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Abstract

In order to maintain integrity of the genome, eukaryotic cells develop a complex DNA damage/

repair response network, which can induce cell cycle arrest, apoptosis, or DNA repair. Chemo- and

radiation therapies, which act primarily through the induction of DNA damage, are the most com-

monly used therapies for cancer. Impairment in the DNA damage response and repair system that

protect cells from persistent DNA damage can affect the therapeutic efficacy of cancer. To date,

accumulating evidence has suggested that long non-coding RNAs (lncRNAs) are involved in the

regulation of the DNA damage/repair network. LncRNAs have been demonstrated to be master

regulators of the genome at the transcriptional and post-transcriptional levels and play a key role

in many physiological and pathological processes of cells. In this review, we will discuss the func-

tion of lncRNAs in regulating the cellular response to DNA damage.
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Introduction

Genome integrity is essential to life, but DNA is constantly subject to
damage caused by various endogenous and exogenous stresses, such
as ionizing radiation, ultra violet, reactive oxygen species (ROS), and
genotoxic drugs. To maintain the genome stability, eukaryotic cells
evolve several systems to sense DNA damage, present damage signals,
and mediate cellular responses to eliminate the damage. This process
is so-called DNA damage response (DDR) [1–3]. Typical outcomes of
the DDR include cell cycle arrest for DNA damage repair or apop-
tosis to remove the cell when the DNA damage is too severe to be
repaired [4]. Failure to accurately repair of the damaged DNA in cells
leads to serious clinical outcomes, including neurodegeneration, infer-
tility, immune deficiencies, and cancer [5,6].

Cancer is a multi-step process characterized by a variety of genetic
lesions. Cancer cells often show significant alterations in response to

DNA damage and thus are resistant to DNA damage-inducing agents,
reflected by resistance to this class of agents [7,8]. In the past decade,
long non-coding RNAs (lncRNAs) have emerged as important new
players in DDR, particularly in cancer cells [9,10]. This review updates
the current understanding of lncRNAs in DDR and DNA damage
repair.

DNA Damage Response

In response to DNA damage caused by a variety of intrinsic and extrin-
sic genotoxic factors, eukaryotic cells have evolved a stress response
mechanism known as DDR [3,11]. The DDR involves a complex regu-
latory network connecting tumor suppressor genes to DNA repair,
damage tolerance, cell cycle checkpoints, and apoptosis [2]. This
regulatory network is predominantly initiated by phosphatidylinositol
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3-kinase-like protein kinase (PIKK) family proteins, particularly ATM
(ataxia-telangiectasia mutated), ATR (ATM and Rad3-related), and
DNA-PKcs (DNA-dependent protein kinase catalytic subunit) triggering
a series of downstream reactions [12]. ATM is generally activated in
response to DNA double strand breaks (DSBs), the DNA lesions that
are most lethal and difficult to be repaired [13], while ATR in particular
responds to single strand DNA breaks (SSBs) [14,15].

These ATM and ATR protein kinases act as DNA damage sen-
sors to detect the sites of damaged DNA [16,17]. Upon DNA dam-
age, the ATM and ATR are activated by autophosphorylation and
in turn phosphorylate and activate a large number of downstream
effectors, coordinating the most appropriate cellular responses [18,19].
In the cell with mild DNA damage, the cell cycle checkpoint may be
activated, cell cycle progression is arrest, and DNA repair process is
initiated. However, in the cell with serious DNA damage that is not
repairable, apoptosis may be triggered to remove the cell [1,20]. In
the DDR, p53 is the most important intermediate regulator,
involved in cell cycle arrest and/or apoptosis depending on the cellu-
lar context [2,21–24]. p53 is one of the most important tumor sup-
pressor regulating expression of hundreds of genes; p53 gene
mutations are described in almost all types of cancer and widely
involved in tumor development and progression [25–27].

DNA damage is repaired through differential mechanisms upon
the type of damage. The mismatch repair (MMR) machinery recog-
nizes and repairs erroneous insertion, mis-incorporation, and dele-
tion of bases during DNA synthesis or replication [28]. The nucleotide
excision repair (NER) complex principally recognizes bulky DNA
adducts and then replaces the abnormal bases with normal ones.
The base excision repair (BER) complex removes single nucleotides.
Error-prone non-homologous end joining (NHEJ) and error-free
homologous recombination (HR) are distinct repair mechanisms for
DSBs. Either NHEJ or HR is activated depending on the cell cycle stage.
NHEJ is favored in G1 phase of the cell cycle whereas HR is favored in
the S and G2 phases [29,30].

Tumor cells usually acquire the ability to escape from DDR and
most cancer cells show multi-dysfunctions in DDR, including resistance
to genotoxic drugs and ionizing radiations or abnormal cell cycle pro-
gression following DNA damage [10]. Recent evidence has shown that
several lncRNAs regulate gene activity in response to DNA damage.

LncRNAs

LncRNAs are a novel group of non-coding RNA transcripts with a
length longer than 200 nucleotides [31,32]. LncRNAs do not encode
proteins and were long considered transcriptional noise [33].
Emerging evidence, however, has demonstrated that lncRNAs may
serve as master gene regulators capable to control gene expression
and protein synthesis [34,35]. LncRNAs are largely dysregulated in
cancer, being novel biomarkers for diagnosis, treatment, and prog-
nosis [36–38]. In the past decade, lncRNAs have been highlighted
with their important functions in development, progression, and
prognosis of human cancers [39–41]. They can regulate gene expres-
sion at transcriptional and/or translational levels, histone modifica-
tions and epigenetics, and RNA splicing [42,43].

LncRNAs in DNA Damage Response and Repair

in Cancer Cells

A novel function of lncRNAs that recently emerges is that lncRNAs
participate in the regulation of DDR through modulating multiple

DDR signaling pathways, such as the key ATM and ATR pathways,
and p53 pathway.

LncRNAs in ATM and ATR pathways

Wan et al. [44] conducted a genome-wide screening of lncRNA
expression profiles in Atm+/+ and Atm−/− mouse embryonic fibro-
blasts (MEFs) after treated with neocarzinostatin (NCS), a radiomi-
metic drug that generates DSBs. They found that DSBs induced
widespread changes in the expression of lncRNAs, including marked
increase of 100 ATM-dependent lncRNAs and noticeable decrease
of 70 ATM-dependent lncRNAs. Particularly, they identified a novel
lncRNA named lncRNA-JADE (JADE1 adjacent regulatory RNA).
This lncRNA induces G1/S cell cycle arrest and inhibition of apop-
tosis in response to DNA damage. Inhibition of ATM suppresses
DNA damage-induced JADE expression, suggesting JADE expres-
sion is ATM-dependent. JADE transcriptionally upregulates Jade1
(a PHD zinc finger protein) and thus increases Jade1-mediated his-
tone H4 acetylation in response to DNA damage. H4 acetylation
often results in chromatin remodeling and transcriptional activation
[45,46]. JADE also positively regulates DNA damage repair by
recruiting the DNA damage repair protein Mdc1.

Sharma et al. [47] performed a similar screening of genome-wide
RNA transcripts in human skin fibroblasts exposed to DNA-damage
agent neocarzinostatin, camptothecin, or etoposide. They identified
a novel lncRNA named DDSR1 (DNA damage-sensitive RNA1).
DDSR1 was upregulated in response to all three DNA-damage
agents used. They further showed that DDSR1 was induced by NCS
in PC3 (prostate), A549 (lung), U2OS (osteosarcoma), and HCT116
(colon) cells. Thus, DDSR1 responds to DNA damage without any
cell type specificity. Similarly, DDSR1 expression is ATM-dependent
and inhibition of ATM with a specific inhibitor KU55933 signifi-
cantly suppressed DDSR1 induction by NCS. The authors further
found that deficiency of DDSR1 impaired DDR signaling by down-
regulating several DDR signaling molecules, including γ-H2AX,
phospho-RPA, and phospho-Chk1. γ-H2AX is a marker of DSBs
that activates the ATM–Chk2 pathway [48]; RPA binds to ssDNA
during the initial phase of HR [49–51]; and Chk1 is required for the
initiation of DNA damage checkpoints [52]. Moreover, DDSR1 loss
increased accumulation of HR repair factors BRCA1 and RAP80 to
DSBs. RAP80 is a ubiquitin-binding protein and promotes recruit-
ment of BRCA1 to DSBs [53]. Although BRCA1 recruitment at
DSBs primarily promotes DNA repair by HR [54,55], aberrant
activity of this BRCA1–RAP80 complex limits HR by restricting
DSB end resection [56,57]. Thus, DDSR1 functions in DDR repair
process.

In a transcriptome analysis of lncRNAs in human fibroblast cells
(GM0637) with DSBs induced by radiomimetic NCS, Wan et al.
[58] identified another lncRNA named ANRIL (antisense non-
coding RNA in the INK4 locus) that was markedly upregulated in
response to DNA damage. They also found that the ANRIL was
upregulated at the late stage of DDR in U2OS and HCT116 p53+/+

cells. ATM silencing abolished the induction of ANRIL by NCS,
suggesting that ANRIL is an ATM-dependent lncRNA in DDR. A
putative E2F1-binding element is found in the ANRIL promoter and
the ANRIL is induced by the transcription factor E2F1 during DDR.
Upregulated ANRIL interacts with both PRC1 and PRC2 to form
heterochromatin surrounding the INK4B–ARF–INK4A locus and
repress its expression [59,60]. Knockdown of ANRIL induces
expression of INK4B, ARF, and INK4A consistently in a high level
throughout the DDR induced by NCS, while overexpression of
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ANRIL reduces the levels of the three proteins. Since these proteins
function as cyclin-dependent kinase inhibitors that contribute to cell
cycle arrest in cell response to DNA damage [61], ANRIL contri-
butes to mediate DNA repair efficiency.

LncRNA NEAT1 (nuclear enriched abundant transcript 1) is a
non-coding RNA transcript functioning as a core structural compo-
nent of the paraspeckle in the nucleus [62–64]. Aberrant NEAT1
expression has been reported in human cancers, including upregula-
tion in laryngeal squamous cancer, pancreatic cancer, colorectal cancer,
and pancreatic cancer and downregulation in esophageal carcinoma
and hepatocellular carcinoma [65–68]. Recently, it is found that
NEAT1 may be involved in carcinogenesis through regulation of
DDR [69]. Silencing of NEAT1 sensitized preneoplastic cells to
DNA damage-induced cell death with increase of the DNA damage
marker γ-H2AX. In U2OS cells treated with hydroxyurea, NEAT1
knockdown decreased ATR-mediated phosphorylation of check-
point kinase Chk1 and replication protein RPA32, indicating that
NEAT1 promotes ATR signaling and checkpoint activation in
response to replication stress.

LncRNAs in p53 regulatory network

Interaction network between p53 and lncRNAs is complex, but in
general, these lncRNAs function as either p53 targets or p53 regula-
tors. As p53 targets, lncRNAs may be involved in DDR through
mediating p53-induced cell cycle progression and/or apoptosis. The
regulator lncRNAs of p53 may participate in DDR by mediating
p53 activity in response to DNA damage.

LncRNAs as targets of p53
To date, several lncRNAs have been characterized as direct targets
of p53. They function in regulation of cell cycle progression and
apoptosis in response to DNA damage. Hung et al. [36] identified
five lncRNAs at the promoter of CDKN1A (a p53 target gene) in
cells with DNA damage, and among them, lncRNA PANDA (p21
associated ncRNA DNA damage activated) is an antisense RNA of
CDKN1A. PANDA is previously found to be significantly upregu-
lated in osteosarcoma and intraductal papillary mucinous neoplasms
[70,71]. However, it is found that PANDA acts as a tumor suppres-
sor gene in diffuse large B-cell lymphoma [72]. It may be caused by
limited samples or the different types of tumors. There is a p53-
binding site between the CDKN1A locus and PANDA [73].
Knockdown of p53 significantly limits the induction of CDKN1A
and PANDA following DNA damage [36]. PANDA mediates cell
cycle arrest and survival by suppressing expression of pro-apoptotic
genes, such as CCNB1, FAS, PUMA, and NOXA; silencing of
PANDA sensitizes human fetal lung fibroblasts to DNA damage-
induced apoptosis by doxorubicin. Thus, PANDAR promotes car-
cinogenesis through mediation of DNA damage-induced apoptosis.

LncRNA PINCR (p53-induced non-coding RNA) is a direct
downstream target of p53 [74]. Doxorubicin-induced DNA damage
activates p53 and upregulates PINCR in colorectal cancer cell lines,
HCT116 and SW480 [75]. PINCR regulates cell cycle and has a
pro-survival function in response to DNA damage, and silencing of
PINCR enhances cell sensitivity to chemotherapeutics. PINCR can
upregulate a subset of p53 targets following DNA damage, includ-
ing BTG2, RRM2B, and GPX1. These proteins are involved in p53-
mediated cell survival [76,77].

TP53TG1 (TP53 target gene 1) is a p53-induced lncRNA, identi-
fied as a tumor suppressor RNA [78]. Binding to the multifaceted
DNA/RNA binding protein YBX1, TP53TG1 prevents YBX1

nuclear localization and thus suppresses YBX1-mediated activation
of the PI3K/AKT signaling cascade [79–83]. Thus, targeted expres-
sion of TP53TG1 markedly increased the sensitivity of HCT116
cells to DNA damage agents (e.g. doxorubicin, carboplatin, and cis-
platin). Oppositely, silencing or epigenetic loss of TP53TG1 in can-
cer cells activates the YBX1-mediated PI3K/AKT signaling and
creates chemoresistance.

LncRNAs as regulators of p53
This group of lncRNAs modulates p53 activity through different
mechanisms and thus is involved in DDR. For instance, lncRNA
RoR reprograms differentiated cells into pluripotent stem cells [84].
RoR has been shown to be increased and promote tumor progres-
sion in pancreatic cancer, nasopharyngeal cancer, gallbladder can-
cer, and breast cancer [84–87]. Zhang et al. [88] revealed that RoR
regulates p53 translation and thus controls the cellular p53 protein
level. Targeted expression of RoR suppresses p53-mediated cell
cycle arrest and apoptosis induced by doxorubicin. In the p53 regu-
latory function of RoR, heterogeneous nuclear ribonucleoprotein I
(hnRNP I), an RNA binding protein may play a role through direct
interaction of RAN–protein. Interestingly, increased p53 induces
RoR forming a feedback loop between RoR and p53.

LncRNA LIRR1 regulates p53 activity through control of
MDM2 expression, the main negative regulator of p53. Jiao et al.
[89] reported that LIRR1 was induced by X-ray, an irradiation that
induces DNA damage and stress signals. LIRR1 stimulates the form-
ation of γ-H2AX and markedly radiosensitizes human bronchial epi-
thelial BEAS-2B cells to X-ray radiation and arrests cells in G1
phase. Targeted expression of LIRR1 suppresses MDM2 expression,
thus activating p53. LIRR1 also represses the expression of KU70
and KU80 (DSB sensors), RAD50 (a DNA damage repair protein)
and CDK2 (a cell-cycle checkpoint), directly mediating DDR and
DNA damage repair.

LncRNAs PR-lncRNA-1 and PR-lncRNA-10 were identified
from HCT116 cells treated with 5-fluorouracil [90]. These two
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Figure 1. Scheme of lncRNAs involved DNA damage response
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lncRNAs do not affect the p53 protein expression or phosphory-
lated activation, but affect the binding of p53 to its transcriptional
targets, such as SERPINB5, CDKN1A, BCL2L1, and BBC3 genes,
thus regulating their expression in response to DNA damage.
Silencing of PR-lncRNA-1 or PR-lncRNA-10 markedly increases cell
number in S-phase and inhibits apoptosis when cells are exposed to
doxorubicin to induce DNA damage. Therefore, PR-lncRNA-1 and
PR-lncRNA-10 regulate p53-mediated cell cycle arrest and apoptosis
in response to DNA damage.

LncRNAs in other pathways

There are also some lncRNAs that are not effectors in the ATM/
ATR pathways and p53 network, but participate in the regulation
of cell cycle and apoptosis after DNA damage. For instance,
lncRNA ERIC (E2F1-regulated inhibitor of cell death) is upregu-
lated by etoposide, a chemotherapeutic drug which can induce DNA
damage and apoptotic cell death [91]. E2F1 is a transcription factor
that regulates gene expression required for cell cycle progression
[92]. Inhibition of ERIC expression increases cell apoptosis induced
by etoposide. This is a p53-independent manner as p53 deletion
does not affect the activation of E2F1-inducted ERIC expression.

LncRNA Gadd7 (growth-arrested DNA damage-inducible gene 7)
is upregulated by UV irradiation, cisplatin and DNA alkylating agents
(e.g. methyl methanesulfonate, N-methyl-N4-nitro-N-nitrosoguanidine,
and mechlorethamine), and oxidizing hydrogen peroxide [93,94]. This
lncRNA functions through specifically binding to TDP-43 through UG/
GU repeats. The TDP-43 associates with Cdk6 mRNA, blocking its
degradation [95]. By binding to TDP-43, Gadd7 interrupts the TDP-
43/Cdk6 mRNA association, leading to Cdk6 mRNA degradation
and CDK6 protein decrease. CDK6 associates with Cyclin D and regu-
late G1/S transition in cell cycle [96]. UV irradiation stimulates the
interaction of Gadd7 with TDP-43, and thus leads to cell accumula-
tion at G1 phase. The Gadd7 functions in DDR through regulation of
G1/S checkpoint.

LncRNA HOTAIR (HOX antisense intergenic RNA) is an onco-
genic RNA transcript upregulated in different human cancers [97,98].
HOTAIR epigenetically regulates gene expression and functions in
multiple cellular pathways [99–101]. Recently, Ozes et al. [102]

revealed that HOTAIR is involved in platinum resistance in ovarian
cancer cell lines and patient. HOTAIR is induced in response to
platinum-induced DNA damage and in turn enhances phosphorylation
activation of Chk1 and thus suppresses apoptosis. Thus, HOTAIR is a
new lncRNA player in DDR.

RAD51 plays a crucial role in HR and DSB repair; dysregulation of
RAD51 leads to genome instability and cancer development [103].
LncRNA TODRA (transcribed in the opposite direction of RAD51) is
transcribed upstream of RAD51 in the opposite direction [104]. TODRA
downregulates RAD51 and affects RAD51-dependent DSB repair.
The lncRNA TERRA (telomeric repeat-containing RNA) is involved
in the DDR triggered by dysfunctioning telomeres [105]. In addition,
lncRNA POU6F2-AS2 is involved in DDR and regulates cells survival
in response to ionizing radiation [106]. Knockdown of POU6F2-AS2
expression abrogated the YBX1’s localization to DNA damage sites.
YBX1 is a chromatin-bound and DNA repair related protein that
binds to ssDNA and regulates cell survival following DNA damage
[107]. Thus, POU6F2-AS2 participates in DDR through targeting the
YBX1 protein (Fig. 1 and Table 1).

Conclusion

The rapid development of genome-wide transcriptome analysis has
led to the identification of numerous lncRNAs. LncRNAs have been
demonstrated to play a critical role in various biological and patho-
logical processes. Although significant progresses have been made in
the understanding of lncRNAs in the past years, the function and
regulation network of lncRNA is not fully understood. Herein, we
summarize the most recent advances in lncRNA regulation and
function in response to DNA damage. The increased understanding
of lncRNAs in DDR will expand our knowledge of lncRNAs in
DNA damage repair, cancer progression, and chemo- and radiore-
sistance, which may eventually improve the management of cancer.
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