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Abstract

We present a novel deep convolutional network pipeline,

LO-Net, for real-time lidar odometry estimation. Un-

like most existing lidar odometry (LO) estimations that

go through individually designed feature selection, fea-

ture matching, and pose estimation pipeline, LO-Net can

be trained in an end-to-end manner. With a new mask-

weighted geometric constraint loss, LO-Net can effectively

learn feature representation for LO estimation, and can im-

plicitly exploit the sequential dependencies and dynamics in

the data. We also design a scan-to-map module, which uses

the geometric and semantic information learned in LO-Net,

to improve the estimation accuracy. Experiments on bench-

mark datasets demonstrate that LO-Net outperforms exist-

ing learning based approaches and has similar accuracy

with the state-of-the-art geometry-based approach, LOAM.

1. Introduction

Estimating 3D position and orientation of a mobile plat-

form is a fundamental problem in 3D computer vision, and

it provides important navigation information for robotics

and autonomous driving. Mobile platforms usually collect

information from the real-time perception of the environ-

ment and use on-board sensors such as lidars, Inertial Mea-

surement Units (IMU), or cameras, to estimate their mo-

tions. Lidar can obtain robust features of different environ-

ments as it is not sensitive to lighting conditions, and it also

acquires more accurate distance information than cameras.

Therefore, developing an accurate and robust real-time lidar

odometry estimation system is desirable.

Classic lidar-based registration methods used in pose es-

timation include Iterative Closest Point (ICP) [3], ICP vari-

ants [24], and feature-based approaches [26]. But due to the

nonuniformity and sparsity of the lidar point clouds, these

methods often fail to match such data. ICP approaches

find transformations between consecutive scans by mini-

mizing distances between corresponding points from these

scans, but points in one frame may miss their spatial coun-
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Figure 1. Top: Data stream of LO-Net. Bottom: Network architec-

ture of feature extraction layers (red dashed line) and mask predic-

tion layers (black dashed line) . Our network takes two consecutive

lidar scans as input and infers the relative 6-DoF pose. The output

data will be further processed by the mapping module.

terparts in the next frame, due to sparsity of scan resolu-

tion. Feature-based methods are less sensitive to the qual-

ity of scans, and hence, are more powerful. However, they

are usually more computationally expensive. Furthermore,

most feature-based methods are sensitive to another envi-

ronmental factor, dynamic objects in the scene. These two

issues inhibit many feature-based methods from producing

effective odometry estimation.

Recently, deep learning-based methods have outper-

formed classic approaches in many computer vision prob-

lems. Many Convolutional Neural Networks (CNNs) ar-

chitectures and training models have become the state-of-

the-art in these tasks. However, the exploration of effec-

tive CNNs in some 3D geometric data processing problems,

such as 6-DoF pose estimation, has not been this success-

ful yet. Although quite a few CNN-based 6-DoF pose esti-

mation (from RGB images) strategies [34, 43, 36, 39] have

been explored recently, these methods often suffer from
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the inaccurate depth prediction and scale drift. This pa-

per proposes a new deep neural network architecture for

lidar odometry estimation. We are inspired by the re-

cent CNNs-based camera localization and pose regression

works [43, 2, 16, 37] in the context of network structure de-

sign, and the traditional lidar odometry methods [41, 21, 7]

in the aspect of lidar mapping. The pipeline is illustrated

in Figure 1. Our method can better accumulate motion-

specific features by incorporating pairwise scans, better in-

terpret the spatial relations of scans by applying normal con-

sistency, and better locate effective static regions using a

simultaneously learned uncertainty mask.

The main contributions of this paper are as follows: 1)

We propose a novel scan-to-scan lidar odometry estimation

network which simultaneously learns to estimate the normal

and a mask for dynamic regions. 2) We incorporate a spa-

tiotemporal geometry consistency constraint to the network,

which provides higher-order interaction between consecu-

tive scans and helps better regularize odometry learning.

3) We couple an efficient mapping module into the estima-

tion pipeline. By utilizing the normal and mask information

learned from LO-Net, we can achieve a still real-time but

more accurate odometry estimation.

We compared our approach with existing representative

methods on commonly used benchmark datasets KITTI [10,

11] and Ford Campus Vision and Lidar Data Set [22]. Our

approach achieves the state-of-the-art results. To our best

knowledge, this is the first neural network regression model

that is comparable to the state-of-the-art geometry feature

based techniques in 3D lidar odometry estimation.

2. Related work

A. ICP variants

Most existing lidar-based pose estimation algorithms are

built upon variants of the ICP method [3, 24]. ICP iter-

atively matches the adjacent scans and estimates the pose

transformation, by minimizing distances between corre-

sponded elements, until a specific termination condition is

met. Despite its wide applicability, ICP is computationally

expensive and sensitive to initial poses. Various ICP vari-

ants, such as point-to-plane or plane-to-plane ICP, were de-

veloped to improve ICP’s convergence speed and robustness

against local minima.

By combining point-to-point ICP and point-to-plane ICP,

Segal et al. [28] introduce a plane-to-plane strategy called

Generalized ICP (GICP). The covariance matrices of the lo-

cal surfaces is used to match corresponding point clouds.

Their results show better accuracy over original ICP. The

Normal Iterative Closest Point (NICP) [29] takes into ac-

count the normal and curvature of each local surface point.

Experiments show that NICP can offer better robustness and

performance than the GICP.

Grant et al. [12] derive a novel Hough-based voting

scheme for finding planes in laser point clouds. A plane-

based registration method [23], that aligns detected planes,

is adopted to compute the final transformation. For the non-

uniformly sampled point clouds from laser sensors, Serafin

et al. [30] present a fast method to extract robust feature

points. They remove ground points by a flat-region-removal

method, then extract key-points of lines and planes, and use

them to estimate the transformation. They show compara-

tive results against the NARF key-point detector [31] and

highlight that the feature extraction algorithm is applica-

ble to the Simultaneous Localization and Mapping (SLAM)

problem [13, 5]. Similarly, Douillard et al. [8] remove the

ground points by voxelization, cluster the remaining points

into the segments, then match these segments through a

modified ICP algorithm.

To overcome the sparsity of lidar point clouds, Collar

Line Segments (CLS) [32] groups the points into polar bins,

and generates line segments within each bin. Then, ICP can

be used to register the corresponding lines and estimate the

transformation between two scans. Although it produces

better results than GICP [28], CLS is not real-time because

the line segments computation is very slow.

Over the past few years, Lidar Odometry And Mapping

(LOAM) [41, 42] has been considered as the state-of-the-

art lidar motion estimation method. It extracts the line and

plane features in lidar data, and saves these features to the

map for edge-line and plane-surface matching. LOAM dose

not consider the dynamic objects in the scene and achieves

low-drift and real-time odometry estimation by having two

modules running in parallel. The estimated motion of scan-

to-scan registration is used to correct the distortion of point

clouds and guarantee the real-time performance. Finally,

the odometry outputs are optimized through a map.

B. Deep learning-based methods

Deep learning has achieved promising results on the is-

sues of visual odometry (VO) [34, 43, 40, 36], image-based

pose estimation or localization [17, 16, 4], and point cloud

classification and segmentation [25, 19]. Unfortunately, us-

ing deep learning methods to solve 3D lidar odometry prob-

lems still remains challenging. Velas et al. [33] use CNNs

to do lidar odometry estimation on lidar scan sequences.

To train the CNNs, the original lidar data is transformed

into dense matrix with three channels. However, this model

formulates the odometry estimation as a classification prob-

lem, rather than a numerical regression, and it only esti-

mates translational parameters. Hence, is not competent for

accurate 6-DoF parameters estimation. The method of [33]

and ours are conceptually similar, but our network better

handles uncertain dynamic regions through mask predic-

tion, and more effectively uses spatiotemporal consistency

to regularize the learning for stable estimations.
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3. Method

Odometry estimation algorithm uses consecutive point

clouds obtained by a moving robot as inputs. Our LO-

Net can interpret and exploit more information by perform-

ing sequential learning rather than processing a single scan.

And the features learned by LO-Net encapsulate geomet-

ric information for the LO problem. As shown in Fig-

ure 1, our LO-Net architecture consists of a normal esti-

mation sub-network, a mask prediction sub-network, and a

Siamese pose regression main-network. LO-Net takes two

consecutive scans (St−1;St) as input and jointly estimates

the 6-DoF relative pose between the scans, point-wise nor-

mal vector, and a mask of moving objects for each scan.

Despite being jointly trained, the three modules can be used

independently for inference. The odometry outputs of the

LO-Net are then refined through a lidar mapping, which

registers the lidar point clouds onto a globally constructed

map. The final output is the transformation of scan St with

respect to the initial reference position, namely, the pose of

each St in the world coordinate system.

3.1. Lidar data encoding

As shown in Figure 2, the 3D lidar point clouds with

ring structures are usually represented by Cartesian coordi-

nates. Additional information includes intensity values. To

convert the original sparse and irregular point clouds into a

structured representation that can be fed into networks, we

encode the lidar data into point cloud matrices by a cylin-

drical projection [6]. Given a 3D point p = (x, y, z) in lidar

coordinate system (X,Y, Z), the projection function is

α = arctan(y/x)/∆α

β = arcsin(z/
√

x2 + y2 + z2)/∆β
(1)

where α and β are the indexes which set the points’ posi-

tions in the matrix. ∆α and ∆β are the average angular res-

olution between consecutive beam emitters in the horizontal

and vertical directions, respectively. The element at (α, β)
of the point cloud matrix is filled with intensity value and

range value r =
√

x2 + y2 + z2 of the lidar point p. We

keep the point closer to the lidar when multiple points are

projected into a same position. After applying this projec-

tion on the lidar data, we get a matrix of size H ×W × C,

and C is the number of matrix channels. An example of the

range channel of the matrix is shown in Figure 9.

3.2. Geometric consistency constraint

Normal estimation. As shown in Figure 2, given a 3D

point Xi and its k neighbors Xij , j = 1, 2, . . . , k on the

grid. The normal N (Xi) can be estimated by

argmin
N (Xi)

‖[wi1(X
i1 −Xi), · · · , wik(X

ik −Xi)]TN (Xi)‖2

(2)

Figure 2. Illustration of data encoding and normal estimation

where (Xik −Xi) is a 3D vector, wik is the weight of Xik

with respect to Xi, and [·]T is a k× 3 vector. ‖N (Xi)‖2 =
1. We set wik = exp(−0.2|r(Xik) − r(Xi)|) to put more

weight on points which have similar range value r with Xi,

and less weight otherwise. A commonly adopted strategy

for solving Equation (2) is to perform a Principal Com-

ponent Analysis (PCA), and convert the normal estimation

to the computation of eigenvectors/eigenvalues of the co-

variance matrix created from Xi’s neighbors. In our work,

this normal estimation needs to be embedded into the net-

work. The computation of covariance matrices and their

eigenvectors makes the training and estimation inefficient.

Hence, we simplify the normal estimation by computing the

weighted cross products over Xi’s four neighbors. Then we

smooth normal vectors using a moving average filter [20].

This can be formulated as

N (Xi) =
∑

Xik ,X
ij∈P

(wik(X
ik −Xi)× wij(X

ij −Xi))

(3)

where P is the set of neighboring points of Xi, sorted coun-

terclockwisely, as {Xi1 , Xi2 , Xi3 , Xi4} shown in Figure 2.

The final normal vectors are normalized to 1.

Due to the temporal spatial geometric consistency of

scan sequences, the points in a point cloud matrix should

have the corresponding ones in another. Let Xαβ
t−1 and Xαβ

t

be the spatial corresponding point elements of the consecu-

tive data matrices St−1 and St, respectively. We can derive

X̂αβ
t from Xαβ

t−1 through

X̂αβ
t = PTtP

−1Xαβ
t−1 (4)

where Tt is the relative rigid pose transformation between

the consecutive scans. P denotes the projection process and

P−1 is its inverse operation. Therefore, X̂αβ
t and Xαβ

t are

a pair of matching elements, and we can measure the simi-

larity between the corresponding elements to verify the cor-

rectness of pose transformation. The noise inevitably ex-

ists in the coordinate and intensity values because of lidar
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measurements. We compare the normal N (x) as it reflects

smooth surface layouts and clear edge structures of the road

environment (see Figure 8). Thus, the constraint of pose

transformation can be formulated as minimizing

Ln =
∑

αβ

‖N (X̂αβ
t )−N (Xαβ

t )‖1 · e
|∇r(X̂αβ

t )| (5)

where ∇r(X̂αβ
t ) is a local range smooth measurement, and

∇ is the differential operator with α and β. The item e|·|

allows the loss function to focus more on sharply changing

areas in the scene.

3.3. Lidar odometry regression

To infer the 6-DoF relative pose between the scans St−1

and St, we construct a two-stream network. The input to the

network is encoded point cloud matrices with point-wise

normal vectors. As shown in Figure 1, LO-Net concate-

nates the features coming from two individual streams of

feature extraction networks, then pass these concatenated

features to the following four convolution units. The last

three fully-connected layers output the 6-DoF pose between

the input scans. The last two fully-connected layers are of

dimensions 3 and 4, for regressing the translation x and rota-

tion quaternion q, respectively. Finally, we get a 7D vector,

which can be converted to a 4× 4 transformation matrix.

In order to reduce the number of model parameters and

computation cost, we replace most of convolution layers of

odometry regression network with fireConv [15], which has

been used for object detection from lidar point clouds [35].

We follow [15] to construct our feature extraction layers.

Since the width of intermediate features is much larger than

its height, we only down-sample the width by using max-

pooling during feature extraction. The detailed network ar-

chitecture is illustrated in the supplementary material.

Learning position and orientation simultaneously. In

our method, we choose the quaternion to represent the ro-

tation as it is a continuous and smooth representation of ro-

tation. The quaternions q and −q map to the same rotation,

so we need to constrain them to a unit hemisphere. We use

Lx(St−1;St) and Lq(St−1;St) to demonstrate how to learn

the relative translational and rotational components, respec-

tively.

Lx(St−1;St) = ‖xt − x̂t‖l

Lq(St−1;St) =

∥

∥

∥

∥

qt −
q̂t

‖q̂t‖

∥

∥

∥

∥

l

(6)

where xt and qt are the ground truth relative translational

and rotational components, x̂t and q̂t denote their predicted

counterparts. l refers to the distance norm in Euclidean

space, and we use the ℓ2-norm in this work. Due to the

difference in scale and units between the translational and

rotational pose components, previous works [17, 34] gave

a weight regularizer λ to the rotational loss to jointly learn

the 6-DoF pose. However, the hyper-parameter λ need to be

tuned when using new data from different scene. To avoid

this problem, we use two learnable parameters sx and sq
to balance the scale between the translational and rotational

components in the loss term [16].

Lo = Lx(St−1;St) exp(−sx) + sx

+ Lq(St−1;St) exp(−sq) + sq
(7)

We use the initial values of sx = 0.0 and sq = −2.5 for all

scenes during the training.

3.4. Mask prediction

Given two consecutive scans St−1 and St in a static rigid

scene, we can get point matching relationships of the en-

coded data matrix pairs through transformation and cylin-

drical projection, as illustrated in Section 3.2. Lidar point

clouds are considered as the 3D model of the scene, and of-

ten contain dynamic objects such as cars and pedestrians in

the road environment. These factors may inhibit the learn-

ing pipeline of odometry regression.

Based on the encoder-decoder architecture (see Fig-

ure 1), we deploy a mask prediction network [43, 38] to

learn the compensation for dynamic objects, and improve

the effectiveness of the learned features and the robustness

of the network. The encoding layers share parameters with

feature extraction layers of the odometry regression net-

work, and we train these two networks jointly and simul-

taneously. The deconvolution layers are variants of fireDe-

conv [15], and adopt the skip-connection. The detailed net-

work architecture is described in the supplementary mate-

rial.

The predicted mask M(Xαβ
t ) ∈ [0, 1] indicates the area

where geometric consistency can be modeled or not, and

implicitly ensures the reliability of the features learned in

the pose regression network. Therefore, the geometric con-

sistency error as formulated in Equation (5) is weighted by

Ln =
∑

αβ

M(Xαβ
t )‖N (X̂αβ

t )−N (Xαβ
t )‖1 · e

|∇r(X̂αβ
t )| .

(8)

Note that there is no ground truth label or supervision to

train the mask prediction. The network can minimize the

loss by setting all values of the predicted mask to be 0. To

avoid this, we add a cross-entropy loss as a regularization

term

Lr = −
∑

αβ

logP (M(Xαβ
t ) = 1). (9)

In summary, our final objective function to minimize for

odometry regression is

L = Lo + λnLn + λrLr (10)
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where λn and λr are the weighting factors for geometric

consistency loss and mask regularization, respectively.

3.5. Mapping: scan­to­map refinement

Consecutive scan-to-scan matches could introduce accu-

mulative error, and also, may suffer when available com-

mon feature points between consecutive frames are limited.

Hence, we maintain a global map reconstructed from the

previously scans, then use the registration between this map

and the current scan to refine the odometry. Unlike the tra-

ditional scan-to-map approaches [41, 42], which directly

match all the detected edge and plane points, we use the

normal information (estimated by LO-Net) to select points

from smooth area and use the mask (also an output of LO-

Net) to exclude points from moving object.

At a test time t, let [Tt, St] be the data from LO-Net. Tt

is the odometry computed by LO-Net, which is used as the

initial pose for mapping. St is a multi-channel data matrix

containing the intensity, range, normal, and mask values of

each point. The coordinates of each point can be calculated

from its range value. The mapping takes the scan and the

odometry as input, then matches the point cloud onto the

global map. Figure 3 shows the diagram of our mapping

module. The details of diagram are as follows:

∗ : Based on the normal channels of St, we define a term

c to evaluate the smoothness of the local area.

c =

3
∑

k=1

(K ∗ Nk)
2 (11)

where Nk is the normal vector channel of St. The symbol ∗
denotes the convolution operation. K is a 3×5 convolution

kernel. For K, the value of the central element is -14, and

the others are 1. We compute c for each point in St, and sort

the values in increasing order. The first nc points in the list,

except for marked points of the mask, are selected as planar

points as they are in the smooth area.

Π : Compute an initial estimate of the lidar pose relative

to its first position: Minit = Mt−1M
−1
t−2Mt−1, where Mt

is the lidar transformation at time t.

Ψ : Eliminate the motion distortion of lidar point cloud

from St by compensating for the ego-motion using a linear

interpolation of Tt. Then, use Minit to transform the cor-

rected scan St to the global coordinate system in which the

map is located, and prepare for matching.

Suppose pi = (pix , piy , piz , 1)
T is a point in the scan St,

mi = (mix ,miy ,miz , 1)
T is the corresponding point in the

map built by the previous scans, ni = (nix , niy , niz , 0)
T is

the unit normal vector at mi. The goal of mapping is to find

the optimal 3D rigid-body transformation

M̂opt = argmin
M̂

∑

i

((M̂ · pi −mi) · ni)
2 . (12)

Odometry Scan
function module

ΝMap

Global
Pose

*

Ψ

6-DOF pose flow

scan flow

map flow

Σ Map

Global
Pose

Π

ΦΘ

Figure 3. The mapping module consecutively computes the low-

drift motion of the lidar in the world coordinate system and builds

a 3D map for the traversed environment using the lidar data. The

specific meanings of the function symbols are explained in the text.

Θ : Iteratively register the scan onto the map by solving

Equation (12) until a maximum number of iteration niter.

Then, calculate the final transformation Mt by accumulat-

ing the transformation during the iteration M̂k and the ini-

tial pose Minit

Mt =

niter
∏

k=1

M̂kMinit . (13)

Φ : Generate a new point cloud from the current scan

St by linear interpolation of vehicle motion between Mt−1

and Mt.

Σ, N: Add the new point cloud to the map. Then, re-

move the oldest point cloud scans to only maintain nm

transformed scans in the map.

This mapping-based refinement is performed iteratively

along with the scan sequence. It can further improve the

accuracy of odometry estimation, as shown in Section 4.2.

4. Experiments

Implementation details. The point cloud data we

use is captured by the Velodyne HDL-64 3D lidar sen-

sor(64 laser beams, 10Hz, collecting about 1.3 million

points/second). Therefore, during encoding the data ma-

trix, we set H = 64 and W = 1800 by considering the

sparseness of point clouds. The width of input data ma-

trix are resized to 1792 by cropping both ends of the ma-

trix. During the training, the length of input sequence

is set to be 3. We form the temporal pairs by choos-

ing scan [St−2, St−1], [St−1, St], [St−2, St]. LO-Net pre-

dicts relative transformation between the pairs. The whole

framework is implemented with the popular Tensorflow li-

brary [1]. During the training, the mask prediction network

is pre-trained using KITTI 3D object detection dataset, and

all layers are trained simultaneously. The initial learning

rate is 0.001 and exponentially decays after every 10 epochs

until 0.00001. The loss weights of Equation (10) are set to

be λn = 0.15 and λr = 0.05, and the batch size is 8. We

8477



Figure 4. Trajectory (in red) and the built map of LO-

Net+Mapping on Ford dataset 1. Our reconstructed trajectory

(without enforcing loop closure) has small drift and forms closed

loops accurately (yellow circle).

choose the Adam [18] solver with default parameters for

optimization. The network is trained on an NVIDIA 1080

Ti GPU. For the mapping, we set the number of points in

each scan nc = 0.01HW , the number of scans in the map

nm = 100, and the number of iterations niter = 15.

4.1. Datasets

KITTI. The KITTI odometry dataset [10, 11] consists of

22 independent sequences with stereo gray-scale and color

camera images, point clouds captured by a Velodyne li-

dar sensor, and calibration files. Sequences 00-10 (23201

scans) are provided with ground truth pose obtained from

the IMU/GPS readings. For sequences 11-21 (20351 scans),

there is no ground truth available, and are provided for

benchmarking purposes. The dataset is captured during

driving in a variety of road environments with dynamic ob-

jects and vegetation, such as highways, country roads and

urban areas. The driving speed is up to 90km/h.

FORD. The Ford Campus Vision and Lidar Data

Set [22] consists time-synchronized 2D panoramic image,

3D lidar point clouds and IMU/GPS data. Like KITTI, the

lidar dataset is captured using horizontally scanning 3D li-

dar mounted on the top of a vehicle. The dataset contains

two loop closure sequences collected in different urban en-

vironments, and there are more moving vehicles than the

KITTI dataset.

4.2. Odometry results

Baselines. We compare our approach with several clas-

sic lidar odometry estimation methods: ICP-point2point

(ICP-po2po), ICP-point2plane (ICP-po2pl), GICP [28],

CLS [32], LOAM [42] and Velas et al. [33]. The first two

ICP methods are implemented using the Point Cloud Li-

brary [27]. As far as we know, [33] is the only deep learn-

ing based lidar odometry method that has comparable re-

sults, but it has no codes publicly available. We obtain the

x (m)

0
100

200
300

400
500

600

y (m)0 100

z (
m

)

0

GT

LO-Net
LO-Net+Mapping

Start Point

Figure 5. 3D trajectory plots of our method for KITTI Seq. 10. The

mapping module effectively reduces the vertical drift generated in

LO-Net.

results of other evaluated methods using the publicly avail-

able code, and some of the results are even better than those

in the originally published papers. For LOAM algorithm, it

achieves the best results among lidar-based methods in the

KITTI odometry evaluation benchmark [11]. In order to en-

able the map-based optimization of LOAM to run for every

input scan and determine the full potential of the algorithm,

we make some modifications and parameter adjustments in

the originally published code. Loop closure detection is not

implemented for all methods since we aim to test the limits

of accurate odometry estimation.

We firstly conduct the training and testing experiments

on the KITTI dataset. Then, based on the model trained

only on the KITTI dataset, we directly test the model on the

Ford dataset without any further training or fine-tuning. We

use the KITTI odometry evaluation metrics [11] to quanti-

tatively analyze the accuracy of odometry estimation. Ta-

ble 1 shows the evaluation results of the methods on KITTI

and Ford datasets. It can be seen that the results of LO-

Net+Mapping are slightly better than LOAM and clearly

superior to the others. Although there are differences be-

tween the two datasets, such as different lidar calibration

parameters and different systems for obtaining ground truth,

our approach still achieves the best average performance

among evaluated methods. Figure 5 shows the 3D trajec-

tory plots of our method at different stages. Some trajecto-

ries produced by different methods are shown in Figure 4

and 6. Figure 7 shows the average evaluation errors on

KITTI Seq. 00-10. More estimated trajectories for KITTI

and Ford datasets are shown in our supplementary material.

Ablation study. In order to investigate the importance

of different loss components proposed in Section 3, we

perform an ablation study on KITTI dataset by training

and testing the LO-Net using different combinations of the

losses. As shown in Table 2, the network achieves the best

average performance when it is trained with the full loss.

4.3. Normal results

Since KITTI and Ford datasets do not provide a bench-

mark for normal evaluation, we compare the normal esti-
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Table 1. Odometry results on KITTI and Ford datasets. Our network is trained on KITTI sequences and then tested on the two datasets.

Seq.
ICP-po2po ICP-po2pl GICP [28] CLS [32] LOAM [42]1 Velas et al. [33]2 LO-Net LO-Net+Mapping

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00† 6.88 2.99 3.80 1.73 1.29 0.64 2.11 0.95 1.10 (0.78) 0.53 3.02 NA 1.47 0.72 0.78 0.42

01† 11.21 2.58 13.53 2.58 4.39 0.91 4.22 1.05 2.79 (1.43) 0.55 4.44 NA 1.36 0.47 1.42 0.40

02† 8.21 3.39 9.00 2.74 2.53 0.77 2.29 0.86 1.54 (0.92) 0.55 3.42 NA 1.52 0.71 1.01 0.45

03† 11.07 5.05 2.72 1.63 1.68 1.08 1.63 1.09 1.13 (0.86) 0.65 4.94 NA 1.03 0.66 0.73 0.59

04† 6.64 4.02 2.96 2.58 3.76 1.07 1.59 0.71 1.45 (0.71) 0.50 1.77 NA 0.51 0.65 0.56 0.54

05† 3.97 1.93 2.29 1.08 1.02 0.54 1.98 0.92 0.75 (0.57) 0.38 2.35 NA 1.04 0.69 0.62 0.35

06† 1.95 1.59 1.77 1.00 0.92 0.46 0.92 0.46 0.72 (0.65) 0.39 1.88 NA 0.71 0.50 0.55 0.33

07* 5.17 3.35 1.55 1.42 0.64 0.45 1.04 0.73 0.69 (0.63) 0.50 1.77 NA 1.70 0.89 0.56 0.45

08* 10.04 4.93 4.42 2.14 1.58 0.75 2.14 1.05 1.18 (1.12) 0.44 2.89 NA 2.12 0.77 1.08 0.43

09* 6.93 2.89 3.95 1.71 1.97 0.77 1.95 0.92 1.20 (0.77) 0.48 4.94 NA 1.37 0.58 0.77 0.38

10* 8.91 4.74 6.13 2.60 1.31 0.62 3.46 1.28 1.51 (0.79) 0.57 3.27 NA 1.80 0.93 0.92 0.41

mean† 7.13 3.08 5.15 1.91 2.23 0.78 2.11 0.86 1.35 (0.85) 0.51 3.12 NA 1.09 0.63 0.81 0.44

mean* 7.76 3.98 4.01 1.97 1.38 0.65 2.15 1.00 1.15 (0.83) 0.50 3.22 NA 1.75 0.79 0.83 0.42

Ford-1 8.20 2.64 3.35 1.65 3.07 1.17 10.54 3.90 1.68 0.54 NA NA 2.27 0.62 1.10 0.50

Ford-2 16.23 2.84 5.68 1.96 5.11 1.47 14.78 4.60 1.78 0.49 NA NA 2.18 0.59 1.29 0.44

1: The results on KITTI dataset outside the brackets are obtained by running the code, and those in the brackets are taken from [42].
2: The results on KITTI dataset are taken from [33], and the results on Ford dataset are not available.
†: The sequences of KITTI dataset that are used to train LO-Net.
∗: The sequences of KITTI dataset that are not used to train LO-Net.

trel: Average translational RMSE (%) on length of 100m-800m.

rrel: Average rotational RMSE (◦/100m) on length of 100m-800m.

Figure 6. Trajectory plots of KITTI Seq. 08 with ground truth. Our

LO-Net+Mapping produces most accurate trajectory.

Figure 7. Evaluation results on the KITTI Seq. 00-10. We show

the average errors of translation and rotation with respect to path

length intervals. Our LO-Net+Mapping achieves the best perfor-

mance among all the evaluated methods.

mation with that computed from the methods of PCA and

Holzer [14]. The PCA estimates the surface normal at a

point by fitting a least-square plane from its surrounding

neighboring points. In our experiment, we choose the radius

Table 2. Comparison of different combinations of the losses. The

mean values of translational and rotational RMSE on KITTI train-

ing and testing sequences are computed as in Table 1. L′
n indicates

that the geometric consistency loss is not weighted by the mask.

Seq.
Lo Lo, L′

n Lo, Ln, Lr

trel rrel trel rrel trel rrel

mean† 1.46 1.01 1.18 0.70 1.09 0.63

mean∗ 2.03 1.50 1.80 0.82 1.75 0.79

r = 0.5m and r = 1.0m as the scale factor to determine the

set of nearest neighbors of a point. As shown in Figure 8,

our estimated normals can extract smooth scene layouts and

clear edge structures.

For quantitative comparison purpose, the normals com-

puted from PCA with r = 0.5m are interpolated and used as

the ground truth. Then a point-wise cosine distance is em-

ployed to compute the error between the predicted normal

and the ground truth.

ei = arccos(ni · n̂i), n̂i ∈ N (14)

where the angle ei is the normal error at point pi, ni and n̂i

are ground truth and predicted normal vector of point pi, re-

spectively. n̂i ∈ N denotes the point pi is a valid point with

ground truth normal. The normal evaluations performed on

KITTI dataset are shown in Table 3, our approach outper-

forms the others under most metrics. The metrics include

the mean and median values of ei, and the percent-good-

normals whose angle fall within the given thresholds [9, 37].

“GT median” which denotes that we set a normal direction

for all points with the median value of the ground truth, is

employed as a baseline. The evaluation demonstrates that
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PCA(r=0.5) Holzer et al. Ours

-Y ZY-X

Figure 8. Visual comparison of normal results on KITTI dataset.

Different colors indicate different normal directions. Our results

show smooth surface layouts and clear edge structures. The im-

ages are cropped and reshaped for better visualization.

Table 3. Normal performances of our method and the baseline

methods on KITTI dataset.

Method
(Lower Better) (Higher Better)

Mean Median < 11.25◦ < 22.5◦ < 30◦

GT median 23.38 5.78 0.632 0.654 0.663

PCA(r=1.0) 14.38 11.55 0.470 0.895 0.946

Holzer et al. [14] 13.18 5.19 0.696 0.820 0.863

Ours 10.35 3.29 0.769 0.865 0.897

our estimated normal can serve as a reliable property of road

scene for the geometric consistency constraint.

4.4. Mask visualization

Examples of the mask predicted by our network are vi-

sualized in Figure 9. The highlighted areas suggest that

LO-Net has learned to identify dynamic objects and tend to

mask vegetation as unexplainable, and indicate that the net-

work will pay less attention to these areas in the odometry

regression. Dynamic objects and the relationships between

scan sequences are important for odometry estimation prob-

lems. They are difficult to explicitly model but implicitly

learned by our network.

4.5. Runtime

The lidar scanning point cloud are captured one by one

over time, and processing these data in time is critical for

robotic applications. Note that unlike image-based com-

puter vision applications, the commonly used lidar sensors,

such as Velodyne HDL-64 used in the KITTI and Ford

dataset, rotate at a rate of 10Hz, that is 0.1s per-scan. There-

fore, the real-time performance here means that the process-

ing time of each scanning data is less than 0.1s. An NVIDIA

1080 Ti GPU and an Intel Core i7 3.4GHz 4-core CPU are

chose as our test platform. In test-time, the data batch-size

of LO-Net is set to 1. Table 4 shows the average running

times on Seq. 00 of KITTI dataset. The average processing

time of our framework is about 80.1ms per-scan in total.

Reasonably, most of our runtime is spent on the mapping

procedure. Compared with most of traditional lidar odom-

Figure 9. Sample visualizations of masks on range channel of the

data matrix and its corresponding RGB images. The yellow pixels

indicate the uncertain points in the surrounding environment for

odometry estimation, such as points of moving cars, cyclists and

others. The images are cropped and reshaped for better visualiza-

tion.

Table 4. Average runtime on KITTI Seq. 00

Data preparation Inference Mapping total

8.5ms on CPU 10.2ms on GPU 61.4ms on CPU 80.1ms

etry estimation methods, including the methods evaluated

in Section 4.2, our map-based optimization is lightning fast

since we consume a new representation of input data. Our

approach enables real-time performance through a straight-

forward pipeline on a platform with GPU. For lower per-

formance platforms, we can also speed up the processing

through the parallelism of LO-Net and the mapping. Cur-

rently, some parts of our framework run on CPU, and we

can implement them on GPU to further increase the speed.

5. Conclusions

We present a novel learning framework LO-Net to per-

form lidar odometry estimation. An efficient mapping mod-

ule is coupled into the estimation framework to further im-

prove the performance. Experiments on public benchmarks

demonstrate the effectiveness of our framework over exist-

ing approaches.

There are still some challenges that need to be addressed:

1) The point clouds are encoded into data matrices to feed

into the network. Direct processing of 3D point clouds

could be more practical for 3D visual tasks. 2) Our cur-

rent network is trained with ground truth data. This limits

the application scenarios of the network. In our future work,

we will investigate in more detail the geometry feature rep-

resentation learned by the network. We also plan to incor-

porate recurrent units into this network to build temporal-

related features. This may lead to an end-to-end framework

without the need of costly collections of ground truth data.
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