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ABSTRACT

Motivation: A number of long non-coding RNAs (lncRNAs) have

been identified by deep sequencing methods, but their molecular

and cellular functions are known only for a limited number of

lncRNAs. Current databases on lncRNAs are mostly for cataloging

purpose without providing in-depth information required to infer func-

tions. A comprehensive resource on lncRNA function is an immediate

need.

Results: We present a database for functional investigation of

lncRNAs that encompasses annotation, sequence analysis, gene ex-

pression, protein binding and phylogenetic conservation. We have

compiled lncRNAs for six species (human, mouse, zebrafish, fruit fly,

worm and yeast) from ENSEMBL, HGNC, MGI and lncRNAdb.

Each lncRNA was analyzed for coding potential and phylogenetic con-

servation in different lineages. Gene expression data of 208 RNA-Seq

studies (4995 samples), collected from GEO, ENCODE, modENCODE

and TCGA databases, were used to provide expression profiles in

various tissues, diseases and developmental stages. Importantly, we

analyzed RNA-Seq data to identify coexpressed mRNAs that would

provide ample insights on lncRNA functions. The resulting gene list

can be subject to enrichment analysis such as Gene Ontology or

KEGG pathways. Furthermore, we compiled protein–lncRNA inter-

actions by collecting and analyzing publicly available CLIP-seq or

PAR-CLIP sequencing data. Finally, we explored evolutionarily con-

served lncRNAs with correlated expression between human and six

other organisms to identify functional lncRNAs. The whole contents

are provided in a user-friendly web interface.

Availability and implementation: lncRNAtor is available at http://

lncrnator.ewha.ac.kr/.

Contact: sanghyuk@ewha.ac.kr

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Long non-coding RNAs (lncRNAs) are non–protein-coding

transcripts 4200 nt. Many lncRNAs have been reported to

play important molecular and cellular functions despite of not

producing protein products. They typically recruit proteins to

help or disturb formation of ribonucleoprotein (RNP) com-

plexes. Depending on the role of interacting proteins, lncRNAs

play central roles in a wide range of cellular processes. An

illustrative example is RMST, a brain-specific lncRNA, which

physically interacts with SOX2 and plays a key role in transcrip-

tional regulation of neurogenic transcription factors (Ng et al.,

2013).

Several lncRNAs were implicated in various types of cancers

(Maruyama and Suzuki, 2012). MALAT1 was reported to be a

critical regulator of the metastasis phenotype of lung cancer cells

(Gutschner et al., 2013), and CCAT2 was shown to promote

tumor growth, metastasis and chromosomal instability in

WNT-dependent fashion in colon cancer (Ling et al., 2013). In

fact, lncRNAs are expected to be involved in every stage of hall-

marks of cancer (Gutschner and Diederichs, 2012), thereby ser-

ving as critical regulators and therapeutic targets in many cases.
Owing to the development of high-throughput sequencing

technologies, thousands of lncRNAs have been recently dis-

covered from RNA-Seq data. However, the biological and mo-

lecular characteristics of the large majority of lncRNAs remain

unknown. Databases or tools that facilitate functional investiga-

tion of lncRNAs would be of great value to identify important

lncRNAs based on understanding of biological roles.
Several databases on lncRNAs have already been developed

for various purposes. LNCipedia (Volders et al., 2013),

lncRNAdb (Amaral et al., 2011) and lncRNome (Bhartiya

et al., 2013) are mostly for annotation databases based on litera-

ture evidence. NRED (Dinger et al., 2009) and NONCODE v3.0

(Bu et al., 2012) provide microarray expression profiles in vari-

ous tissues for human and mouse. Some of these databases con-

tain additional useful information on function such as the RNA

secondary structure, microRNA binding and protein-lncRNA

interactions (Bhartiya et al., 2013; Volders et al., 2013), but

they are mostly limited for human. Furthermore, RNA-Seq

data, the most useful source of lncRNA properties, have never

been systematically collected and mined for functional investiga-

tion yet. Thus, we still lack a comprehensive resource to cover

sequence characteristics and function-related data organized in a

systematic way.

Here, we introduce lncRNAtor to perform in-depth functional

analysis of lncRNAs by combining sequence characteristics, gene

expression data and protein–lncRNA interactions. To the best of

our knowledge, this is the first attempt to compile massive RNA-

Seq data with the support of downstream analysis such as
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coexpression and gene set enrichment, covering six important

model organisms.

2 DATA AND METHODS

� lncRNA compendium: lncRNAs of length 4200bp in

ENSEMBL (version 70), HGNC, MGI and lncRNAdb

were collected for six model organisms (human, mouse, zeb-

rafish, fruit fly, worm and yeast). Statistics of compiled

lncRNAs are provided in Supplementary Table S1.

� Sequence analysis and phylogenetic conservation: Each

lncRNA was analyzed for protein-coding potential with

CPC, an SVM-based classifier using sequence features

(Kong et al., 2007). We also calculated the evolutionary

conservation score using the phastCons track (multiz align-
ments of 46 vertebrates) from UCSC genome database

(Pollard et al., 2010). We used the reduced representaion

of genes by collaping all splice variants into a hypothetical

gene. Lineage-specific scores were obtained by analyzing

multiple alignment of organisms in specific lineages such

as primates, mammals and vertebrates. Genomic regions

overlapping with protein-coding genes were eliminated in

calculating average conservation score to avoid the mislead-

ing hyper-conservation.

� RNA-Seq data: We have collected RNA-Seq data in GEO,

ENCODE, modENCODE and TCGA databases. Each
dataset was manually curated and classified into tissue

types, cancer types, drugs and developmental stages accord-

ing to the experimental design. In total, we have compiled

208 datasets of 4995 samples. Raw RNA-Seq data were

subject to in-house pipeline of mapping by TopHat 2.0.8

(Kim et al., 2013) and quantification by Cufflinks 2.1.0

(Trapnell et al., 2010). Multi-hits was set to 20 as the default

option. Differentially expressed genes (DEGs) were identi-

fied by Cuffdiff2 (Trapnell et al., 2013). TCGA datasets

were downloaded at level 3 of read counts and expression
profiles obtained from RSEM quantification (Li and

Dewey, 2011), and reannotated from hg18 to ENSEMBL

GRCh37. DEG test was performed by DESeq 2 1.0.19

(Anders et al., 2013).

� Protein–lncRNA binding data: Deep sequencing data of

CLIP-Seq, RIP-Seq and PAR-CLIP were amassed from

GEO and modENCODE. It included 319 samples covering

96 RNA-binding proteins. RIPSeeker was used to identify

the associated transcripts and binding sites (Li et al., 2013).

We have adjusted the binding P-value taking the number of

binding regions into consideration.

� Coexpression and gene set analysis: Coexpression of genes

and lncRNAs was calculated for RNA-Seq datasets with
the number of samples410. The most abundant transcript

was selected to be the representative of gene expression, thus

ignoring the isoform difference. All pairwise correlations

were pre-calculated using the Spearman’s rank correlation

to reduce the influence of outlier genes, and top 1000 cor-

relations were stored for each coding or lncRNA gene for

speed and efficiency in web implementation. Gene set

analysis of overrepresentation were supported for Gene
Ontology (GO) terms and KEGG pathways. We used the

upper-tail hypergeometric test with the P-value cutoff of

0.01 and the multiple test corrections (Bonferroni and

Benjamini–Hochberg methods) using all genes with GO or

KEGG annotation as the background distribution. Gene

sets of size �5 or hits �2 were filtered out from the overrep-

resented terms.

3 RESULTS

3.1 Database overview

The scope of database, category of analyses and characteristics

of data are briefly summarized in the schematic overview of

lncRNAtor in Figure 1.
LncRNAtor is based on three main types of data––annotation

and conservation, gene expression from RNA-Seq and protein-

lncRNA interactions. It includes 21 575 lncRNAs from six model

organisms of human, mouse, zebrafish, fruit fly, worm and yeast.

Our compendium dataset includes 14051 human, 4030 mouse,

1666 zebrafish, 501 fruit fly, 1312 worm and 15 yeast lncRNA

genes. Importantly, lncRNAtor features the most extensive

compilation of RNA-Seq data, covering 208 datasets of 4995
samples, and protein–lncRNA interactions for 96 proteins of

319 samples.

These data were organized into several modules of analyzing

(i) sequence features such as protein-coding potential and cross-
species conservation, (ii) expression profiles and differential ex-

pression based on RNA-Seq data, (iii) protein–lncRNA binding

obtained from deep sequencing data and (iv) functional inference

of GO and KEGG pathways based on coexpressed protein-

coding genes.

3.2 Basic features

The Web site is composed of the basic search and several

advanced analyses of coexpression, differential expression and

binding proteins. Figure 2a shows the output screenshot from

the basic search, which includes the brief summary of each

lncRNA with linkouts to other databases. The non-coding

nature of lncRNAs can be confirmed by examining the pro-

tein-coding potentials, ORF prediction and the blast hits pro-

vided by the CPC program (Kong et al., 2007).
Next, we show the conservation score obtained from the mul-

tiple alignment data of phastCons track in the UCSC genome

database. Lineage-specific scores were calculated for promoter

(–500bp), 50-end of transcript (100 bp), exon, intron and 30-end
of transcript (100 bp) regions on various lineages including

primate, mammal and vertebrate. We also provide a link to

the UCSC genome browser, showing phylogenetic conservation

at base-pair resolution.
Gene expression profiles are provided in a separate tab menu

for representative tissues, cancers and developmental stages

according to the characteristics of RNA-Seq data. We show the

normalized expression value (FPKM) in box plots as shown in

Figure 2b. For user convenience, we provide additional tab menus

of differential expression and binding proteins for lncRNA of

interest, with details explained in the following section.
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We have examined the gene expression levels in nine RNA-Seq

datasets from TCGA, GEO and ENCODE databases including

352 samples from human, mouse, worm, fruit fly and zebrafish

(Supplementary Table S2). The distribution curves in

Supplementary Figure S1 show that the cutoff value of

FPKM=1.0 seemed a reasonable choice to differentiate tran-

scripts within noise level for all datasets. Transcripts of average

FPKM51.0 were removed from further analyses of differential

expression and coexpression. We have also compared the expres-

sion of protein-coding genes and lncRNAs in each dataset. The

distribution curves of lncRNAs and protein-coding genes were

shown in Supplementary Figure S2. The proportion of expressed

(i.e. FPKM41.0) lncRNAs was510% of total transcripts in

most datasets, much smaller values compared with that of

Fig. 1. Overview of lncRNAtor database

Fig. 2. Sample output from searching mouse H19 lncRNA. (a) Brief information of ID annotation, coding potential and conservation scores by lineage.

(b) Bar plot of gene expression profile in various tissues
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protein-coding genes (Supplementary Table S3). This is consist-

ent with the previous result that reported tissue-specific expres-

sion pattern for lncRNAs (Derrien et al., 2012).

3.3 Differential expression and binding proteins

Differential expression of lncRNAs is valuable information to

identify lncRNAs of functional roles in specific contexts. In an

effort to provide a comprehensive summary of RNA-Seq data-

sets, we devised a dataset browser of tree structure, classifying

RNA-Seq datasets into distinct groups of organism, cancer,

drug, tissue and developmental stage. Figure 3a shows the ex-

ample of 133 datasets in the TCGA category (the kidney part).
All RNA-Seq datasets were pre-processed for differential ex-

pression of lncRNAs. For each dataset, we manually classified

samples into the different groups and performed the statistical

test to identify differentially expressed lncRNAs and mRNAs

(see Section 2 for details).
Selecting the dataset and comparison of interest in the browser

tree (‘Kidney chromophobe: Normal versus Tumor’ in this ex-

ample) shows the expression heatmap of differentially expressed

lncRNAs (and mRNAs if needed) as shown in Figure 3b. The list

can be sorted, searched and exported into a separate file for

further analysis. Abundant datasets of TCGA and GEO allow

users to explore differential expression of lncRNAs in diverse

contexts such as tumor stages and drug treatment. Model organ-

ism data provide valuable information on lncRNAs of develop-

mental roles.
Proteins binding to lncRNAs are valuable source of informa-

tion on lncRNA function. We obtained 35 867 lncRNA–protein

bindings (adj. P50.01) by analyzing the IP-based deep sequen-

cing data of 96 RNA-binding proteins and 319 samples. These

RNA-binding proteins were classified into different functional

groups of transcription (hnRNPs, CPSFs), binding (ELAV1,

RBM4), microRNA (AGO, LIN28), epigenetic regulation

(Ezh2, Polycomb complex) and so on. Although the current

dataset is rather small, many proteins of importance in RNA

processing and regulation are already covered to provide

lncRNA candidates involved in these processes. Statistics of

lncRNA–protein binding is available in online documentation.

Selecting a specific RNA-binding protein shows the binding

heatmap of lncRNAs (and mRNAs) in a similar manner to the

expression heatmap.

3.4 Coexpression and functional gene set analysis

Guilt-by-association is the principal method of predicting func-

tions of genes with unknown function. Thus, protein-coding

mRNAs that are coexpressed with lncRNA of interest often pro-

vide ample insights into molecular functions (Liao et al., 2011).

Because RNA-Seq data provide the gene expression profile of

coding as well as non-coding RNAs in an unbiased manner, it is

an ideal source data to explore coexpression between coding

mRNAs and lncRNAs. A systematic study on correlated expres-

sion of lncRNAs was carried out by the GENCODE consortium

(Derrien et al., 2012).
We developed a module to explore the coexpressed protein-

coding mRNAs in a context-specific manner. Supported datasets

include RNA-Seq data in the TCGA, GEO and ENCODE data-

bases. Human datasets are mostly for cancer from TCGA and

GEO. Mouse (GSE36025 of CSHL, GSE36026 of LICR) and

zebrafish (GSE30608, ERP000016 from Sanger) datasets from

ENCODE cover various tissues. Worm and fruit fly datasets

from modENCODE cover developmental stages.
Selecting a dataset and lncRNA displays the expression heat-

map of lncRNA and mRNAs of correlated expression as shown

in Figure 4a. Here, we show the coexpression of lncRNA

NEAT1 using the dataset of ‘Kidney chromophobe: Normal

versus Tumor’ from TCGA. The search can be performed for

genes as well to identify lncRNAs of correlated expression. The

list can be exported for further analysis.
In an effort to support functional interpretation of coex-

pressed genes, we implemented the gene set overrepresentation

analysis for GO terms and KEGG pathways. Coexpressed genes

whose correlation coefficients are above or below the cutoff

value can be automatically subject to statistical enrichment test

in specific GO terms or KEGG pathways. Figure 4b shows the

sample output from the gene set analysis using top 200 protein-

coding genes coexpressed with NEAT1. The result indicates that

the complement activation and Rho signal transduction path-

ways are significant processes. The role of NEAT1 for the

kidney tumor development in the context of associated pathways

warrants further experimental works.

It is often the case that coexpressed genes are not necessarily

connected to homogeneous molecular functions or processes,

yielding presumably false terms in gene set overrepresentation

analysis. We implemented a filtering scheme to discard the

isolated genes using the protein–protein interactions (PPIs) in

the REACTOME (version 47) database that included 1.827 mil-

lion PPIs for human. Users may activate this PPI filtering pro-

cedure before applying the enrichment analysis of functional

Fig. 3. Exploring differential expression. (a) Dataset browser to search

for experimental conditions. (b) Expression heatmap for differentially

expressed lncRNAs
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annotation terms. It is shown that �20% of coexpressed genes

pass the REACTOME filtering condition (Supplementary

Table S4).

3.5 Conserved lncRNAs with correlated expression

Cross-species conservation and correlated expression pattern are

strong evidences for functional lncRNAs. To suggest the candi-

dates of functional lncRNAs, we searched for lncRNAs that

were conserved between human and orthologous genomes and

whose expression patterns were highly correlated in orthologs.

These lncRNAs are evolutionarily conserved in terms of se-

quences as well as expression patterns, thus being expected to

play important biological roles.

Cabili et al. reported identification of orthologous lncRNAs

by assembling and comparing transcript sequences from RNA-

Seq (Cabili et al., 2011). In general, lncRNAs are known to

be less conserved than protein-coding genes. We have

investigated the sequence conservation across species using

the UCSC phastCons track (Supplementary Fig. S3). For pro-

tein-coding genes, exons and 50-UTR regions were better con-

served than lncRNAs in both human and mouse. However,

the sequence conservation of upstream (–500 bp of transcrip-

tion start site) and intronic regions was comparable with the

exonic region in lncRNAs. Thus, we used the genomewide

multiple alignment of the UCSC phastCons track to identify

orthologous lncRNAs instead of comparing transcriptome

sequences. Orthologous relations with many-to-many or anti-

sense–sense correspondence were discarded. We obtained 628

non-human lncRNAs corresponding to 507 human lncRNAs.
Next, we searched for correlated expression pattern between

orthologous lncRNAs. RNA-Seq data (GSE30352) for the

polyadenylated RNA fraction of six organs from 10 species

were used to estimate the expression correlation (Brawand

et al., 2011). To remove biases from tissue-specific lncRNAs,

we filtered out lncRNAs that were expressed in one or two

tissues only. Using the cutoff of Pearson correlation coefficient

40.5, we have identified 72 conserved lncRNAs with corre-

lated expression between human and orthologous non-human

species, including 50 human–mouse cases. Among lncRNAs

expressed in one or two tissues, we have identified 27 con-

served lncRNAs additionally.
We applied the same strategy to independent expression data-

sets of multiple tissues in human and mouse. Using the Illumina

human BodyMap 2.0 dataset that profiled 16 normal tissues

(E-MTAB-513 in ArrayExpress) and the mouse ENCODE tran-

scriptome data from CSHL and LICR (GSE36025, GSE36026)

(Stamatoyannopoulos et al., 2012), we calculated the expresssion

correlation in 11 common tissues. From these datasets, we

found 26 conserved lncRNAs with correlation coefficient of ex-

pression40.5.
Investigating lncRNAdb that collected literature-based infor-

mation yielded only 28 conserved lncRNAs between human and

mouse. Results from two independent datasets yielded 13

common members, only two of which were included in the anno-

tated database of lncRNAdb (Fig. 5). These lncRNAs would

serve as highly reliable candidates of functional lncRNAs,

which warrant further investigation.

The ‘Cons+Corr lncRNAs’ menu in the web site shows our

list of conserved lncRNAs with correlated expression. The scat-

terplot of expression correlation is available for detailed analysis.

Fig. 4. Coexpression analysis for NEAT1 in the dataset of ‘Kidney chro-

mophobe: Normal versus Tumor’. (a) Expression heatmap of lncRNA

and coexpressed mRNAs. NEAT1 expression is shown on the top line.

(b) Gene set analysis of GO terms for biological processes

Fig. 5. Conserved lncRNAs with correlated gene expression between

human and mouse. Entries from lncRNAdb are conserved ones with

no information on expression pattern
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4 CONCLUSION

Even if thousands of lncRNAs have been identified so far, their
functional roles are known only for a limited number of

lncRNAs. Thus, we need an efficient tool for inferring molecular
expression and functions of lncRNAs to serve increasing number
of scientists interested in this important class of non-coding

RNAs.
Recently, three other groups released update databases on

lncRNAs. NONCODEv4 (Xie et al., 2014) provides the gene
expression pattern from RNA-Seq data. NPInter v2.0 (Yuan

et al., 2014) and starBase v2.0 (Li et al., 2014) are databases of
protein–RNA interactions based on CLIP-Seq data. Those high-
throughput gene expression and protein–RNA interaction data

were integrated together in the lncRNAtor database, enabling
users to investigate diverse properties related to molecular func-
tions. With the support of diverse features such as coexpression,

differential expression and binding proteins, lncRNAtor would
become a valuable resource on the role of lncRNAs to diverse
groups of bench biologists. The coverage and predictive power of

lncRNAtor are expected to increase as the regular update of the
deep sequencing data in public. We plan to update the database
on annual basis.
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