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Highlights  

 

1. The human (cancer) genome is pervasively transcribed into a plethora of non-

coding transcripts that are mostly not-conserved, lowly expressed and 

consistently derepressed in cancer. 

2. LncRNAs exert multiple key molecular functions in cancer, converging towards 

the regulation of epigenetic and post- transcriptional events.  

3. The lack of conservation and the low expression of lncRNAs are in striking 

contrast with their key role in all epigenetic and post- transcriptional processes 

in the cell thus exposing the CC (Conservation and Concentration) paradox. 

4. LncRNA are able to drive aberrant LLPS in cancer in response to stressors. 

5. A better understanding of lncRNA driven-cancer aberrant compartmentalisation 

may lead to the development of new diagnostic and therapeutic tools and to the 

re-evaluation of basic concepts in RNA-protein interactions. 
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Abstract  35 

Given the biochemical reactions stochasticity, the mechanisms leading to 36 

conservation of biological functions from noise are obscure. Pervasive transcription 37 

of non-conserved genomic regions, generates lowly-expressed cancer-specific 38 

lncRNAs. How such poorly expressed transcripts, often undetectable in normal 39 

tissues, consistently modulate the activity of multiple abundant proteins leading to 40 

cancer phenotypes is unclear. Biochemical reaction compartmentalization in 41 

response to environmental oscillations through liquid-liquid phase separation (LLPS) 42 

may explain the emergence of order from molecular noise. LncRNAs contain 43 

repetitive sequences and as such contribute to molecular crowding and LLPS. We 44 

propose that lncRNAs mediate cancer stress signals by regulating aberrant LLPS. 45 

This emerging model and its consequences for stoichiometry and specificity may 46 

lead to the development of diagnostic tools and cancer-specific drugs. 47 
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A role for stochasticity and lncRNAs in the organisation of cancer cells 67 

The increasing use of single cell and single molecule techniques has revealed that 68 

all biochemical reactions in cells are intrinsically stochastic (see Glossary) [1, 2] . 69 

Even a process that has thus far been considered deterministic and unidirectional 70 

such as gene expression is permeated by low affinity interactions and stochasticity 71 

at all stages from transcription (pervasive transcription) to translation (pervasive 72 

translation).  73 

Within this overt randomness however, structural organization arises to preserve key 74 

biological functions. A recent study has shown that in oscillating systems, random 75 

heterogeneity consistently promotes organization and outperforms design in network 76 

organization [3]. Accordingly, stochasticity is essential to ensure plasticity of 77 

biological processes in face of changing environmental conditions and, as such, its 78 

role in both the acceleration or impairment of evolutionary processes have been long 79 

debated [4]. Aside from being an essential component of all the developmental 80 

programs, plasticity underlies tumour development and progression, and it follows 81 

therefore that stochasticity may play an important role in a cancer-related context 82 

where chaos and unwonted interactions are predominant. However, the mechanisms 83 

leading to the emergence of patterns and conservation of biological functions from 84 

this noise remains elusive and the source of much debate. Pervasive transcription of 85 

the human cancer genome produces a multitude of lowly expressed long non-coding 86 

RNA (lncRNAs) often non-conserved and expressed at low copy number/cell [5] . 87 

Despite the above, these transcripts have been shown to impact key biological 88 

processes, such as cell viability, drug responses and/or tumour progression,  by 89 

influencing multiple and highly expressed targets [6] . In this way they promote 90 

aberrant interactions and contribute to cancer interactome rewiring. Here we discuss 91 

recent findings in the field of RNA and condensate biology supporting a role for 92 

lncRNAs in cancer cell compartmentalization through regulation of aberrant phase 93 

separation. By way of this process, lncRNAs demonstrate their key role in converting 94 

stochastic signals arising from pervasive transcription into cellular organization, thus 95 

explaining their contribution to the aberrant cancer interactome (Table 1). 96 

 97 

Cellular compartmentalization: order emerging from chaos 98 

Biochemical oscillations in time and space control every aspect of cellular and 99 

organismal physiology (e.g. cell cycle, circadian rhythms, etc.) [7]  and are 100 



 

responsible for the formation of spatial patterns such as vertebrate segmentation 101 

and/or skin organization [8]  . Conserved structural features (or compartments) in 102 

human cells and tissues and their perturbation (e.g. cellular and tissue patterns and 103 

recurrent mutations), have been used for centuries to classify diseases including 104 

cancer (e.g. nucleoli). Compartmentalization underlies the difference between 105 

eukaryotic and prokaryotic cells and provides spatiotemporal control over a number 106 

of cellular activities and biochemical reactions. While a handful of organelles are 107 

delimited by a lipid bilayer, many of them are membraneless (i.e. the P-bodies, the 108 

nucleolus, the nuclear speckles) and rely on a principle called phase separation 109 

(BOX1) or liquid unmixing for their formation [9] . Membraneless bodies phase-110 

separate and become immiscible when their components reach the solubility limit 111 

[10] and their origin is therefore dependent on physical properties, such as 112 

temperature, concentration and pH. As such, they can adjust the rate of intracellular 113 

reactions in an environmentally-tunable fashion [11]  and thus in response to 114 

biochemical oscillations. Essential for the nucleation of several membraneless 115 

bodies are specific combinations of RNAs [12, 13]  and RNA-binding proteins 116 

containing Prion-Like Domains (PLDs) and/or Intrinsically Disordered Regions 117 

(IDR) which are generally prone to multivalent interactions. More than 30% of the 118 

eukaryotic proteome contains IDRs  [14] and the motifs are particularly enriched in 119 

proteins with a role in cytoskeleton assembly and signal transduction [15], indicating 120 

that a larger number of molecular processes essential for (cancer) cell survival, 121 

differentiation and migration may be directly regulated by phase separation. 122 

The process of phase separation and its consequences for gene expression have 123 

been better studied in the nucleus, but membraneless compartments exist also in the 124 

cytoplasm where they are essential in conveying environmental stress signals to the 125 

nucleus. Examples of membraneless bodies in the cytosol are Stress Granules (SG) 126 

and P-Bodies (PBs). (Box 2) 127 

 128 

LncRNAs: the CC (concentration and conservation) paradox 129 

RNA is considered a key molecule in all the theories of the origins of life and it is 130 

certainly the central player in the “RNA world hypothesis” that posits that 4 billion 131 

years ago life began on earth starting from primitive RNA molecules. The theory is 132 

based on the observation that, compared to DNA and proteins, RNA is a more flexible 133 



 

molecule capable of storing the genetic information as does DNA (e.g. RNA viruses), 134 

but also possessing catalytic abilities like proteins (e.g. ribozymes). Additionally, RNA 135 

is notably highly responsive to environmental changes, riboswitches in prokaryotes 136 

for instance, can detect specific metabolites and modify their conformation to 137 

activate/inactivate gene expression in response to these changes [16]. It therefore 138 

not surprising that beside being a client, RNA can also actively participate to the 139 

enucleation of membraneless bodies [12]. 140 

It is now widely accepted that the human genome is pervasively transcribed into a 141 

plethora of highly processed and regulated transcripts that are mostly non-protein-142 

coding [5]. The non-coding genome hosts the vast majority of recurrent somatic 143 

mutations   [17], copy number alterations [18]  and cancer-related SNPs [19]  and 144 

encodes for a class of transcripts -longer than 200 nucleotides- called lncRNAs [20] 145 

Interestingly, while only a minority are widely expressed, evolutionary conserved 146 

such as NEAT1 [21]  or MALAT1 [22]  the vast majority of lncRNAs are primate-147 

specific (80%)  and display low and cancer-restricted expression (Fig.1) [20, 23] . 148 

Primate and (cancer) cell specificity have been linked to the enrichment in 149 

Transposable Elements (TE), which occupy almost half of the human genome, at 150 

lncRNA loci. TE contain cis-regulatory sequences that can act as promoter and 151 

enhancers [24] . In particular, TE belonging to the class of Endogenous RetroViruses 152 

(ERVs) [25] are enriched at the Transcriptional Start Site (TSS) of human lincRNA 153 

(long-intergenic non-coding RNAs) genes. TE are often methylated and kept silent, 154 

however hypomethylation and reactivation have been detected in cancer cells [26]; 155 

additionally somatic mutations and chromosomal rearrangement can also contribute 156 

to reactivation of these sequences [27] and thus to the evolution and emergence of 157 

lncRNA sequences [24] during the course of cancer. The lack of overt sequence 158 

conservation -and consequently of genetic models- has been used to undermine the 159 

importance of lncRNAs, however they still display important evolutionary conserved 160 

functions [28]  (conservation paradox) which converge towards the regulation of 161 

epigenetic and post-transcriptional events [20]. One outstanding question in the 162 

lncRNA field is how these molecules, expressed at low copy number/cell, can impact 163 

key biological processes by influencing multiple and highly expressed targets. As 164 

already proposed in 2018 [6], emerging evidence suggests that the induction of 165 

phase separation may underlie a common mechanism exploited by lncRNAs to exert 166 



 

their functions [29-31] . Indeed, 75% of human long non-coding transcripts contain 167 

at least a partial retroviral insertion and thus repetitive sequences [24] that may 168 

naturally act as molecular crowders to rewire cellular compartmentalization in 169 

response to environmental cues. Such a model may solve the conservation and 170 

concentration paradox by explaining how stochastic events such as the aberrant 171 

expression of lncRNAs can give rise to conserved functions even at low 172 

concentrations [32] . Supporting this hypothesis, it was recently demonstrated that 173 

two copies of Xist, a lncRNA necessary for X inactivation in placental mammals and 174 

implicated in the development of haematological cancers in Mus musculus [33], are 175 

sufficient to enucleate 50 macromolecular foci, containing the critical silencing 176 

protein SPEN [32]. Overall, these observations suggest that a re-evaluation of the 177 

concepts of specificity and stoichiometry in RNA-protein interactions, may be 178 

necessary. Furthermore, the consequences of the above on the potential of aberrant 179 

lncRNAs expression in cancer need to be considered [34] . 180 

 181 

Cancer: apocalypse now 182 

What happens when a lncRNA shows up in the cancer process?  183 

Relaying on the interplay between individual genetic background, epigenetics and 184 

environmental factors, cancer development and progression is, by definition, a 185 

stochastic event [35]  . The aberrant expression of a lncRNA in this context, may 186 

therefore eventually bring a new order to the chaos of the cancer cell by reshaping 187 

biochemical reactions (Fig. 2). The melanoma-specific lncRNA SAMMSON, for 188 

instance, coordinates to boost rRNA maturation and protein synthesis in the 189 

mitochondria and in the cytoplasm, by trapping the nuclear protein CARF in the 190 

cytoplasm in complex with the mitochondrial protein p32 [36]. Additionally 191 

paraspeckles, nuclear membraneless bodies assembled around the lncRNA NEAT1 192 

[37], essential for cancer initiation and progression [20, 38, 39]  can affect responses 193 

to therapy by sequestering an essential molecular complex like the Integrator 194 

Complex, necessary for the processing of the 3’-end of all RNAs [40]. 195 

Although these concepts have only recently gained traction in the literature, the role 196 

of RNA and more specifically of lncRNAs as scaffolds [41]  and the role of aberrant 197 

membraneless compartmentalisation in cancer has been widely accepted for far 198 

longer. An Italian pathologist G. Pianese (in 1896) realized that shape and number 199 

of the nucleoli- nuclear structures that form upon phase separation following the 200 



 

interaction of rRNAs and Alu B1-related RNAs with the intrinsically disordered 201 

proteins fibrillarin, nucleolin and nucleophosmin [42, 43] - is altered in carcinomas. 202 

Since this discovery, this parameter has been used as a cancer biomarker [44]  . 203 

It is arguably important to ask therefore, whether the role of molecular crowders such 204 

as lncRNAs in cancer phenotypes has been overlooked, by restriction of 205 

investigations to conserved lncRNAs with a well-established role in physiology, 206 

instead of looking for gain of function of aberrantly expressed molecules. 207 

 208 

Concluding Remarks 209 

The discovery of a regulatory role played by RNA in the biogenesis of condensates 210 

[45]  and the established role of some of them in cancer, open new exciting 211 

possibilities not only for the specific targeting of these membraneless bodies, but 212 

also for a better understanding of biology of these somewhat enigmatic molecules. 213 

Whether phase separation is a common mechanism exploited by lncRNAs has yet 214 

to be determined, however this possibility would allow us to reconcile many difficult 215 

to explain findings. In this opinion article, we have summarized some unanswered 216 

questions in the field of lncRNAs and highlighted how some of these could be 217 

explained by a model involving molecular crowding and phase separation as the 218 

main mediator of lncRNA molecular functions. In this sense lncRNAs may convert 219 

the oscillatory signals coming from the tumour microenvironment into clear 220 

compartments and contribute to the organized chaos of cancer cells. As such 221 

lncRNAs would be at the crossroad of stochastic and deterministic events. The 222 

above considerations necessitate a full revaluation of the concepts of specificity and 223 

stoichiometry in RNA-protein interactions. To achieve this, the effect of physical 224 

changes in the Tumour MicroEnvironment (TME) on RNA compartmentalization and 225 

RNA-dependent protein interactions (transcriptome-wide) should be determined. 226 

Whether or not a correlation exists the identification and in-dept characterisation of 227 

the biology of specific lncRNAs implicated in LLPS would be an important step in our 228 

understanding of the basis of these interactions. Towards this, studies on the 229 

structure and modification of lncRNAs would therefore certainly be important, since 230 

the knowledge of the mechanism could then inform the design of synthetic RNAs that 231 

can promote LLPS and/or of cancer-specific inhibitors of selected membraneless 232 

bodies. Additionally, the patterns produced by specific lncRNAs could be used to 233 



 

design sophisticated diagnostic test based on high-content imaging of cancer 234 

samples (see Outstanding Question box).   235 
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Box 1: Liquid-Liquid Phase separation (LLPS)  267 
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The term LLPS describes the spontaneous demixing of a homogenous solution into 268 

two or more phases when homotypic interactions are energetically favored over the 269 

entropic tendency of the solution to remain mixed. Demixing occurs when molecules 270 

in solution reach their solubility limit and the process is therefore obeying to polymer 271 

physics’ principles rather than to classical stoichiometry rules. 272 

Once the threshold for the formation of condensates has been reached under specific 273 

physico-chemical conditions (e.g critical concentration, temperature, salinity, pH 274 

and/or electrostatic and hydrophobic interactions) [46], the membraneless bodies 275 

establish a dynamic equilibrium with the surrounding environment allowing them to 276 

grow or dissolve without a net change in concentration. In a physiological context, 277 

LLPS leads to the formation of a dense phase, where proteins, DNA and RNA are 278 

10-100 folds more concentrated than the surrounding dilute phase[47]. 279 

The molecules initiating LLPS are called scaffolds as they are necessary for the 280 

formation of specific condensates. The molecules recruited to the condensate but 281 

not necessarily to engage LLPS are known as clients [13]. For instance, under 282 

specific stress conditions,  stalled PreInitiation Complex (PIC) mRNPs and the two 283 

RNA Binding Proteins (RBPs) Ras-GTPase-activating protein SH3-domain-Binding-284 

Protein 1 (G3BP1) and T-cell-restricted Intracellular Antigen-1(TIA-1) are crucial 285 

nucleators triggering LLPS of stress granules[48-50]. Other proteins with various 286 

functions are subsequently recruited to the core, allowing dynamic RNA-protein 287 

exchange, such as Caprin1 and Ubiquitin Specific Peptidase 10 (USP10), two G3BP 288 

competitive binders that promote or inhibit SG condensation, respectively [51-53]. 289 

LLPS relies on weak cooperative interactions, and/or strong interactions reversible 290 

in a short timescale [54]. Therefore, poorly structured biomolecules and those 291 

containing repetitive elements, such has IDRs, are more prone to phase separation 292 

[55]. As such, arginine-and glycine-rich (RGG/RG) repeats and PLDs are two 293 

important classes of stickers found in proteins driving biocondensates’ assembly [56, 294 

57]. 295 

Additionally, RNA which is a negatively charged molecule, containing 296 

posttranscriptional modifications, often provides stickers for the binding of multiple 297 

RBPs making it a key regulator of condensates’ formation, properties and dynamics. 298 

 299 

 300 

Box 2: Cytoplasmic RNA Granules 301 



 

RNA granules are membraneless condensates composed of protein-enriched RNA 302 

species that contribute to all steps of RNA metabolism namely: processing; transport; 303 

storage; translation and/or degradation [58].  Among them, PBs and SGs are to date 304 

the most well studied mRNA silencing foci[53].  305 

PBs and SGs are cytoplasmic foci ranging in size from 400 to 500nm[59] and 100 to 306 

2000nm[50], respectively. Differently from SGs that arise upon exposure to stress, 307 

PBs are constitutive but their size and number increase under stress [60, 61].  308 

SGs’ assembly requires two steps. First, the inhibition of translation initiation either 309 

through phosphorylation of eukaryotic initiation factor 2 alpha (eIF2), through mTOR 310 

inhibition, or through interference with the eIF4F complex, all of which lead to the 311 

disassembly of polysomes[62, 63]. Secondly, the condensation of stalled pre-312 

initiation complexes and their associated RBPs into distinct phase-separated 313 

granules[63] regulated by a variety of proteins such as G3BP, PolyA-Binding Protein 314 

(PABP) and TIA-1 called SG nucleators for their ability to nucleate SGs in the 315 

absence of stress when overexpressed in vitro[49, 50, 60]. All of them are 316 

characterized by their IDRs and RNA-Binding Domains (RBDs) favoring multivalent 317 

interactions and thus macromolecular aggregates formation[63]. Similarly to SGs 318 

and nuclear condensates, PBs rely on complex RNA – protein interactions, IDR-319 

enriched protein sequences and LLPS for their formation[42, 60, 63]. 320 

In line with their assembly process, SGs enclose mainly proteins associated with 321 

translation initiation such as the 40S ribosomal subunit, PABP and eiF4G1[60, 61] 322 

and the RBP G3BP1 with its two crucial partners Caprin1 and USP10 [64]. PBs are, 323 

on the other hand, predominantly composed of mRNA decay proteins such as the 324 

deadenylation complex CNOT1, mRNA DeCaPping enzyme subunits 1a and 2 325 

(DCP1a, DCP2) and decapping activators such as EDC3 and EDC4[60]. Although 326 

different from one another, SGs and PBs share many common proteins such as TIA-327 

1, FASTK including those promoting association between both granules such as 328 

TTP, BRF1 and eIF4E[60, 61]. 329 

In general, both SGs and PBs assemble and disassemble rapidly (within minutes) 330 

upon stress induction and removal respectively[60]. Despite this, different types of 331 

environmental stress (amino acid starvation, UV irradiation, oxidative and/or osmotic 332 

stress, ER stress, etc.) can lead to distinct RNA granules subtypes discernible by 333 

their protein composition and dynamics[63, 65]. To date, at least three different 334 

subtypes of SGs have been identified[53, 60, 63]: type I SGs form upon stress-335 



 

induced phosphorylation of eiF2α (e.g. oxidative stress, ER stress and viral infection) 336 

and require G3BP and 48S PICs for their assembly; type II SGs still require G3BP 337 

however, they form independently from eiF2α phosphorylation; type III SGs lack 338 

eiF3, differently from the other two subtypes, and their assembly is triggered by UV, 339 

glucose and starvation, nitric oxide and other chemical compounds [63].   340 

While SGs assembly is unnecessary for translational repression during stress, it may 341 

enhance the translational rewiring process[63, 66] by segregating translationally 342 

stalled mRNAs, that mostly encode for housekeeping proteins such as GAPDH and 343 

B-Actin  [63, 67, 68]. Likewise, PBs are not the sites of mRNA degradation, but rather 344 

for the storage of repressed mRNAs awaiting either translation or decay[60, 65]. 345 

Formation of PBs and SGs in tumor cells in response of stress is important for 346 

adaptation [69].  In keeping with this, SGs assembly has been significantly observed 347 

in many cancer types (e.g., pancreatic cancer, glioblastoma) and often associated 348 

with drug tolerance[69, 70]. 349 
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Glossary (500 words) 539 

 540 

Deterministic: the term refers to events that develop according to a plan (non-541 

random) and thus are predictable. 542 

IDR: also called Intrinsically Disordered Regions, are domains in proteins that do 543 

not contain a defined 3D structure in physiological conditions. They are often found 544 

at flexible linkers and loops connecting different domains. IDRs contains amino 545 

acids with high net charge and low hydrophobicity.  546 

Pervasive Transcription: the term refers to the finding that in most species the 547 

genome is almost entirely transcribed including area before considered as purely 548 

regulatory. 549 

Specificity: the property of a certain molecules to interact with selected partners. 550 

Specificity is often conferred by complementary 3D structural or sequence motifs. 551 

Stochastic: the term refers to a process fitting a random distribution and thus 552 

lacking a plan.  553 

Stoichiometry: is the numerical relationship between reactants and products in a 554 

chemical reaction. 555 
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Figure legends 573 

 574 

Figure 1: The Conservation & Concentration paradox: lncRNA SAMMSON as a 575 

paradigm. The lncRNA SAMMSON is hosted downstream of the protein coding gene 576 

MITF. In contrast with MITF, SAMMSON is primate-specific (like 80% of lncRNAs) 577 

and lowly expressed (5<x<200 copies/cell) in melanoma lines [71, 72]. Furthermore, 578 

SAMMSON is enriched in repetitive sequences. Table 1 reports key well 579 

characterized lncRNAs; in blue transcripts phase separating or localizing at 580 

membraneless bodies. 581 

Figure 2: Potential role of lncRNA-induced phase separation in Cancer 582 

The aberrant expression of lncRNAs is induced by extracellular cues during tumour 583 

development and progression. These lncRNAs act as molecular crowders and thus 584 

regulate phase separation to induce specific cell states and cancer phenotypes in 585 

response to changes in the physical properties of the tumour microenvironment. 586 

Examples of lncRNAs implicated in cancer and/or known to phase separate have 587 

been highlighted [23, 30, 32]. 588 
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lncRNA Localization 

GTEx 

expression 

(average 
TPM) 

Structure 

Features 
Interactors Function 

Physiopathological 

process 
Referencesa 

MALAT1 Nucleus 
826.9 

(ovaries) 

tRNA-like 

small RNA at 

its 3’end 

 

Transcription 

factors,Splicing 

factors, 

Epigenetic 

regulators  

Regulates the phosphorylation of 

SR proteins in nuclear speckles, 

thus, modulates pre-mRNA 

splicing 

Upregulated in many human 

malignancies. Correlates with 

poor prognosis and metastasis. 

[S1-S4] 

[22] 

 

 

 

NEAT1 Nucleus 
671.2 

(thyroid) 

Repetitive 

RNA 

subdomains 

(long isoform); 

tRNA-like 

small RNA at 

its 3’end (long 

isoform) 

Paraspeckle 

components 

(e.g. CARM1, 

FUS, p54nrb, 

PSPC1) 

Drives LLPS of paraspeckles 

involved in gene expression 

regulation 

Essential for skin cancer 

initiation and progression  

[21] 

[S5, S6] 

 

Xist Nucleus 
148.4 

(ovaries) 

Repetitive 

RNA 

subdomains ( 

A-repeats and 

C-repeats) 

Chromatin 

remodeling 

factors (e.g. 

Spen, Rbm15, 

Wtap) 

Mediates the X-chromosome 

inactivation process by enriching 

repressive complexes to 

chromatin, possibly through LLPS 

in mouse 

Upregulated in colorectal cancer 

and correlates with poor overall 

survival. 

[S7, S8] 

 

 

HOTAIR Nucleus 
27.1 

(arteries) 
Not known PRC2, LSD1 

Mediates transcriptional 

repression OF HOXD gene 

independently of PRC2 

Highly expressed and involved 

in initiation and progression of 

different cancers (e.g. breast 

cancer)  

[S9-S11] 

 

 

Table 1 



 

SAMMSON 
Nucleus & 

Cytoplasm 
1 (arteries) Not known CARF, p32 

In melanoma: Favors an aberrant 

interaction between p32 and 

CARF in the cytosol and 

sequesters CARF away from its 

partner XRN2 resulting in an 

increase in ribosome biogenesis. 

Upregulated in melanoma and 

promotes tumor growth. Its 

knockdown increases the 

response of melanoma patient-

derived xenografts to targeted 

therapy. 

[23, 36] 

 

TINCR Cytoplasm 108.5 (skin) Not known STAU1 

Binds STAU1 to mediate 

stabilization epidermal 

differentiation mRNAs (e.g. 

KRT80). 

In melanoma, interacts with pro-

invasive RNAs such as ATF4, 

inhibiting their binding to 

ribosomes and the acquisition of 

invasive phenotype. 

Aberrantly expressed in many 

cancers. Exerts both tumor-

suppressive and oncogenic 

effects, therefore modulating 

cancer progression. 

[S12-S14] 

 

 

 

AGPG 
Nucleus and 

Cytoplasm 
Not known Not known PFKFB3 

Binds and stabilizes PFKFB3 

promoting its enrichment in 

cancer cells, leading to enhanced 

glycolytic flux and cell cycle 

progression 

Upregulated in many cancers 

and is associated with poor 

prognosis (e.g.  esophageal 

squamous cell carcinoma). Its 

depletion impedes tumor growth 

in PDX models. 

[S15] 

NORAD Cytoplasm 285 (Brain) 

Enriched with 

pumilio 

response 

elements 

(PREs) 

Pumilio proteins 

(PUM1, PUM2) 

Inhibits the activity of PUM 

proteins via nucleation of PUM 

condensates (NP bodies) to 

promote genomic stability  

Aberrantly expressed in various 

cancers and involved in 

carcinogenesis processes (e.g. 

proliferation, invasion, 

metastasis, apoptosis) 

[30] 

[S16] 



 

DIGIT Nucleus Not known Not known BRD3 

Promotes phase separation of 

BRD3 condensates and their 

recruitment to H3K18ac regions, 

thus regulating transcription 

factors of endoderm 

differentiation. 

Not known [29] 

LINC-PINT Nucleus 
33.7 

(ovaries) 

Two highly 

conserved 

short regions  

 

PRC2 

Represses genes responsible for 

cancer cell invasion through its 

interaction with PRC2 

Downregulated in multiple 

cancers 
[S17] 

LASTR Nucleus Not known Not known 
RNA-splicing 

factor SART3 

Promotes splicing efficiency by 

regulating SART3 binding to the 

U4 and U6 snRNPs 

 

Essential for the growth of triple 

negative breast tumors 

[S18] 

 

DilncRNA Nucleus Not known  Not known 

DNA Damage 

Response 

(DDR) RNAs 

and proteins 

(e.g. 53BP1) 

Synthetized at DNA Double 

Strand Breaks (DSB), it interacts 

with DDR proteins to promote 

phase separation of DDR foci 

responsible for transcriptional 

regulation. 

DDR dysfunction has been 

reported in a plethora of human 

malignancies 

[S19, S20] 

 

PNCTR Nucleus Not known  

Enriched with 

Short-Tandem 

Repeats 

(STRs) 

PTBP1 

Sequesters PTBP1 to form a 

phase-separated body named 

peri-nucleolar compartment 

(PNC) thus inhibiting PTBP1 

splicing activity and promoting cell 

survival  

Highly expressed in a multitude 

of cancers.  
[S21] 



 

a See the supplemental information online. 605 
 606 

HSATIII Nucleus Not known  

Enriches with 

STRs 

(GGAAU)n 

HNRNPs, 

STLM, NCOA5, 

SAFB 

Acts as a scaffold for the 

formation of nuclear stress bodies 

upon thermal stress, regulating 

gene expression  

Not known 
[S22, S23] 

 

TNBL Nucleus 
Not known 

 

Derived from 

NBL2 repeats 

NPM1, SAM68 

and CELF1 

Upon NBL2 DNA hypomethylation 

and histone acetylation in 

colorectal cancer, TNBL 

expression is increased leading to 

the formation of aggregates close 

to NBL2 loci where it interacts 

with SAM68 involved in splicing 

regulation 

TNBL-SAM68 perinucleolar 

bodies are cancer-specific 

aggregates. Their role is still to 

be determined. 

[S24] 



Outstanding questions  

1. Is phase separation a general mechanism exploited by lncRNAs to exert their 

functions? If so, can we identify the stickers driving LLPS of lncRNAs? 

2. Could specific dynamics of lncRNA driven phase separation be used as markers 

of disease? 

3. Can we target specific membraneless compartments by targeting the 

corresponding RNA? 

4. Can we engineer specific compartments by using lncRNA modules? 

 

Outstanding Questions
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