copeland�Irrational points that ci has before any microbribery is attempted,13

and the amount of flow that goes directly from ci to t as the number of Copeland�Irrational points that
ci has after the microbribery (defined by the flow). The units of flow that travel between distinct ci’s
(i.e., through edges of the form (ci,c j), i �= j) correspond to the microbribes exerted: A unit of flow
traveling from node ci to c j corresponds to changing the result of the head-to-head contest between
ci and c j from ci winning to c j winning. In this case, the Copeland�Irrational point moves from ci to
c j and the cost of the flow increases by a(ci,c j) = wincost(c j,ci), exactly the minimum cost of a
microbribery that flips this contest’s result. Let Mf be the microbribery defined, as just described,
by flow f . It is easy to see that

flowcost( f ) = B · (F− f (c0, t))+ �
(ci,c j)∈Mf

wincostE(c j,ci).

Thus we can easily extract the cost of microbribery Mf from the cost of flow f .
Our algorithm crucially depends on this correspondence between flows and microbriberies.

(Also, in the proofs of Lemmas 3.14 and 3.16 that cover the case of an even number of voters
we simply show how to modify the instances I(T ) to handle ties, and we show correspondences
between the new networks and microbriberies; the rest of these proofs is the same as here.)

Note that for small values of T no flow of value F exists for I(T ). The reason for this is that
the edges coming into the sink t might not have enough capacity so as to hold a flow of value F . In
such a situation it is impossible to guarantee that every candidate gets at most T points; there are
too many Copeland�Irrational points to distribute.

Figure 4 gives our algorithm for constructive microbribery in Copeland�Irrational. This algorithm
runs in polynomial time since, as we have already mentioned, the min-cost-flow problem is solvable
in polynomial time.

Let us now prove that this algorithm is correct. We have presented above how a flow f of value
F within the flow network I(T ) (with 0 ≤ T ≤ F) defines a microbribery. Based on this, it is clear
that if our algorithm accepts then there is a microbribery of cost at most k that ensures p’s victory.

On the other hand, suppose now that there exists a microbribery of cost at most k that ensures
p’s victory in the election. We will show that our algorithm accepts in this case.

Let M be a minimum-cost bribery (of cost at most k) that ensures p’s victory. As pointed out
above, M can be represented as a collection of pairs (ci,c j) of distinct candidates for whom we flip
the result of the head-to-head contest from ci winning to c j winning. The cost of M is

�
(ci,c j)∈M

wincostE(c j,ci).

13. Note that for each ci ∈C any flow of value F within I(T ) needs to send exactly score�E (ci) units from s to ci.
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procedure Copeland�Irrational-odd-microbribery(E = (C,V ),k, p)
begin

if p is a winner of E then accept;
F = � ci∈C score�E (ci) =

‖C‖(‖C‖−1)
2 ;

for T = 0 to ‖C‖−1 do
begin

build an instance I(T ) of min-cost-flow;
if I(T ) has no flow of value F then

restart the for loop with the next value of T ;
f = a minimum-cost flow for I(T );
if f (c0, t)< T then restart the loop;
� = flowcost( f )−B · (F−T );
if � ≤ k then accept;

end;
reject;

end

Figure 4: The constructive microbribery algorithm for Copeland�Irrational elections with an odd num-
ber of voters.

Since applying microbribery M ensures that p is a winner, we have that each candidate among
c1,c2, . . . ,cm has at most as many Copeland�Irrational points as p does. Let E ′ be the election that
results from E after applying microbribery M to E (i.e., after flipping the results of the contests
specified by M in an optimal way, as given by wincostE). Let T ′ be score�E ′(p), p’s Copeland�Irrational
score after implementing M. Clearly, 0≤ T ′ ≤ ‖C‖−1.

Consider instance I(T ′) and let fM be the flow that corresponds to the microbribery M. In this
flow each edge of the form (s,ci) carries flow of its maximum capacity, score�E (ci), each edge of
the form (ci,c j) carries one unit of flow exactly if e is listed in M and carries zero units of flow
otherwise, and each edge of the form (ci, t) carries score�E ′(ci) units of flow. It is easy to see that
this is a legal flow. The cost of fM is

flowcost( fM) = B · (F−T ′)+ �
(ci,c j)∈M

wincostE(c j,ci).

After applying M, p gets T ′ Copeland�Irrational points that travel to the sink t via edge (c0, t) with cost
a(c0, t) = 0, and all the remaining F−T ′ points travel via edges (ci, t), i ∈ {1,2, . . . ,m}, with cost
a(ci, t) = B. The remaining part of flowcost( fM) is the cost of the units of flow traveling through the
edges (ci,c j) that directly correspond to the cost of microbribery M.

Now consider some minimum-cost flow fmin for I(T ′). Since fM exists, a minimum-cost flow
must exist as well. Clearly, we have

flowcost( fmin)≤ flowcost( fM).

Let T ′′ be the number of units of flow that fmin assigns to travel over the edge (c0, t), i.e.,
T ′′ = fmin(c0, t). The only edges with nonzero cost for sending flow through them are those in the
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set {(ci,c j) | ci,c j ∈C∧vsE(ci,c j)> 0}∪{(ci, t) | i ∈ {1, . . . ,m}} and thus the cost of fmin can be
expressed as (recall that vsE(ci,c j)> 0 implies i �= j)

flowcost( fmin) = B · (F−T ′′)+ �
ci,c j∈C∧vsE (ci,c j)>0

fmin(ci,c j) ·wincostE(c j,ci).

It holds that (1) B > � i, j,i�= j wincostE(ci,c j), (2) for each ci,c j ∈C such that vsE(ci,c j)> 0 we have
fmin(ci,c j) ∈ {0,1}, and (3) flowcost( fmin) ≤ flowcost( fM). So T ′′ = T ′ must hold14 and it must
hold that

�
ci,c j∈C∧vsE (ci,c j)>0

fmin(ci,c j) ·wincostE(c j,ci)≤ �
(ci,c j)∈M

wincostE(c j,ci).

Thus flow fmin corresponds to a microbribery that guarantees p’s victory and has cost at most as
high as that of M. Since M was chosen to have minimum cost among all such microbriberies, flow
fmin corresponds to a microbribery of minimum cost and our algorithm correctly accepts within the
for loop of Figure 4, at the very latest when in the for loop T is set to T ′. ❑

We now turn to the algorithms showing that Llull and Copeland0, with irrational voters allowed,
are vulnerable to constructive microbribery when the number of voters is even. Here we need to
take into account that it sometimes is more desirable to have some candidates tie each other in a
head-to-head contest than to have one of them win the contest. We handle the cases of Llull and
Copeland0 separately, but in each case our proofs follow the same general structure. In each case
we first provide a lemma that restricts the set of microbriberies to model, and then we use a slightly
modified version of the algorithm from Theorem 3.11, on a modified set of min-cost-flow instances,
to solve the thus limited microbribery problem. We omit the proofs of the remaining four lemmas
of this section as they are somewhat lengthy and repetitive. However, these proofs can be found in
the full TR version of this paper (Faliszewski et al., 2008b).

Lemma 3.13 Let E = (C,V ) be an election with candidate set C = {c0,c1, . . . ,cm} and with an
even number of voters, specified via preference tables over C. If the election is conducted us-
ing Copeland0

Irrational then no minimum-cost microbribery that ensures victory for c0 involves either
(a) flipping a result of a head-to-head contest between any two distinct candidates ci,c j ∈C−{c0}
from ci winning to c j winning, or (b) changing a result of a head-to-head contest between any two
distinct candidates in C−{c0} from a tie to one of them winning.

14. Let us explain why T ′′ = T ′. In I(T ′), by definition, c(c0, t) = T ′, so we know that T ′′ = fmin(c0, t) ≤ T ′. We will
now show that T ′′ = T ′. For the sake of contradiction, let us assume that T ′′ < T ′. We have

flowcost( fmin) = B · (F−T ′′)+ �
ci,c j∈C∧vsE (ci,c j)>0

fmin(ci,c j) ·wincostE(c j,ci)

≥ B · (F−T ′)+B+ �
ci,c j∈C∧vsE (ci,c j)>0

fmin(ci,c j) ·wincostE(c j,ci)

> B · (F−T ′)+ �
(ci,c j)∈M

wincostE(c j,ci)

= flowcost( fM),

where the last inequality follows from the fact that B is greater than the cost of any microbribery within E. We have
reached a contradiction, since fmin is a minimum-cost flow in I(T ′). Thus T ′′ = T ′.

305



FALISZEWSKI, HEMASPAANDRA, HEMASPAANDRA, & ROTHE

Lemma 3.14 There is a polynomial-time algorithm that solves the constructive microbribery prob-
lem for Copeland0

Irrational elections with an even number of voters (in the nonunique-winner model).

Lemma 3.15 Let E = (C,V ) be an election with candidate set C = {c0,c1, . . . ,cm} and with an
even number of voters, specified via preference tables over C. If the election is conducted using
Copeland1

Irrational then no minimum-cost microbribery that ensures victory for c0 involves obtaining
a tie in a head-to-head contest between any two distinct candidates in C−{c0}.

Lemma 3.16 There is a polynomial-time algorithm that solves the constructive microbribery prob-
lem for Copeland1

Irrational elections with an even number of voters (in the nonunique-winner model).

Together, Theorem 3.7 and Lemmas 3.11, 3.14, and 3.16 show that, in particular, both
Copeland1

Irrational and Copeland0
Irrational are vulnerable to microbribery, both in the constructive and

the destructive settings. It is interesting to note that all our microbribery proofs would work just as
well if we considered a slight twist on the definition of the microbribery problem, namely, if instead
of saying that each flip in a voter’s preference table has unit cost we would allow each voter to have
a possibly different price for flipping each separate entry in his or her preference table. This change
would affect only the computing of the values of the functions wincost and tiecost (or, strictly speak-
ing, their analogues in the priced setting). (Technically, we would also have to modify Lemmas 3.13
and 3.15, which in our unit-cost setting say that an optimal microbribery never involves certain spec-
ified pairs of candidates, whereas in the priced setting we would need to rephrase them to state that
there exist optimal microbriberies that do not involve those specified pairs of candidates.)

An interesting direction for further study of the complexity of bribery within Copeland� systems
is to consider a version of the microbribery problem for the case of rational voters. There, one would
pay unit cost for a switch of two adjacent candidates on a given voter’s preference list.

For Copeland�Irrational, we would also like to know the complexity of constructive microbribery
when � is a rational number strictly between 0 and 1. Our network-flow-based approach does not
seem to generalize easily to values of � strictly between 0 and 1 (when the number of voters is even)
because in a flow network it is hard to “split” a unit of flow in a tie. A promising approach would be
to have several units of flow model one Copeland�Irrational point (e.g., for the case of � = 1

2 we could
try to use two units of flow to model a single Copeland0.5 point), but then it seems very difficult
(if not impossible) to find edge costs that appropriately model the microbribery. (It is possible to
do so in a very restricted setting, namely where � = 1

2 and there are exactly two voters that can be
bribed.) Also, the results regarding hardness of manipulation of Faliszewski et al. (2008) suggest
that microbribery for � strictly between 0 and 1 might be NP-hard. However, again, it is nontrivial
to translate their reduction to the world of microbribery.

On a related note, Kern and Paulusma (2001) have shown that the following problem, which
they call SC(0,� ,1), is NP-complete. Let � be a rational number such that 0 < � < 1 and � �= 1

2 .
We are given an undirected graph G = (V (G),E(G)), where each vertex u ∈ V (G) is assigned a
rational value cu of the form i+ j� , for nonnegative integers i and j. The question, which we
have rephrased to state in terms of (a variant of) our notion of Copeland� , is whether it is possible
to (possibly partially) orient the edges of G such that for each vertex u ∈ V (G) it holds that u’s
Copeland� score is at most cu. Here, by “Copeland� score of a vertex u” we mean, as is natural, the
number of vertices u “defeats” (i.e., the number of vertices v such that there is a directed edge from
u to v) plus � times the number of vertices that u “ties” with (i.e., the number of vertices such that
there is an undirected edge between u and v).
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Problem SC(0,� ,1) is very closely related to our microbribery problem. However, we do not
see an immediate reduction from SC(0,� ,1) to microbribery. A natural approach would be to
embed graph G into an election (in the sense that will be explored in Section 4) in such a way that
our preferred candidate p can become a winner, via a microbribery, if and only if it is possible
to orient the edges of G in a way respecting the constraints defined by the values cu (for each u
in V (G)). We would, of course, have to set the budget of our microbribery high enough to allow
modifying each of the edges in G and none of the edges outside of G. However, this is difficult.
The proof of Kern and Paulusma uses values cu that can be implemented only via using tied head-
to-head contests. The agent performing microbribery could, potentially, affect those head-to-head
contests, thus spoiling our reduction.

4. Control

In this section we focus on the complexity of control in Copeland� elections. In control problems
we are trying to ensure that our preferred candidate p is a winner (or, in the destructive case, that our
despised candidate is not a winner) of a given election via affecting this election’s structure (namely,
via adding, deleting, or partitioning either candidates or voters). In contrast with bribery problems,
in control problems we are never allowed to change any of the votes and, consequently, the issues
that we encounter and the proof techniques we use are quite different from those presented in the
previous section. For the same reason as previously for each standard type of control a resistance
result in the rational-voters case implies an analogous resistance result in the irrational-voters case,
and a vulnerability result in the irrational-voters case implies an analogous vulnerability result in
the rational-voters case.

The literature regarding the complexity of control problems is not large. To the best of our
knowledge, the only election systems for which a comprehensive analysis has been conducted pre-
viously are plurality, Condorcet, and (variants of) approval voting (see Bartholdi et al., 1992; Hema-
spaandra et al., 2007a, 2007b; Betzler and Uhlmann, 2008; Erdélyi et al., 2008b; see also Meir et al.,
2008, for some results on (variants of) approval voting, single nontransferable vote, and cumulative
voting with respect to constructive control via adding voters). Among plurality, Condorcet, and (the
standard variant of) approval voting, plurality appears to be the least vulnerable to control and so
it is natural to compare our new results with those for plurality. However, we mention in passing
that Hemaspaandra et al. (2007b) show how to construct hybrid election systems that are resistant to
all standard types of control (including both AC and ACu; AC is not discussed or proven in Hema-
spaandra et al., 2007b—the “AC” there is our “ACu”—but we mention that the techniques clearly
can handle it without any problem). (It should also be noted that these hybrid systems were not
designed as “natural” systems to be applied in real-world elections but rather their purpose was to
prove a certain impossibility theorem impossible.)

Our main result in this section is Theorem 4.1.

Theorem 4.1 Let � be a rational number with 0 ≤ � ≤ 1. Copeland� elections are resistant and
vulnerable to control types as indicated in Table 1 in both the nonunique-winner model and the
unique-winner model, for both the rational and the irrational voter model.

In particular, we will prove in this section that the notion widely referred to in the literature
simply as “Copeland elections,” which we here for clarity call Copeland0.5, possesses all ten of
our basic types (see Table 1) of constructive resistance (and in addition, even has constructive ACu
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Copeland� Plurality
� = 0 0 < � < 1 � = 1

Control type CC DC CC DC CC DC CC DC
ACu V V R V V V R R
AC R V R V R V R R
DC R V R V R V R R
RPC-TP R V R V R V R R
RPC-TE R V R V R V R R
PC-TP R V R V R V R R
PC-TE R V R V R V R R
PV-TE R R R R R R V V
PV-TP R R R R R R R R
AV R R R R R R V V
DV R R R R R R V V

Table 1: Comparison of control results for Copeland� elections, where � with 0 ≤ � ≤ 1 is a
rational number, and for plurality-rule elections. R means resistance to a particular control
type and V means vulnerability. The results regarding plurality are due to Bartholdi et al.
(1992) and Hemaspaandra et al. (2007a). (Note that CCAC and DCAC resistance results
for plurality, not handled explicitly in Bartholdi et al., 1992, or Hemaspaandra et al., 2007a,
follow immediately from the respective CCACu and DCACu results.)

resistance). (As to why we consider AC more basic than ACu, see the discussion in the “Control via
Adding Candidates” subpart of Section 2.2. Nonetheless, we do obtain ACu results, and so fans of
the naturalness of ACu will know how things fare under that control type.) And we will establish
that the other notion that in the literature is occasionally referred to as “Copeland elections,” namely
Copeland0, as well as Llull elections, which are here denoted by Copeland1, both possess all ten of
our basic types of constructive resistance. However, we will show that Copeland0 and Copeland1

are vulnerable to an eleventh type of constructive control, the incongruous but historically resonant
notion of constructive control by adding an unlimited number of candidates (i.e., CCACu).

Note that Copeland0.5 has a higher number of constructive resistances, by three, than even
plurality, which was before this paper the reigning champ among natural election systems with
a polynomial-time winner-determination procedure. (Although the results regarding plurality in
Table 1 are stated for the unique-winner version of control, for all the table’s Copeland� cases,
0 ≤ � ≤ 1, our results hold both in the cases of unique winners and of nonunique winners, so that
regardless of which of the two winner models one finds more natural, one will know what holds in
that model.) Admittedly, plurality does perform better with respect to destructive candidate control
problems, but still our study of Copeland� makes significant steps forward in the quest for a fully
control-resistant natural election system with an easy winner problem.

Among the systems with a polynomial-time winner problem, Copeland0.5—and indeed all
Copeland� , 0 < � < 1—have the most resistances currently known for any natural election sys-
tem whose voters vote by giving preference lists. We mention that after our work, Erdélyi et al.
(2008b) have shown that their variant of a variant of approval voting proposed by Brams and San-
ver (2006)—a certain rather subtle election system with a richer voter preference type (each voter
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specifies both a permutation and a set) that combines approval with preference-based voting—has
nineteen (out of a possible twenty-two) control resistances.

This section is organized as follows. The next two sections are devoted to proving Theorem 4.1,
and Section 4.3 considers the case of control in elections with a bounded number of candidates or
voters. In particular, Section 4.1 focuses on the upper part of Table 1 and studies control problems
that affect the candidate structure. Section 4.2 is devoted to voter control and covers the lower part
of Table 1. Finally, in Section 4.3 we study the fixed-parameter complexity of control problems. In
particular, we take the role of someone who tries to solve in-general-resistant control problems and
we devise some efficient algorithms for the case where the number of candidates or the number of
voters is bounded.

All our resistance results regarding candidate control follow via reductions from vertex cover
and all our vulnerability results follow via greedy algorithms. Our resistance results for the case of
control by modifying voter structure follow from reductions from the X3C problem.

4.1 Candidate Control

We start our discussion of candidate control for Copeland� with our results on destructive control. It
is somewhat disappointing that for each rational � , 0≤ � ≤ 1, Copeland� is vulnerable to each type
of destructive candidate control. On the positive side, our vulnerability proofs follow via natural
greedy algorithms and will allow us to smoothly get into the spirit of candidate-control problems.

4.1.1 DESTRUCTIVE CANDIDATE CONTROL

The results for destructive control by adding and deleting candidates use the following observation.

Observation 4.2 Let (C,V ) be an election, and let � be a rational number such that 0 ≤ � ≤ 1.
For every candidate c ∈C it holds that

score�(C,V )(c) = �
d∈C−{c}

score�({c,d},V )(c).

Theorem 4.3 For each rational number � with 0≤ � ≤ 1, Copeland� is vulnerable to destructive
control via adding candidates (both limited and unlimited, i.e., DCAC and DCACu), in both the
nonunique-winner model and the unique-winner model, for both the rational and the irrational
voter model.

Proof. Our input is a set C of candidates, a set D of spoiler candidates, a collection V of voters
with preferences (either preference lists or preference tables) over C∪D, a candidate p ∈C, and a
nonnegative integer k (for the unlimited version of the problem we let k = ‖D‖). We ask whether
there is a subset D′ of D such that ‖D′‖ ≤ k and p is not a winner (is not a unique winner) of
Copeland� election E ′ = (C∪D′,V ). Note that if k = 0, this amounts to determining whether p is
not a winner (is not a unique winner) of election E, which can easily be done in polynomial time.

For the remainder of this proof we will assume that k > 0. Let c be any candidate in (C∪D)−
{p}. We define a(c) to be the maximum value of the expression

score�(C∪D′,V )(c)− score�(C∪D′,V )(p)
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under the conditions that D′ ⊆ D, c ∈C∪D′, and ‖D′‖ ≤ k. From Observation 4.2 it follows that
a(c) is the maximum value of

score�(C∪{c},V )(c)− score�(C∪{c},V )(p)+ �
d∈D′−{c}

(
score�({c,d},V )(c)− score�({p,d},V )(p)

)

under the conditions that D′ ⊆ D, c ∈C∪D′, and ‖D′‖ ≤ k.
Clearly, p can be prevented from being a winner (a unique winner) if and only if there exists a

candidate c ∈ (C∪D)−{p} such that a(c)> 0 (such that a(c)≥ 0).
Given a candidate c ∈ (C∪D)−{p}, it is easy to construct in polynomial time a set D′ ⊆ D,

‖D′‖ ≤ k, that yields the value a(c). We start with D′ = /0. If c ∈ D, we add c to D′. Then we add
those candidates d ∈ D−D′ to D′ such that score�({c,d},V )(c)− score�({p,d},V )(p) is positive, starting
with those for whom this value is highest, until ‖D′‖= k or no more such candidates exist. ❑

Theorem 4.4 For each rational number � with 0 ≤ � ≤ 1, Copeland� is vulnerable to destruc-
tive control via deleting candidates (DCDC), in both the nonunique-winner model and the unique-
winner model, for both the rational and the irrational voter model.

The proof of Theorem 4.4 is similar to that of Theorem 4.3, so we do not include it here but
instead refer to the full TR version (Faliszewski et al., 2008b).

Destructive control via partitioning of candidates (with or without run-off) is also easy. Since
the arguments of that proof are more involved, we present it here.

Theorem 4.5 For each rational number � with 0≤ � ≤ 1, Copeland� is vulnerable to destructive
control via partitioning of candidates and via partitioning of candidates with run-off (in both the
TP and TE model, i.e., DCPC-TP, DCPC-TE, DCRPC-TP, and DCRPC-TE), in both the nonunique-
winner model and the unique-winner model, for both the rational and the irrational voter model.

Proof. It is easy to see that in the TP model, p can be prevented from being a winner via parti-
tioning of candidates (with or without run-off) if and only if there is a set C′ ⊆C such that p ∈C′

and p is not a winner of (C′,V ). It follows that p can be prevented from being a winner if and only
if p can be prevented from being a winner by deleting at most ‖C‖− 1 candidates, which can be
determined in polynomial time by Theorem 4.4. We will show how to handle the unique-winner
variants of DCPC-TP and DCRPC-TP later in this proof.

For the TE model, it is easy to see that if there is a set C′ ⊆C such that p ∈C′ and p is not a
unique winner of (C′,V ) then p can be prevented from being a unique winner via partitioning of
candidates (with or without run-off). One simply partitions the candidates into C′ and C−C′ and
thus p fails to advance to the final stage. On the other hand, if p can be prevented from being a
winner (a unique winner) via partitioning of candidates (with or without run-off) in the TE model,
then there exists a set C′ ⊆C such that p ∈C′ and p is not a unique winner of (C′,V ). This is so
because then either p does not advance to the final stage (and this means that p is not a unique
winner of his or her first-stage election) or p is not a winner (not a unique winner) of the final stage
(note that not being a winner implies not being a unique winner).

Thus, p can be prevented from being a winner (a unique winner) via partitioning of candidates
(with or without run-off) in the TE model if and only if there is a set C′ ⊆C such that p ∈C′ and p
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is not a unique winner of (C′,V ). Clearly, such a set exists if and only if p can be prevented from
being a unique winner via deleting at most ‖C‖−1 candidates, which by Theorem 4.4 can be tested
in polynomial time.

It remains to show that Copeland� is vulnerable to destructive control via partitioning of can-
didates (with or without run-off), in both the rational and the irrational voter model, in the unique-
winner model with the TP tie-handling rule. In the argument below we focus on the DCRPC-TP
case but it is easy to see that essentially the same reasoning works for DCPC-TP.

First we determine whether p can be precluded from being a winner in our current control
scenario. This can be done in polynomial time as explained above. If p can be precluded from
being a winner, p can certainly be precluded from being a unique winner, and we are done. For
the remainder of the proof, suppose that p cannot be precluded from being a winner in our current
control scenario, i.e., for every set D⊆C such that p ∈ D, p is a winner of (D,V ). Let

D1 = {c ∈C−{p} | p defeats c in a head-to-head contest}

and let D2 = D− (D1 ∪{p}). Note that for all c ∈ D2, p ties c in a head-to-head contest, since
otherwise p would not be a winner of ({c, p},V ). If D2 = /0, then p is a Condorcet winner and
no partition (with or without run-off) can prevent p from being a unique winner (Hemaspaandra
et al., 2007a). For the remainder of the proof, we assume that D2 �= /0. We will show that p can be
precluded from being a unique winner in our current control scenario.

If � < 1, we let the first subelection be (D1∪{p},V ). Note that p is the unique winner of this
subelection. The final stage of the election involves p and one or more candidates from D2. Note
that every pair of candidates in D2∪{p} is tied in a head-to-head election (since if c would defeat
d in a head-to-head election, c would be the unique winner of ({c,d, p},V ), which contradicts the
assumption that p is a winner of every subelection it participates in). It follows that all candidates
that participate in the final stage of the election are winners, and so p is not a unique winner.

Finally, consider the case that � = 1. Then score�(C,V )(p) = ‖C‖− 1. If there is a candidate
d ∈C−{p} such that score�(C,V )(d) = ‖C‖− 1, then d will always (i.e., in every subelection con-
taining d) be a winner, and thus p will not be a unique winner of the final stage of the election,
regardless of which partition of C was chosen. Now suppose that score�(C,V )(d) < ‖C‖ − 1 for
all d ∈ C−{p}. Then score�(C,V )(d) ≤ ‖C‖− 2 for all d ∈ C−{p}. Let c be a candidate in D2

and let the first subelection be (C−{c},V ). Let C′ be the set of winners of (C−{c},V ). Since
score�(C−{c},V )(p) = ‖C‖− 2, it holds that p ∈ C′ and for every d ∈ C′ − {p}, score�(C−{c},V )(d) =
‖C‖−2. Since score�(C,V )(d)≤ ‖C‖−2, it follows that c defeats d in a head-to-head election. The
final stage of the election involves candidates C′ ∪{c}. Note that score�(C′∪{c},V )(c) = ‖C′‖, and thus
c is a winner of the election, and we have precluded p from being a unique winner. ❑

The above vulnerability results for the case of destructive candidate control should be contrasted
with the essentially perfect resistance to constructive candidate control (with the exception of con-
structive control via adding an unlimited number of candidates for Copeland� with � ∈ {0,1}) that
will be shown in Section 4.1.3. But first, in Section 4.1.2, we will provide some technical prerequi-
sites.
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4.1.2 CONSTRUCTING INSTANCES OF ELECTIONS

Many of our proofs in the next section require constructing fairly involved instances of Copeland�

elections. In this section we provide several lemmas and observations that simplify building such
instances.

We first note that each election E = (C,V ) induces a directed graph G(E) whose vertices are
E’s candidates and whose edges correspond to the results of the head-to-head contests in E. That
is, for each two distinct vertices of G(E) (i.e., for each two distinct candidates), a and b, there
is an edge from a to b if and only if a defeats b in their head-to-head contest (i.e., if and only if
vsE(a,b)> 0). Clearly, G(E) does not depend on the value of � . The following fundamental result
is due to McGarvey. This result allows us to basically identify elections with their election graphs
in the proofs of resistance for candidate control. In effect, Copeland� candidate-control problems
often can be viewed (with some care regarding ties) as graph-theoretic problems.

Lemma 4.6 (McGarvey, 1953) There is a polynomial-time algorithm that given as input an anti-
symmetric directed graph G outputs an election E such that G= G(E).

Proof. For the sake of completeness, we give the algorithm. Let G be an antisymmetric directed
graph. The algorithm computes the election E = (C,V ), where C=V (G) and for each edge (a,b) in
G there are exactly two voters, one with preference list a > b > C−{a,b} and one with preference

list
←−−−−−−
C−{a,b}> a > b. Since G is antisymmetric, it is easy to see that G= G(E). ❑

The above basic construction of McGarvey was improved upon by Stearns (1959). While Mc-
Garvey’s construction requires twice as many voters as there are edges in G, the construction of
Stearns needs at most ‖V (G)‖+ 2 voters. Stearns also provides a lower bound on the number of
voters that are needed to represent an arbitrary graph via an election. (It is easy to see that any such
graph can be modeled via two irrational voters but the lower bound for the case of rational votes is
somewhat harder.)

We will often construct complicated elections via combining simpler ones (see, in particular,
the rather involved proofs of Theorems 4.12 through 4.16 that can be found in the full TR version,
Faliszewski et al., 2008b). Whenever we speak of combining two elections, say E1 = (C1,V1) and
E2 = (C2,V2), we mean building, via the algorithm from Lemma 4.6, an election E = (C,V ) whose
election graph is a disjoint union of the election graphs of E1 and E2 with, possibly, some edges
added between the vertices of G(E1) and G(E2) (in each case we will explicitly state which edges,
if any, are added). In particular, we will often want to add some padding candidates to an election,
without affecting the original election much. In order to do so, we will typically combine our
main election with one of the following “padding” elections. Note that this construction, which we
originally developed for use in the study of control for Copeland� voting, has also proven useful in
the study of manipulation for Copeland� (Faliszewski et al., 2008).

Lemma 4.7 Let � be a rational number such that 0 ≤ � ≤ 1. For each positive integer n, there is
a polynomial-time (in n) computable election Padn = (C,V ) such that ‖C‖ = 2n+ 1 and for each
candidate ci ∈C it holds that score�Padn

(c) = n.

Proof. Fix a positive integer n. By Lemma 4.6 it is enough to construct (in polynomial time in n)
a directed, antisymmetric graph G with 2n+1 vertices, each with its indegree and outdegree equal
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to n. We set G’s vertex set to be {0,1, . . . ,2n} and we put an edge from vertex i to vertex j (i �= j)
if and only if ( j− i) mod (2n+1)≤ n. As a result there is exactly one directed edge between every
two distinct vertices and for each vertex i we have edges going out from i to exactly the vertices
(i+ 1) mod (2n+ 1),(i+ 2) mod (2n+ 1), . . . ,(i+ n) mod (2n+ 1). Thus, both the indegree and
the outdegree of each vertex is equal to n and the proof is complete. ❑

Lemma 4.6 (McGarvey, 1953) is very useful when building an election in which we need direct
control over the results of all head-to-head contests. However, in many cases explicitly specify-
ing the results of all head-to-head contests would be very tedious. Instead it would be easier to
specify the results of only the important head-to-head contests and require all candidates to have
certain suitable scores. In the next lemma we show how to construct elections specified in such a
way via combining a “small” election containing the important head-to-head contest with a “large”
padding election. We mention that a generalized version of this lemma has since been used to study
manipulation for Copeland� (Faliszewski et al., 2008).

Lemma 4.8 Let E = (C,V ) be an election where C= {c1, . . . ,cn′}, let � be a rational number such
that 0 ≤ � ≤ 1, and let n ≥ n′ be an integer. For each candidate ci we denote the number of head-
to-head ties of ci in E by ti. Let k1, . . . ,kn′ be a sequence of n′ nonnegative integers such that for
each ki we have 0 ≤ ki ≤ n. There is an algorithm that in polynomial time in n outputs an election
E ′ = (C′,V ′) such that:

1. C′ =C∪D, where D= {d1, . . . ,d2n2},
2. E ′ restricted to C is E,

3. the only ties in head-to-head contests in E ′ are between candidates in C,

4. for each i, 1≤ i≤ n′, score�E ′(ci) = 2n2− ki+ ti� , and

5. for each i, 1≤ i≤ 2n2, score�E ′(di)≤ n2+1.

Proof. We build E ′ via combining E with a padding election F (see Lemma 4.7 and the paragraph
just before it). F = (D,W ), where D = {d1, . . . ,d2n2}, is essentially the election Padn2 with one
arbitrary candidate removed. We partition the candidates in D into n groups, D1, . . . ,Dn, each with
exactly 2n candidates and we set the results of head-to-head contests between each ci ∈C and the
candidates in D according to the following scheme. For each j ∈ {1, . . . ,n′} such that i �= j, ci

defeats all members of D j and ci defeats exactly as many candidates in Di (and loses to all the
remaining ones) as needed to ensure that

score�E ′(ci) = 2n2− ki+ ti� .

It is easy to see that this is possible: ci’s score in (C′ −Di,V ′) is 2n2− 2n+ k′+ ti� for some k′

such that 0 ≤ k′ ≤ n′ − ti. There are 2n candidates in Di and so ci can reach any score of the form
2n2− k+ ti� , where k is an integer between 0 and n, via defeating in head-to-head contests an
appropriate number of candidates in Di and losing to all the remaining ones.

Finally, since F is Padn2 with one candidate removed, each di gets at most n2 points from
defeating other members of D and at most one point from possibly defeating some member of C.
Thus, for each di ∈ D, it holds that score�E ′(di)≤ n2+1. This completes the proof. ❑
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Instead of invoking Lemma 4.8 directly, we will often simply describe an election in terms of
the results of important head-to-head contests and the scores of the important candidates and then
mention that such an election can be built, possibly with adding extra padding candidates that do
not affect the general structure of the election, using Lemma 4.8. In each such case it will be clear
that Lemma 4.8 can indeed be used to build the election we describe.

4.1.3 CONSTRUCTIVE CANDIDATE CONTROL

Let us now turn to the case of constructive candidate control. Here we show that resistance holds
for Copeland� in all cases (i.e., for all rational values of � with 0 ≤ � ≤ 1 and for all construc-
tive candidate control scenarios), except for CCACu for � ∈ {0,1} where vulnerability holds (see
Theorem 4.11).

All our resistance proofs in this section follow via reductions from the vertex cover problem.
Recall that in the vertex cover problem our input is (G,k) where G is an undirected graph and k a
nonnegative integer and we accept if and only if G has a vertex cover of size at most k. Without
the loss of generality, we assume that V (G) = {1, . . . ,n} and E(G) = {e1, . . . ,em}. Note that if
either m = 0, n = 0, or k ≥ min(n,m) then the instance has a trivial solution and so in our proofs
we will always assume that both n and m are nonzero and that k is less than min(n,m). In each
case, if the input to our reduction does not meet these requirements (or is otherwise malformed) the
reduction outputs a fixed “yes” instance or a fixed “no” instance depending on the (easily obtained)
solution to (G,k) or the malformation of the input. Also note that for every input (G,k) that meets
our requirements, G has a vertex cover of size less than or equal to k if and only if G has a vertex
cover of size k.

Theorem 4.9 Let � be a rational number such that 0≤ � ≤ 1. Copeland� is resistant to construc-
tive control via adding candidates (CCAC), in both the nonunique-winner model and the unique-
winner model, for both the rational and the irrational voter model.

Proof. We give a reduction from the vertex cover problem. Let (G,k) be an instance of the vertex
cover problem, where G is an undirected graph, k is a nonnegative integer, V (G) = {1, . . . ,n},
E(G) = {e1, . . . ,em}, n �= 0, m �= 0, and k < min(n,m). We construct an instance of CCAC for
Copeland� such that a designated candidate p can become a winner after adding at most k candidates
if and only if G has a vertex cover of size at most k.

Our reduction works as follows. Via Lemma 4.8, we build an election E ′ = (C′,V ′) such that:

1. {p,e1, . . . ,em} ⊆C′,

2. score�E ′(p) = 2�2− 1 in the nonunique-winner case (score�E ′(p) = 2�2 in the unique-winner
case); � is a sufficiently large (but polynomially bounded) integer that takes the role of
Lemma 4.8’s n,

3. for each ei ∈C′, score�E ′(ei) = 2�2, and

4. the scores of all candidates in C′ −{p,e1, . . . ,em} are at most 2�2−n−2.

We form election E = (C,V ) by combining E ′ with candidates D = {1, . . . ,n} (corresponding
to the vertices of G). The results of the head-to-head contests within D are set arbitrarily, and
the head-to-head contests between the members of C and the members of D are set as follows: All
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candidates in C−{e1, . . . ,em} defeat all members of D, and for each i∈D and each e j ∈{e1, . . . ,em},
candidate i defeats e j if e j is an edge incident to i and loses otherwise. Our reduction outputs an
instance (C,D,V, p,k) of CCAC and the question is whether it is possible to choose a subset D′ ⊆D,
‖D′‖ ≤ k, such that p is a winner (the unique winner) of Copeland� election (C∪D′,V ). It is clear
that this reduction is computable in polynomial time. We will now show that it is correct.

If G does have a vertex cover of size k then add the candidates in D that correspond to the cover.
Adding these candidates increases the score of p by k, while the scores of the ei’s can increase only
by k− 1 each, since each edge is incident with at least one member of the vertex cover. Clearly,
candidates in C−{p,e1, . . . ,em} can never become winners by adding at most k candidates from D,
and thus p becomes a winner (the unique winner).

For the converse, assume that p can become a winner (the unique winner) via adding at most k
candidates from the set D. In order for p to become a winner (the unique winner), it must be the
case that via adding candidates each ei gets at least one point less than p. However, this is possible
only if we add candidates that correspond to a cover. ❑

Interestingly, when the parameter � is strictly between 0 and 1 (i.e., 0 < � < 1) then Copeland�

is resistant to constructive control via adding candidates even if we allow adding an unlimited num-
ber of candidates (the CCACu case). The reason for this is that for each rational � strictly between
0 and 1 our construction will ensure, via its structure, that we can add at most k candidates. On
the other hand, both Copeland0 and Copeland1 are vulnerable to constructive control via adding an
unlimited number of candidates (CCACu, see Theorem 4.11).

Theorem 4.10 Let � be a rational number such that 0 < � < 1. Copeland� is resistant to construc-
tive control via adding an unlimited number of candidates (CCACu), in both the nonunique-winner
model and the unique-winner model, for both the rational and the irrational voter model.

Proof. We give a reduction from the vertex cover problem.
For the unique-winner case, we will need to specify one of the candidates’ scores in terms of a

number � > 0 such that 1−� ≥ � . Let t1 and t2 be two positive integers such that � = t1
t2

and such
that their greatest common divisor is 1. Clearly, two such numbers exist because � is rational and
greater than 0. We set � to be 1

t2
. By elementary number-theoretic arguments, there are two positive

integer constants, k1 and k2, such that k1� = k2−� .
Let (G,k) be an instance of the vertex cover problem, where G is an undirected graph and k is a

nonnegative integer. Let {e1, . . . ,em} be G’s edges and let {1, . . . ,n} be G’s vertices. As before, we
assume that both n and m are nonzero and that k < min(n,m). Using Lemma 4.8, we can build an
election E ′ = (C,V ′) with the following properties:

1. {p,r,e1, . . . ,em} ⊆C (the remaining candidates in C are used for padding),

2. score�E ′(p) = 2�2−1,

3. score�E ′(r) = 2�2−1−k+k� in the nonunique-winner case (score�E ′(r) = 2�2−1−k+k�−�
in the unique-winner case15),

15. Note that via the second paragraph of the proof it is easy to build an election where r has a score of this form. To
obtain the −� part of r’s score we could, for example, have r tie with k1 padding candidates to obtain k2−� points.
The k2 points could be accounted for as part of 2�2−1.
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4. for each ei ∈C, score�E ′(ei) = 2�2−1+� in the nonunique-winner case (score�E ′(ei) = 2�2−1
in the unique-winner case), and

5. the scores of all candidates in C−{p,r,e1, . . . ,em} are at most 2�2−n−2.

We form election E = (C∪D,V ) via combining E ′ with candidates D = {1, . . . ,n} and appro-
priate voters such that the results of the head-to-head contests are:

1. p ties with all candidates in D,

2. for each e j, if e j is incident with some i ∈ D then candidate i defeats candidate e j, and other-
wise they tie, and

3. all other candidates in C defeat each of the candidates in D.

We will now show that G contains a vertex cover of size at most k if and only if there is a set
D′ ⊆ D such that p is a winner (the unique winner) of Copeland� election (C∪D′,V ). It is easy to
see that if D′ corresponds to a vertex cover of size at most k then p is a winner (the unique winner)
of Copeland� election (C∪D′,V ). The reason is that adding any member of D′ increases p’s score
by � and increases r’s score by one, and for each e j, adding i ∈ D′ increases e j’s score by � if and
only if e j is not incident with i. Thus, via a simple calculation of the scores of the candidates, it is
easy to see that p is a winner (the unique winner) of this election.

On the other hand, assume that p can become a winner (the unique winner) of Copeland�

election (C∪D′,V ) via adding some subset D′ of candidates from D. First, note that ‖D′‖ ≤ k,
since otherwise r would end up with more points than (at least as many points as) p and so p would
not be a winner (would not be a unique winner). We claim that D′ corresponds to a vertex cover
of G. For the sake of contradiction, assume that there is some edge e j incident to vertices u and v
such that neither u nor v is in D′. However, if this were the case then candidate e j would have more
points than (at least as many points as) p and so p would not be a winner (would not be a unique
winner). Thus, D′ must form a vertex cover of size at most k. ❑

Note that in the above proof it is crucial that � is neither 0 nor 1. If � were 0 then the proof
would fall apart because we would not be able to ensure that D′ is a vertex cover, and if � were
1 then we would not be able to limit the size of D′. In fact, we will now show, as Theorem 4.11,
that both Copeland0 and Copeland1 are vulnerable to control via adding an unlimited number of
candidates (CCACu).

Theorem 4.11 Let � ∈ {0,1}. Copeland� is vulnerable to constructive control via adding an un-
limited number of candidates (CCACu), in both the nonunique-winner model and the unique-winner
model, for both the rational and the irrational voter model.

Proof. Our input is candidate set C, spoiler candidate set D, a collection of voters with preferences
(either preference lists or preference tables) over C∪D, and a candidate p ∈C. Our goal is to check
whether there is some subset D′ ⊆ D such that p is a winner (the unique winner) of (C∪D′,V )
within Copeland� . We will show that we can find such a set D′, if it exists, by the following simple
algorithm.
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Let D1 = {d ∈D | score�({p,d},V )(p) = 1}. Initialize D′ to be D1, and delete every d ∈D′

for which score�(C∪D′,V )(p) < score�(C∪D′,V )(d). For the unique-winner problem, delete
every d ∈ D′ for which score�(C∪D′,V )(p)≤ score�(C∪D′,V )(d).

Clearly, this algorithm runs in polynomial time. To show that the algorithm works, first note
that for all D̂⊆D, if p is a winner (the unique winner) of (C∪ D̂,V ), then p is a winner (the unique
winner) of (C∪ (D̂∩D1),V ). This is so because, by Observation 4.2,

score�
(C∪D̂,V )

(p) = score�
(C∪(D̂∩D1),V )

(p)+ �
d∈D̂−D1

score�({p,d},V )(p)

= score�
(C∪(D̂∩D1),V )

(p).

Now suppose that for some D̂⊆D1, p is a winner (the unique winner) of (C∪ D̂,V ), but that the
algorithm computes a set D′ such that p is not a winner (not a unique winner) of (C∪D′,V ). We first
consider the case that D̂⊆D′. Since p is not a winner (not a unique winner) of (C∪D′,V ), it follows
by the construction of D′ that there exists a candidate d ∈ C−{p} such that score�(C∪D′,V )(p) <

score�(C∪D′,V )(d) (such that score�(C∪D′,V )(p)≤ score�(C∪D′,V )(d)). However, in the nonunique-winner
model we then have

score�(C∪D′,V )(p) = score�
(C∪D̂,V )

(p)+‖D′‖−‖D̂‖
≥ score�

(C∪D̂,V )
(d)+‖D′‖−‖D̂‖ ≥ score�(C∪D′,V )(d),

which is a contradiction. In the unique-winner model, the first “≥” in the above inequality becomes
a “>” and we reach a contradiction as well.

Finally, consider the case that D̂ �⊆D′. Let d be the first candidate in D̂ that is deleted from D′ in
the algorithm. Then there is a set D′′ such that D̂⊆D′′ ⊆D1 and score�(C∪D′′,V )(p)< score�(C∪D′′,V )(d)
in the nonunique-winner case (score�(C∪D′′,V )(p) ≤ score�(C∪D′′,V )(d) in the unique-winner case).

Since D̂⊆ D′′ ⊆ D1, we have

1. score�
(C∪D̂,V )

(p) = score�(C∪D′′,V )(p)− (‖D′′‖ − ‖D̂‖) < score�(C∪D′′,V )(d)− (‖D′′‖ − ‖D̂‖) ≤
score�

(C∪D̂,V )
(d) in the nonunique-winner case, and

2. score�
(C∪D̂,V )

(p) = score�(C∪D′′,V )(p)− (‖D′′‖ − ‖D̂‖) ≤ score�(C∪D′′,V )(d)− (‖D′′‖ − ‖D̂‖) ≤
score�

(C∪D̂,V )
(d) in the unique-winner case.

It follows that p is not a winner (not a unique winner) of (C∪ D̂,V ). This is again a contradic-
tion. ❑

The remainder of this section is dedicated to showing that for any rational � such that 0≤� ≤ 1,
Copeland� is resistant to constructive control via deleting candidates and to constructive control via
partitioning candidates (with or without run-off and in both the TE and the TP model). For reasons
of space and nonrepetitiveness, the proofs of these results are not included here but can be found in
the full TR version (Faliszewski et al., 2008b), where we first handle the case of constructive control
via deleting candidates (CCDC) and then, using our proof for the CCDC case as a building block,
handle the constructive partition-of-candidates cases.
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Theorem 4.12 Let � be a rational number such that 0 ≤ � ≤ 1. Copeland� is resistant to con-
structive control via deleting candidates (CCDC), in both the nonunique-winner model and the
unique-winner model, for both the rational and the irrational voter model.

The proof of Theorem 4.13 (which, as mentioned above, is presented in Faliszewski et al.,
2008b) employs both the construction used for proving Theorem 4.12 and a construction that com-
bines suitable elections such that the combined election has properties useful for proving various
partition-of-candidates cases (with or without run-off). In particular, this construction not only is
applied in the proof of Theorem 4.13, but also is designed to be general enough to serve as a key
ingredient in proving Theorems 4.14, 4.15, and 4.16 below.

Theorem 4.13 Let � be a rational number such that 0 ≤ � ≤ 1. Copeland� is resistant to con-
structive control via run-off partition of candidates in both the ties-promote model (CCRPC-TP)
and the ties-eliminate model (CCRPC-TE), in both the nonunique-winner model and the unique-
winner model, for both the rational and the irrational voter model.

Copeland� is also resistant to constructive control via partition of candidates (without run-off)
for each rational value of � between (and including) 0 and 1. However, the proofs for the TP and TE
cases (which, again, can be found in the full TR version, Faliszewski et al., 2008b) are not as uniform
as in the CCRPC scenario and so—to stay in sync with the structure of Faliszewski et al. 2008b,
where the proofs are—we treat these cases separately as Theorems 4.14, 4.15, and 4.16.

Theorem 4.14 Let � be a rational number such that 0≤ � ≤ 1. Copeland� is resistant to construc-
tive control via partition of candidates with the ties-promote tie-handling rule (CCPC-TP), in both
the nonunique-winner model and the unique-winner model, for both the rational and the irrational
voter model.

Theorem 4.15 Copeland1 is resistant to constructive control via partition of candidates with the
ties-eliminate tie-handling rule (CCPC-TE), in both the nonunique-winner model and the unique-
winner model, for both the rational and the irrational voter model.

Theorem 4.16 Let � be a rational number, 0 ≤ � < 1. Copeland� is resistant to constructive
control via partition of candidates with the ties-eliminate tie-handling rule (CCPC-TE), in both
the nonunique-winner model and the unique-winner model, for both the rational and the irrational
voter model.

4.2 Voter Control

In this section, we show that for each rational � , 0 ≤ � ≤ 1, Copeland� is resistant to all types
of voter control. Table 2 lists for each type of voter control, each rational � , 0 ≤ � ≤ 1, and
each winner model (i.e., the nonunique-winner model and the unique-winner model) the theorem in
which each given case is handled. We start with control via adding voters.

Theorem 4.17 Let � be a rational number such that 0 ≤ � ≤ 1. Copeland� is resistant to both
constructive and destructive control via adding voters (CCAV and DCAV), in both the nonunique-
winner model and the unique-winner model, for both the rational and the irrational voter model.
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� = 0 0 < � < 1 � = 1
unique nonunique unique nonunique unique nonunique

CCAV
Thm. 4.17

DCAV
CCDV Thm. 4.19 Thm. 4.20 Thm. 4.19 Thm. 4.20 Thm. 4.19 Thm. 4.18
DCDV Thm. 4.20 Thm. 4.19 Thm. 4.20 Thm. 4.19 Thm. 4.18 Thm. 4.19
CCPV-TP

Thm. 4.21
DCPV-TP
CCPV-TE Thm. 4.23 Thm. 4.24
DCPV-TE Thm. 4.26 Thm. 4.25

Table 2: Table of theorems covering all resistance results for voter control for Copeland� . Each
theorem covers both the case of rational voters and the case of irrational voters.

Proof. Our result follows via reductions from the X3C problem. We will first show how to handle
the nonunique-winner constructive case and later we will argue that the construction can be easily
modified for each of the remaining cases.

Let (B,S ) be an X3C instance where B= {b1, . . . ,b3k} and S = {S1, . . . ,Sn} is a finite collec-
tion of three-element subsets of B. Without loss of generality, we assume that k is odd (if it is even,
we simply add b3k+1,b3k+2,b3(k+1) to B and Sn+1 = {b3k+1,b3k+2,b3(k+1)} to S , and add 1 to k).

The question is whether one can pick k sets Sa1 , . . . ,Sak such that B=
⋃k

j=1 Sa j .
We build a Copeland� election E = (C,V ) as follows. The candidate set C contains candidates p

(the preferred candidate), r (p’s rival), s, all members of B, and some number of padding candidates.
We select the voter collection V such that in their head-to-head contests, s defeats p, r defeats each
bi, and such that we have the following Copeland� scores for these candidates, where � is some
sufficiently large (but polynomially bounded in n) nonnegative integer:

1. score�E (p) = �−1,

2. score�E (r) = �+3k, and

3. all other candidates have Copeland� scores below �−1.

It is easy to see that E can be constructed in polynomial time by Lemma 4.8. In addition, we ensure
that we have the following results of head-to-head contests between the candidates in C:

1. vsE(s, p) = k−1,

2. for each i ∈ {1, . . . ,k}, vsE(r,bi) = k−3, and

3. for all other pairs of candidates c, d, we have |vsE(c,d)| ≥ k+1.

This can be done since we can add 2 to vsE(c,d) and leave all other relative vote scores the same by

adding two voters, c > d > C−{c,d} and
←−−−−−−
C−{c,d}> c > d (see Lemma 4.6). Since k is odd and

the number of voters is even (see Lemma 4.8), it is easy to see that we can fulfill these requirements.
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We also specify the set W of voters that the chair can potentially add. For each set Si ∈S we
have a single voter wi ∈W with preference list

p > B−Si > r > Si > · · ·
(all unmentioned candidates follow in any fixed arbitrary order). We claim that S contains a k-
element cover of B if and only if p can become a winner of the above election via adding at most k
voters selected from W .

If S contains a k-element cover of B, say Sa1 , . . . ,Sak , then we can make p a winner via adding
the voters from U = {wa1 , . . . ,wak}. Adding these k voters increases p’s score by one, since p now
defeats s in their head-to-head contest. Since voters in U correspond to a cover, the score of r goes
down by 3k points. Why? For each bi ∈ B, adding the k− 1 voters in U that correspond to the
sets in the cover not containing bi increases the relative performance of bi versus r by k− 1 votes,
thus giving bi two votes of advantage over r. Adding the remaining voter from U decreases this
advantage to 1, but still bi wins the head-to-head contest with r.

We now show that if we can make p a winner by adding at most k voters then S contains a k-
element cover of B. Note that p is the only candidate that can possibly become a winner by adding
at most k voters, that p can at best obtain Copeland� score �, that p will obtain this score only if we
add exactly k voters, and that r can lose at most 3k points via losing his or her head-to-head contests
with each of the bi’s. Thus the only way for p to become a winner by adding at most k voters from
W is that we add exactly k voters such that r loses his or her head-to-head contest with each bi.
Assume that U ⊆W is such a set of voters that does not correspond to a cover of B. This means that
there is some candidate bi such that at least two voters in U prefer r to bi. However, if this is the
case then bi cannot defeat r in their head-to-head contest and p is not a winner. U corresponds to a
cover. This completes the proof of the nonunique-winner constructive case of the theorem.

For the constructive unique-winner case, we modify election E so that score�E (p) = �. All other
listed properties of the relative vote scores and absolute Copeland� scores are unchanged. As in
the previous case, it is easy to see that p can become the unique winner via adding k voters that
correspond to a cover of B. For the converse, we will show that we still need to add exactly k voters
if p is to become the unique winner.

If we added fewer than k− 1 voters then p would not get any extra points and so it would be
impossible for p to become the unique winner. Let us now show that adding exactly k− 1 voters
cannot make p the unique winner. If we added exactly k−1 voters then p would get � points extra
from the tie with s. Now consider some candidate bi ∈ S j, where S j corresponds to one of the added
voters, w j. Since w j prefers r to bi, adding w j to the election increases the relative performance of r
versus bi to k−2. Thus adding the remaining k−2 voters can result in bi either tieing or losing his
or her head-to-head contest with r. In either case p would not have a high enough score to become
the unique winner. Thus we know that exactly k candidates must be added if we want p to become
the unique winner and, via the same argument as in the previous case, we know that they have to
correspond to a cover.

For the destructive cases it suffices to note that the proof for the constructive nonunique-winner
case works also as a proof for the destructive unique-winner case (where we are preventing r from
being the unique winner) and the constructive unique-winner case works also as a proof for the
destructive nonunique-winner case (where we are preventing r from being a winner). ❑

Let us now turn to the case of control via deleting voters. Unfortunately, the proofs here are not
as uniform as before and we need in some cases to handle � = 1 separately from the case where
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0 ≤ � < 1. Also, we cannot use the construction lemma (Lemma 4.8) anymore to so conveniently
build our elections. In the case of deleting voters (or partitioning voters) we need to have a very
clear understanding of how each voter affects the election and the whole point of introducing the
construction lemma was to abstract away from such low-level details.

Analogously to the case of candidate control, the resistance proofs for deleting voters are reused
within the resistance proofs for partitioning voters. For reasons of space and nonrepetitiveness,
we again do not include all proofs. In particular, the proofs of Theorems 4.18 and 4.20 are not
included here but can be found in the full TR version (Faliszewski et al., 2008b). The proofs of
Theorems 4.19 and 4.21, however, will be presented here. We mention that the construction given
in the proof of Theorem 4.19 will be used later in the proof of Theorem 5.1, and the construction
given in the proof of Theorem 4.21 will be used later in the proof of Theorem 5.2.

Theorem 4.18 Copeland1 is resistant to constructive control via deleting voters (CCDV) in the
nonunique-winner model and to destructive control via deleting voters (DCDV) in the unique-
winner model, for both the rational and the irrational voter model.

Theorem 4.19 Let � be a rational number such that 0 ≤ � ≤ 1. Copeland� is resistant to con-
structive control via deleting voters (CCDV) in the unique-winner model and to destructive control
via deleting voters (DCDV) in the nonunique-winner model, for both the rational and the irrational
voter model.

Proof. Let (B,S ) be an instance of X3C, where B = {b1, . . . ,b3k} and S = {S1, . . . ,Sn} is a
finite family of three-element subsets of B. Without loss of generality, we assume that n ≥ k and
that k > 2 (if n < k then S does not contain a cover of B, and if k≤ 2 then we can solve the problem
by brute force). We build an election E = (C,V ) such that:

1. If S contains a k-element cover of B, then the preferred candidate p can become the unique
Copeland� winner of E by deleting at most k voters, and

2. if r can become a nonwinner by deleting at most k voters, then S contains a k-element cover
of B.

Let the candidate set C be {p,r,b1, . . . ,b3k} and let V be the following collection of 4n− k+1
voters:

1. We have n−1 voters with preference B > p > r,

2. we have n− k+2 voters with preference p > r > B, and

3. for each Si ∈S we have two voters, vi and v′i, such that

(a) vi has preference r > B−Si > p > Si, and

(b) v′i has preference r > Si > p > B−Si.

It is easy to see that for all bi ∈ B, vsE(r,bi) = 2n− k+3, vsE(bi, p) = k−3, and vsE(r, p) = k−1.
If S contains a k-element cover of B, say {Sa1 , . . . ,Sak}, then we delete voters va1 , . . . ,vak . In

the resulting election, p defeats every other candidate in their head-to-head contests, and thus p is
the unique winner.
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To prove the second statement, suppose that there is a subset W of at most k voters such that
r is not a winner of Ê = (C,V −W ). Since vsE(r,bi) = 2n− k+ 3 and n ≥ k, it is immediate that
r defeats every bi ∈ B in their head-to-head contests in Ê. In order for r not to be a winner of Ê,
p must certainly defeat r and tie-or-defeat every bi ∈ B in their head-to-head contests. But p can
defeat r in their head-to-head contest only if ‖W‖= k and every voter in W prefers r to p. It follows
that W is a size-k subset of {v1,v′1, . . . ,vn,v′n}.

Let bi ∈ B. Recall that vsE(bi, p) = k−3 and that p needs to at least tie bi in their head-to-head
contest in Ê. Since ‖W‖ = k, it follows that W can contain at most one voter that prefers p to bi.
Since k > 2, it follows that W contains only voters from the set {v1, . . . ,vn} and that the voters in W
correspond to a k-element cover of B. ❑

Theorem 4.20 Let � be a rational number such that 0≤ � < 1. Copeland� is resistant to construc-
tive control via deleting voters (CCDV) in the nonunique-winner model and to destructive control
via deleting voters (DCDV) in the unique-winner model, for both the rational and the irrational
voter model.

Theorem 4.21 Let � be a rational number such that 0 ≤ � ≤ 1. Copeland� is resistant to both
constructive and destructive control via partitioning voters in the TP model (CCPV-TP and DCPV-
TP), in both the nonunique-winner model and the unique-winner model, for both the rational and
the irrational voter model.

Proof. Let (B,S ) be an instance of X3C, where B = {b1, . . . ,b3k} and S = {S1, . . . ,Sn} is a
finite family of three-element subsets of B. Without loss of generality, we assume that n ≥ k and
that k > 2 (if n < k then S does not contain a cover of B, and if k≤ 2 then we can solve the problem
by brute force). We build an election E = (C,V ) such that:

1. If S contains a k-element cover of B, then the preferred candidate p can become the unique
Copeland� winner of E via partitioning voters in the TP model, and

2. if r can be made to not uniquely win E via partitioning voters in the TP model, then S
contains a k-element cover of B.

Note that this implies that Copeland� is resistant to both constructive and destructive control via
partitioning voters in the TP model, in both the nonunique-winner model and the unique-winner
model.

Our construction is an extension of the construction from Theorem 4.19. We let the candidate
set C be {p,r,s,b1, . . . ,b3k} and we let V be the following collection of voters:

1. We have k+1 voters with preference s > r > B > p,

2. we have n−1 voters with preference B > p > r > s,

3. we have n− k+2 voters with preference p > r > B > s, and

4. for each Si ∈S we have two voters, vi and v′i, such that

(a) vi has preference r > B−Si > p > Si > s, and
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(b) v′i has preference r > Si > p > B−Si > s.

Let V̂ ⊆V be the collection of all the voters in V except for the k+1 voters with preference s > r >
B > p. Note that V̂ is exactly the voter collection used in the proof of Theorem 4.19 with candidate s
added as the least desirable candidate. Since s does not influence the differences between the scores
of the other candidates, the following claim follows immediately from the proof of Theorem 4.19.

Claim 4.22 If r can become a nonwinner of (C,V̂ ) by deleting at most k voters, then S contains a
k-element cover of B.

Recall that we need to prove that if S contains a k-element cover of B, then p can be made the
unique Copeland� winner of E via partitioning voters in the TP model, and that if r can be made to
not uniquely win E via partitioning voters in the TP model, then S contains a k-element cover of
B.

If S contains a k-element cover of B, say {Sa1 , . . . ,Sak}, then we let the second subelection
consist of the k+ 1 voters with preference s > r > B > p and voters va1 , . . . ,vak . Then p is the
unique winner of the first subelection, s is the unique winner of the second subelection, and p
uniquely wins the final run-off between p and s.

To prove the second statement, suppose there is a partition of voters such that r is not a unique
winner of the resulting election in model TP. Note that in at least one of the subelections, without
loss of generality say the second subelection, a majority of the voters prefers r to all candidates in
{p,b1, . . . ,b3k}. Since r is the unique winner of every run-off he or she participates in, r cannot be
a winner of either subelection. Since r defeats every candidate in {p,b1, . . . ,b3k} in their head-to-
head contests in the second subelection, in order for r not to be a winner of the second subelection,
it must certainly be the case that s defeats r in their head-to-head contest in the second subelection.
This implies that at most k voters from V̂ can be part of the second subelection.

Now consider the first subelection. Note that r cannot be a winner of the first subelection. Then,
clearly, r cannot be a winner of the first subelection restricted to voters in V̂ .16 By Claim 4.22 it
follows that S contains a k-element cover of B. ❑

We now turn to the TE variant of control via partitioning voters. None of the remaining proofs
of Section 4.2 (i.e., none of the proofs of Theorems 4.23 through 4.26) is included here but they
each can be found in the full TR version (Faliszewski et al., 2008b). In particular, the proof of
Theorem 4.23 uses the exact same construction as in the proof of Theorem 4.21 and the proofs of
Theorems 4.24 and 4.25 use modifications thereof. To stay in sync with the structure of Faliszewski
et al. 2008b, the proof-providing full TR (where the proof structure, as mentioned above, depends
on the value of �), we state each of Theorems 4.23 through 4.26 separately.

Theorem 4.23 Let � be a rational number such that 0 ≤ � < 1. Copeland� is resistant to con-
structive control via partitioning voters in the TE model (CCPV-TE), in both the nonunique-winner
model and the unique-winner model, for both the rational and the irrational voter model.

16. If r were a winner of the first subelection restricted to voters in V̂ then r would certainly be a winner of the first
subelection without any restrictions: The voters in V − V̂ prefer r to everyone except s, and (by the discussion in the
proof) s cannot be a winner of the first subelection. (Note that s can be a winner of at most one of the two subelections
and s is a winner of the second subelection.)
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Theorem 4.24 Copeland1 is resistant to constructive control via partitioning voters in the TE model
(CCPV-TE), in both the nonunique-winner model and the unique-winner model, for both the rational
and the irrational voter model.

Theorem 4.25 Copeland1 is resistant to destructive control via partitioning voters in the TE model
(DCPV-TE), in both the nonunique-winner model and the unique winner model, for both the rational
and the irrational voter model.

Finally, Theorem 4.26 states the resistance of Copeland� , where � is a rational number with
0 ≤ � < 1, to destructive control by partition of voters in the TE model. The proof of this result
(see Faliszewski et al., 2008b) extends the construction from the proof of Theorem 4.20 (see also
Faliszewski et al., 2008b) in the same way the proof of Theorem 4.21 extended the construction
from the proof of Theorem 4.19.

Theorem 4.26 Let � be a rational number such that 0 ≤ � < 1. Copeland� is resistant to de-
structive control via partitioning voters in the TE model (DCPV-TE), in both the nonunique-winner
model and the unique-winner model, for both the rational and the irrational voter model.

4.3 FPT Algorithm Schemes for Bounded-Case Control

Resistance to control is generally viewed as a desirable property in system design. However, sup-
pose one is trying to solve resistant control problems. Is there any hope?

Bartholdi, Tovey, and Trick (1989b), in their seminal paper on NP-hard winner-determination
problems, suggested considering hard election problems for the cases of a bounded number of can-
didates or a bounded number of voters, and they obtained efficient-algorithm results for such cases.
Within the study of elections, this same approach—seeking efficient fixed-parameter algorithms—
has, for example, also been used (although somewhat tacitly—see the coming discussion in the sec-
ond paragraph of Footnote 17) within the study of bribery (Faliszewski et al., 2006a; Faliszewski,
Hemaspaandra, & Hemaspaandra, 2006b). To the best of our knowledge, this bounded-case ap-
proach to finding the limits of resistance results has not been previously used to study control prob-
lems. In this section we do precisely that.

In particular, we obtain for resistant-in-general control problems a broad range of efficient al-
gorithms for the case when the number of candidates or voters is bounded. Our algorithms are
not merely polynomial time. Rather, we give algorithms that prove membership in FPT (fixed-
parameter tractability, i.e., the problem is not merely individually in P for each fixed value of the
parameter of interest (voters or candidates), but indeed has a single P algorithm having degree
that is bounded independently of the value of the fixed number of voters or candidates) when the
number of candidates is bounded, and also when the number of voters is bounded. And we prove
that our FPT claims hold even under the succinct input model—in which the voters are input via
“(preference-list, binary-integer-giving-frequency-of-that-preference-list)” pairs—and even in the
case of irrational voters. (One can imagine the succinct-representation case holding after some ini-
tial preprocessing of an election’s ballots to compute the number of people casting each preference
that occurred.)

We obtain such algorithms for all the voter-control cases, both for bounded candidates and for
bounded voters, and for all the candidate-control cases with bounded candidates. On the other
hand, we show that for the resistant-in-general irrational-voter, candidate-control cases, resistance
still holds even if the number of voters is limited to being at most two.
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We structure this section as follows. We first start by briefly stating our notions and notations.
We next state, and then prove, our fixed-parameter tractability results. Regarding those, we first
address FPT results for the (standard) constructive and destructive cases. We then show that in
many cases we can assert FPT results that are more general still—in particular, we will look at
“extended control”: completely pinpointing whether under a given type of control we can ensure
that at least one of a specified collection of “Copeland Outcome Tables” (to be defined later) can be
obtained. Finally, we give our resistance results.

4.3.1 NOTIONS AND NOTATIONS

The study of fixed-parameter complexity (see, e.g., Niedermeier, 2006) has been expanding explo-
sively since it was parented as a field by Downey, Fellows, and others in the late 1980s and the 1990s.
Although the area has built a rich variety of complexity classes regarding parameterized problems,
for the purpose of the current paper we need focus only on one very important class, namely, the
class FPT. Briefly put, a problem parameterized by some value j is said to be fixed-parameter
tractable (equivalently, to belong to the class FPT) if there is an algorithm for the problem whose
running time is f ( j)nO(1). (Note in particular that there is some particular constant for the “big-oh”
that holds for all inputs, regardless of what j value the particular input has.)

In our context, we will consider two parameterizations: bounding the number of candidates
and bounding the number of voters. We will use the same notations used throughout this paper to
describe problems, except we will postpend a “-BV j” to a problem name to state that the number of
voters may be at most j, and we will postpend a “-BC j” to a problem name to state that the number
of candidates may be at most j. In each case, the bound applies to the full number of such items
involved in the problem. For example, in the case of control by adding voters, the j must bound the
total of the number of voters in the election added together with the number of voters in the pool of
voters available for adding.

Typically, we have been viewing input votes as coming in each on a ballot. However, one can
also consider the case of succinct inputs, in which our algorithm is given the votes as “(preference-
list, binary-integer-giving-frequency-of-that-preference-list)” pairs. (We mention in passing that for
the “adding voter” cases, when we speak of succinctness we require that not just the always-voting
voters be specified succinctly but also that the pool of voters-available-to-be-added be specified
succinctly.) Succinct inputs have been studied extensively in the case of bribery (Faliszewski et al.,
2006a, 2006b), and speaking more broadly, succinctness-of-input issues are often very germane to
complexity classification (see, e.g., Wagner, 1986). Note that proving an FPT result for the succinct
case of a problem immediately implies an FPT result for the same problem (without the requirement
of succinct inputs being in place), and indeed is a stronger result, since succinctness can potentially
exponentially compress the input.

Finally, we would like to be able to concisely express many results in a single statement. To
do so, we borrow a notational approach from transformational grammar, and use square brackets

as an “independent choice” notation. So, for example, the claim

[
It

She
He

][
runs

walks

]
is a shorthand for

six assertions: It runs; She runs; He runs; It walks; She walks; and He walks. A special case is
the symbol “ /0” which, when it appears in such a bracket, means that when unwound it should be
viewed as no text at all. For example, “

[
Succinct

/0

]
Copeland is fun” asserts both “Succinct Copeland

is fun” and “Copeland is fun.”
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4.3.2 FIXED-PARAMETER TRACTABILITY RESULTS

We immediately state our main results, which show that for all the voter-control cases FPT schemes
hold for both the bounded-voter and bounded-candidate cases, and for all the candidate-control
cases FPT schemes hold for the bounded-candidate cases.

Theorem 4.27 For each rational � , 0≤� ≤ 1, and each choice from the independent choice brack-
ets below, the specified parameterized (as j varies over N) problem is in FPT:

[
succinct

/0

]
-

[
Copeland�

Copeland�Irrational

]
-

[
C
D

]
C

⎡
⎢⎢⎣

AV
DV

PV-TE
PV-TP

⎤
⎥⎥⎦ -

[
BV j

BC j

]
.

Theorem 4.28 For each rational � , 0≤� ≤ 1, and each choice from the independent choice brack-
ets below, the specified parameterized (as j varies over N) problem is in FPT:

[
succinct

/0

]
-

[
Copeland�

Copeland�Irrational

]
-

[
C
D

]
C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ACu

AC
DC

PC-TE
PC-TP

RPC-TE
RPC-TP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

-BC j.

Readers not interested in a discussion of those results and their proofs can at this point safely
skip to the next labeled section header.

Before proving the above theorems, let us first make a few observations about them. First, for
cases where under a particular set of choices that same case is known (e.g., due to the results of
Sections 4.1 and 4.2) to be in P even for the unbounded case, the above results are uninteresting
as they follow from the earlier results (such cases do not include any of the “succinct” cases, since
those were not treated earlier). However, that is a small minority of the cases. Also, for clarity as
to what cases are covered, we have included some items that are not formally needed. For example,
since FPT for the succinct case implies FPT for the no-succinctness-restriction case, and since FPT
for the irrationality-allowed case implies FPT for the rational-only case, the first two choice brackets
in each of the theorems could, without decreasing the results’ strength, be removed by eliminating
their “ /0” and “Copeland�” choices.

We now turn to the proofs. Since proving every case would be uninterestingly repetitive, we
will at times (after carefully warning the reader) prove the cases of one or two control types when
that is enough to make clear how the omitted cases’ proofs go.

Let us start with those cases that can be done simply by appropriately applied brute force.
We first prove Theorem 4.28.

Proof of Theorem 4.28. If we are limited to having at most j candidates, then for each of the
cases mentioned, the total number of ways of adding/deleting/partitioning candidates is simply a
(large) constant. For example, there will be at most (“at most” rather than “exactly” since j is
merely an upper bound on the number of candidates) 2 j possible run-off partitions and there will
be at most 2 j−1 relevant ways of deleting candidates (since we can’t (destructive case) or would
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never (constructive case) delete the distinguished candidate). So we can brute-force try all ways of
adding/deleting/partitioning candidates, and for each such way can see whether we get the desired
outcome. This works in polynomial time (with a fixed degree independent of j and �) even in the
succinct case, and even with irrationality allowed. ❑ Theorem 4.28

A brute-force approach similarly works for the case of voter control when the number of voters
is fixed. In particular, we prove the following subcase of Theorem 4.27.

Lemma 4.29 For each rational � , 0≤� ≤ 1, and each choice from the independent choice brackets
below, the specified parameterized (as j varies over N) problem is in FPT:

[
succinct

/0

]
-

[
Copeland�

Copeland�Irrational

]
-

[
C
D

]
C

⎡
⎢⎢⎣

AV
DV

PV-TE
PV-TP

⎤
⎥⎥⎦ -BV j.

When considering “BV j” cases—namely in this proof and in the resistance section starting on
page 334—we will not even discuss succinctness. The reason is that if the number of voters is
bounded, say by j, then succinctness doesn’t asymptotically change the input sizes interestingly,
since succinctness at very best would compress the vote description by a factor of about j—which
in this case is a fixed constant (relative to the value of the parameterization, which itself is j).

Proof of Lemma 4.29. If we are limited to having at most j voters, note that we can, for each
of these four types of control, brute-force check all possible approaches to that type of control. For
example, for the case of control by deleting voters, we clearly have no more than 2 j possible vote
deletion choices, and for the case of control by partitioning of voters, we again have at most 2 j

partitions (into V1 and V −V1) to consider. And 2 j is just a (large) constant. So a direct brute-force
check yields a polynomial-time algorithm, and by inspection one can see that its run-time’s degree
is bounded above independently of j. ❑ Lemma 4.29

We now come to the interesting cluster of FPT cases: the voter-control cases when the number of
candidates is bounded. Now, at first, one might think that we can handle this, just as the above cases,
via a brute-force approach. And that is almost correct: One can get polynomial-time algorithms
for these cases via a brute-force approach. However, for the succinct cases, the degrees of these
algorithms will be huge, and will not be independent of the bound, j, on the number of candidates.
For example, even in the rational case, one would from this approach obtain run-times with terms
such as n‖C‖!. That is, one would obtain a family of P-time algorithms, but one would not have an
FPT algorithm.

To overcome this obstacle, we will employ Lenstra’s (1983) algorithm for bounded-variable-
cardinality integer programming. Although Lenstra’s algorithm is truly amazing in its power, even
it will not be enough to accomplish our goal. Rather, we will use a scheme that involves a fixed
(though very large) number of Lenstra-type programs each being focused on a different resolution
path regarding the given problem.

What we need to prove, to complete the proof of Theorem 4.27, is the following lemma.

Lemma 4.30 For each rational � , 0≤� ≤ 1, and each choice from the independent choice brackets
below, the specified parameterized (as j varies over N) problem is in FPT:
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[
succinct

/0

]
-

[
Copeland�

Copeland�Irrational

]
-

[
C
D

]
C

⎡
⎢⎢⎣

AV
DV

PV-TE
PV-TP

⎤
⎥⎥⎦ -BC j.

Let us start by recalling that, regarding the first choice bracket, the “succinct” case implies the
“ /0” case, so we need only address the succinct case. Recall also that, regarding the second choice
bracket, for each rational � , 0≤ � ≤ 1, the “Copeland�Irrational” case implies the “Copeland�” case,
so we need only address the Copeland�Irrational case.

So all that remains is to handle each pair of choices from the third and forth choice brackets. To
prove every case would be very repetitive. So we will simply prove in detail a difficult, relatively
representative case, and then will for the other cases either mention the type of adjustment needed
to obtain their proofs, or will simply leave it as a simple but tedious exercise that will be clear, as to
how to do, to anyone who reads this section.

So, in particular, let us prove the following result.

Lemma 4.31 For each rational � , 0 ≤ � ≤ 1, the following parameterized (as j varies over N)
problem is in FPT: succinct-Copeland�Irrational-CCPV-TP-BC j.

Proof. Let � , 0 ≤ � ≤ 1, be some arbitrary, fixed rational number. In particular, suppose that �
can be expressed as b/d, where b ∈ N, d ∈ N

+, b and d share no common integer divisor greater
than 1, and if b= 0 then d = 1. We won’t explicitly invoke b and d in our algorithm, but each time
we speak of evaluating a certain set of pairwise outcomes “with respect to � ,” one can think of it as
evaluating that with respect to a strict pairwise win giving d points, a pairwise tie giving b points,
and a strict pairwise loss giving 0 points.

We need a method of specifying the pairwise outcomes among a set of candidates. To do this,
we will use the notion of a Copeland outcome table over a set of candidates. This will not actually
be a table, but rather will be a function (a symmetric one—it will not be affected by the order of
its two arguments) that, when given a pair of distinct candidates as inputs, will say which of the
three possible outcomes allegedly happened: Either there is a tie, or one candidate won, or the other
candidate won. Note that a COT is simply a representation of an election graph (see Section 4.1.2).

So, in a j-candidate election, there are exactly 3(
j
2) such functions. (We will not care about the names

of the candidates, and so will assume that the tables simply use the names 1 through j, and that we
match the names of the actual candidates with those integers by linking them lexicographically, i.e.,
the lexicographically first candidate will be associated with the integer 1 and so on.) Let us call a
j-candidates Copeland outcome table a j-COT.

We need to build our algorithm that shows that the problem
succinct-Copeland�Irrational-CCPV-TP-BC j, j ∈ N, is in FPT. So, let j be some fixed integer
bound on the number of candidates.17

17. We will now seem to specify the algorithm merely for this bound. However, it is important to note that we do enough
to establish that there exists a single algorithm that fulfills the requirements of the definition of FPT. In particular,
the specification we are about to give is sufficiently uniform that one can simply consider a single algorithm that, on
a given input, notes the value of j, the number of candidates, and then does what the “ j” algorithm we are about to
specify does.

We take this moment to mention in passing that our earlier work, Faliszewski et al. 2006a and (this is an ex-
panded, full version of that) Faliszewski et al. 2006b, that gives P-time algorithms for the fixed parameter (fixed
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For each j′-COT, T1,
For each j′-COT, T2,
Do

If

when we have a Copeland�Irrational election (involving all the input voters), with re-
spect to � , between all the candidates who win under T1 with respect to � , and all
the candidates who win under T2 with respect to � , the preferred candidate of the
input problem is a winner,

then

create and run the integer linear program constraint feasibility problem that checks
whether there exists a partition of the voters such that the first subelection has j′-
COT T1 and the second subelection has j′-COT T2, and if so, then accept.

Figure 5: The top-level code for the case succinct-Copeland�Irrational-CCPV-TP-BC j.

Let us suppose we are given an input instance. Let j′ ≤ j be the number of candidates in this
instance (recall that j is not the number of candidates, but rather is an upper bound on the number
of candidates).

The top level of our algorithm is specified by the pseudocode in Figure 5. (Although this algo-
rithm seemingly is just trying to tell whether the given control is possible for the given case, rather
than telling how to partition to achieve that control, note that which iteration through the double
loop accepts and the precise values of the variables inside the integer linear program constraint fea-
sibility problem that made that iteration be satisfied will in fact tell us precisely what the partition
is that makes the preferred candidate win.)

Now, note that the total number of j′-COTs that exist (we do not need to care whether all can

be realized via actual votes) is 3(
j′
2). So the code inside the two loops executes at most 9(

j′
2) times,

which is constant-bounded since j′ ≤ j, and we have fixed j.
So all that remains is to give the integer linear program constraint feasibility problem mentioned

inside the inner loop. The setting here can sometimes be confusing, e.g., when we speak of constants
that can grow without limit. It is important to keep in mind that in this integer linear program
constraint feasibility problem, the number of variables and constraints is constant (over all inputs),
and the integer linear program constraint feasibility problem’s “constants” (one may prefer the word

candidate and fixed voters) cases in fact, in all such claims we have in that work, implicitly is giving FPT algo-
rithms, even though those papers don’t explicitly note that. The reason is generally the same as why that is true in
this paper—namely, the Lenstra technique is not just powerful but is also ideally suited for FPT algorithms and for
being used inside algorithms that are FPT algorithms. Most interestingly, the Lenstra approach tends to work even on
succinct inputs, and so the FPT comment we made applies even to those results in our abovementioned earlier papers
that are about the succinct-inputs case of fixed-number-of-candidates and fixed-number-of-voters claims. (The fixed-
number-of-candidates and fixed-number-of-voters Dodgson winner/score work of Bartholdi et al., 1989b, is known
to be about FPT algorithms—due to the proof of Bartholdi et al., 1989b, itself, see the discussion in Faliszewski et al.,
2006a, see also Betzler, Guo, and Niedermeier, 2008. Although the paper of Bartholdi et al., 1989b, doesn’t address
the succinct input model, Faliszewski et al., 2006a, notes that their approach works fine even in the succinct cases of
the winner problem. That is true not just for the P-ness of their algorithms even in the succinct case, but also for the
FPT-ness of their algorithms even in the succinct case.)
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coefficients, if that makes things clearer) are the only things that change with respect to the input.
This is the framework that allows us to invoke Lenstra’s powerful algorithm.

We first specify the set of constants of the integer linear program constraint feasibility problem.

In particular, for each i, 1≤ i≤ 2(
j′
2), we will have a constant, ni,18 that is the number of input voters

whose vote is of the ith type (among the 2(
j′
2) possible vote possibilities; keep in mind that voters

are allowed to be irrational, thus the value 2(
j′
2) is correct). Note that the number of these constants

that we have is itself constant-bounded (for fixed j), though of course the values that these constants
(of the integer linear program constraint feasibility problem) take on can grow without limit.

In addition, let us define some constants that will not vary with the input but rather are simply a
notational shorthand that we will use to describe how the integer linear program constraint feasibility
problem is defined (what constraints occur in it). In particular, for each i and � such that 1≤ i≤ j′,
1≤ �≤ j′, and i �= �, let val1i,� be 1 if T1 asserts that (in their head-to-head contest) i ties or defeats
�, and let it be 0 if T1 asserts that (in their head-to-head contest) i loses to �. Let val2i,� be identically
defined, except with respect to T2. Informally put, these values will be used to let our integer linear
program constraint feasibility problem seek to enforce such a win/loss/tie pattern with respect to the
given input vote numbers and the given type of allowed control action.

The integer linear program constraint feasibility problem’s variables, which of course are all

integer variables, are the following 2(
j′
2) variables. For each i, 1≤ i≤ 2(

j′
2), we will have a variable,

mi, that represents how many of the ni voters having the ith among the 2(
j′
2) possible vote types go

into the first subelection.
Finally, we must specify the constraints of our integer linear program constraint feasibility prob-

lem. We will have three groups of constraints.
The first constraint group is enforcing that plausible numbers are put in the first partition. In

particular, for each i, 1≤ i≤ 2(
j′
2), we have the constraints 0≤ mi and mi ≤ ni.

The second constraint group is enforcing that after the partitioning we really do have in the first
subelection a situation in which all the pairwise contests come out exactly as specified by T1. In
particular, for each i and � such that 1≤ i≤ j′, 1≤ �≤ j′, and i �= �, we do the following. Consider
the equation

( �
{a | 1≤ a≤ 2(

j′
2) and in votes of type

a it holds that i is preferred to �}

ma) OP ( �
{a | 1≤ a≤ 2(

j′
2) and in votes of type

a it holds that � is preferred to i}

ma), (4.a)

where a in each sum varies over the 2(
j′
2) possible preferences. If val1(i, �) = 1 we will have a

constraint of the above form with OP set to “≥”. If val1(�, i) = 1 we will have a constraint of the
above form with OP set to “≤”. Note that this means that if val1(i, �) = val1(�, i) = 1, i.e., those
two voters are purported to tie, we will add two constraints.

The third constraint group has the same function as the second constraint group, except it regards
the second subelection rather than the first subelection. In particular, for each i and � such that

18. Again, as discussed in the immediately previous paragraph, when we say that, for example, the ni are constants of the
integer linear program constraint feasibility problem, we do not mean that they are constants in any complexity sense,
but rather that they are the constants—in the sense of being the coefficients—of the integer linear program constraint
feasibility problem. By saying that, we do not mean to imply that the number of voters is bounded by some global
value over all cases.
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1 ≤ i ≤ j′, 1 ≤ � ≤ j′, and i �= �, we do the following. Consider again equation (4.a) from above,
except with each of the two occurrences of ma replaced by na−ma. If val2(i, �) = 1 we will have
a constraint of that form with OP set to “≥”. If val2(�, i) = 1 we will have a constraint of that
form with OP set to “≤”. As above, this means that if val2(i, �) = val2(�, i) = 1, we will add two
constraints.

This completes the specification of the integer linear programming constraint feasibility prob-
lem.

Note that our top-level code, from Figure 5, clearly runs within polynomial time relative to
even the succinct-case input to the original CCPV-TP problem, and that that polynomial’s degree
is bounded above independently of j. Note in particular that our algorithm constructs at most a
large constant (for j fixed) number of integer linear programming constraint feasibility problems,
and each of those is itself polynomial-sized relative to even the succinct-case input to the original
CCPV-TP problem, and that polynomial size’s degree is bounded above independently of j. Fur-
ther, note that the integer linear programming constraint feasibility problems clearly do test what
they are supposed to test—most importantly, they test that the subelections match the pairwise
outcomes specified by j′-COTs T1 and T2. Finally and crucially, by Lenstra’s (1983) algorithm (see
also Downey, 2003, and Niedermeier, 2002, which are very clear regarding the “linear”s later in this
sentence), since this integer linear programming constraint feasibility problem has a fixed number of
constraints (and in our case in fact also has a fixed number of variables), it can be solved—relative to
its size (which includes the filled-in constants, such as our ni for example, which are in effect inputs
to the integer program’s specification)—via a linear number of arithmetic operations on linear-sized
integers. So, overall, we are in polynomial time even relative to succinctly specified input, and the
polynomial’s degree is bounded above independently of j. Thus we have established membership
in the class FPT. ❑

We now describe very briefly how the above proof of Lemma 4.31 can be
adjusted to handle all the partition cases from Lemma 4.30, namely, the cases[

succinct
/0

]
-

[
Copeland�

Copeland�Irrational

]
-

[
C
D

]
C

[
PV-TE
PV-TP

]
-BC j. As noted before, the first two brack-

ets can be ignored, as we have chosen the more demanding choice for each. Let us discuss the other
variations. Regarding changing from constructive to destructive, in Figure 5 change “is a winner”
to “is not a winner.” Regarding changing from PV-TP to PV-TE, in the “if” block in Figure 5
change each “all the candidates who win” to “the candidate who wins (if there is a unique candidate
who wins).”

The only remaining cases are the cases

[
succinct

/0

]
-

[
Copeland�

Copeland�Irrational

]
-

[
C
D

]
C

[
AV
DV

]
-BC j.

However, these cases are even more straightforward than the partition cases we just covered, so for
space reasons we will not write them out, but rather will briefly comment on these cases. Basically,

one’s top-level code for these cases loops over all j′-COTs, and for each (there are 3(
j′
2)) checks

whether the right outcome happens under that j′-COT (i.e., the distinguished candidate either is
(constructive case) or is not (destructive case) a winner), and if so, it runs Lenstra’s algorithm on
an integer linear programming constraint feasibility problem to see whether we can by the allowed
action (adding/deleting) get to a state where that particular j′-COT matches our (after addition or
deletion of voters) election. In the integer program, the variables will be the obvious ones, namely,

for each i, 1 ≤ i ≤ 2(
j′
2), we will have a variable, mi, that describes how many voters of type i to
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add/delete. As our key constants (of the integer linear program constraint feasibility problem), we

will have, for each i, 1 ≤ i ≤ 2(
j′
2), a value, ni, for the number of type i voters in the input. Also,

if this is a problem about addition of voters, we will have additional constants, n̂i, 1 ≤ i ≤ 2(
j′
2),

representing the number of type i voters among the pool, W , of voters available for addition. And
if our problem has an internal “k” (a limit on the number of additions or deletions), we enforce that
with the natural constraints, as do we also with the natural constraints enforce the obvious relation-
ships between the mi, ni, n̂i, and so on. Most critically, we have constraints ensuring that after the
additions/deletions specified by the mi, each pairwise outcome specified by the j′-COT is realized.

Finally, although everything in Section 4.3 (both the part so far and the part to come) is written
for the case of the nonunique-winner model, all the results hold analogously in the unique-winner
model, with the natural, minor proof modifications. (Also, we mention in passing that due to the
connection, found in Footnote 5 of Hemaspaandra et al., 2007a, between unique-winner destructive
control and nonunique-winner constructive control, one could use some of our nonunique-winner
constructive-case results to indirectly prove some of the unique-winner destructive-case results.)

4.3.3 FPT AND EXTENDED CONTROL

In this section, we look at extended control. By that we do not mean changing the ten standard
control notions of adding/deleting/partitioning candidates/voters. Rather, we mean generalizing past
merely looking at the constructive (make a distinguished candidate a winner) and the destructive
(prevent a distinguished candidate from being a winner) cases. In particular, we are interested in
control where the goal can be far more flexibly specified, for example (though in the partition cases
we will be even more flexible than this), we will allow as our goal region any (reasonable—there
are some time-related conditions) subcollection of “Copeland outcome tables” (specifications of
who won/lost/tied each head-to-head contest). Since from a Copeland outcome table, in concert
with the current � , one can read off the Copeland�Irrational scores of the candidates, this allows us a
tremendous range of descriptive flexibility in specifying our control goals, e.g., we can specify a
linear order desired for the candidates with respect to their Copeland�Irrational scores, we can specify
a linear-order-with-ties desired for the candidates with respect to their Copeland�Irrational scores, we
can specify the exact desired Copeland�Irrational scores for one or more candidates, we can specify that
we want to ensure that no candidate from a certain subgroup has a Copeland�Irrational score that ties
or defeats the Copeland�Irrational score of any candidate from a certain other subgroup, etc.19 Later in
this section we will give a list repeating some of these examples and adding some new examples.

All the FPT algorithms given in the previous section regard, on their surface, the standard control
problem, which tests whether a given candidate can be made a winner (constructive case) or can be
precluded from being a winner (destructive case). We now note that the general approaches used in
that section in fact yield FPT schemes even for the far more flexible notions of control mentioned

19. We mention up front that that initial example list applies with some additional minor technical caveats. Those
examples were speaking as if in the final election we have all the candidates receiving Copeland�Irrational scores in the
final election. But in fact in the partition cases this is not (necessarily) so, and so in those cases we will focus on
the Copeland outcome tables most natural to the given case. For example, in control by partition of voters, we will
focus on subcollections of pairs of Copeland outcome tables for the two subelections. Also, though our Copeland
outcome tables as defined below are not explicitly labeled with candidate names, but rather use a lexicographical
correspondence with the involved candidates, in some cases we would—though we don’t repeat this in the discussion
below—need to allow the inclusion in the goal specification of the names of the candidates who are in play in a given
table or tables, most particularly, in the cases of addition and deletion of candidates, and in some partition cases.
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above. In fact, one gets, for all the FPT cases covered in the previous section, FPT algorithms for the
extended-control problem for those cases—very loosely put, FPT algorithms that test, for virtually
any natural collection of outcome tables (as long as that collection itself can be recognized in a way
that doesn’t take too much running time, i.e., the checking time is polynomial and of a degree that
is bounded independently of j), whether by the given type of control one can reach one of those
outcome tables.

Let us discuss this in a bit more detail. A key concept used inside the proof of Lemma 4.31
was that of a Copeland outcome table—a function that for each distinct pair of candidates specifies
either a tie or specifies who is the (not tied) winner in their pairwise contest. Let us consider the
control algorithm given in the proof of that lemma, and in particular let us consider the top-level
code specified in Figure 5. That code double-loops over size j′ Copeland outcome tables (a.k.a. j′-
COTs), regarding the subpartitions, and for each case when the outcome tables’ subelection cases,
followed by the final election that they imply, correspond to the desired type of constructive (the
distinguished person wins) or destructive (the distinguished person does not win) outcome, we check
whether those two j′-COTs can be made to hold via the current type of control (for the case being
discussed, PV-TP).

However, note that simply by easily varying that top-level code we can obtain a natural FPT
algorithm (a single algorithm, see Footnote 17 the analogue of which applies here) for any question
of whether via the allowed type of control one can reach any run-time-quick-to-recognize collection
of pairs of j′-COTs (in the subelection), or even whether a given candidate collection and one of a
given (run-time-quick-to-recognize) j′′-COT collection over that candidate collection ( j′′ being the
size of that final-round candidate collection) can be reached in the final election. This is true not
just for the partition cases (where, informally put, we would do this by, in Figure 5, changing the
condition inside the “if” to instead look for membership in that collection of j′-COTs20) but also for
all the cases we attacked via Lenstra’s method (though for the nonpartition cases we will typically
single-loop over Copeland outcome tables that may represent the outcome after control is exerted;
also, for some of these cases, the caveat at the end of Footnote 19 will apply). And it is even easier
to notice that for those cases we attacked by direct brute force this also holds.

So, as just a few examples (some echoing the start of this section, and some new), all the follow-
ing have (with the caveats mentioned above about needed names attached, e.g., in cases of candidate
addition/deletion/partition, and regarding the partition cases focusing not necessarily directly on the

20. Let us discuss this a bit more formally, again using PV-TP as an example. Consider any family of boolean functions
Fj , j ∈ N, such that each Fj is computable, even when its first argument is succinctly specified, in polynomial time
with the polynomial degree bounded independently of j. Now, consider changing Figure 5’s code to:

For each j′-COT, T1,
For each j′-COT, T2,
If (Fj′(input,T1,T2))
then · · · .

Note that this change gives an FPT control scheme for a certain extended control problem. In particular, it does so
for the extended control problem whose goal is to ensure that we can realize at least one of the set of (T1,T2) such
that Fj′ ( j′ being the number of candidates in the particular input), given as its inputs the problem’s input, T1, and T2
evaluates to true. That is, the Fj functions are recognizing (viewed a bit differently, are defining) the goal set of the
extended control problem.

From the input, T1, and T2 we can easily tell the scores in the final election. So this approach can be used to
choose as our extended-control goals natural features of the final election.
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final table) FPT extended control algorithms for all the types of control and boundedness cases for
which the FPT results of the previous section are stated.

1. Asking whether under the stated action one can obtain in the final election (simply in the
election in the case when there is no partitioning) the outcome that all the Copeland�Irrational-
system scores of the candidates precisely match the relations of the lexicographic names of
the candidates.

2. More generally than that, asking whether under the stated action one can obtain in the final
election (simply in the election in the case when there is no partitioning) a certain linear-
order-without-ties regarding the Copeland�Irrational-system scores of the candidates.

3. More generally still, asking whether under the stated action one can obtain in the final election
(simply in the election in the case when there is no partitioning) a certain linear-order-with-
ties regarding the Copeland�Irrational-system scores of the candidates.

4. Asking whether under the stated action one can obtain in the final election (simply in the
election in the case when there is no partitioning) the situation that exactly 1492 candidates
tie as winner regarding their Copeland�Irrational-system scores.

5. Asking whether under the stated action one can obtain in the final election (simply in the
election in the case when there is no partitioning) the situation that no two candidates have
the same Copeland�Irrational-system scores as each other.

Again, these are just a very few examples. Our point is that the previous section is flexible enough to
address not just constructive/destructive control, but also to address far more general control issues.

4.3.4 RESISTANCE RESULTS

Theorems 4.27 and 4.28 give FPT schemes for all voter-control cases with bounded voters, for all
voter-control cases with bounded candidates, and for all candidate-control cases with bounded can-
didates. This might lead one to hope that all the cases admit FPT schemes. However, the remaining
type of case, the candidate-control cases with bounded voters, does not follow this pattern. In fact,
we note that for Copeland�Irrational all the candidate-control cases that we showed earlier in this pa-
per (i.e., without bounds on the number of voters) to be resistant remain resistant even for the case
of bounded voters. This resistance holds even when the input is not in succinct format, and so it
certainly also holds when the input is in succinct format.

The reason for this is that, for the case of irrational voters, with just two voters (with preferences
over j candidates) any given j-COT can be achieved. To do this, for each distinct pair of candidates
i and �, to have i preferred in their pairwise contest have both voters prefer i to �, to have � preferred
in their pairwise contest have both voters prefer � to i, and to have a tie in the pairwise contest have
one voter prefer � to i and one voter prefer i to �. Since in the proofs of resistance for candidate
control, we identified elections with their election graphs, i.e., with their COTs, it is not hard to see
that all these resistance proofs carry over even to the case of two irrational voters.

The only open cases remaining regard the rational-voter, candidate-control, bounded-voter
cases. We note that Betzler and Uhlmann (2008) have recently resolved some of these open is-
sues.
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5. Control in Condorcet Elections

In this section we show that Condorcet elections are resistant to constructive control via deleting
voters (CCDV) and via partition of voters (CCPV). These results were originally claimed in the
seminal paper of Bartholdi et al. (1992), but the proofs there were based on the assumption that
a voter can be indifferent between several candidates. Their model of elections did not allow that
(and neither does ours). Here we show how one can obtain these results in the case when the voters’
preference lists are linear orders—which is both their model and ours.

Recall that a candidate c of election E = (C,V ) is a Condorcet winner of E if he or she defeats
all other candidates in their head-to-head contests. Alternatively, one could say that a candidate c
is a Condorcet winner of election E if and only if he or she has Copeland0 score of ‖C‖−1. Since
each election can have at most one Condorcet winner, it doesn’t make sense here to differentiate
between the unique-winner and the nonunique-winner models. (We pass on to the reader a referee’s
comment that in the very different system known as weak Condorcet elections, whose winners are
all candidates who beat or tie each other candidate in head-to-head elections, one can have more
than one winner.)

Theorem 5.1 Condorcet elections are resistant to constructive control via deleting voters.

Proof. This follows immediately from the proof of Theorem 4.19. Note that a Condorcet winner
is always a unique Copeland� winner, for each rational � with 0≤ � ≤ 1, and note that in the proof
of Theorem 4.19, if S contains a k-element cover of B, then we can delete k voters such that in the
resulting election p defeats every other candidate in their head-to-head contest, i.e., p is a Condorcet
winner in the resulting election. ❑

Before we proceed with our proof of resistance for the case of constructive control via partition
of voters (CCPV), we have to mention a slight quirk of Bartholdi, Tovey, and Trick’s model of voter
partition. If one reads their paper carefully, it becomes apparent that they have a quiet assumption
that each given set of voters can only be partitioned into subelections that each elect exactly one
winner, thus severely restricting the chair’s partitioning possibilities. That was why Hemaspaandra
et al. (2007a) replaced Bartholdi, Tovey, and Trick’s convention with the more natural ties-promote
and ties-eliminate rules (see the discussion in Hemaspaandra et al., 2007a), but for this current
section of our paper we go back to Bartholdi, Tovey, and Trick’s model, since our goal here is to
reprove their results without breaking their model.

Theorem 5.2 Condorcet elections are resistant to constructive control via partitioning voters
(CCPV) in Bartholdi, Tovey, and Trick’s model (see the paragraph above).

Proof. The proof follows via a reduction from the X3C problem. In fact, we use exactly the
construction from the proof of Theorem 4.21. Let E = (C,V ) be the election constructed in that
proof.

Since s is the only candidate that p defeats in a head-to-head contest, the only way for p to
become a winner via partitioning voters is to guarantee that p wins within his or her subelection and
that s wins within the other one. (Note that since p is not a Condorcet winner, p cannot win in both
subelections.)

If S contains a k-element cover, say, {Sa1 , . . . ,Sak}, then letting Vp = V̂ −{va1 , . . . ,vak} and
Vs =V −Vp will make p the Condorcet winner in this CCPV scenario.
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For the converse, let (Vp,Vs) be a partition of the collection of voters such that p is the global
Condorcet winner in the CCPV scenario where we use two subelections, one with voters Vp and
one with voters Vs. Via the above paragraph we can assume, without loss of generality, that p is the
Condorcet winner in (C,Vp) and that s is the Condorcet winner in (C,Vs). Since the k+1 voters in
V −V̂ rank s first and rank p last, we can assume that Vs contains these k+1 voters (i.e., the voters
with preference s > r > B > p). Also, Vs contains at most k voters from V̂ , as otherwise s would
certainly not be a Condorcet winner in (C,Vs).

As a result, p can be made the Condorcet winner of (C,V̂ ) by deleting at most k voters. It
follows from Claim 4.22 that S contains a k-element cover of B. ❑

6. Conclusions

We have shown that from the computational point of view the election systems of Llull and Copeland
(i.e., Copeland0.5) are broadly resistant to bribery and constructive procedural control, regardless of
whether the voters are required to have rational preferences. It is rather charming that Llull’s 700-
year-old system shows perfect resistance to bribery and more resistances to (constructive) control
than any other natural system (even far more modern ones) with an easy winner-determination
procedure—other than Copeland� , 0 < � < 1—is known to possess, and this is even more remark-
able when one considers that Llull’s system was defined long before control of elections was even
explicitly studied. Copeland0.5 voting matches Llull’s perfect resistance to bribery and in addition
has perfect resistance to (constructive) control.

A natural open direction would be to study the complexity of control for additional election
systems. It would be particularly interesting to find existing, natural voting systems that have
polynomial-time winner determination procedures but that are resistant to all standard types of both
constructive and destructive control. It would also be extremely interesting to find single results that
classify, for broad families of election systems, precisely what it is that makes control easy or hard,
i.e., to obtain dichotomy meta-results for control (see Hemaspaandra and Hemaspaandra, 2007, for
some discussion regarding work of that flavor for manipulation).
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