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LMIs—A Fundamental Tool in Analysis
and Controller Design for Discrete Linear

Repetitive Processes
K. Galkowski, Eric Rogers, S. Xu, J. Lam, Senior Member, and D. H. Owens

Abstract—Discrete linear repetitive processes are a distinct class
of two-dimensional (2-D) linear systems with applications in areas
ranging from long-wall coal cutting through to iterative learning
control schemes. The feature which makes them distinct from other
classes of 2-D linear systems is that information propagation in
one of the two distinct directions only occurs over a finite dura-
tion. This, in turn, means that a distinct systems theory must be
developed for them. In this paper, an LMI approach is used to pro-
duce highly significant new results on the stability analysis of these
processes and the design of control schemes for them. These re-
sults are, in the main, for processes with singular dynamics and for
those with so-called dynamic boundary conditions. Unlike other
classes of 2-D linear systems, these feedback control laws have a
firm physical basis, and the LMI setting is also shown to provide
a (potentially) very powerful setting in which to characterize the
robustness properties of these processes.

Index Terms—Linear matrix inequalities, repetitive processes,
stability and control.

I. INTRODUCTION

T HE ESSENTIAL unique characteristic of a repetitive, or
multipass process is a series of sweeps, termed passes,

through a set of dynamics defined over a fixed finite duration
known as the pass length. On each pass an output, termed the
pass profile, is produced which acts as a forcing function on, and
hence contributes to, the next pass profile. This, in turn, leads to
the unique control problem for these processes in that the output
sequence of pass profiles generated can contain oscillations that
increase in amplitude in the pass to pass direction.

To introduce a formal definition, let denote the pass
length (assumed constant). Then in a repetitive process the pass
profile , generated on passacts as a forcing
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function on the next pass and hence contributes to the dynamics
of the new pass profile .

Physical examples of repetitive processes include long-wall
coal cutting and metal rolling operations (see, for example, [1]).
Also in recent years applications have arisen where adopting a
repetitive process setting for analysis has distinct advantages
over alternatives. Examples of these so-called algorithmic
applications of repetitive processes include classes of iterative
learning control schemes [3], denoted by ILC in this paper,
and iterative algorithms for solving nonlinear dynamic optimal
control problems based on the maximum principle [4]. In the
case of ILC for the linear dynamics case, the stability theory for
so-called differential and discrete linear repetitive processes is
the essential basis for a rigorous stability/convergence theory.

Attempts to control these processes using standard [or
one-dimensional (1-D)] systems theory/algorithms fail (except
in a few very restrictive special cases) precisely because such an
approach ignores their inherent two-dimensional (2-D) systems
structure, i.e., information propagation occurs from pass to
pass and along a given pass. In seeking a rigorous foundation
on which to develop a control theory for these processes it
is natural to attempt to exploit structural links which exist
between, in particular, the class of so-called discrete linear
repetitive processes and 2-D linear systems described by the
extensively studied Roesser [5] or Fornasini–Marchesini [6]
state-space models. The discrete linear repetitive processes
considered in this paper are distinct from such 2-D linear
systems in the sense that information propagation in one of
the two separate directions (along the pass) only occurs over
a finite duration and hence large key elements of existing 2-D
systems theory can either be: 1) not be applied, or 2) only
applied after significant modifications.

The finite pass length is also the distinction between other
classes of linear repetitive processes and the 2-D contin-
uous-discrete linear systems studied by Kaczorek [7] and
others. Also repetitive processes can exhibit very distinct dy-
namics depending on the structure of their initial, also termed
boundary, conditions where, for example, incorrect represen-
tation of them can lead to incorrect stability conclusions (with
obvious implications for subsequent analysis).

A rigorous stability theory for linear repetitive processes has
been developed. This theory [8] is based on an abstract model
in a Banach space setting which includes all such processes as
special cases. Also the results of applying this theory to a wide
range of cases have been reported, including the sub-class con-
sidered here. This has resulted in stability tests that can be im-
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plemented by direct application of well-known 1-D linear sys-
tems tests.

One critical area for these processes which has not received
much attention to date is that of the specification and design of
control schemes. The work already reported in this area has ei-
ther focused on a particular application, e.g., ILC [3], where the
control laws used are explicitly tailored to the needs of that area,
or considered cases (see, for example, [2]) where strong struc-
tural constraints have been placed on the underlying process dy-
namics. Clearly, therefore, there is a need for a general theory
which is applicable to the widest possible classes of dynamics
and which results in systematic controller design procedures.

In this paper, we start from previous preliminary work to de-
velop some highly significant new results in this key area using
an LMI setting for analysis. Unlike other classes of 2-D linear
systems (e.g., those described by the well known Roesser [5] or
Fornasini–Marchesini [6] state-space models) the control laws
considered have a well defined physical basis—a key issue in
terms of eventual implementation. A major conclusion from the
results in this paper is that the LMI setting is a powerful new tool
for the analysis and, in particular, the specification and design
of control schemes for discrete linear repetitive processes. This
is based on the fact established for this first time in this paper
that, in contrast to previous work/approaches, the LMI setting
allows us to treat (either open loop or closed loop under allow-
able control law) the most general form of boundary conditions,
uncertainty in the defining state-space model matrices, and sin-
gularity in the along the pass dynamics. The next section gives
the required background results.

II. BACKGROUND

The state-space model of a discrete linear repetitive process
has the following form over

(1)

Here, on pass is the state vector, is the
vector pass profile, and is the vector of

control inputs. To complete the process description, it is nec-
essary to specify the boundary conditions, i.e., the initial pass
profile vector and the pass state initial vector sequence

. The simplest possible form of these is where, in
particular, the pass state initial vector sequence is independent
of the previous pass profile dynamics. Such conditions take the
form

(2)

where is an vector with known constant entries and
the entries in the vector are known functions of.

In some cases, the boundary conditions (2) are simply
not strong enough to ‘adequately’ model the underlying dy-
namics—even for preliminary simulation/control analysis. For
example, the optimal control application [4] requires the use of
pass state initial vectors which are a function of the previous

pass profile. Hence the structure of (2) must be extended to
include this case (and others).

In terms of analysis, it is clearly of prime importance to start
with the a general form of boundary conditions with subsequent
specialization to particular cases as required. Other work [2]
has concluded that the most general set results from replacing

, in (2) by

(3)

where , are matrices with constant en-
tries. For ease of terminology, we will refer to the constant pass
state vector sequence of (2) as ‘static’ and those of the form of
(3) as ‘dynamic’ (to signify that in the former case they are inde-
pendent of the previous pass profile and (explicitly) dependent
in the latter case).

In the state-space model of (1), the current pass (state and pass
profile) dynamics only (explicitly) depend on the previous pass
profile and, as such, are termed unit memory. More generally, a
discrete nonunit memory linear repetitive process with memory
length is described by the following state-space model
over

(4)

This model clearly reduces to (1) when (termed the unit
memory case) and can be subject to boundary conditions which
are the natural generalization of (2) or (3) (and hence are not
explicitly detailed at this stage).

The abstract model-based stability theory for linear constant
pass length repetitive processes consists of the distinct concepts
of so-called asymptotic and stability along the pass respectively.
Recognizing the unique control problem for these processes,
asymptotic stability demands a form of bounded input bounded
output (BIBO) stability over the (finite and constant) pass length

. In particular, this property is defined in terms of the norm
on the underlying function space and it holds provided bounded
sequences of inputs (on each pass, the corresponding element in
this sequence is formed the state initial conditions on this pass
and any control inputs and disturbances which are applied on
it) produce bounded sequences of pass profiles. If this is indeed
the case, then the resulting pass profile sequence is guaranteed to
converge to a steady or so-called limit profile which for all cases
considered here is described by a 1-D discrete linear systems
state-space model.

The fact that the pass length is finite and constant means that
this limit profile may not have acceptable along the pass dy-
namics, where the most basic requirement is stability of the limit
profile as a 1-D discrete linear system, i.e., all eigenvalues of the
state matrix have modulus strictly less than unity. (Examples are
easily generated to highlight this fact). Hence, in general, it will
be the stronger property of stability along the pass which will be
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required as it prevents this problem from arising by demanding
the BIBO property uniformly, i.e., with respect to the pass length

.
In the case of processes described by (1) and (2), several

equivalent sets of necessary and sufficient conditions for sta-
bility along the pass have been reported (see, for example, [8])
but here it is the following set which is required.

Theorem 1: Discrete linear repetitive processes described by
(1) and (2) are stable along the pass if, and only if, the 2D char-
acteristic polynomial

(5)

where .
Suppose now that denotes the spectral radius of its argu-

ment, i.e., in the case (as in this paper) of a matrix compute its
set of eigenvalues and then compute the largest modulus of the
members of this set. Then, (5) gives the necessary conditions
that (asymptotic stability) and (essen-
tially the dynamics along the first pass are uniformly bounded
with respect to the pass length) which should be verified before
proceeding further with any stability analysis. (Also, asymp-
totic stability for all possible values of the pass length is a nec-
essary condition for stability along the pass.) The conditions
for asymptotic stability and stability along the pass of (1) with
boundary conditions (3) for all cases treated in this paper will
be given in context later as it develops.

The following result is crucial to the analysis in this paper.
This result is very well known and its proof can, for example,
be found in [9].

Lemma 1: Given constant matrices of appropriate
dimensions where and , then

if, and only if

The matrix is known as the Schur complement of
.

III. B ASIC LMI STABILITY ANALYSIS

To express the result of Theorem 1 in LMI terms, define the
following matrices from the state-space model of (1)

(6)

Then, we have the following sufficient condition for stability
along the pass of processes described by (1) and (2).

Theorem 2: Discrete linear repetitive processes described by
(1) and (2) are stable along the pass ifsymmetric matrices

and satisfying the following LMI

(7)

Proof: This is, in effect, a proof that the LMI condition
of (7) is a sufficient condition for (5) to hold and proceeds as
follows.

The first step is to note that by use of Lemma 1, (7) is equiv-
alent to

(8)

and

(9)

Also, it is easy to show that

(10)

and hence (using this last fact and (9)) we have that

(11)

It is a standard fact that for any two matrices and of the
same dimensions, , where denotes
the complex conjugate operation. Setting

, we conclude from (11) that

i.e., . This, in turn, implies
that

(12)

which is equivalent to (5) and hence the proof is complete.
In recent work, [2], the following result has been established.
Theorem 3: Discrete linear repetitive processes described by

(1) and (2) are stable along the pass ifsymmetric matrices
and such that the so-called 2-D

Lyapunov equation

(13)

holds, where is the so-called augmented plant
matrix and .

Hence, it follows immediately that the 2D Lyapunov condi-
tion for stability along the pass also has an LMI interpretation.
This, in turn, means that the performance information [2] avail-
able for discrete linear repetitive processes via this last theorem
is also available in the LMI setting.

IV. EXTENSIONS OF THEBASIC LMI-B ASED

STABILITY ANALYSIS

The stability result (Theorem 2) is perhaps not that surprising
given very similar results already available in the 2D linear
systems area in general—see, for example, [10]. For discrete
linear repetitive processes, however, there is a need to deal
with the dynamic boundary conditions and other forms of
dynamics such as those which are singular along the pass
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(in a form which will be made precise later). In this section
we develop new results which show that the LMI approach
can be applied to all relevant cases of the detailed dynamic
structure of (unit and nonunit memory) discrete linear repetitive
processes with dynamic boundary conditions, and also singular
along the pass dynamics. This is in contrast to previously
reported results where different approaches had to be applied
to the various cases in order to get tractable stability tests.
Also, it will be subsequently shown that the LMI approach,
again in contrast to other approaches, provides a ‘sufficiently
tractable’ basis on which to answer (in the main) currently
open questions on the structure and design of control schemes.
In particular, we will show how a powerful form of feedback
control law (a combination of current pass state feedback and
feedforward action based on the previous pass profile) can be
designed using the LMI approach without the need to impose
restrictions on the open loop process dynamics (including
the form of the boundary conditions.) Moreover, we will also
show that the LMI setting is a (potentially) very powerful
method for addressing stability analysis and controller design
for cases where there is uncertainty associated with the process
dynamics—a critical area for which no substantial results are
currently available.

A. Dynamic Boundary Conditions

Consider the case of unit memory processes with the dynamic
boundary conditions of the form of (3). Then clearly an exten-
sion of the results given in the previous section would prove
‘very difficult’ (if not impossible). As an alternative, we pro-
ceed via the equivalent 1-D discrete linear systems state-space
model of the underlying dynamics developed in [11]. A key
feature of this 1-D equivalent model is that it is (unlike other
1-D equivalent models for 2-D linear systems, such as those
for Roesser/Foransini–Marchesini state-space model structures
[12]) defined in terms of vectors whose dimensions remain con-
stant as the process evolves and block matrix elements with con-
stant entries defined in terms of the matrices in (1) and (3).

To give the basic form of the 1-D equivalent model, first intro-
duce , and define

the so-called global pass profile, state and input super-vectors,
respectively, for (1) as

...

...

...
(14)

Then, the 1-D equivalent model is given by

(15)

and the defining matrices are constructed from appropriate en-
tries of the matrices which define (1) and (3). For the purposes
of stability analysis, however, it is only the detailed structures
of and which are required, as shown in (16) and (17) at the
bottom of the page.

The following result [11], [13] gives a necessary and suffi-
cient condition for asymptotic stability in this case.

Theorem 4: Discrete linear repetitive processes described by
(1) and (3) are asymptotically stable if, and only if, .

Also, the extra condition for stability along the pass is that the
2D characteristic polynomial satisfies (5) and hence
this condition can also be dealt with by the LMI based analysis
of Section III. Note also that a necessary and sufficient condition
for Theorem 4 to hold is (using the 1-D discrete linear systems
Lyapunov equation) thata symmetric matrix such that
the following LMI is satisfied (we will make use of this result
later in the paper)

(18)

...
...

. . .
...

(16)

...
...

...
. . .

...

(17)
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Consider now the nonunit memory case. Then, the natural
generalization of the boundary conditions of (2) for this case
is

(19)
Now, introduce the substitutions and

.
Then, the dynamics of discrete nonunit memory linear repet-
itive processes described by (4) and (19) are equivalently
described by

(20)

where , and boundary conditions are

(21)

In the case of the dynamic boundary conditions for nonunit
memory processes, the natural generalization of (3) is

(22)

It now follows immediately that the 1-D equivalent model-based
analysis given above generalizes in a natural manner to this case
and hence the details are omitted here. Later in the paper we
will develop the LMI based asymptotic stability condition (18)
for this case into an equivalent result which is numerically more
tractable for both open loop and closed loop (under a suitably
defined control law). Next, we give the first substantial results
on the stability of processes with singular dynamics along the
pass. Here again we will see the power and versatility of the
LMI based approach.

B. Processes With Singular Dynamics

In what follows, we extend the results given so far in this
paper to the case of discrete linear repetitive processes of the
form (1) when the dynamics along the pass are singular (in the
form made precise below). For brevity, we only consider unit
memory processes of the form described by (1) and (2), where
the latter are taken as zero without loss of generality. This is be-
cause the analysis which follows can be generalized in a natural
manner to all other processes considered in this paper.

As starting point, we require the following well known result
for singular 1-D discrete linear systems with state-space model

(23)

where denotes the state vector and denotes the
vector of control inputs. The matrix is singular, i.e.,

. Also, see e.g., [14], such systems are termed
impulse-free if the degree of is equal to ,
and regular if is not identically zero.

Lemma 2: The following hold in respect of systems de-
scribed by (23).

1) For any regular, impulse-free pair two real non-
singular matrices and such that

2) A descriptor system of the form (23) is stable if and only
if the sub-matrix in the above decomposition is stable.

The singular discrete linear repetitive processes considered in
this paper have a somewhat similar structure to (23) in the sense
that the current pass state dynamics are governed by

(24)

with singular matrix . Hence the dynamics here are singular
along the pass. Note also we could consider cases where the
dynamics are singular from pass to pass but such processes are
of little interest in terms of applications.

Suppose now that the matrix has rank , where .
Then, the following result extends Lemma 2 to discrete linear
repetitive processes with dynamics which are singular along the
pass in the sense defined by (24).

Lemma 3: Suppose that the matrix has rank , and that the
pair is regular and impulse-free. Then,square nonsin-
gular matrices and such that

Proof: This is a straightforward consequence of Lemma 2
and hence the details are omitted here.

Applying these transforms to the discrete linear repetitive
process state equation of (24) is equivalent to introducing the
new state variable

where and left multiplying (24)
by . This gives the complete state-space model (i.e., the result
of transforming (24) and the pass profile update equation) of a
singular along the pass discrete linear repetitive process as

(25)

(26)

(27)

where .
Hence, on solving (26) for and inserting the result

in (27) yields the equivalent model of the form (1) as (25) de-
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scribing the current pass state dynamics, and the current pass
profile dynamics described by

(28)

where . Hence, we see that
the static part of the along the pass dynamics of a discrete linear
repetitive process with singular dynamics has a very significant
effect on the overall process dynamics. This is evident in the
following result which is simply Theorem 1 applied to the dis-
crete linear repetitive process with current pass state dynamics
described by (25) and current pass profile dynamics by (28).

Theorem 5: Discrete linear repetitive processes described by
(25) and (28) with boundary conditions (2) are stable along the
pass if, and only if

In order to apply the results of Theorem 5 to a given example, it
is first necessary to compute the decomposition (25)–(27) and
hence (28). Then, the result of Theorem 2 can be used to obtain
an LMI based sufficient condition for stability along the pass.
Note also that the only requirement here is that the required
decomposition actually exists.

For numerical work, note that the essential step of obtaining
(25) and (28) could be numerically ill-conditioned. Hence it
would be of considerable benefit if it were possible to obtain
a set of necessary and sufficient conditions for stability along
the pass which avoided this step. Here this is left as an area
for further research with the note that the natural combination
of Theorems 2 and 4 when the matricesand do not have
any structure imposed on them (apart from being symmetric and
positive definite) is not possible.

It is possible to generalize the approach of [2] and, in partic-
ular Theorem 3 here, which employs a block diagonal matrix

, to the singular case. The actual result is as follows.
Theorem 6: Consider singular discrete linear repetitive pro-

cesses described by (25) and (28) with boundary conditions (2).
Then such processes are stable along the pass if the following
LMI is feasible

(29)

(30)

where the symmetric matrix , and
.

Proof: Consider (29) and (30) applied to the decomposed
model of (25)–(28), i.e., (with a compatible decomposition of

and writing )

(31)

and

(32)

Also introduce

(33)

and then pre- and post-multiply (30) byand its transpose re-
spectively to obtain the equivalent condition

(34)

and denotes a submatrix block of compatible dimensions
whose exact structure is not relevant to what follows.

Now, we can select such that the following two condi-
tions simultaneously hold

(35)

This is the equivalent LMI condition to (13) of Theorem 3 for
this case and the proof is complete.

V. LMI B ASED CONTROLLER DESIGN—STATIC BOUNDARY

CONDITIONS

In terms of the design of control schemes, it is instructive
to consider first the case of static boundary conditions for unit
memory processes since the results obtained generalize in a nat-
ural manner to the case of dynamic boundary conditions. Also,
as shown later, further analysis is possible in this latter case.

In terms of the design of control schemes for discrete linear
repetitive processes, most of the reported work has been done in
the ILC area where it has become clear that the most powerful
control action comes from feedback action on the current pass
augmented by feedforward action from the previous pass (or
the previous passes in the non unit memory case). Here, we
consider a control law of the following form over

(36)

where and are appropriately dimensioned matrices to be
designed. Suppose also that this control law is applied to pro-
cesses described by (1) and (2). Then, applying Theorem 1 to
the resulting state-space model gives the necessary and suffi-
cient condition for stability along the pass as shown in (37) at
the bottom of the next page.

At this stage, we can give the following result which provides
easily verified necessary conditions for the existence of a con-
trol law of the form (36) which guarantees closed loop stability
along the pass. The proof of this result is obvious from (37) and
is hence omitted here.
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Lemma 4: The following three conditions are necessary for
stability along the pass of processes described by (1) and (2)
under a control law of the form (36).

a) as a 1-D discrete linear system (i.e., state matrix
and input matrix ) can be stabilized closed loop by a

state feedback control law.
b) as a 1-D linear system (i.e., state matrix and

input matrix ) can be stabilized closed loop by a state
feedback control law.

c) as a 1-D linear system (i.e., state matrixand
input matrix ) can be stabilized closed loop by a state
feedback control law where and is
the augmented plant matrix .

Clearly, these conditions should be verified before proceeding
further with a given design example.

It can be shown [8] that processes described by (1) and (2)
are stable along the pass if, and only if, ,
and all eigenvalues of the transfer function matrix

(38)

have modulus strictly less than unity . Hence we
have the following set of necessary and sufficient conditions for
closed loop stability along the pass.

Lemma 5: Discrete linear repetitive processes described by
(1) and (2) are stable along the pass under the action of the
control law (36) if, and only if :

a) and are 1-D linear systems stable;
and

b)
with is 1-D linear systems stable.

This shows that designing (36) to ensure stability along pass
when the resulting control law is applied to processes described
by (1) and (2) can be reduced to applying the 1-D pole placement
problem (twice) for 1-D discrete linear time invariant systems
and then stabilizing another 1-D system with a complex param-
eter.

This latter problem has been the subject of work over the
years in a number of areas and one approach is based on first
re-writing condition(b) above as the requirement that

with is 1-D stable, where

(39)

(40)

and

(41)

Now write

(42)

where and are polynomials in with real co-
efficients. This then means thatis a principal integral domain
and suppose that and are matrices with real entries and of
dimensions and , respectively. Then, it is a standard
fact that if the pair is -reachable, i.e., every is
an -linear combination of the columns of ,
then for every of dimension such
that

(43)

These facts and Lemma 5 lead to the following.
Theorem 7: Discrete linear repetitive processes described by

(1) and (2) are stable along the pass under the action of the
control law (36) with gain matrix where

is an matrix and if:

a) as a 1-D discrete linear system is stabilized closed
loop by a state feedback control law with gain matrix.

b) For some stabilizing , the pair defined
in (39) and (40), respectively, are-reachable.

The major difficulty with existence type results of the form of
Theorem 7 is that they are not really feasible as general purpose
algorithms for control systems design. In the remainder of this
section, we show that the design of control laws of the form
(36) is highly tractable in an LMI setting (at a cost of sufficient
but not necessary conditions for closed loop stability along the
pass).

Introduce the matrices

Then, we have the following result which is simply Theorem 2
applied to the closed loop system.

Theorem 8: Suppose that a discrete linear repetitive process
of the form described by (1) and (2) is subjected to a control
law of the form (36). Then, the resulting closed-loop process is
stable along the pass ifsymmetric matrices and
such that we get (44) shown at the bottom of the next page.

The difficulty with the matrix inequality of Theorem 8 is that
it is nonlinear in its parameters. It can, however, be converted
into the following result where each of the inequalities is a strict
LMI with a linear constraint which also gives a formula for com-
puting in (36).

Theorem 9: The condition of Theorem 8 is equivalent to the
requirement that symmetric matrices , and an
arbitrary matrix such that the following LMI holds.

(45)

(37)
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Also if (45) holds, a stabilizing for the control law (36) is
given by

(46)

Proof: Apply the Schur’s complement formula to
(44), followed by the congruence transformation defined
by . Then introduce the substitutions

to obtain

Use of (46) now completes the proof.

VI. ROBUSTNESS—STATIC BOUNDARY CONDITIONS

In this section, we develop an LMI approach to stability anal-
ysis in the presence of uncertainty in the process definition—a
key problem area for which no substantial results currently exist.
In particular, recall the definition of the augmented plant matrix

and define the so-called augmented plant input
matrix as . Then, we treat the case when these
matrices are subject to additive perturbations defined as follows:

(47)

where

Also, we assume that the uncertainties here have the following
typical structure:

(48)

where the matrices on the right-hand side are of compatible di-
mensions.

Now, introduce the following matrices

Then, we can write and in the form

(49)

(50)

where , and . Note here that
and , are known matrices with constant entries and

is a possibly time varying matrix subject only to the constraint
that .

The LMI sufficient condition for stability along the pass given
in Theorem 2 applied in this case is equivalent to the existence
of symmetric matrices and such that

(51)

where

and we now have the following result which follows immedi-
ately from re-arranging (51).

Theorem 10:Discrete linear repetitive processes described
by (1) and (2) whose defining matrices have the uncertainty
structure defined above are stable along the pass ifsymmetric
matrices such that

(52)

where

and denotes the Kronecker product of two matrices.
Also it can be shown that, for any choice of such

that (52) holds if, and only if, a scalar such that

(53)

Now, we are in a position to characterize stability along the
pass under the uncertainty structure defined above. Here there
are two cases of interest, the first of which is open loop and the
second is closed loop under a control law of the form (36). The-
orem 11 gives an LMI based sufficient condition for the former
case and Theorem 12 for the latter.

Theorem 11:Discrete linear repetitive processes described
by (1) and (2) whose defining matrices have the uncertainty
structure defined above are stable along the pass ifsymmetric
matrices and and a real scalarsuch that the LMI
shown in (54) at the bottom of the next page holds.

Proof: Follows immediately on applying the Schur’s com-
plement formula to (52) and use of (53).

Theorem 12:Discrete linear repetitive processes described
by (1) and (2) whose defining matrices have the uncertainty
structure defined above are stable along the pass under the con-
trol law (36) with defined by (46) if a scalar and
matrices , and such that the LMI shown in (55)
at the bottom of the next page holds.

Proof: This involves extensive, but routine manipulations
and hence here we only give the main steps. The first step is to
interpret (52) for the closed loop system obtained by applying

(44)
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(36) to the process. Then apply in turn Theorems 8–11 to this
system.

VII. CONTROLLER DESIGN—DYNAMIC BOUNDARY

CONDITIONS

We consider first the unit memory case and start with the
application of a control law of the following form expressed
in terms of the 1-D equivalent model (15)–(17) of a discrete
unit memory linear repetitive process with dynamic boundary
conditions

(56)

Note here that this control law (and the natural generalization to
the nonunit memory case (see later in this section)) is defined
only in terms of the output equation (that for updating )
of the 1-D equivalent model. The reason for this is that the state
equation in this 1-D equivalent model has no dynamic updating.
Also, interpreting (18) for asymptotic stability in this case gives
that this property holds if a symmetric matrix and
such that

(57)

This, however, is not in the LMI form since it involves the
product of two matrices, and , which have to be designed.
We have, however, the following result which removes this
problem.

Theorem 13:Suppose that a discrete linear repetitive process
described by (1) and (3) is subject (via its 1-D equivalent model
representation) to a feedback control law of the form (56). Then
the resulting closed loop system is asymptotically stable if, and
only if, a symmetric matrix and a matrix such that

(58)

Also, if this condition holds, a stabilizing feedback controller is
defined by .

Proof: Follows immediately on applying a congruence
transformation to (58) defined by and then
replacing by .

Write the control law (56) in the form

(59)

or on, recovering the original process variables

(60)

where . Then, in phys-
ical terms, we see that control vector applied
at any point on a given pass computed using this law
depends on the complete previous pass profile vector

, and this could lead to implementation
difficulties. To simplify the structure, we can require that in
Theorem 13

, where and are
matrices of dimensions and respectively. Then
the control law takes the form

(61)

which introduces a considerable simplification in implementa-
tion terms since now the complete previous pass dependence has
been replaced by a point to point dependence.

Another possible simplification is to require that the con-
troller is constant along the pass, i.e., assuming that

, which yields the controller

(62)

This requirement is, however, more strict and hence more diffi-
cult to satisfy than the previous one.

(54)

(55)
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It is also possible to re-formulate Theorem 13 into a more
computationally attractive form by simplifying the form of un-
derlying matrices. This first requires two intermediate results
for the open loop case (Lemmas 6 and 7 below).

First write the matrix of the 1-D equivalent model as
, where the matrix is obtained from (16) by setting

. Note that the matrix can be
rewritten as where

...
... (63)

where denotes any convenient matrix norm. Hence, noting
that allows us to employ a result similar to Theorem
10.

Lemma 6: Discrete unit memory linear repetitive processes
described by (1) and (3) are asymptotically stable ifa sym-
metric matrix and a real scalar such that

(64)

Proof: This is a direct consequence of previous assump-
tions and Theorem 10.

Applying Schur complements and appropriate congruence
transforms enables Lemma 6 to be restated in the following
form which is more attractive in terms of onward analysis.

Lemma 7: Discrete unit memory linear repetitive processes
described by (1) and (3) are asymptotically stable ifa sym-
metric matrix and a real scalar such that

(65)

The following result uses the LMI of (65) to obtain the fol-
lowing alternative to Theorem 13.

Theorem 14:Consider a discrete linear repetitive process de-
scribed by (1) and (3). Then this process is asymptotically stable
under the action of the feedback law (56) ifa symmetric ma-
trix , a matrix and a positive constantsuch that

(66)

Also if this condition holds, a stabilizing feedback controller is
defined by .

Proof: Follows in a similar manner to that of Theorem
13 for the closed-loop case, i.e., replaceby
and then apply the congruence transformation defined by

. Finally, make the substitution
.

Finally, note that if the stronger property of stability along the
pass is required, then the controller emerging from the asymp-
totic stability design must also satisfy (5) of Theorem 1 inter-
preted closed loop. As noted previously, this can be addressed
using the LMI based analysis of Section III.

In order to apply the above analysis to the case of a dis-
crete nonunit memory linear repetitive process with dynamic
boundary conditions, the basic route is to first construct the 1-D
equivalent model. Now, however, the dimension of the vector re-
placing in (56) is considerably larger but all of the results
given above for the unit memory case above generalize in a nat-
ural manner. Hence they are not explicitly given here except to
note that in (56) now expands to .

VIII. C ONCLUSION

This paper has developed an LMI based approach to stability
along the pass of discrete linear repetitive processes-a distinct
class of 2-D linear systems of both theoretical and applications
interest. Much of the previous work on these processes had fo-
cused on stability theory and other systems theoretic properties
such as controllability and observability and the general area of
control systems design had been the subject of very little (in rel-
ative terms) work. In particular, there was a lack of an approach
to stability analysis/tests which could also serve as a firm basis
for control systems specification and design. Here, it has been
shown that an LMI setting has very great potential in this gen-
eral area.

This last claim has been justified by showing that LMI based
stability analysis can be extended naturally from the simplest
case of linear dynamics and static boundary conditions to in-
clude dynamic boundary conditions and also processes where
the dynamics are singular along the pass in a well defined and
relevant sense. Moreover, the stability analysis has been shown
to be a systematic computationally attractive basis for the design
of control laws, where here this has been demonstrated by the
design of a particularly powerful control law, motivated from
the ILC application area, combining current pass state feedback
with feedforward action from the previous pass (or passes in
the non unit memory case) for all the forms of discrete linear
repetitive process dynamics considered. Also it has been shown
that this LMI setting can be used to study the critical problem
of stability analysis and controller design in the presence of un-
certainty in the process model description (the beginnings of a
robust control theory/design algorithms).
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