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ARTICLE

LNK suppresses interferon signaling in melanoma
Ling-Wen Ding1, Qiao-Yang Sun 1, Jarem J. Edwards2,3, Lucia Torres Fernández1, Xue-Bin Ran1, Si-Qin Zhou1,

Richard A. Scolyer 2,3,4, James S. Wilmott2,3, John F. Thompson2,3,4, Ngan Doan5, Jonathan W. Said 5,

Nachiyappan Venkatachalam 1, Jin-Fen Xiao1, Xin-Yi Loh1, Maren Pein1, Liang Xu1, David W. Mullins 6,

Henry Yang1, De-Chen Lin7 & H. Phillip Koeffler 1,7

LNK (SH2B3) is a key negative regulator of JAK-STAT signaling which has been extensively

studied in malignant hematopoietic diseases. We found that LNK is significantly elevated in

cutaneous melanoma; this elevation is correlated with hyperactive signaling of the RAS-RAF-

MEK pathway. Elevated LNK enhances cell growth and survival in adverse conditions. Forced

expression of LNK inhibits signaling by interferon-STAT1 and suppresses interferon (IFN)

induced cell cycle arrest and cell apoptosis. In contrast, silencing LNK expression by either

shRNA or CRISPR-Cas9 potentiates the killing effect of IFN. The IFN-LNK signaling is tightly

regulated by a negative feedback mechanism; melanoma cells exposed to IFN upregulate

expression of LNK to prevent overactivation of this signaling pathway. Our study reveals an

unappreciated function of LNK in melanoma and highlights the critical role of the IFN-STAT1-

LNK signaling axis in this potentially devastating disease. LNK may be further explored as a

potential therapeutic target for melanoma immunotherapy.
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A
dvanced stage melanoma is one of the most devastating
cancers causing nearly 50,000 annual deaths worldwide1.
The majority of cutaneous melanomas are driven by

oncogenic gain of function mutant BRAF (V600E, ~40–50%)2,3,
followed by mutant NRAS, RAS inhibitor NF1 (loss of function)
and occasionally mutant c-Kit. Melanoma cells generally respond
poorly to traditional chemotherapy and radiotherapy, until
recently rendering a lack of efficient therapeutic approaches for
most of the late stage patients. Development of BRAF inhibitors
vemurafenib (PLX4032)4–6 and dabrafenib and immune check-
point blockade antibodies which target either cytotoxic T
lymphocyte–associated antigen 4 (CTLA-4) or programmed cell
death protein 1 (PD-1)7,8 have dramatically altered the ther-
apeutic landscape of melanoma in the past few years9,10. These
approaches, particularly antibodies against immune checkpoint
blockade, show strikingly durable responses resulting in sig-
nificant improvement of overall survival of a subset (30–40%) of
patients8. Despite these remarkable achievements, resistance to
therapy and melanoma recurrence often occurs11. Specifically,
about 60–80% of the melanoma patients do not response to initial
PD-1/CTLA-4 antibody therapy12,13 (primary resistance), and
20–30% of the initial responders develop resistance to treatment,
with progressive disease14. Hence, a better understanding is
clearly needed in regards to the signaling pathways governing the
survival of melanoma cells in the setting of immunotherapy.

Recently, two studies noted the crucial role of the interferon
(IFN) pathway in melanoma patients who become resistant to
either PD-1 or CTLA-4 antibody therapy15,16. Loss of function
mutations of JAK1/2 were found in patients with recurrent
melanoma who initially responded to PD-1 antibody, or in the
primary nonresponder (patients who never responded to the
therapy)17. Functional studies undertaken by the same research-
ers suggested that loss of JAK2 function in melanoma cells could
impairs IFN signaling, causing resistance to T cell-mediated
cytotoxicity and thereby leading to recurrence of the
melanoma15,17. Similar conclusions have been reached using
in vivo CRISPR-Cas9 library screening studies showing that
sgRNAs targeting Jak1/Jak2 and Stat1 as well as interferon
receptors were significantly enriched in murine melanoma B16
cells placed in immune-competent, syngeneic C57B/L mice,
compared to the same cells (with the same sgRNA library pool)
grafted in immunodeficient mice18,19. These studies underscore
the crucial role of IFN-JAK/STAT1 signaling in the immune
escape of melanoma cells, consistent with dysregulation of the
JAK-STAT signaling pathway facilitating progression of mela-
noma. Loss of the JAK-STAT signaling provides a selective
growth/survival advantage for melanoma cells to thwart immune
surveillance allowing negative modulators of this signaling to be
explored as a potential therapeutic target.

LNK (SH2B3) is a key negative regulator of JAK-STAT sig-
naling, which has been extensively studied in malignant hema-
topoietic diseases20–23. As an adaptor protein, LNK recognizes
and binds to activated, phosphorylated tyrosine proteins through
its SH2 domain, resulting in the inhibition of these activated
kinases. Within this context, LNK is a potent tumor suppressor in
hematopoietic malignancies22,24,25, as many hematopoietic can-
cers are mainly driven by gain of function receptor tyrosine
kinase (RTK)24. For example, in myeloid proliferative disorder
(MPD), a blood cancer which frequently (~90–95%) harbors the
V617F gain of function mutant JAK226, LNK behaves as an anti-
proliferative effector by directly binding and suppressing the
signaling of this mutant kinase20,27. Indeed, loss of function
mutations of LNK occur in MPD patients (particularly those with
wild-type JAK2)27,28 and occasionally in Philadelphia chromo-
some (Ph)-like acute lymphoblastic leukemia (ALL)29. Most LNK
studies have focused on its role in hematopoietic disease, often

using murine Lnk knockout models23–25,30–32. Although LNK is
widely expressed in a variety of cancer cells (Fig. 1a), its function
in solid tumors has not been fully explored. In this study, we find
that LNK is highly expressed in melanoma, and aberrant eleva-
tion of LNK confers a selective survival advantage for melanoma
cells against the anti-proliferative and pro-apoptotic effect of
interferon. Our study identify LNK as a critical regulator of the
IFN-STAT1 pathway; and aberrantly expressed LNK probably
contributes to immune evasion and tumorigenesis of melanoma.

Results
LNK expression is significantly elevated in melanoma. We
analyzed LNK mRNA expression in the Cancer Cell Line Ency-
clopedia (CCLE) [http://www.broadinstitute.org/ccle], cBioPortal
for Cancer Genomics [www.cbioportal.org/], Oncomine [https://
www.oncomine.org] and NCBI GEO database [https://www.ncbi.
nlm.nih.gov/geo/]. Since primary tumors often contain infiltrat-
ing T/B lymphocytes33, which are known to express considerable
level of LNK, we began our analysis with cancer cell line data
because they lack infiltrating lymphocytes and stroma cells.
Among the 881 different cancer cell lines in the CCLE database
and 317 cancer cell lines in the CellLineNavigator database (E-
MTAB-37, Transcriptomics for Cancer Cell Line Project), LNK
mRNA is significantly upregulated in cutaneous (skin) melano-
mas (Fig. 1a, upper and middle panels). Consistently, among
the >8000 RNA sequencing data from primay cancer samples in
The Cancer Genome Atlas (TCGA), melanoma samples expres-
sed the highest LNK mRNA (Fig. 1a, lower panel). Compared to
either normal skin tissue (Supplementary Fig. 1, RNA sequencing
of 473 sun-exposed normal skin samples and 387 non-sun-
exposed normal skin samples, collected from the GTEX database
[https://www.gtexportal.org]) or benign nevi, LNK mRNA was
significantly upregulated in the melanoma samples, particularly in
advanced stages of the disease (vertical growth phase, metastatic
growth phase vs primary/in situ melanoma, Fig. 1b–d) and
ranked as one of the top 1% overexpressed genes in melanoma
(Riker Melanoma, Oncomine database, Fig. 1b). We performed
western blot and immunohistochemistry (IHC) staining to con-
firm the elevated expression of LNK protein in melanoma. In
melanoma tissue arrays (ME242a, obtained from Biomax Inc), all
of the melanoma section cores (n= 12) were heavily stained with
the LNK antibody (Fig. 1e), while considerable less staining was
found in normal skin tissue. We further extended the IHC study
to a large melanoma patient cohort (tissue arrays established at
Melanoma Institute Australia, The University of Sydney, Aus-
tralia) including 163 melanoma patient samples. Strong staining
of LNK was observed (score= 3 or 2) in the majority of the
melanoma samples (81%). In addition, when we separated the
stage 3 patients (which contained the largest patient number with
similar stage of disease for analysis) based on the LNK staining
results, a trend toward inferior overall survival was found in
patients with high LNK protein expression in their tumors
(Supplementary Fig. 2).

LNK expression is correlated with RAS-RAF signaling. We
sought to examine the underlying mechanism governing the
aberrant elevation of LNK in melanoma. First, we analyzed the
CCLE melanoma cell lines to assess whether any potential cor-
relation occured between LNK and other oncogenic abnormal-
ities. We separated the melanoma cell lines based on their driver
mutation (BRAF V600E, NRAS Q61K/L, c-KIT or other), and
found that LNK expression was significantly higher in cell lines
that harbored BRAF and NRAS mutations (Fig. 1f), suggesting
that hyperactivated RAS-RAF-MEK signaling may correlate with
LNK expression in melanoma. To pursue this hypothesis, we

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09711-y

2 NATURE COMMUNICATIONS |         (2019) 10:2230 | https://doi.org/10.1038/s41467-019-09711-y | www.nature.com/naturecommunications

http://www.broadinstitute.org/ccle
http://www.cbioportal.org/
https://www.oncomine.org
https://www.oncomine.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gtexportal.org
www.nature.com/naturecommunications


queried the LNK mRNA expression and performed a meta-
analysis of cDNA microarray data in the GEO database. LNK
mRNA expression was significantly affected by perturbation of
the MAPK signaling in melanoma cells. Inhibition of mutant
BRAF (V600E) activity by either the BRAF inhibitor Vemur-
afenib (PLX4032, Supplementary Fig. 3a) or BRAF siRNA
markedly reduced the LNK transcript levels in melanoma A375

cells (Supplementary Fig. 3b), while forced expression of an
activated BRAF (V600E) generated the opposite effect (~four-fold
increased LNK, Supplementary Fig. 3c). Similarly, silencing
expression of mutant NRAS Q61K expression in a doxycycline-
inducible murine melanoma model reduced LNK mRNA
(GSE39984) (Supplementary Fig. 3d). In contrast, forced
expression of either activated NRAS Q61K or HRAS/KRAS G12V
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in the immortalized melanocyte cell line Mel-ST significantly
increased LNK transcripts (GSE62827, Supplementary Fig. 3e).
Suppressing the MAPK kinase activity in melanoma cells with a
MEK inhibitor (U0126) consistently downregulated LNK
expression (Supplementary Figs. 3b, d). We performed RT-PCR
and western blot to validate our in silico observations. In three
melanoma cell lines that harbored the BRAF V600E mutation
(A375, M229 and M238), treatment of the cells (24 h) with either
the BRAF inhibitor vemurafenib (PLX4032) or a MEK inhibitor
(U0126) significantly downregulated the LNK mRNA and protein
expression (Fig. 1g, h). Collectively, these data suggest that
aberrant expression of LNK is correlated with the hyperactivated
RAF/MAPK signaling in melanoma.

LNK promotes growth and survival of melanoma cells. To
evaluate the biological relevance of elevated LNK in melanoma
cells, we first examined the effect of LNK silencing in melanoma
cells using the database of Novartis DRIVE cancer cell lines
[https://oncologynibr.shinyapps.io/drive/]. In this large-scale (398
different cancer cell lines) shRNA library screening project, cells
were infected with shRNA library pool targeting 7837 genes (each
gene was targeted by ~20 different shRNAs)34. The lentiviral
shRNA infected cells were allowed to grow for 14 days after
infection. The presence of each shRNA was analyzed by high-
throughput-sequencing. Enrichment of shRNA at day 14 com-
pared to day 0 indicated that it targeted an anti-growth gene,
while depletion of a shRNA suggested it targeted a pro-growth
gene (e.g., shRNAs targeting BRAF in melanoma, Supplementary
Fig. 4). In 27 of the 35 melanoma cell lines examined, LNK
shRNA (ATARiS value) was consistently decreased at day 14
(compared with day 0), suggesting that silencing LNK by shRNA
retards cell growth of most melanoma cell lines (Fig. 2a).

We generated a number of melanoma cell lines that stabilized
either over-expressed (OE) or silenced LNK (either by shRNA or
CRISPR-Cas9). Lentivirus-transduced melanoma cells were
selected using puromycin, and either forced-expression or
silencing of LNK were confirmed by western blot. By MTT
assay, silencing LNK modestly retarded growth of melanoma cell
lines, while forced expression of LNK showed either no significant
difference (A375, Supplementary Fig. 5) or modestly reduced cell
growth (M202). However, forced expression of LNK enhanced
the anchorage-independent clonal growth in soft agar (Fig. 2b)
and generated bigger tumors in an in vivo xenograft model
(Fig. 2c, d); while silencing of Lnk using CRISPR-Cas9 reduced
the tumor formation of murine melanoma B16/F10 cells (Fig. 2c,
d). These data suggest that LNK modestly enhances tumorigen-
esis and the self-renewal potential of melanoma cells.

In addtion, LNK enhances cell survival in various adverse
conditions. Melanoma cells with enforced expression of LNK

showed increased resistance to anokisis (induced by cell growth
in ultra-low attachment surfaces resulting in cells detaching from
their surrounding extracellular matrix) (Fig. 2e, f). Indeed,
western blot analysis of these cells showed a reduction of
expression of both major apoptotic markers (cleavage caspase 3/9,
cleavage PARP) and pro-apoptotic BH3 protein BIM (Fig. 2g),
suggesting resistance to apoptosis in LNK-overexpressing cells.
Similarly, overexpression of LNK in melanoma cells protected
them from cell death when grown in either nutrient-deprived
media [100% PBS or 1:10 diluted RPMI (with 90% PBS)] or with
an inhibitor of transcription (Actinomycin-D, Fig. 2h).

LNK inhibits signaling of IFN-STAT1. Recent studies suggest
that the IFN-JAK1/2-STAT1 pathway plays a central role in T cell-
mediated killing of tumor cells; and perturbation of this pathway
leads to resistance of immune check point blockade in
melanoma15,16. IFN released by CD8+ T cells binds to the IFN
receptors of tumor cells, stimulating expression of a number of IFN
responsive genes signaling through JAK-STAT1 pathway. LNK is a
well-characterized JAK-STAT suppressor in hematologic
malignancies20,21, prompting us to test whether the prominently
expressed LNK in melanoma cells was involved in regulation of the
IFN pathway. Melanoma cells exposed to recombinant IFN protein
[either type I (alpha, beta) or type II (gamma)] quickly activated the
interferon signaling pathway, as evidenced by heavy phosphoryla-
tion of STAT1 as early as 30min following IFN treatment (Fig. 3a,
b). Activated STAT1 migrated into the nucleus initiating tran-
scription of downstream interferon regulatory/responsive genes.
Forced expression of LNK profoundly suppressed the IFN (either
alpha, beta or gamma) induced phosphorylation of STAT1 (Fig. 3),
while silencing of LNK using either shRNA or CRISPR-Cas9,
generated the opposite effect. Consistently, the major downstream
markers of IFN signaling, IRF1 and PD-L1, were downregulated in
the LNK overexpressed cells, while higher levels of these proteins
were detected in the LNK silenced cells. To preclude the possibility
that fetal bovine serum (contains different cytokines/growth factors
and may affect LNK expression and downstream signaling) affects
our analysis, experiments were performed either with or without
serum using several cell lines. Results were consistent with LNK
regulating IFN-JAK-STAT in both culture conditions.

We performed immunoprecipitation (IP) to examine the
protein interaction between LNK and other proteins. Melanoma
cells were treated with IFN gamma for 30 min, lysed and LNK
protein was pulled-down using LNK antibody (Santa Cruz (A-
12): sc-393709). Western blot analysis showed that STAT1 was
pulled down together with LNK protein (Fig. 3e). Similarly,
reciprocal immunoprecipitation using STAT1 antibody (Cell
Signaling, 9172S) showed LNK was co-precipitated with STAT1
protein. We performed GST-pull down experiments to examine

Fig. 1 LNK expression is elevated in melanoma and associated with RAS-RAF-MEK signaling. a LNK mRNA expression is elevated in melanoma cell lines

and primary melanoma samples. Upper panel, LNK expression in 877 cancer cell lines (data extracted from microarray data of CCLE). Middle panel, LNK

expression levels in 332 cancer cell lines (data extracted from microarray data of E-MTAB-37). Lower panel, LNK expression in primary cancer samples

(data retrieved from TCGA RNA sequencing data using Cbio cancer portal). b LNK expression is elevated in melanoma, compared with normal skin tissue

(data obtained from Oncomine database). Mean ± (+ & −) SD, ****p < 0.0001, unpaired t-test. c LNK expression is upregulated in advanced melanoma

(metastasis) compared with primary melanoma. Mean ± SD, ****p < 0.0001, unpaired t-test. d LNK expression is upregulated in advanced stages of

melanoma (vertical growth phase, metastatic growth phase, etc.) compared with either in situ melanoma or benign nevus. e IHC staining of melanoma

tissue array. LNK is heavily stained in all of the melanoma tissue cores (n= 12), while significantly weaker staining was detected in normal skin controls

(skin, n= 12). Scale bar= 200 µm (left panel) or 20 µm (right panel). f Melanoma cell lines in CCLE were classified into different groups based on their

oncogenic drivers (BRAF V600E, NRAS Q61K/L, HRAS, c-KIT and other drivers). LNK expression levels were significantly elevated in cell lines driven by

mutant BRAF V600E and NRAS Q61K. *p < 0.05; ***p < 0.001; unpaired t-test. g, h Inhibitor of BRAF [Vemurafenib (PLX4032)] or MEK (U0126)

consistently downregulated LNK expression in three melanoma cell lines carrying the BRAF V600E mutation. Real time PCR was performed 24 h after

exposure to the inhibitors (g, mean+ SD, n= 3). Western blot was performed 48 h after the treatment (h). *p < 0.05; **p < 0.01; unpaired t-test. Error bars

represent SD. All p values were calculated using two tailed t-test
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whether a direct interaction occur between LNK and STAT1
protein. Recombinant GST fusion protein of LNK (PH or SH2
domain) and STAT1 were generated and purified using E.coli
strain TXK1 (Stratagene). The recombinant proteins were
incubated with the cell lysate of HEK293T cells transfected with
Flag tag STAT1 expressing constructs (GST-LNK pull down
experiment) or cell lysis of A375 expressing V5-LNK (GST-

STAT1 pull down experiment). Both PH and SH2 domain of
LNK, but not the GST control protein, can bind to the STAT1
protein and they were pulled down together as a protein complex
(Fig. 3f, g). As an SH2 domain adaptor protein, LNK may interact
with STAT1 helping to recruit phosphatase(s) to dephosphorylate
the STAT1 protein. We are currently performing SILAC (Stable
Isotope Labeling by/with Amino acids in Cell culture) mass
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spectrometry experiments to identify the downstream phospha-
tase involved in this regulatory process.

RNA sequencing and cDNA microarray comprehensive profil-
ing were performed to identify genes whose expression changed
using melanoma cell lines A375 and M202 [overexpressed or
silencing LNK± (either with or without) exposure to IFN-γ for 24
h]. In the A375 cell line, 394 genes were downregulated and 1306
genes were upregulated in the LNK-overexpressing cells vs control
cells (with a cutoff of two-fold) treated with IFN-γ. Pathway
analysis of upregulated genes showed over-representation of cell
cycle progression genes in LNK-overexpressing cells treated with
IFN-γ (e.g., upregulation of MYC and CCNE2), while many genes
involved in autoimmune disease were downregulated in these cells
(pathways related to inflammatory bowel disease, graft versus host
disease, Fig. 4a, left panel,+IFN-γ 24 h). In the same cells cultured
without IFN-γ, forced expression of LNK upregulated genes of the
NF-KB signaling, and down-regulated genes involved in the
extracellular matrix (ECM) interaction pathway (Fig. 4a, right
panel, without IFN-γ). As anticipated, expression of a series of
interferon-inducible genes [e.g., IRF1, IFI27 (promote cell death,
mediate the IFN induced apoptosis), IFI6, IFI35, ISG20], as well as
IFN downstream effectors [e.g., IDO1 etc.] were markedly
upregulated following IFN-γ treatment of control melanoma cells;
this upregulation was significantly attenuated in cells over-
expressing LNK [both A375 (Fig. 4b) and M202 (Supplementary
Fig. 6)]. Conversely, silencing of LNK significantly enhanced
expression of interferon-inducible genes (Fig. 5, Supplementary
Fig. 7). Analysis of the RNA sequencing data using Gene Set
Enrichment Analysis (GSEA) of cells silencing LNK showed a
remarkable enrichment of the expression signatures of interferon
(False Discovery Rate (FDR) q-values= 0), graft versus host
disease, allograft rejection, immune effector process and antigen
processing pathway (Fig. 5a). An inverse correlation (negative
enrichment) of MYC targets and telomeres signature, as well as
melanoma relapse gene expression signature were also observed
(signature enriched in control cells, Supplementary Fig. 8).
Depletion of Myc expression has recently been shown to reverse
the immune evasion of lung cancer cells35. Notably, expression of
a number of HLA genes was suppressed by LNK. For example, a
series of MHC class I and II genes, including HLA-DMA, HLA-
DOB, etc, were downregulated in the LNK overexpressing A375
cells (Figs. 4b, 5b) and significantly upregulated in the same cell
line silenced with LNK using CRISPR-Cas9 guide RNA. Hence,
prominent expression of LNK down-regulates the IFN-induced
MHC gene expression, probably leading to a decreased MHC-
mediated antigen presentation and potentially reducing T cell
recognition.

Recombinant IFN alpha has been used as an adjuvant
therapeutic reagent for resected, advanced stage melanoma;36

and IFN can directly suppress proliferation of melanoma cells
and induce their apoptosis37. Indeed, melanoma cells treated
with interferon gamma have markedly suppressed growth
(Fig. 6a). Overexpression of LNK attenuates this effect and
confers a selective growth/survival advantage (Fig. 6a, b, MTT
and foci formation assays). In contrast, silencing of LNK by
either shRNA or CRISPR-Cas9 potentiates the effect of
interferon, reducing cell proliferation and formation of foci.
Interferon gamma-induced rapid apoptosis, reflected by caspase-
mediated cleavage of Poly (ADP-ribose) polymerase (PARP)
after IFN exposure. Forced expression of LNK potently inhibited
cleavage of PARP and suppressed IFN induced apoptosis (Fig. 3a,
d). The A375 cell line is resistant to interferon induced
apoptosis38, and cleavage of PARP was hardly detectable, but a
marked retardation of cell growth was observed upon IFN-γ
treatment. The anti-proliferative effect of IFN in this cell line was
probably due to the suppression of cell cycle progression; and as
suggested from our RNA sequencing data, LNK probably
reversed this effect through upregulation of cell cycle pathway
genes (Fig. 4a).

Based on the above observations, we hypothesized that a higher
level of LNK expression will suppress the interferon pathway and
confer a selective survival advantage to melanoma cells; therefore,
those patients who have higher levels of LNK expressed in their
tumor cells will be less likely to respond to PD-1 antibody
therapy. We examined the LNK mRNA expression using RNA
sequencing data of a cohort of melanoma patients who were
uniformly treated with PD-1 antibody (data retrieved from
GSE78220)39. RNA was extracted from melanoma biopsy samples
before treatment. A trend towards higher levels of LNK mRNA
was found in non-responding patients [responding cohort (n=
15), FPKM mean value= 15.89; non-responding cohort (n= 13)
= 32.43], although the difference did not reach statistical
significance (p= 0.13, unpaired t-test) (Fig. 6c). In contrast, the
mRNA level of the other two SH2B family members (SH2B1 and
SH2B2) showed no difference in expression between the
responding and non-responding patients (Supplementary Fig. 9).
To test further this hypothesis, murine melanoma cells (B16/F10
or D4M.3A) with silenced Lnk were injected into syngeneic
C57BL/6 mice, and the mice were treated with anti-mouse PD-1
antibody (Fig. 6d–f, Supplementary Fig. 10). Silencing Lnk by
CRISPR-Cas9 enhanced the tumor-suppressive effect of PD-1
antibody retarding tumor growth, supporting the concept of
further exploring the therapeutic potential of targeting LNK plus
immune checkpoint therapy.

Fig. 2 LNK promotes cellular growth and survival. a ATARiS profiles of LNK shRNA in Novartis cancer cell lines shRNA library database [https://

oncologynibr.shinyapps.io/drive/]. LNK shRNA (~20 different shRNA targeting different region of LNK) were depleted/decreased in most of the melanoma

cell lines (blue color) on day 14 post-transduction. b LNK promotes anchorage independent growth of melanoma cells. Left panel of each picture shows

clonal growth in soft agar, while the corresponding bar graph (right panel) enumerates colony formation (mean+ SD, n= 4). GFP, overexpressing GFP

control; LNK OE, overexpression of LNK. *p < 0.05; **p < 0.01; unpaired t-test. c Photographs of tumor formation of murine xenografts. Upper panel, M368

xenografts grown in NSG mice show that LNK overexpressing cells formed larger tumors compared with GFP controls. Lower panel, murine melanoma

B16/F10 xenograft results after Lnk silencing by CRISPR-Cas9. d LNK promotes tumorigenesis in murine xenograft model. Left and middle panels, bar

graphs show tumor growth of melanoma cells overexpressing LNK (M368 and M229). Right panel, bar graphs show tumor growth of B16/F10 with

silencing expression of LNK. Mean+ SEM. *p < 0.05; ***p < 0.001; unpaired t-test. e, f Force expression of LNK (LNK OE) enhances cell survival and

confers resistance to anoikis related cell death (induced when cells are grown anchorage-free). *p < 0.05, unpaired t-test. f Representative result of

Annexin V staining after melanoma cells was grown on ultra-low binding plates. GFP, overexpression GFP control; LNK, overexpression of LNK.

g Overexpression of LNK attenuates anoikis cell death. Cells were grown on ultra-low attachment plates for 48 h to induce anoikis before protein

extraction. The western blot showed that overexpression of LNK reduced expression of apoptosis markers. Ctrl, control cells; LNK, cells overexpressing

LNK. h LNK enhances cells survival in adverse conditions: M368 melanoma cells were grown either in nutrition deprived media (100% PBS or 1:10 diluted

DMEM media, diluted with isotonic PBS) or exposed to transcription inhibitor actinomycin-D (mean+ SD, n= 3). **p < 0.05, unpaired t-test. Error bars

represent either SEM (d) or SD (b, e, and h). All p values were calculated using two tailed t-test
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IFN-STAT1 induces LNK expression as a negative feedback.
Melanoma cells treated with IFN-γ upregulated LNK expression
(Fig. 6g). Analysis of the ChIP-seq data from the ENCODE
database [https://www.encodeproject.org/] reveals strong IRF-1
enrichment at the transcriptional start site of LNK associated with
IFN-γ treatment (Fig. 6h, 6 h), suggesting that activated IFN-
STAT1 signaling turns on the transcription factor IRF-1 to acti-
vate the transcription of LNK. This upregulation may act as a
negative feedback mechanism to prevent over-activation of the

pathway and fine tune the magnitude and duration of signaling of
IFN. Melanoma cells may also use this signaling axis to amelio-
rate the anti-proliferative effect of IFN.

Discussion
Melanoma harbors the highest mutational burden among can-
cers40 and is frequently infiltrated with T lymphocytes41. Their
high mutational load increases the likelihood of tumor specific
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neoantigen (encoded by the mutant protein) expression on the
surface of melanoma cells which can be recognized by T cells42,43.
Melanoma cells can develop different approaches to evade
immune surveillance12 including: (1) upregulation of the cell
surface expression of T cell inhibitory molecules (e.g., PD-L1,
TIM3, etc44,45.); (2) downregulation of IFN signaling (e.g., loss of
function mutation of JAK215,46); (3) suppression of presentation
of neoantigens on the tumor cell surface to reduce T cell recog-
nition [e.g., mutation/deletion or downregulation of the mole-
cules involved in antigen processing in the endoplasmic reticulum
(ER)12 (e.g., TAP etc.) or antigen surface presentation (e.g., MHC
or β2-microglobulin (B2M) protein15]; (4) recruitment of
immuno-suppressive cells [e.g., myeloid-derived suppressor cells
(MDSCs)] or regulatory T cells directed to the tumor micro-
environment47. Among these escape mechanisms, IFN signaling
plays a central role in coordinating T cell activity and killing
cancer cells. In a murine model of melanoma, blockade of Ifna
signaling using an anti-Ifnar antibody completely abolish tumor
rejection mediated by Pd-1 antibody therapy48. IFN released by
CD8+ T cells activates the JAK-STAT1 signaling pathway; upon
activation, the IFN receptor recruits JAK1/2 tyrosine kinase to
phosphorylate the major downstream effector STAT1. The latter
translocates into the nucleus to stimulate transcription of INF-
stimulated response genes. We identified LNK as a negative
regulator of the signaling by JAK-STAT in melanoma. Elevated
LNK protein in these melanoma cells confers selective survival
advantage by suppressing signaling by IFN. The elevated LNK is
associated with the mutant hyper-activated RAS-RAF signaling
pathway in melanoma cells. Hence, a potential therapeutic
rationale for the combination of a RAF/MEK inhibitor (down-
regulate LNK expression) with an immune checkpoint blockade
antibody49,50.

The observation that LNK suppresses the IFN-induced MHC
class II and I genes is of interest. The MHC complex mediates
antigen cell surface presentation and plays a central role in
neoantigen-mediated T cell recognition51. Recently, Johnson et al
found that MHC-II gene expression was correlated with response
to PD-1/PD-L1 antibody therapy52 and the expression of HLA-
DR correlated with pro-immune/inflammatory gene signature52.
Response to PD-1 antibody therapy was associated with pre-
existing IFN-γ signaling including the display of MHC class II
proteins on untreated melanoma patient samples53. Over-
expression of LNK suppresses expression of MHC genes, leading
to a reduction of cellular antigenicity, helping the tumor cells
evade immune surveillance. Indeed, a negative correlation of LNK
and MHC gene expression was observed in melanoma samples
(Supplementary Fig. 11). Notably, recent genome-wide associa-
tion studies (GWAS) identified a single nucleotide polymorphism
(SNP) in the LNK coding region which is significantly associated
with a variety of autoimmune diseases [e.g., celiac disease54,

autoimmune hepatitis type 155]. LNK may suppress pro-
inflammatory cytokines induced by autoantigen presentation
through down-regulation of MHC/HLA genes in these diseases,
and this deserves further study.

The clinical translation of targeting LNK in melanoma patients
may have the potential to improve the effect of immune check-
point therapy and increase patient survival. Pharmacologic tar-
geting LNK using small molecule, if feasible, not only may
enhance the tumor immunity in cancer cells, but may also
enhance the activity and cell proliferation of tumor infiltrating
T cells. Silencing LNK using small molecules may also enhance
the JAK-STAT signaling in lymphocytes enhancing their pro-
liferation and activation. Targeting LNK’s downstream phos-
phatase may represent an alternative approach to enhance the
JAK-STAT signaling and tumor immunity in cancer cells18. We
are currently performing mass spectrometry experiments to
identify this phosphatase.

In summary, we showed that expression of the adaptor protein
LNK is significantly elevated in melanoma cells, and enhanced
transcription of LNK is associated with the signaling of the
hyperactivated RAS-RAF-MEK pathway (Fig. 6i). Ectopic
expression of LNK enhances cell survival and tumor growth and
suppresses IFN-induced apoptosis/cell cycle arrest. Our study
uncovered an unappreciated function of LNK in melanoma and
underscores the important role of IFN-STAT1-LNK signaling in
this potentially devastating disease.

Methods
Study design. For the murine xenograft experiment, a sample size of n ≥ 6 per
group was used to achieve a statistical significance of p < 0.05. All tumor samples
were included in the analysis. Experiments were performed in a non-blinded way.

Statistical analysis. GraphPad Prism 6 was used for the statistical analysis. Data
were analyzed using unpaired two-tailed t test and presented as means ± SD, unless
otherwise indicated. P < 0.05 was considered to be statistically significant.

Cell lines. Melanoma cell line A375 and B16/F10 were from ATCC; primary
human melanoma cells (M202, M229, M238, M285, M368) were kindly provided
by Dr Antoni Ribas, UCLA. Murine melanoma cell line D4M.3A was provided by
Dr David W.Mullins. Cells were maintained in DMEM medium with 10% fetal
bovine serum (FBS) and 1% Penicillin-Streptomycin. HEK293T cells were cultured
in DMEM medium with 10% FBS.

Reagents. Recombinant human Interferon alpha 1 (CYT-291), Beta 1a (CYT-236),
Beta 1b (CYT-234) Gamma (IFN-γ, CYT-206) were obtained from Prospecbio.

Immnuohistochemical (IHC) staining. Melanoma tissue array (ME242a, obtained
from US Biomax Inc.) was stained with LNK antibody (R&D, AF5888, the spe-
cificity and titration of the antibody for IHC experiment was tested with positive
and negative controls56). Staining of tissue arrays of 163 melanoma patient samples
was performed at Melanoma Institute Australia, Sydney, Australia.

Fig. 3 LNK suppresses signaling of the IFN-STAT pathway. a Western blots show forced expression of LNK suppress the IFN-γ (2000 U/ml, 24 h) induced

STAT1 phosphorylation in M202 cell. Cells were growth in either normal complete media (with 10% FBS) or serum starved (24 h) before IFN-γ treatment.

GFP, GFP overexpressing control; LNK, LNK overexpressing cells; C-PARP, cleavage PARP; Exp, exposure time. b Western blots show silencing of LNK

enhances the IFN-γ (2000 U/ml, 24 h) induced STAT1 phosphorylation and enhanced expression of downstream markers (IRF-1 and PD-L1) in M229 cell.

Cell were grown in either normal complete (with 10% FBS) or serum starved media 24 h before the IFN-γ treatment. Ctrl, control; sgLNK, CRISPR-Cas9

guide RNA targeting LNK (sgLNK-1). c Western blots showed that forced expression of LNK suppresses the IFN-γ induced STAT1 phosphorylation and IRF1

expression in A375 cells (left panel), while silencing LNK generated the opposite effect. Ctrl, non-target shRNA control; shLNK, shRNA targeting LNK

(shLNK-16). d Western blots show force expression of LNK suppresses interferon alpha (IFNA1 as well as IFNA2B) or interferon beta (B1A, Interferon beta

1A; B1B, Interferon beta 1B) induced STAT1 phosphorylation in M202 cell. e Immunoprecipitation (IP) experiments showed that LNK interacted with STAT1

protein. Melanoma cells were treated with IFN gamma (2000U/ml) for 30min. Lysates were extracted (m-PER protein extraction solution) and proteins

were pull-downed using LNK (Santa Cruz Biotechnology (A-12): sc-393709) or STAT1 (Cell Signaling, 9172) antibody. f GST-pull down experiments

showed that the PH and SH2 domains of LNK bind to STAT1 protein. GST-PH-LNK, GST protein fused to the PH domain of LNK; GST-SH2-LNK, GST

protein fused to the SH2 domain of LNK. g GST-pull down experiments showed the GST-STAT1 protein (expressed from E.coli) directly binds to the LNK

protein (V5 tag)
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Fig. 4 LNK attenuated the IFN induced gene expression. a Pathway enrichment analysis: A375 cells with forced expression of LNK (LNK OE) were cultured

either with (left panel) or without (right panel) IFN-γ (2000 U/ml). Enriched pathways of either upregulated (red color) or downregulated (blue color)

genes in forced LNK expressing A375 melanoma cells are displayed with their p value. Pathway analysis was performed using [http://cpdb.molgen.mpg.

de/]. b LNK attenuated the IFN-γ (2000 U/ml, 24 h) induced gene expression in A375 melanoma cells. Upper panel, LNK attenuated expression of IFN-γ

interferon response genes. Middle panel, LNK attenuated IFN-γ induced expression of MHC class I genes. Lower panel, LNK attenuated IFN-γ induced

expression of MHC class II genes
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Real time qRT-PCR. Total RNA was extracted from cells using RNeasy Mini Kit
(QIAGEN). LNK mRNA expression was determined by real time PCR using pri-
mer DLW13 CACTTTCCCTCGGTCGTG and DLW 14 GGGACAGCCAGAA-
GAACTAA (targeting exons 7 and 8 including the intervening intron of human
LNK gene). Primers of IFN induced genes are listed in Supplementary Table 3. β-
Actin or GAPDH were used for normalization.

Lentivirus and generation of stable cell lines. Lentiviral CMV-GFP plasmid
SHC003 was obtained from Sigma-Aldrich. Lentivirus construct to express LNK
was generated by replacing the GFP with LNK coding region56. For gene silencing,
shRNA plasmids targeted to LNK [TRCN0000265715 (shRNA15),
TRCN0000265716 (shRNA16), TRCN0000256095 (shRNA95) and Non-targeting
shRNA SHC002 were obtained from Sigma-Aldrich. CRISPR-Cas9 sgRNAs were
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Fig. 5 Silencing of LNK enhances IFN signaling in melanoma cells. a GSEA analysis of significantly enriched gene expression signatures in A375 melanoma

cells with silenced LNK using different CRISPR-Cas9 guide RNA. Cells were either cultured with or without IFN gamma (400 U/ml, 24 h); and gene

expression was analyzed using RNA sequencing. NES, normalized enrichment score; FDR, false discovery rate. The color scale indicates the positive (red)

or negative (blue) correlation. b Silencing of LNK enhanced the IFN-γ induced (400 U/ml, 24 h) gene expression of MHC class I and II. c Silencing of LNK

enhanced the IFN response gene expression in A375 cells. d Real time PCR analysis of IFN induced genes expression in A375 cells with either forced

expression (LNK OE) or silencing of LNK (sgLNK), either with or without IFN-γ treatment (2000 U/ml, 24 h). *P < 0.05; **P < 0.01; ***P < 0.001; ****P <

0.0001; ns, not significant; unpaired two tailed t-test. Error bars represent SD
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generated based on the pLENTI-CRISPRv2 according to the procedure described
in [http://www.addgene.org/crispr/zhang/]. The sequences of all the shRNA and
shRNA constructs were confirmed by Sanger sequencing using U6 primer. The
shRNA and CRISPR-Cas9 sgRNA sequences are listed in Supplementary Table 1.

Western blot analysis. Total proteins were extracted using M-PER mammalian
Protein Extraction Reagent (Thermo Scientifics). The following antibodies were
used in this study: anti-human LNK antibody (AF5888, R&D system Inc, 1:2000);
anti-mouse/human Lnk/LNK ((A-12) sc-393709, Santa Cruz Biotechnology Inc,
1:500); anti-β-actin (a1978, Sigma-Aldrich, 1:6000); anti-p-JAK2 (Tyr1007/1008,
3776S, Cell Signaling Technology Inc, 1:2500), JAK2 (3230S, Cell Signaling
Technology Inc, 1:2500), p-JAK1 (Tyr1022/1023, 3331, Cell Signaling Technology
Inc, 1:2500), JAK1 (3344, Cell Signaling Technology Inc, 1:2500), p-STAT1
(Tyr701, 7649, Cell Signaling Technology Inc, 1:2500), STAT1 (9172, Cell Signaling
Technology Inc, 1:2500), IRF1 (8478, Cell Signaling Technology Inc, 1:2500),
Cleaved Caspase-3 (9661, Cell Signaling Technology Inc, 1:2000), Cleaved Caspase-
9 (9501, Cell Signaling Technology Inc, 1:2000), BCL2 (4223, Cell Signaling
Technology Inc, 1:2000), BIM (2933, Cell Signaling Technology Inc, 1:2000), c-
PARP (Asp214, 5625, Cell Signaling Technology Inc, 1:2500), PD-L1 (13684, Cell
Signaling Technology Inc, 1:2000) and GAPDH (2118, Cell Signaling Technology
Inc, 1:6000). Detail of all the antibodies are listed in Supplementary Table 2, the
source data of western blots are provided in Supplementary Fig. 12.

Cell proliferation assays. Cell proliferation assays were performed using MTT.
2000–8000 cells were seeded in 96-well plates and grown in a 37 °C cell incubator.
Relative cell numbers were determined by staining the cells with MTT dye at
indicated time points. Stained cells were dissolved with SDS-dimethylformamide
solution and measured with spectrometer (OD570).

Soft agar colony formation assays. Cells (1000–5000 cells/well, depending on the
cell line, 24 well plates) were resuspended in 2 × DMEM with 20% FBS, mixed 1:1
with 0.7% low-melting agarose and seeded on top of a solid base layer (1% agarose
mixed 1:1 with 2 × DMEM with 20% FBS)57. Cells were grown at 37 °C until the
colonies were visible by eye; these were then stained with 1:50 diluted Gentian
Violet and the number of colonies was quantified.

Murine xenografts. For human melanoma cell lines, 5–8-weeks-old Nod-SCID mice
were used for the xenograft experiments. Indicated number of cells was resuspended
in 100 μl of DMEM media [cell line M368 was resuspended in 100 µl FBS together
with 100 µl Matrix gel (BD)] and subcutaneously injected into both flanks of the mice.
Mice were sacrificed, and tumors were excised at the end of the experiments.

For murine melanoma cell line B16/F10 and D4M.3 A, 8–12-weeks-old
syngeneic C57BL/6 mice were used for the experiments. Control (with control
CRISPR-Cas9 vector) and Lnk silenced cells (CRISPR-Cas9 with sgLnk guide
RNA) were subcutaneously injected into both flanks of the same mice. Mice were
randomly separated into two group (either Pd-1 treated or untreated group), 100
µg anti-murine Pd-1 antibody (BE0146, Bio X Cell) was intraperitoneal injected on
days 5, 7, 10, 13 (B16/F10 cells) or days 10, 12, 15, 18 (D4M.3A cells) post
implantation of the cells (Fig. 6e). Mice were sacrificed, and tumors were excised
after 18 (B16/F10) or 23 (D4M.3A) days. The animal study was conducted
according to the ethical regulations and was approved (R18-0450) by NUS
Institutional Animal Care and Use Committee (IACUC).

Cell anoikis assays. Anchor-independent growth was achieved by culturing cells
in ultra-low-adherence plates (Costar, Corning, 105 cells/well, and 24-well plates).
Cell viability was determined using Vi-CELL viability analyzer (Beckman) at dif-
ferent time points (0, 24, and 48 h). For Annexin V analysis, cells were harvested at
48 hours, stained with Annexin V-APC and Propidium Iodide (BD Biosciences)
and examined using flow cytometry (BD LSRII).

RNA sequencing and microarray analysis. mRNA expression was profiled using
either high-through-put RNA sequencing or Illumina Human HT-12 v4 Expres-
sion BeadChip. Real-time RT-PCR was performed to validate the significantly
altered genes.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The RNA sequencing and microarray data has been deposited in the GEO database under

the accession code GSE127764, GSE127333 and GSE127965. All the other data supporting

the findings of this study are available within the article and its supplementary information

files and from the corresponding author upon reasonable request. A reporting summary for

this article is available as a Supplementary Information file.
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