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Abstract: Angiogenesis is one of the hallmarks of cancer, and the establishment of new blood vessels
is vital to allow for a tumour to grow beyond 1-2 mm in size. The angiogenic switch is the term
given to the point where the number or activity of the pro-angiogenic factors exceeds that of the
anti-angiogenic factors, resulting in the angiogenic process proceeding, giving rise to new blood
vessels accompanied by increased tumour growth, metastasis, and potential drug resistance. Long
noncoding ribonucleic acids (IncRNAs) have been found to play a role in the angiogenic switch by
regulating gene expression, transcription, translation, and post translation modification. In this regard
they play both anti-angiogenic and pro-angiogenic roles. The expression levels of the pro-angiogenic
IncRNAs have been found to correlate with patient survival. These IncRNAs are also potential drug
targets for the development of therapies that will inhibit or modify tumour angiogenesis. Here we
review the roles of IncRNAs in regulating the angiogenic switch. We cover specific examples of both
pro and anti-angiogenic IncRNAs and discuss their potential use as both prognostic biomarkers and
targets for the development of future therapies.

Keywords: vascular endothelial growth factor; metastasis-associated lung adeno-carcinoma tran-
script 1; HOX antisense intergenic RNA; maternally expressed gene3; MANTIS; myocardial infarction
associated transcript

1. Introduction

Over the years the focus of cancer treatment has largely been on eliminating neoplas-
tic cells. However, research has shown that most tumours need to establish a vascular
supply through processes such as angiogenesis in order to grow beyond a critical size of
1-2 mm [1,2]. Angiogenesis is a complex multi-step process through which blood vessels
are formed from a pre-existing microvasculature. The tumour vasculature can promote
cancer progression, promote drug loss due to extravasation (leakage from a blood vessel) at
the tumour site as well as drug resistance [2,3]. Angiogenesis involves a dynamic balance
between pro- and anti-angiogenic factors which when disturbed can promote the develop-
ment of various diseases [3]. The angiogenic switch, which represents the transition from
the avascular tumour to the angiogenic phenotype, is driven by this shift in the balance
between pro- and anti- angiogenic factors. Importantly, recent findings show that some
of the factors that promote an angiogenic switch are regulated by noncoding ribonucleic
acids [4-6]. Historically, deoxy-ribonucleic acid (DNA) that does not code for proteins
was considered to possess no physiological relevance and was termed “junk DNA”. The
human genome project has revealed that the amount of noncoding DNA exceeds that of
coding DNA, with only about 2% of the genome coding for protein [7]. Further analysis
of data from genomic platforms revealed that long non-coding RNA(LncRNA) accounted
for approximately 68% of the human transcriptome [8]. LncRNAs are a major class of non-
coding RNAs, are more than 200 base pairs (bps) in length and are tissue and cell specific.
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However, even within cells the transcripts tend to be compartment specific. Although
IncRNAs are largely noncoding, there is a growing appreciation for their contribution to
physiological function, and this also extends to the vasculature [4,5]. Recent investigations
have shown that they play a role in orchestrating angiogenesis through gene regulation,
both at the transcriptional and post-transcriptional levels, although much remains to be
done to elucidate their mechanisms of action [6—~10]. Research has further revealed the
importance of IncRNAs in the maintenance of vascular homeostasis. LncRNAs, which
regulate the process of blood vessel formation include myocardial infarction associated
transcript (MIAT), which functions as a miR-150-5p sponge to regulate vascular endothelial
growth factor (VEGF) expression [6,8-10]. Its inhibition results in decreased endothelial
cell (EC) proliferation. In addition, MIAT silencing leads to reduced EC migration and
tube formation [6,8]. Metastasis-associated lung adeno-carcinoma transcript 1 (MALAT1),
which is required for the regulation of cell cycle proteins, is also an important regulator
of physiological angiogenesis [7-9]. MALAT1 plays a crucial role in the adaptation of
the vasculature to hypoxia. It is thus not surprising that angiogenesis is dysregulated in
MALAT1 null mice [8,9]. GATA Binding Protein 6 antisense (GATA6-AS) is expressed
by ECs and through its interaction with Lysyl oxidase-like (LOXL)2 promotes angiogene-
sis. It is also upregulated during hypoxia [10]. Spliced transcript—endothelial-enriched
IncRNA (STEEL) regulates physiological angiogenesis by transcriptionally reducing the
expression of endothelial nitric oxide synthase (eNOS) and other EC function modulators
such as Kruppel-like Factor 2 (KLF2) [10]. Another IncRNA, MANTIS, also known as
IncRNA n342419, regulates vascularisation mainly in response to changes in blood flow
patterns [8,9]. The silencing of MALAT1 through siRNA reduces angiogenesis both in vitro
and in vivo [7-9]. In contrast, non-coding repressor of NFAT (NRON) is a negative reg-
ulator of angiogenesis [10]. When dysregulated, IncRNAs promote pathophysiological
states. Moreover, aberrant expression of IncRNAs in endothelial cells is observed in various
diseases, including cancer [5,7].

2. Expression Patterns of IncRNAs in Endothelial Cells

Deep sequencing results have shown that approximately 56% of the total RNA in
endothelial cells (ECs) is noncoding and mainly constituted by IncRNAs [7]. Generally,
IncRNAs are expressed at low levels in the normal physiological setting [6,7]. However,
they are upregulated in most neoplasms, although in a few instances they have been shown
to be downregulated [5,6,10]. Among the first IncRNAs to be identified in ECs was nitric
oxide synthase 3 antisense (NOS3AS), also known as autophagy 9-like 2 (APG9L2) [10].
The expression of NOS3AS correlates with low levels of the enzyme endothelial nitric oxide
synthase (eNOS) [10]. LncRNA subtypes in endothelial cells include natural antisense
transcripts (NATs), which constitutes about 7% of the total noncoding RNA identified in
human umbilical vein endothelial cells (HUVECs) [11]. In ECs, the IncRNA NAT for tyro-
sine kinase with immunoglobulin-like and epidermal growth factor (EGF)- like domains
1 (TIE1) binds to TIE1 mRNA and decreases its transcript levels (Figure 1) [11,12]. This in
turn results in compromised cell—cell junctions between ECs [11]. It is noteworthy that TIE
is exclusively expressed in ECs and is upregulated in the tumour vasculature. LNC00323-
003 and MIR503HG, which are both expressed by venous and arterial endothelial cells,
are not compartment-restricted and occur in the cytoplasm as well as the nucleus [12].
The expression of these two IncRNAs in ECs is altered when there is oxygen depriva-
tion. Additionally, LNC00323 promotes angiogenesis in vitro in hypoxic conditions. The
reported findings may underscore the importance of these oxygen sensitive IncRNAs in
tumour angiogenesis as this process is largely triggered by hypoxia. One of the highly
expressed IncRNAs in ECs, MALAT1, functions to protect ECs from the effects of oxygen
deprivation and nutrient deprivation by stimulating moderate autophagy [13]. MALAT1 is
active during the initiation stage of autophagy and during autolysosomal fusion [13,14].
Autophagy is a process of cellular degradation in response to various stresses such as
nutrient deprivation and it plays an important role in the maintenance of homeostasis. The
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process of autophagy occurs in stages, which include initiation, phagophore nucleation,
autophagosome structure formation, and autolysosomal fusion that leads to the degra-
dation of unwanted cellular components. In addition to MALAT1, angiogenic IncRNAs
regulate EC autophagy at different stages. Maternally expressed gene (MEG3) and H19
regulate the initiation stage while highly upregulated in liver cancer (HULC) is involved
in the elongation stage [14]. Autophagy enables stress tolerance in ECs, especially in the
context of hypoxia or nutrient deprivation. The induction of autophagy also increases
endothelial nitric oxide synthase expression and supports angiogenesis. Interestingly, when
dysregulated, autophagy contributes to endothelial dysfunction and impaired angiogen-
esis [14,15]. In addition to increasing the stress tolerance of ECs, MALAT1 upregulates
VEGEF and angiopoietins (ANG) in the microvasculature and suppresses EC apoptosis [16].
Other important IncRNAs expressed in ECs are Linc00493 and MEG3 (Figure 1). Studies
show that MEGS3 is upregulated during senescence in late passage versus early passage
ECs and contributes to the endothelial dysfunction associated with aging cells [17,18].
MEGS3 promotes anti-angiogenesis through the suppression of miR-9 and VEGF [10,17,18].
LincRNA-ST8SIA3, also known as regulator of reprogramming (ROR), is a long, noncoding
RNA located at 18q21.31 of chromatin that was detected in ECs and appears to promote
angiogenesis [18]. In stem cells, ROR regulates self-renewal by modulating the functions
of Oct4, Sox2, and Nanog. In endothelial cells, ROR regulates the proangiogenic VEGF.
Importantly, VEGF is indispensable in the onset of the angiogenic switch [1,2]. Of note
is that the silencing of ROR in vitro results in the downregulation of VEGF [16]. Several
IncRNAs were reportedly expressed in ECs under conditions of hypoxia, including MEG8
and 9, as well as H19 [13,19]. Interestingly, the knockdown of H19 reduced the ability of
ECs to form cords in an in-vitro assay of angiogenesis. MIR20HG and MIR22HG are also
expressed by ECs subjected to hypoxic conditions [17]. Ubiquitin-conjugating enzyme E2C
pseudogene 3 (UB32CP3) is a IncRNA that promotes epithelial to mesenchymal transition
(EMT) and metastasis and has also been detected in ECs [4,19]. In models of co-cultured
ECs and (hepatocellular carcinomas) HCC cells overexpressing UB32CP3, the ECs were
stimulated to proliferate more rapidly [19]. Additionally, cell migration was increased
markedly compared to controls that did not express UB32CP3 [19]. UB32CP3 has also been
shown to induce an increase in microvessel density in vivo [3]. Hypoxia is the most impor-
tant trigger of angiogenesis and understanding how these IncRNAs regulate EC behavior
during hypoxic conditions, and how they affect angiogenesis in the tumour setting has
clinical relevance.
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Figure 1. Pro- and anti-angiogenic IncRNAs. Pro-angiogenic IncRNAs such as MIAT bind to miRNA
and interfere with the ability of these molecules to perform their function. LncRNAs such as
NAT interfere with miRNA translation. GATA6-AS, MANTIS, MALAT1 and SENCR affect gene
expression by altering methylation of target DNA. LncRNAs such as STEEL regulate the activity of
transcription factors. Anti-angiogenic IncRNAs function by inhibiting the activity of molecules that
stimulate angiogenesis.
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3. Functional Mechanisms of IncRNAs in Angiogenesis

Long noncoding RNAs were classically divided into four archetypes based on their
mechanism of action, namely, signalling, decoy, guide, and scaffold IncRNAs (Figure 2) [10,19,20].
Signalling IncRNAs regulate transcription by acting as molecular signals [6]. Decoy IncR-
NAs, on the other hand present alternate binding sites to catalytic and regulatory molecules,
which include transcription factors and miRNAs [21,22]. This in turn limits the availability
of these molecules and reduces their ability to modulate transcription. Guide IncRNAs
support genomic positioning or localization, while scaffold IncRNAs provide a structural
scaffold to enable the proper assembly of protein complexes such as ribonucleoproteins
(RNP) [23-25]. Depending on the nature of the complex formed, it can induce transcrip-
tional activation or suppression [25,26]. More recently, a fifth archetype, the enhancer
IncRNA (eLncRNA) was described [6]. Enhancer IncRNAs stabilize and maintain chro-
matin loops [6,10].
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Figure 2. Mechanism of IncRNA action. Scaffold IncRNAs act as a framework for molecules such
as proteins to bind to and be brought into close contact with each other, allowing them to perform
their functions more easily. The red frame indicates the target sequence on the DNA strand. Guide
IncRNAs recruit molecules such as proteins to a particular site on a nucleic acid molecule. Decoy
IncRNAs act as decoy binding sites for molecules such as miRNAs or transcription factors. As
such they are also known as sponge IncRNAs. Enhancer IncRNAs act to enhance the function of
transcription factor-like molecule. Signalling IncRNAs act as signals to promote or repress the activity
of transcription factors.

The various IncRNA archetypes play important roles in the tumour vasculature by
modulating gene expression at various levels. At the epigenetic level, IncRNAs recruit
several epigenetic factors and regulate chromatin remodelling and gene splicing [27,28].
Plasmacytoma variant translocation 1 (PVT1) and LINC00313 are examples of angiogen-
esis regulating IncRNAs which exert their action at the epigenetic level [28]. Both PVT1
and LINC00313 combine with PRC2 and inhibit the transcription of ANGPTL4 and cell
migration-regulating genes. ANGPTL4 regulates glucose metabolism in ECs and preserves
the integrity of these cells [29]. Not surprising given its role in the regulation of EC function,
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ANGPTLA4 also regulates angiogenesis [29]. Another long noncoding RNA in this category
is H-19, which regulates angiogenesis in the tumour microvasculature and is upregulated in
multiple cancers [28]. At the transcriptional level, IncRNAs regulate transcription through
interactions with transcription factors and target gene promoters [28]. One such IncRNA
is HOX antisense intergenic RNA (HOTAIR), which promotes angiogenesis when upreg-
ulated, this activates the transcription of vascular endothelial growth factor by targeting
the VEGF promoter [30-32]. Additionally, CPS1-IT1 interacts with BRG1 and inhibits the
expression of Cyr61 as well as its downstream targets. These downstream targets, namely,
VEGF and matrix metalloproteinase 9 (MMP9), regulate tumour angio-genesis [31,33].
Moreover, MMP-9 plays a key role in the remodelling of the extracellular matrix at the
onset of neovessel formation. LINC00312 binds to YBX1 and promotes the expression of
VEGEF while Linc00665 promotes the transcription of ANGPTL4, ANGPTL3 and VEGF
through binding to YB-1 [32-36]. Like ANGPTL4, ANGPTL3 regulates EC lipid metabolism
and promotes angiogenesis [29]. By modulating proteins that are re-quired in the early
stages of tumour vessel formation, these IncRNAs play a key role in the angiogenic switch.
At the post-transcriptional level, IncRNAs sequester mi-RNAs, interact with splicing
factors and with RNA-binding proteins (RBPs) [37]. MALAT1 and Taurine upregulated
gene 1 (TUG1), which are upregulated in various tumours including HCC, colorectal cancer
(CRC), breast cancer, glioblastoma, and hepatocellular carcinoma promote angiogenesis
by increasing VEGF expression through sponging miRNAs. Microvascular invasion in
hepatocellular carcinoma (MVIH) are also overexpressed in HCC and they promote tu-
mour angiogenesis (Figure 3) [38-40]. Other mechanistic actions are orchestrated through
protein modification and enhancer peptides. Protein-modifying IncRNAs coordinate the
activation and stability of some proteins [41,42]. TNK2 Antisense RNA 1 (TNK2-AS1), a
protein-modifying IncRNA, promotes angiogenesis via STAT3/VEGF and is upregulated in
cancer [43,44]. In contrast, neuroblastoma-associated transcript 1 (NBAT1), which interacts
with Sox9 and reduces its protein stability, resulting in anti-angiogenesis [45], is downregu-
lated in gastric cancer (Figure 3) [45,46]. Similarly, the encoding peptide LINC00908 has an
anti-angiogenic effect. It encodes ASRPS, which limits STAT3 phosphorylation and thereby
inhibits VEGF [47]. LINC00908 is downregulated in triple-negative breast cancer [47].
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Figure 3. A depiction of the activity of IncRNAs regulating gene transcription in a hierarchical
fashion. LncRNAs can control gene expression by regulating the process at different stages. At the
level of transcription IncRNAs can recruit transcription factors to promoters or inhibit promoter
binding. The Red boxes indicate the target sequence on DNA strands. At the post-transcriptional
level, IncRNAs can regulate alternate splicing by associating with splicing factors or altering the
degradation of mRNA by regulating the activity of miRNAs. Finally, at the post translational level
IncRNAs can modify proteins, for example by reducing the stability of a protein.
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4. Clinical Significance of Angiogenesis Regulating IncRNAs in Cancer

In many cancers the current staging has limitations in terms of determining prognosis.
Biomarkers are critical in completing clinical staging and improving the prediction of
lymph node metastasis as well as in determining cancer prognosis. Many IncRNAs are
over-expressed in various cancer cell lines, as well as in preclinical cancer models and
patients. The expression patterns of angiogenesis regulating IncRNAs that have been
shown to correlate with disease progression and treatment outcome in cancer patients are
listed in Table 1. These IncRNAs have been explored for possible clinical application as
biomarkers and as targets for therapeutic intervention [48-51].

Table 1. Angiogenic LncRNAs with potential as cancer biomarkers.

LncR Cancer Expression Mechanism of Action POt?nh?l Reference
Application
LINC00313 Lung, thyroid Upregulated Inhibits the transcrlpnt;gglci)tfygenes regulating cell Prognosis [52,53]
CPS1-IT1 Multiple Upregulated Inhibits VEGF, MMP-9 and Cyr61 Prognosis [54,55]
Prognosis,
hepatoblastoma, Identification of
CRNDE leukemia Upregulated Modulates the PI3K/PKB/mTOR pathway subtype (in [56]
Leukemia)
HOTAIR Nasopharyngeal Upregulated targets the VEGF promoter and activates the prognosis, [57-60]
carcinoma transcription of VEGF; modulates Ang2 expression recurrence
HOTAIR Melanoma downregulated through the upregulation of GRP78 prognosis [59,61]
PVT1 gastric cancer Upregulated activates VEGF via STAT3 aggressiveness [62-64]
detection, risk of
MALAT1 Multiple Upregulated promotes the expression of VEGF, SLUG and Twist metastasis, [65,66]
prognosis
TUGL Multiple Upregulated modulates HIF-1x expression, promotes VEGF prognosis [67,68]
expression
LINC00346 Glioma Upregulated induces ZNF655 degradation prognosis [69,70]
FLANC CRC Upregulated induces VEGF expression via STAT3 prognosis [71,72]
LINCO00908 TNBC downregulated inhibits STAT3 phosphoryl'atlon, decreases VEGF prognosis [73,74]
HCC expression
lung cancer
LINC00312 Nasopharyngeal Upregulated induces VEGF expression prognosis [48,75]
carcinoma
H19 bladd'e T cancet, Upregulated increases VEGF expression early recurrence, [76-79]
gastric cancer prognosis
HULC HCC Upregulated promotes SPHKI expression metastasis [80-83]
MVIH HCC Upregulated interacts with PGK1 prognosis [84,85]
TNK2-AS1 NSCLC Upregulated prognosis [86]
UBE2CP3 glioma, HCC Upregulated activates the ERK1/2/HIF-1«/VEGF pathway prognosis [49,87]

HCC, hepatocellular carcinoma; CRC, colorectal cancer; NSCLC, non-small cell lung cancer; TNBC, Triple-
negative breast cancer; HULC, highly upregulated in liver cancer; HIF, Hypoxia-inducible factor; MMP-9,
matrix metalloproteinase-9; PI3K, phosphatidylinositol 3-kinase; PKB, protein kinase B; mTOR, mammalian
target of rapamycin; STAT, signal transducer and activator of transcription; GRP, glucose-regulated protein;
SPHKI, sphingosine kinase 1; Ang2, angiopoietin2 VEGF, vascular endothelial growth factor; CYR61, Cysteine-
rich angiogenic inducer 61; PGKI—Phosphoglycerate kinase; ERK1/2, Extracellular signal-regulated protein
kinase 1/2.

4.1. Angiogenesis Regulating IncRNAs: Role as Cancer Biomarkers

Investigations have revealed significant correlations between patient outcome and
the expression levels of some of the angiogenesis regulating IncRNAs such as UBE2CP3,
LINCO00312, and HOTAIR [57,84,87]. In breast cancer, UBE2CP3 is highly expressed, pro-
motes tumour angiogenesis, and is also associated with poor prognosis [18,87]. In patients
with HCC, UBE2CP3 expression levels correlated with vessel density. Furthermore, pa-



Genes 2022, 13,152

7 of 13

tients overexpressing UBE2CP3 had a median overall survival (OS) that was lower than
that of HCC patients with tumours that did not express UBE2CP3 [49]. Interestingly, the
expression of UBE2CP3 is restricted to the tumour and has not been detected in the para-
tumour tissue [49]. On the other hand, meta-analysis revealed that TUG1, SPRY4-1T1, and
HULC did not correlate with lymph node metastasis in various cancers [49,51]. However, a
correlation could be established between the expression levels of these three IncRNAs and
low overall survival in cancer patients [50].

MVIH was initially identified in hepatocellular carcinoma but was later also detected
in other neoplasms such as breast cancer [84,85]. Its overexpression in HCC patients corre-
lates with increased tumour vascularization and metastasis [51,85]. In a mouse model of
HCC, the induced overexpression of MVIH stimulated angiogenesis and promoted tumour
growth and metastasis [88]. Of note is that, in breast and non-small cell lung cancers,
MVIH is associated with poor prognosis, while in HCC patients who undergo hepate-
ctomy it is a predictor of low recurrence free survival [52,88-90]. UBE2CP3 and MVIH
could thus be useful markers for monitoring patient response to cancer therapy [51,91,92].
HOX transcript anti-sense RNA (HOTAIR), the first antisense transcription IncRNA to be
discovered, is overexpressed in cancer tissues compared to normal tissues. It is linked to
the development of gastric cancer (GC), breast cancer, lung cancer, and liver cancer [51].
HOTAIR promotes the expression of VEGF and activates the PI3K/AKT/multidrug re-
sistance protein 1 (MRP1) pathway through direct binding to miR-126. Data has shown
that serum HOTAIR levels were higher in patients with oesophageal squamous carcinoma
when compared to controls without cancer, and that HOTAIR levels correlate with tumour
node metastasis (TNM) stage [93]. In gastric cancer, HOTAIR correlates with lymph node
and distant metastasis, while in colorectal carcinomas it is associated with advanced stage
and metastases [94]. H19, another angiogenesis-regulating IncRNA, is also associated with
lymph node metastasis [51]. These IncRNAs could serve as prognostic biomarkers in both
gastric and colorectal carcinomas. Moreover, HOTAIR is currently used as a prognostic
marker for recurrence in patients who have undergone liver transplantation [95]. Addition-
ally, several studies have shown that blood levels of HOTAIR are good predictors of disease
outcome [96]. HOTAIR and PVT1 detected in the saliva of early pancreatic patients were
identified as possible biomarkers [97-99]. Homebox Al1l antisense (HOXA11las) was highly
expressed in cancerous tissue, and its expression showed a significant correlation with
clinicopathological features in serous ovarian cancer (SOC) [100]. Additionally, patients
with an elevated expression of HOXAllas had a significantly shorter progression-free and
overall survival rates. These observations provide a basis for the further studies and the
development of these IncRNAs as biomarkers.

4.2. Therapeutic Targeting of IncRNAs in Cancer Angiogenesis

Several IncRNAs that regulate tumour angiogenesis were shown to be aberrantly
expressed in many cancers, making them an attractive target for drug design. Moreover,
many of these IncRNAs are not readily detectable in normal tissue, and some are both tissue
and cancer subtype specific [51,101]. A few studies have investigated the potential use of
these IncRNAs as targets for cancer therapy mainly in preclinical models [65,67,102]. The
silencing of SPRYT4-IT1, inhibits the migration of oesophageal squamous cell carcinoma
cell in vitro, while NEAT1 suppression inhibits tumour cell growth through p53 [102]. In
several independent studies, MALAT1 promoted angiogenesis in vitro and its silencing led
to an increase in EC migration, while the inhibition of MALAT1 expression by GapmeR
inhibited EC sprout formation [9,65,67]. HOTAIR expression levels were found to be high
in cisplatin resistant ovarian cancer cells. The knockdown of HOTAIR in these cells led
to the inhibition of tumor cell growth and invasiveness [103]. The silencing of HOTAIR
by siRNAs inhibits tumour cell invasiveness in breast cancer and reduces tumour growth
in pancreatic cancer [102]. Furthermore, the knockdown of HOTAIR has been shown to
improve the sensitivity of tumour cells to cisplatin and doxorubicin. The silencing of
CRNDE in colorectal cancer cells suppresses tumour cell growth and reduces resistance
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to chemotherapy [104]. While these studies have yielded positive results, they are in their
infancy and much remains to be done. Additionally, recent reports on the mechanism of
some IncRNAs reveal anecdotal results. The LINC000961 gene was shown to yield two
molecules with different and opposing effects on angiogenesis [105]. Similarly, another
angiogenesis-regulating IncRNA that has been explored for drug targeting is LincRNA-
p21 [27]. While some studies showed that it correlates with microvessel density and that
its silencing reduces VEGF expression, it was also found to be downregulated in tumour
tissue [27]. These findings underscore the importance of more in-depth investigations to
elucidate the roles and mechanisms of these IncRNAs.

5. Conclusions

It is evident from emerging studies that IncRNAs regulate the fine balance between pro-
and antiangiogenic factors, and that their deregulation may contribute to the transition from
the dormant avascular tumour to an angiogenic malignant phenotype. Emerging studies
have identified several IncRNAs as key regulators of molecules which drive the angiogenic
switch, such as VEGEF, MMP9, and TIE (Figure 4). While most angiogenesis regulating
IncRNAs are upregulated in various cancers, a few of these transcripts which exhibit
antiangiogenic activity are downregulated. Of note is that in a diverse array of cancers the
expression patterns of these IncRNAs correlate with clinical outcome. The findings of these
studies render such angiogenesis modulating transcripts as potential cancer biomarkers.
Moreover, some of the IncRNAs are stable in body fluids and can be useful in non-invasive
applications. However, future investigations should focus on the sensitivity and specificity
of MALAT1 and H19 in cancer detection. Studies with larger samples sizes are required to
determine the degree of diagnostic accuracy. Important promoters of tumour angiogenesis
can serve as therapeutic targets, including MALAT1, TUG1, LNC00323-003, PVT1, and
MIR503HG. Antisense oligonucleotides have been employed for the modulation of gene
expression, and their approval for the treatment of patients opens avenues for further
exploration in the clinical application of silencing or targeting proangiogenic IncRNAs such
as TUGI and PVT1. The targeting of MALAT1 with GapmeR has recently been shown
to be effective in myeloma. There is a need to further elaborate possible drug delivery
platforms that will enhance tumour tissue specific targeting to minimize the off-target effects
commonly encountered with most anti-cancer treatments. Furthermore, the limitations
of current studies on angiogenic IncRNAs is that they have focused on inhibiting vessel
formation. On the other hand, it is well-known that tumour blood vessels are structurally
and functionally abnormal, and hamper drug delivery. The remodelling of the tumour
vasculature may be more advantageous, especially for combination approaches that target
various components of the tumour microenvironment, and as such studies are needed to
determine ways to optimize IncRNA targeting to normalize tumour vessels and enhance
the delivery of chemo- and immunotherapy drugs. In future, technologies such as CRISPR
and genome-wide chromatin interrogation will improve our understanding of the functions
of angiogenesis regulating IncRNAs and aide in informing drug design approaches.
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Figure 4. Summary of IncRNAs role in angiogenesis and the practical application of this knowledge.
The angiogenic switch relies on the change in the balance between the levels or activity of pro and
anti-angiogenic factors. Pro-angiogenic IncRNAs promote the activity of the pro-angiogenic factors
while inhibiting the anti-angiogenic factors. The expression profile of these IncRNAs can be used as
prognostic biomarkers or as targets for the development of new therapies. Anti-angiogenic IncRNAs
promote the activity of anti-angiogenic factors while inhibiting those of the pro angiogenic factors.
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