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Supplementary Tables and Figures

Supplementary Table 1

Feature lme4qtl SOLAR ASReml GEMMA
Covariance for random effects ✓ ✓ ✓ ✓

Covariance for residuals (1) ✓ ✓ ✗

Methods for sparse covariances ✓ ✗ ✓ ✗

Methods for dense covariances (2) ✓ ✓ ✓

More than one covariances ✓ ✓ ✓ ✗

Restriction on parameters ✓ ✗ ✗ ✗

Gene-by-environment design ✓ (3) ✓ ✗

Longitudinal design ✓ (3) ✓ ✗

Free software ✓ ✓ ✗ ✓

Open source ✓ ✗ ✗ ✓

Table 1: Comparison among lme4qtl and selected stand-alone tools for genetic association analysis: SOLAR
[1], ASReml [2] and GEMMA [3]. Notes: (1) The lme4qtl packages does not support any structures of
residual variance, as the lme4 package does not has this feature yet. However, we showed two ad hoc
solutions in Supplementary Note 3. (2) The lme4qtl package is based on sparse matrix methods from the
lme4 package. In principle, dense matrix operations are still possible, but that might lead to considerable
overhead in computation resources, as presented in Supplementary Figure 4 and discussed in the main text.
(3) SOLAR requires specific tcl scripts (not publicly available) to parametrize either gene-by-environment
or longitudinal models.
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Supplementary Table 2

Feature lme4qtl pedigreemm lmekin Gaston regress rrBLUP
Extension of lme4 ✓ ✓ ✗ ✗ ✗ ✗

Covariance for random effects ✓ (1) ✓ ✓ ✓ ✓

Covariance for residuals (2) (2) ✓ ✗ ✗ ✗

Methods for sparse covariances ✓ ✓ ✓ ✗ ✗ ✗

Methods for dense covariances (3) (3) ✓ ✓ ✓ ✓

More than one covariances ✓ ✓ ✓ ✓ ✓ ✗

Restriction on parameters ✓ ✗ ✗ ✗ ✗ ✗

Table 2: Comparison among lme4qtl and other selected R packages that implement linear mixed models
and can be used in genetic studies: pedigreemm [4] that extends lme4 [5], lmekin function in the R package
coxme [6], Gaston [7], regress [8] and rrBLUP [9]. Notes: (1) The pedigreemm package does not support
custom covariances, but allows to define relationship matrices based on the pedigree information. (2) Both
lme4qtl and pedigreemm packages do not support any structures of residual variance, as the lme4 package
does not has this feature yet. However, we showed two ad hoc solutions in Supplementary Notes 2 and 3.
(3) Both lme4qtl and pedigreemm packages are based on sparse matrix methods from the lme4 package.
In principle, dense matrix operations are still possible, but that might lead to considerable overhead in
computation resources, as presented in Supplementary Figure 4 and discussed in the main text.
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Supplementary Table 3

Model Fast SOLAR, hours SOLAR, hours lme4qtl, hours
❛♣tt ∼ ❛❣❡ ✰ s❡① ✰ ✭✶⑤✐❞✮ 3.8 16.8 6.6
❛♣tt ∼ ❛❣❡ ✰ s❡① ✰ ✭✶⑤❤❤✐❞✮ ✰ ✭✶⑤✐❞✮ — 25.1 7.6
❛♣tt ∼ ❛❣❡ ✰ s❡① ✰ ✭✶⑤❤❤✐❞✮ ✰ ✭✶⑤✐❞✮ ✰ ✭✶⑤✐❞✼✮ — 27.9 23.3

Table 3: We performed several genome-wide screenings of the activated partial thromboplastin time
(APTT) phenotype in the GAIT2 data [10]. We considered three types of models and compared the com-
putation time between our software lme4qtl and SOLAR [1]. The three models differed in the number of
random effects: a single genetic additive effect (expressed in the model formula as ✭✶⑤✐❞✮); two house-hold
and genetic additive effect (✭✶⑤❤❤✐❞✮ ✰ ✭✶⑤✐❞✮); and three house-hold, genetic additive and dominance
effects (✭✶⑤❤❤✐❞✮ ✰ ✭✶⑤✐❞✮ ✰ ✭✶⑤✐❞✼✮). The GAIT2 study included 903 individuals (those with measured
values of APTT) in 35 extended families. The number of tested genetic markers consisted of 263,764 SNPs
and indels, which passed the minimum allele frequency threshold of 1%. The analysis was performed on
a desktop computer (2.8GHz quad-core Intel Core i5 processor, 8GB RAM).
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Supplementary Figures

Supplementary Figure 1

Figure 1: Genome-wide association study of APTT in the GAIT2 data computed by the lme4qtl R package
partially replicates previously reported loci in a larger cohort of 9,240 individuals [11]. Three loci, in genes
KNG1, F12 and ABO, passed the genome-wide significant threshold at 5× 10−8, depicted as red horizontal
line on the plot.
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Supplementary Figure 2
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Figure 2: The plot represents the computation times reported in Table 3 on right panel. Other left and
central panels show the results for the same experiment as in Table 3, but the list of fixed effects is less,
either one (the intercept) or two (the intercept and age).

5



Supplementary Figure 3
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Figure 3: Comparison in computation time among three tools – our software lme4qtl, SOLAR [1] and
lmekin [6] – showed the fastest performance of lme4qtl. We fitted a polygenic model of the activated partial
thromboplastin time (APTT) phenotype measured in the GAIT2 data [10]. Models were different in the
number of random effects: a single genetic additive effect (expressed in the model formula as ✭✶⑤✐❞✮); two
house-hold and genetic additive effect (✭✶⑤❤❤✐❞✮ ✰ ✭✶⑤✐❞✮); and three house-hold, genetic additive and
dominance effects (✭✶⑤❤❤✐❞✮ ✰ ✭✶⑤✐❞✮ ✰ ✭✶⑤✐❞✼✮). Models also were different in the number of fixed
effects (covariates): a single covariate (■♥t❡r❝❡♣t), two covariates (■♥t❡r❝❡♣t ✰ ❛❣❡) and three covariates
(■♥t❡r❝❡♣t ✰ ❛❣❡ ✰ ❣❡♥❞❡r). The GAIT2 study included 903 individuals (those with measured values of
APTT) in 35 extended families. The analysis was performed on a desktop computer (2.8GHz quad-core
Intel Core i5 processor, 8GB RAM). We repeated each measurement of computational time 10 times and
reported the mean value and its standard error in the figure. The numbers on y axis are base-10 log scaled.
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Supplementary Figure 4
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Figure 4: The computation time of polygenic model (devided by the number of interations in the optimiza-
tion algorithm) fitted by lme4qtl increases as the sparsity of the genetic relatedness matrix is reduced, since
the lme4 machinery is optimized for linear algebra operations on sparse matrices. The sparsity is measured
as the proportion of zero entries in the relatedness matrix (♠❛t). Point on the plot with the lowest sparsity
corresponds to a model fitted with the original GAIT2 genetic additive relatedness matrix. The dashed
line marks the reference computation time. Other points come from models fitted with modified matri-
ces varying their sparsity. The polygenic model is estimated for the activated partial thromboplastin time
(APTT) measured in 903 individuals from the family-based GAIT2 study. The R code used for computation
was r❡❧♠❛t▲♠❡r✭❛♣tt ∼ ❛❣❡ ✰ ❣❡♥❞❡r ✰ ✭✶⑤✐❞✮✱ ❞❛t✱ r❡❧♠❛t ❂ ❧✐st✭■❉ ❂ ♠❛t✮✮. The analysis was
performed on a desktop computer (2.8GHz quad-core Intel Core i5 processor, 8GB RAM). We repeated
each measurement of computational time 10 times and reported the mean value and its standard error in
the figure.
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Supplementary Note 1: R code to compare lme4qtl and

pedigreemm R packages
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About

The R package pedigreemm was first in extending the lme4 R package for particular applications in the
animal breeding field (Vazquez et al. 2010). Custom covariance (genetic additive) matrix are defined using
the pedigree annotation information (pedigree argument of pedigreemm function). Although the lme4qtl

package borrows the same idea of pedigreemm, lme4qtl provides a larger list of genetic models that are not

possible with pedigreemm. In particular, these models include:

• models with a single or several custom covariances (not necessary linked to pedigree information);
• models with random slopes and other similar models like gene-by-environment interaction models;

– the restriction on model parameters, e.g. the correlation coefficient is zero, is supported.

Here, we show models that are available with lme4qtl and not with pedigreemm.

Include

First, we load R packages necessary for data analysis.

library(Matrix)

library(magrittr)

library(pedigreemm)

library(lme4qtl)
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Data

We use an example data set milk from the pedigreemm package. See ?milk for description.

Here, we work on a subset of this dataset (milk_subset) to reduce the computation time.

data(milk)

milk <- within(milk, {

id <- as.character(id)

sdMilk <- milk / sd(milk)

})

ids <- with(milk, id[sire %in% 1:3]) # for more ids: c(1:3, 319-321)

milk_subset <- subset(milk, id %in% ids)

milk_subset <- within(milk_subset, {

herd <- droplevels(herd)

herd_id <- paste0("herd", seq(1, length(herd)))

})

Covariance matrices

A mixed model we are going to fit will have two random effects, groupings based on two ID variables:

• id, a numeric identifier of cow (the genetic additive effect);
• herd, a factor indicating the herd (the shared environmental effect).

Further we derive the covariance matrices (among samples) due to these two random effects.

A_herd <- with(milk_subset, model.matrix(~ herd - 1)) %>%

tcrossprod %>% Matrix

rownames(A_herd) <- milk_subset$herd_id

colnames(A_herd) <- milk_subset$herd_id

A_gen <- getA(pedCowsR)

stopifnot(all(ids %in% rownames(A_gen)))

ind <- rownames(A_gen) %in% ids

A_gen <- A_gen[ind, ind]

image(A_herd, main = "A_herd")

image(A_gen, main = "A_gen")
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A_herd
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Models

A single kinship matrix

Both packages can fit a basic model with a single genetic effect, for which the pedigreemm R package was
sought.

m1_pmm <- pedigreemm(sdMilk ~ lact + log(dim) + (1|id) + (1|herd),

data = milk_subset, pedigree = list(id = pedCowsR))

VarCorr(m1_pmm)

Groups Name Std.Dev.

id (Intercept) 0.55436

herd (Intercept) 0.55630

Residual 0.59894

m1_relmat <- relmatLmer(sdMilk ~ lact + log(dim) + (1|id) + (1|herd),

data = milk_subset, relmat = list(id = A_gen))

VarCorr(m1_relmat)

Groups Name Std.Dev.

id (Intercept) 0.55436

herd (Intercept) 0.55630

Residual 0.59894

We see that the estimation of variance components from both packages are identical.

A single custom covariance matrix

lme4qtl packages allows for custom covariance matrices, while pedigreemm does not.

m2_lmer <- lmer(sdMilk ~ (1|herd), milk_subset)

VarCorr(m2_lmer)
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Groups Name Std.Dev.

herd (Intercept) 0.54833

Residual 0.81060

m2_relmat <- relmatLmer(sdMilk ~ (1|herd_id), milk_subset,

relmat = list(herd_id = A_herd))

VarCorr(m2_relmat)

Groups Name Std.Dev.

herd_id (Intercept) 0.54833

Residual 0.81060

(try(m2_pmm <- pedigreemm(sdMilk ~ (1|herd_id), milk_subset,

pedigree = list(herd_id = A_herd))))

[1] "Error : all(sapply(pedigree, is, class2 = \"pedigree\")) is not TRUE\n"

attr(,"class")

[1] "try-error"

attr(,"condition")

<simpleError: all(sapply(pedigree, is, class2 = "pedigree")) is not TRUE>

getME(m2_lmer, "Ztlist")[[1]] %>% crossprod %>% image

getME(m2_relmat, "Ztlist")[[1]] %>% crossprod %>% image
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Rank deficiency

A_herd is a low-rank matrix, but lme4qtl is able to deal with this rank deficiency situation by replacing
the Cholesky decomposition by the EVD operation. The pedigreemm package only uses the Cholesky
decomposition.

A_herd %>% dim

[1] 316 316

A_herd %>% as.matrix %>% qr %$% rank

[1] 21
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A single kinship matrix + random slope

Complex models are possible with lme4qtl, for example, those with a random slope effect.

m3_relmat <- relmatLmer(sdMilk ~ lact + log(dim) + (1 + lact|id) + (1|herd),

data = subset(milk_subset, relmat = list(id = A_gen)))

VarCorr(m3_relmat)

Groups Name Std.Dev. Corr

id (Intercept) 0.400268

lact 0.094301 0.489

herd (Intercept) 0.593480

Residual 0.585815

(try(m3_pmm <- pedigreemm(sdMilk ~ lact + log(dim) + (1 + lact|id) + (1|herd),

data = milk_subset, pedigree = list(id = pedCowsR))))

[1] "Error in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, : \n factor

attr(,"class")

[1] "try-error"

attr(,"condition")

<simpleError in `levels<-`(`*tmp*`, value = if (nl == nL) as.character(labels) else paste0(labels, seq_along(levels))):

Restriction on model parameters

m3_relmat_rho0 <- relmatLmer(sdMilk ~ lact + log(dim) + (1 + lact|id) + (1|herd),

data = subset(milk_subset, relmat = list(id = A_gen)),

vcControl = list(rho0 = list(id = 2)))

VarCorr(m3_relmat_rho0)

Groups Name Std.Dev. Corr

id (Intercept) 0.46014

lact 0.11909 0.000

herd (Intercept) 0.58854

Residual 0.57998

Two covariance matrices

m5 <- relmatLmer(sdMilk ~ (1|herd) + (1|id), milk_subset,

relmat = list(id = A_gen))

VarCorr(m5)

Groups Name Std.Dev.

id (Intercept) 0.54054

herd (Intercept) 0.54286

Residual 0.64997

m6 <- relmatLmer(sdMilk ~ (1|herd_id) + (1|id), milk_subset,

relmat = list(herd_id = A_herd, id = A_gen))

VarCorr(m6)

Groups Name Std.Dev.

herd_id (Intercept) 0.54286

id (Intercept) 0.54054
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Residual 0.64997

getME(m5, "Ztlist")[[1]] %>% crossprod %>% image

getME(m6, "Ztlist")[[2]] %>% crossprod %>% image
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getME(m5, "Ztlist")[[2]] %>% crossprod %>% image

getME(m6, "Ztlist")[[1]] %>% crossprod %>% image
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(try(m3 <- pedigreemm(sdMilk ~ lact + log(dim) + (1|id) + (1|herd_id),

data = milk_subset, pedigree = list(id = pedCowsR, herd_id = A_herd))))

[1] "Error : all(sapply(pedigree, is, class2 = \"pedigree\")) is not TRUE\n"

attr(,"class")

[1] "try-error"

attr(,"condition")

<simpleError: all(sapply(pedigree, is, class2 = "pedigree")) is not TRUE>
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Supplementary Note 2: Multi-trait and multi-environment linear mixed

models

We consider a simple polygenic model with two random effects, the additive genetic effect and the residual
errors (also referred to as environment effect).

Single-trait linear mixed model

A linear model describes observations of a trait, measured in n individuals and stored in a vector yn×1.

y = Xβ + Zu + e

where Xn×p and Zn×n are incidence matrices, p is the number of fixed effects, βp×1 is a vector of fixed
effects, un×1 is a vector of a random polygenic effect, and en×1 is a vector of the residuals errors. The
random vectors u and e are mutually uncorrelated and multivariate normally distributed, N (0, Gn×n) and
N (0, Rn×n). The covariance matrices are parametrized with a few scalar parameters and have the form
Gn×n = σ2

g An×n and Rn×n = σ2
e In×n, where A is a genetic additive relationship matrix and I is the identity

matrix.

Multi-trait linear mixed model

The model for a single trait can be extended to a more general case of two and more traits by stacking
observations from traits together [1].

A linear model describes observations in two traits, measured in n individuals and stored in a vector
y2n×1.

y = Xβ + Zu + e

where X2n×p and Z2n×2n are incidence matrices, p is the number of fixed effects, βp×1 is a vector of fixed
effects, u2n×1 is a vector of a random polygenic effect, and e2n×1 is a vector of the residuals errors. The
random vectors u and e are mutually uncorrelated and multivariate normally distributed, N (0, G2n×2n)
and N (0, R2n×2n).

The variance-covariance matrices G2n×2n and R2n×2n have a block structure and can be represented
using as the Kronecker operator.

G2n×2n = C2×2 ⊗ An×n =

(

c11 A c12 A
c21 A c21 A

)

=

(

σ2
1 A ρσ1σ2 A

ρσ1σ2 A σ2
2 A

)

g

R2n×2n = E2×2 ⊗ In×n =

(

e11 I e12 I
e21 I e21 I

)

=

(

σ2
1 I ρσ1σ2 I

ρσ1σ2 I σ2
2 I

)

e

The diagonal entries σ2
g1

and σ2
g2

in the symmetric matrix C are marginal genetic variances for each
trait, and the off-diagonal entries ρgσg1

σg2 are covariances between the traits. The environment covariance
R2n×2n is represented similarly.

Multi-environment linear mixed model

If a trait is measured in two environments, the previous model for two different traits can be applied [2].
Thus, the diagonal entries σ2

g1
and σ2

g2
in the symmetric matrix C are marginal genetic variances for each

of two environment, and the off-diagonal entries ρgσg1
σg2 are covariances between the environments. The

environment covariance R2n×2n has a similar interpretation.
Blangero proposed statistical tests for the null hypothesis of no gene-environment interaction based on

the likelihood ratio statistic, when comparing the full model and a reduced model. The first null model
assumes that the genetic variances are equal in the null model [2, p. 535]. The second null model assumes
that the genetic correlation coefficient is equal to 1.
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Following the lme4 authors’ guidelines [3, Section A.1], we implemented three types of restrictions: the
correlation is zero (ρg = 0), the variances are equal (σg1

= σg2 ), and the correlation is one (ρg = 1). These
types of restrictions can be extended to more general cases with multiple environments.

Multi-environment linear mixed model: a special case of sex-specificity

A sex-specificity model is a special case of gene-environment interactions where individuals are measured
in single environments [2, p. 530].

A linear model describes observations in a trait, measured in n individuals and stored in a vector yn×1.

y = Xβ + Zu + e

where Xn×p and Zn×n are incidence matrices, p is the number of fixed effects, βp×1 is a vector of fixed
effects, un×1 is a vector of a random polygenic effect, and en×1 is a vector of the residuals errors. The
random vectors u and e are mutually uncorrelated and multivariate normally distributed, N (0, Gn×n) and
N (0, Rn×n).

The variance-covariance matrices Gn×n and Rn×n have a block structure stratified by gender.

Gn×n =

(

σ2
1 A11 ρσ1σ2 A12

ρσ1σ2 A21 σ2
2 A22

)

g

Rn×n =

(

σ2
1 I ρσ1σ2 I

ρσ1σ2 I σ2
2 I

)

e

Matrices A11, A12, A21 and A22 are four blocks of the matrix A stratified by gender. For example, A11

is the genetic relationship matrix that corresponds to males. As A is symmetric, A12 = A21.
Parameters σ2

g1
and σ2

g2
are marginal genetic variances in males and females, and parameter ρg is the

genetic correlation coefficient between the two genders. The environment covariance parameters have a
similar interpretation.

The correlation coefficient ρe is restricted to zero, so the sex-specificity model is identifiable [2].

Rn×n =

(

σ2
1 I 0
0 σ2

2 I

)

e

Sex-specificity linear mixed model in the GAIT2 data

In the main text of the manuscript, we showed two basic models for the analysis of APTT in the GAIT2
data, polygenic and association. Here, we present an advanced model that assesses the sex-specificity in
the APTT phenotype.

Before conducting the analysis, we stored phenotype, age, gender, individual ✐❞, house-hold ❤❤✐❞

variables and SNPs in a table ❞❛t. The additive genetic relatedness matrix was estimated by SOLAR using
the pedigree information and stored in a matrix ♠❛t. A polygenic model ♠✶ was fitted to the data as
follows.

♠✶ ❁✲ r❡❧♠❛t▲♠❡r✭❛♣tt ⑦ ❛❣❡ ✰ ❣❡♥❞❡r ✰ ✭✶⑤✐❞✮✱ ❞❛t✱

r❡❧♠❛t ❂ ❧✐st✭✐❞ ❂ ♠❛t✮✮

To assess the hypothesis of sex-specificity [2] for APTT, our package allows to fit such a polygenic
model ♠✸ with multiple levels of relatedness.

♠✸ ❁✲ r❡❧♠❛t▲♠❡r✭❛♣tt ⑦ ❛❣❡ ✰ ❣❡♥❞❡r ✰ ✭✵ ✰ ❣❡♥❞❡r⑤✐❞✮ ✰ ✭✵ ✰ ❣❡♥❞❡r⑤r✐❞✮✱ ❞❛t✱

r❡❧♠❛t ❂ ❧✐st✭✐❞ ❂ ♠❛t✮✱ ✈❝❈♦♥tr♦❧ ❂ ❧✐st✭r❤♦✵ ❂ ❧✐st✭r✐❞ ❂ ✺✮✮✱

✇❡✐❣❤ts ❂ r❡♣✭✶❡✶✵✱ ♥r♦✇✭❞❛t✮✮✮
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The first genetic random effect, denoted as ✭✵ ✰ ❣❡♥❞❡r⑤✐❞✮, has three parameters σg1
, σg2 and ρg,

as described in the previous section. The second residual random effect, denoted as ✭✵ ✰ ❣❡♥❞❡r⑤r✐❞✮,
also has three parameters, but the correlation coefficient is restricted to zero as specified in the ✈❝❈♦♥tr♦❧

argument. This restriction is necessary because the model is a special case of gene-environment interactions
where individuals are measured in single environments [2, p. 530]. The variable r✐❞ is a copy of ✐❞,
and using large values in the last argument ✇❡✐❣❤ts is an ad hoc solution to cancel the independent and
identically distributed residual error. We note that the ♠✸ model can be fitted without the ad hoc.

♠✸ ❁✲ r❡❧♠❛t▲♠❡r✭❛♣tt ⑦ ❛❣❡ ✰ ❣❡♥❞❡r ✰ ✭✵ ✰ ❣❡♥❞❡r⑤✐❞✮ ✰ ✭✵ ✰ ❞✉♠♠②✭❣❡♥❞❡r✮⑤r✐❞✮✱ ❞❛t✱

r❡❧♠❛t ❂ ❧✐st✭✐❞ ❂ ♠❛t✮✮

Once the evidence of the gene-environment interaction in ♠✸ is confirmed [2], a new association model
♠✹ can be considered for the GWAS, in which a SNP, for example, rs✶, has both marginal and interaction
terms with the ❣❡♥❞❡r variable.

♠✹ ❁✲ ✉♣❞❛t❡✭♠✸✱ ✳ ⑦ ✳ ✰ rs✶ ✰ rs✶✿❣❡♥❞❡r✮

❛♥♦✈❛✭♠✸✱ ♠✹✮

Implementation of restriction on model parameters

The R code used in the previous section to fit the sex-specificity model has a special use of the ✈❝❈♦♥tr♦❧

parameter, that defines the restriction on variance components.

♠✸ ❁✲ r❡❧♠❛t▲♠❡r✭❛♣tt ⑦ ❛❣❡ ✰ ❣❡♥❞❡r ✰ ✭✵ ✰ ❣❡♥❞❡r⑤✐❞✮ ✰ ✭✵ ✰ ❣❡♥❞❡r⑤r✐❞✮✱ ❞❛t✱

r❡❧♠❛t ❂ ❧✐st✭✐❞ ❂ ♠❛t✮✱ ✈❝❈♦♥tr♦❧ ❂ ❧✐st✭r❤♦✵ ❂ ❧✐st✭r✐❞ ❂ ✺✮✮✱

✇❡✐❣❤ts ❂ r❡♣✭✶❡✶✵✱ ♥r♦✇✭❞❛t✮✮✮

To understand how the ✈❝❈♦♥tr♦❧ argument works, we need to write the covariance structure of ran-
dom effects (✭✵ ✰ ❣❡♥❞❡r⑤✐❞✮ and ✭✵ ✰ ❣❡♥❞❡r⑤r✐❞) using its associated Cholesky decomposition [3,
Appendix A.1, p. 44, formula (69)].

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

g

=

(

θ1 0
θ2 θ3

)(

θ1 θ2

0 θ3

)

=

(

θ2
1 θ1θ2

θ1θ2 θ2
2 + θ2

3

)

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

e

=

(

θ4 0
θ5 θ6

)(

θ4 θ5

0 θ6

)

=

(

θ2
4 θ4θ5

θ4θ5 θ2
5 + θ2

6

)

Now it is clear that the environmental correlation can be restricted to zero by setting θ5 = 0. Conse-
quently, the value of the ✈❝❈♦♥tr♦❧ argument is ❧✐st✭r❤♦✵ ❂ ❧✐st✭r✐❞ ❂ ✺✮✮.

The following table shows more options of using ✈❝❈♦♥tr♦❧.

Condition Parameter restrictions ✈❝❈♦♥tr♦❧ value
ρg = 0 θ2 = 0 ❧✐st✭r❤♦✵ ❂ ❧✐st✭✐❞ ❂ ✷✮✮

ρg = 1 θ3 = 0 ❧✐st✭r❤♦✶ ❂ ❧✐st✭✐❞ ❂ ✸✮✮

(σ1)g = (σ2)g θ2
1 = θ2

2 + θ2
3 ❧✐st✭✈❛r❡q ❂ ❧✐st✭✐❞ ❂ ❝✭✶✱ ✷✱ ✸✮✮✮

ρg = 0, ρe = 0 θ2 = 0, θ5 = 0 ❧✐st✭r❤♦✵ ❂ ❧✐st✭✐❞ ❂ ✷✱ r✐❞ ❂ ✺✮✮

The use of names such as r❤♦✵, r❤♦✶ and ✈❛r❡q is required, as these names are bound to particular
implementation (the second column of the table given above ) in the body of the r❡❧♠❛t▲♠❡r function.
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Supplementary Note 3: R code applied to the GAIT2

data
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Introduction

Load packages

We need a list of R package, including our lme4qtl package, to perform the analysis.

library(plyr)

library(dplyr)

library(Matrix)

library(gridExtra)

library(lme4)

library(boot)

library(lme4qtl)

The next two packages complement the lme4 functionality with additional inference procedures.
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library(lmerTest)

##

## Attaching package: 'lmerTest'

## The following object is masked from 'package:lme4':

##

## lmer

## The following object is masked from 'package:stats':

##

## step

library(RLRsim)

Parameters

The GAIT2 family-based sample consists of 934 individuals. Here, we use a small subset of 10 markers from
Chromosome 22 in the association analysis.

N <- 934

chr <- 22

M <- 10

Load data

We need the following R packages (not publicly available) to load the GAIT2 data.

library(gait)

library(solarius)

Data variables include

• table of phenotypes phen with such variables as
– aptt outcome, the activated partial thromboplastin time (APTT)
– gender and age as covariates or fixed effect
– id, the individual identifier
– famid, the family identifier
– hhid, the house-hold identifier (not the same as famid)

• dkin, the double kinship matrix (additive genetic effect)
• delta7, matrix of dominance genetic effect

Phenotype data

dir_phen <- "~/Data/GAIT2/phen/"

dir_snp <- "~/Data/GAIT2/ncdf/"

phen <- gait2.phen(dir_phen, transforms = "tr1", id.alert = TRUE, traits = "tr1_APTT")

phen <- rename(phen,

aptt = tr1_APTT,
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gender = SEXf, age = AGEc,

id = ID, famid = FAMID, hhid = HHID)

phen <- mutate(phen, rid = id, id7 = id)

Covariance matrices

dkin <- Matrix(solarKinship2(phen))

delta7 <- Matrix(solarKinship2(phen, coef = "d"))

The next plot depicts sub-matrices (first 50 individuals) of the genetic additive (left) and dominance (right)
covariance matrices.
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Polygenic analysis

The polygenic model of APTT has two random effects (apart from the residual variance), genetic additive
and house-hold. In the case of the genetic effect, the covariance matrix dkin is introduced using relmat

argument.

m1 <- relmatLmer(aptt ~ age + gender + (1|id) + (1|hhid), phen, relmat = list(id = dkin))

m1

## Linear mixed model fit by REML ['lmerMod']

## Formula: aptt ~ age + gender + (1 | id) + (1 | hhid)

## Data: phen

## REML criterion at convergence: 2355.299

## Random effects:

## Groups Name Std.Dev.

## id (Intercept) 0.7270

## hhid (Intercept) 0.2582

## Residual 0.5926
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## Number of obs: 884, groups: id, 884; hhid, 448

## Fixed Effects:

## (Intercept) age gender2

## 0.17759 -0.01687 -0.07376

Diagnostics

The residuals are expected to be normally distributed.

r1 <- residuals(m1)

qqnorm(r1)

qqline(r1)
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Histogram of r1
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Inference

We use the step function from the R package lmerTest.

# `?lmerTest::step`

# the p-value thr. are set to 1 to disable terms dropping

step(m1, alpha.random = 1, alpha.fixed = 1)

##

## Random effects:

## Chi.sq Chi.DF elim.num p.value

## id 70.44 1 kept <1e-07

## hhid 2.98 1 kept 0.0842

##

## Fixed effects:

## Sum Sq Mean Sq NumDF DenDF F.value elim.num Pr(>F)

## age 53.2671 53.2671 1 650.17 151.6804 kept <1e-07

## gender 0.5382 0.5382 1 794.99 1.5326 kept 0.2161

##

## Least squares means:

## gender Estimate Standard Error DF t-value Lower CI Upper CI

## gender 1 1 0.1826 0.0586 459 3.1200 0.183 0.183

## gender 2 2 0.1088 0.0589 439 1.8500 0.109 0.109

## p-value

## gender 1 0.0019 **

## gender 2 0.0655 .
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Differences of LSMEANS:

## Estimate Standard Error DF t-value Lower CI Upper CI

## gender 1 - 2 0.1 0.0596 795.0 1.24 0.0738 0.0738

## p-value

## gender 1 - 2 0.2

##

## Final model:

## relmat_lmer(formula = aptt ~ age + gender + (1 | id) + (1 | hhid),

## data = phen, contrasts = list(gender = "contr.SAS"), relmat = list(id = dkin))

Inference for heritability

By definition, heritability is the proportion of explained variance.

vf <- as.data.frame(VarCorr(m1))[, c("grp", "vcov")]

vf$prop <- with(vf, vcov / sum(vcov))

grp vcov prop

id 0.53 0.56
hhid 0.07 0.07
Residual 0.35 0.37

Confidence interval

# `?lme4::profile`

prof <- profile(m1, which = "theta_", prof.scale = "varcov")

# `?lme4qtl::varpropProf`

prof_prop <- varpropProf(prof)

ci <- confint(prof_prop, level = 0.95)

ci

## 2.5 % 97.5 %

## .sigprop01 0.4450731 0.84293219

## .sigprop02 0.0000000 0.06472766

## .sigmaprop 0.1461354 0.50813557
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Profiled heritability
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Likelihood ratio tests (LRTs)

# ?RLRsim::exactRLRT

m1_reduced <- update(m1, . ~ . - (1|hhid))

m1_null <- update(m1, . ~ . - (1|id))

rlrt_h2 <- exactRLRT(

m1_reduced, # the reduced model with only the effect to be tested

mA = m1, # the full model under the alternative

m0 = m1_null, # the model under the null

seed = 1

)

rlrt_h2

##

## simulated finite sample distribution of RLRT.

##

## (p-value based on 10000 simulated values)

##

## data:

## RLRT = 70.443, p-value < 2.2e-16

lrt_h2 <- anova(m1_null, m1)

## refitting model(s) with ML (instead of REML)
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lrt_h2

## Data: phen

## Models:

## m1_null: aptt ~ age + gender + (1 | hhid)

## m1: aptt ~ age + gender + (1 | id) + (1 | hhid)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## m1_null 5 2416.2 2440.1 -1203.1 2406.2

## m1 6 2348.0 2376.7 -1168.0 2336.0 70.185 1 < 2.2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summary

Heritability estimates / tests Value

Estimate 0.56
95% CI [0.45; 0.84]
Exact RLRT p-value < 2.2e-16
LRT p-value < 2.2e-16

Polygenic sex-specificity analysis

The the advanced polygenic model of sex-specificity the variance depends on gender.

m3 <- relmatLmer(aptt ~ age + gender + (0 + gender|id) + (0 + dummy(gender)|rid),

phen, relmat = list(id = dkin), REML = FALSE)

VarCorr(m3)

## Groups Name Std.Dev. Corr

## id gender1 0.82909

## gender2 0.69727 1.000

## rid dummy(gender) 0.40729

## Residual 0.52552

We see from the previous output of variance components that there are some sex-specific differences. To
assess these difference quantitively, we will fit two null models and perform LRT:

• the genetic variances are equal;
• the genetic correlation coefficient is 1.

The later model does not make sense, as the alternative model m3 indicates that the genetic correlation
coefficient is 1.

m3_vareq <- relmatLmer(aptt ~ age + gender + (0 + gender|id) + (0 + dummy(gender)|rid),

phen, relmat = list(id = dkin), vcControl = list(vareq = list(id = c(1, 2, 3))), REML = FALSE)

VarCorr(m3_vareq)

## Groups Name Std.Dev. Corr

## id gender1 0.76577

## gender2 0.76577 1.000

## rid dummy(gender) 0.17475

## Residual 0.58803

The LRT suggests that we cannot conclude that there is sex-specificity.
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stat <- 2 * (logLikNum(m3) - logLikNum(m3_vareq))

pval <- pchisq(stat, df = 1, lower = FALSE)

pval

## [1] 0.1882005

The following code shows how to fit a model with a restriction that the genetic correlation coefficient is 1.

m3_rho1 <- relmatLmer(aptt ~ age + gender + (0 + gender|id) + (0 + dummy(gender)|rid),

phen, relmat = list(id = dkin), vcControl = list(rho1 = list(id = 3)), REML = FALSE)

VarCorr(m3_rho1)

## Groups Name Std.Dev. Corr

## id gender1 0.82909

## gender2 0.69727 1.000

## rid dummy(gender) 0.40729

## Residual 0.52552

Summary

Null Model LRT p-value

ρg = 1 1
(σm)g = (σf )g 0.1882005

Additional analyses

Dominance effect in addition to additive genetic and house-hold effects

A single genetic additive effect:

mod1 <- relmatLmer(aptt ~ age + gender + (1|id) + (1|hhid), phen, relmat = list(id = dkin))

mod1

## Linear mixed model fit by REML ['lmerMod']

## Formula: aptt ~ age + gender + (1 | id) + (1 | hhid)

## Data: phen

## REML criterion at convergence: 2355.299

## Random effects:

## Groups Name Std.Dev.

## id (Intercept) 0.7270

## hhid (Intercept) 0.2582

## Residual 0.5926

## Number of obs: 884, groups: id, 884; hhid, 448

## Fixed Effects:

## (Intercept) age gender2

## 0.17759 -0.01687 -0.07376

Two genetic additive and dominance effects:

mod2 <- relmatLmer(aptt ~ age + gender + (1|id) + (1|hhid) + (1|id7), phen, relmat = list(id = dkin, id7

mod2

## Linear mixed model fit by REML ['lmerMod']

## Formula: aptt ~ age + gender + (1 | id) + (1 | hhid) + (1 | id7)
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## Data: phen

## REML criterion at convergence: 2353.095

## Random effects:

## Groups Name Std.Dev.

## id7 (Intercept) 0.7180

## id (Intercept) 0.5024

## hhid (Intercept) 0.2687

## Residual 0.3375

## Number of obs: 884, groups: id7, 884; id, 884; hhid, 448

## Fixed Effects:

## (Intercept) age gender2

## 0.17302 -0.01676 -0.06852

anova(mod1, mod2)

## refitting model(s) with ML (instead of REML)

## Data: phen

## Models:

## mod1: aptt ~ age + gender + (1 | id) + (1 | hhid)

## mod2: aptt ~ age + gender + (1 | id) + (1 | hhid) + (1 | id7)

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

## mod1 6 2348.0 2376.7 -1168.0 2336.0

## mod2 7 2347.9 2381.4 -1166.9 2333.9 2.125 1 0.1449

Two fitting methods for gene-by-gender

mod3 <- relmatLmer(aptt ~ age + gender + (0 + gender|id) + (0 + dummy(gender)|rid),

phen, relmat = list(id = dkin), REML = FALSE)

mod3

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: aptt ~ age + gender + (0 + gender | id) + (0 + dummy(gender) |

## rid)

## Data: phen

## AIC BIC logLik deviance df.resid

## 2353.077 2391.352 -1168.538 2337.077 876

## Random effects:

## Groups Name Std.Dev. Corr

## id gender1 0.8291

## gender2 0.6973 1.00

## rid dummy(gender) 0.4073

## Residual 0.5255

## Number of obs: 884, groups: id, 884; rid, 884

## Fixed Effects:

## (Intercept) age gender2

## 0.18150 -0.01685 -0.08525

mod4 <- relmatLmer(aptt ~ age + gender + (0 + gender|id) + (0 + gender|rid),

phen, relmat = list(id = dkin), vcControl = list(rho0 = list(rid = 5)),

weights = rep(1e10, nrow(phen)), REML = FALSE)

mod4

## Linear mixed model fit by maximum likelihood ['lmerMod']

## Formula: aptt ~ age + gender + (0 + gender | id) + (0 + gender | rid)
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## Data: phen

## Weights: rep(1e+10, nrow(phen))

## AIC BIC logLik deviance df.resid

## NA NA NA NA 874

## Random effects:

## Groups Name Std.Dev. Corr

## id gender1 0.8292

## gender2 0.6969 1.00

## rid gender1 0.5249

## gender2 0.6654 0.00

## Residual 0.8131

## Number of obs: 884, groups: id, 884; rid, 884

## Fixed Effects:

## (Intercept) age gender2

## 0.18138 -0.01685 -0.08519

R session info

sessionInfo()

## R version 3.4.0 (2017-04-21)

## Platform: x86_64-apple-darwin15.6.0 (64-bit)

## Running under: OS X El Capitan 10.11.6

##

## Matrix products: default

## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib

## LAPACK: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libLAPACK.dylib

##

## locale:

## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

## attached base packages:

## [1] stats graphics grDevices utils datasets methods base

##

## other attached packages:

## [1] solarius_0.3.0.2 gait_0.1 data.table_1.10.4

## [4] RLRsim_3.1-3 lmerTest_2.0-33 lme4qtl_0.1.9

## [7] boot_1.3-19 lme4_1.1-15 gridExtra_2.2.1

## [10] Matrix_1.2-9 dplyr_0.7.4 plyr_1.8.4

## [13] rmarkdown_1.5 knitr_1.15.1 devtools_1.13.1

##

## loaded via a namespace (and not attached):

## [1] splines_3.4.0 lattice_0.20-35 colorspace_1.3-2

## [4] htmltools_0.3.6 mgcv_1.8-17 yaml_2.1.14

## [7] base64enc_0.1-3 survival_2.41-3 rlang_0.1.2

## [10] nloptr_1.0.4 foreign_0.8-67 glue_1.1.1

## [13] withr_1.0.2 RColorBrewer_1.1-2 bindrcpp_0.2

## [16] bindr_0.1 stringr_1.2.0 munsell_0.4.3

## [19] gtable_0.2.0 htmlwidgets_0.9 memoise_1.1.0

## [22] evaluate_0.10 latticeExtra_0.6-28 highr_0.6

## [25] htmlTable_1.9 Rcpp_0.12.13 acepack_1.4.1

## [28] scales_0.5.0 backports_1.0.5 checkmate_1.8.2
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## [31] Hmisc_4.0-3 ggplot2_2.2.1 digest_0.6.12

## [34] stringi_1.1.5 grid_3.4.0 rprojroot_1.2

## [37] quadprog_1.5-5 kinship2_1.6.4 tools_3.4.0

## [40] magrittr_1.5 lazyeval_0.2.0 tibble_1.3.4

## [43] Formula_1.2-1 cluster_2.0.6 pkgconfig_2.0.1

## [46] MASS_7.3-47 assertthat_0.2.0 minqa_1.2.4

## [49] R6_2.2.1 rpart_4.1-11 nnet_7.3-12

## [52] nlme_3.1-131 compiler_3.4.0
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