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Load Allocation in DMS with a Fuzzy State Estimator
Vladimiro Miranda, Jorge Pereira, and João Tomé Saraiva

Abstract—This paper describes a Load Allocation model to be
used in a DMS environment. A process of rough allocation is ini-
tiated, based on information on actual measurements and on data
about installed capacity and power and energy consumption at LV
substations. This process generates a fuzzy load allocation, which is
then corrected by a fuzzy state estimator procedure in order to gen-
erate a crisp power flow compatible set of load allocations, coherent
with available real time measurements recorded in the SCADA.

I. INTRODUCTION

I N RECENT years, control centers in distribution went
through some drastic changes. Evolving from simple

SCADA systems, the concept of DMS—Distribution Manage-
ment Systems gained growing acceptance.

A DMS must provide a set of functions, namely for switching
decisions and operation, which rely on the basic tool of power
flow calculus. The problem of generating a coherent load set is
critical in distribution, because usually, the only real time mea-
surements available at a SCADA system are power or current
values at the sending end of a feeder emerging from a MV sub-
station. One must therefore rely on other type of data, recorded
in commercial files, to try to infer the values of loads.

The need of an inference mechanism resulted in a large
research effort in many places; some models had a more
heuristic approach, while others had a probabilistic theoretical
background [1]. Some of the primitive approaches to assessing
line flows in distribution systems addressed the “peak flow”
problem: one was only trying to assess the peak flow that could
occur at any time in every section of the network.

But a modern DMS must try to address the problem of eval-
uating actual synchronized flows and making this compatible
with any measurements available at a SCADA system at any
time . This is a must if the DMS is to be used as an effective op-
eration tool—for instance, some switching maneuvers leading
to load transfers may be possible under certain conditions and
not possible in other cases.

The complexity of the problem increased with the connec-
tion at distribution level of dispersed generation from industrial
co-generation or independent producers with thermal, diesel,
wind or just mini-hydro generators. This had two effects: a) it
changed the top-down traditional character of power flows in
distribution systems, usually operated under radial configura-
tions, and b) in many cases, this power injection is monitored
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and more real-time measurements are available at the SCADA,
both for power injections and for some line flows.

Under contract for EDP—Electricidade de Portugal, SA,
INESC has developed a model [2] to derive characteristic load
curves for LV substations from commercial data. This model,
based on neural networks, was tested and adopted by the utility
and is giving remarkably accurate results.

However, we can not imagine that all utilities will be
using such model or have available, for every LV substation,
descriptions of its characteristic daily load curves, for distinct
week days and seasons of the year. As INESC was contracted
by EFACEC—Sistemas de Electrónica, SA, to help developing
software models and modules for a DMS, we realized that a) a
general load allocation model had to be implemented, and b)
we had ready a set of very modern techniques, based on fuzzy
set models, that could provide a good operating answer to the
Load Allocation problem for DMS.

The core of the technique is the Fuzzy State Estimation
model, whose principles were described in [3] and [4]. This
new model is presented in the following sections. It refers
specifically to three phase (admitted balanced) networks, such
as commonly used in Europe, but its extension to systems
where an explicit per-phase representation is required will
present no difficulties.

II. DATA

A. Load Classes

The loads in a MV network will be basically LV distribution
substations, either public or private. We have classified them in
4 general types:

• Type POWER - Substations for which one only knows
transformer installed capacity or peak load; capacitors are
treated as loads by being transformed into reactive power
values under nominal voltage

• Type ENERGY - Substations for which there is also
knowledge about their load composition in terms of three
classes of consumers (domestic, industrial and commer-
cial) and their energy consumption, including at peak,
normal and light hours for some of them

• Type CURVE - Substations for which there is also a
model, such as described in [2], that allows a prediction
of the load at a given hour

• Type MEASURED - Substations where there are real time
power consumption measurements

B. Source Classes

The power injection sources are classified as:

• Type ROOT - Main injection point, usually the connecting
substation to a higher voltage level grid
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• Type SOURCE - Any dispersed generation facility for
which there are real time measurements at the SCADA

• Type NEGATIVE LOAD - Generators for which there are
no real time measurements - they are treated as negative
loads; depending on the type of information available, they
are assimilated to one of load types.

C. Measurements

The measurements available for the node ROOT, obtained
as SCADA information, would ideally be active and reactive
power. But it is common that the measurement is just current;
then, we fix a direction and a power factor to transform it into
power values (the definition of direction and power factor is
based on system history - and this is done only for the rough al-
location phase, referred to below; in the final adjustment, phase,
the current measurement is fully taken in account). All other
measurements will be transformed into active or reactive power
or voltage. In this model, current measurements will be all trans-
formed into power measurements until the last correction phase.
We also consider two types of measurements:

• NODAL - at nodes (root, sources or loads)
• BRANCH - inserted in branches (lines or transformers)

III. GENERAL MODEL

The basic constraints of the model are:

• It must represent flows at a given time, compatible with
the Kirchhoff Laws

• It must present coherency between estimated loads and
measurements

• The load allocation must be independent of the network
topology under operation

This last point is important: it would be unacceptable, from
an operator point of view, that the estimated load for a given
node would “magically” change if he performed some switching
or load transfer simulation. The traditional concept of “loss of
diversity,” when one moves down in a radial network, has no
application - in fact, this concept applies to peak values, but it
gave place to misconceptions on several occasions.

Besides, the model we will describe does not really require
the network topology to be radial: it may be applied to systems
with several injection points and to systems with closed loops,
with slight adaptations, making it general.

The model requires the specification of values for balancing
parameters . This is a tuning process to be done
taking in account system history and operator experience. For
instance, if the allocation will be done only proportion-
ally to installed capacity or peak values, and if the alloca-
tion will be proportional to average energy consumption values.
The uncertainty parametermay be derived from a linguistic
interface about how uncertain does an operator feel about esti-
mating loads from installed capacities.

The model is divided in two main phases: a) a rough load al-
location; b) a corrective phase (described in theoretical detail in
Section IV). Its general logic is the following, for a load alloca-
tion at time t:

ROUGH_ALLOC

Discount all MEASURED loads to the ROOT
Predict load P at every CURVE node and discount it
to ROOT. If ROOT power less than a specified threshold
(0, by default) CURVE nodes will be treated as ENERGY
nodes
For CURVE nodes, fix according to (fuzzy)
precision indications associated with the curve models
For nodes in (ENERGY, POWER) calculate, from the in-
stalled capacity and peak information, the power ,
using a balancing parameter and

.
For nodes in (ENERGY) calculate, from the energy
consumption information, the average power
for the period of the day including time. The ratio

at the root is applied by default to the
nodes in the POWER set to calculate for these latter.
For nodes in (ENERGY, POWER), two load allocations are
performed:

, distributing the injected remaining undistributed
power at ROOT in proportion to each node estimated

, distributing the injected remaining undistributed
power at ROOT in proportion to each node estimated
power

For nodes in {POWER), do:
(because

is an uncertainty parameter)
A primary allocation is obtained for (ENERGY, POWER)
with where is a
balancing parameter
Repeat the procedure for reactive power values, using es-
timated or default power factor values when no measured
information is available. This will result in a pair of esti-
mates and and a reactive power nodal allocation

.
{ At the end of this procedure, we get the following:

an interval for active and reactive load allocated to
each node and obtained
after convenient ordering of and or and
a DC load flow coherent set of nodal active powers

a set with similar coherency for nodal reactive loads
}

CORRECT_ALLOC
Define the sets ( ) and
( ) as triangular fuzzy numbers at
each node.
Input all measurements and fuzzy loads and run an algo-
rithm of Fuzzy State Estimation type and, as a result, cal-
culate

For each load, the final and
For each branch, a credible flow and an upper bound

Compare branch flow limit with and and
set, if necessary, a level of alarm.
{ At the end of this procedure, the and values
plus the measurements form an AC Power Flow coherent
set of values}
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Fig. 1. Triangular fuzzy number, with an uncertainty range interval [min, Max]
and a most credible value.

IV. FUZZY LOADS AND FUZZY ALLOCATION WITH FUZZY

STATE ESTIMATION

At INESC we have considerable experience in using fuzzy
numbers to express unknown or uncertain measure values in
power systems:

—fuzzy numbers are able to translate to a numerical form
qualitative linguistic declarations, of the uncertain number
type (“around 3”) or the uncertain interval type (“roughly be-
tween 2 and 4”); the most practical fuzzy information is trans-
lated by a triangular fuzzy number such as in Fig. 1 and is in
terms of a range of uncertainty (an interval) plus an interior
“most credible” value.
—a fuzzy number may represent information from billing
files, or from clustering exercises on typical load curves, rel-
ative to one consumer or a group of consumers, in a part of
a network where no measurements are available; this infor-
mation is not, in general, of the probabilistic type or, even if
probabilistic models were conceivable, the cost and effort to
develop and validate them would be excessive in most cases.
—the models we have developed are an extension of proven
knowledge; they can easily be understood and accepted by
those familiar with utility practice; the fuzzy output obtained
gives information about sensitivity of the results regarding
uncertainty in data.
If some generations or loads are defined as fuzzy, because

some uncertainty is associated to them, the resulting uncertain
line flows and node voltages may be calculated by a Fuzzy
Power Flow (FPF) model, such as in [5]. These results are nat-
urally expressed as fuzzy numbers. In particular, if data were in
the form of triangular fuzzy numbers, the FPF model will give
the corresponding range of uncertainty and most credible value
for all results. However, in the problem of Load Allocation we
cannot use a FPF model, both because we have errors in the
rough load allocation (and therefore the data set is not coherent
with Kirchhoff Laws) and because we have measurements.

Believing that the rough load allocation will give a set of ap-
proximate values, what we wish is to adjust the values in that
set and comply with the above constraints. Conceptually, this is
an exercise of the State Estimation type, where we replace mea-
surements with possibly large errors by more or less qualitative
load predictions.

And in the present case, because we have the loads resulting
from ROUGH_ALLOC as fuzzy numbers, what we need is a
Fuzzy State Estimation (FSE) technique - similar to the one in
[3] and [4]. The problem here is somewhat simplified, because

1. We are using triangular fuzzy numbers

2. We are accepting as known the topology of the network
This last point deserves mentioning, because the FSE model

in [4] included a procedure to simultaneously evaluate electrical
measurements and switch status, which is not needed here.

The Fuzzy State Estimation model is composed of two parts:
the application of a classical crisp algorithm, based on the Least
Squares principle, and a linearized approach to the computation
of fuzzy results, having as departing point the solution of the
crisp algorithm.

A. Classical Crisp Algorithm

Consider that m measurements are available and that n state
variables were selected. Assume that:

• is the measurement vector ( );
• is the state vector ( );
• is the function vector that relates the state variables

and the measurements ( );
• is the measurement noise or error vector ( ).

A general state estimation model is then given by

(1)

The elements of the measurement vector may be

• bus power injection measurements ( );
• branch power flow measurements ( );
• bus voltage measurements ();
• branch current measurements ().

As elements of the state vector, one usually chooses bus volt-
ages and phases. The components of vectorare usually consid-
ered to be random variables with zero mean and covariance. If
assumed to be independent,is a diagonal matrix; its diagonal

element corresponds to the variance of the-th measurement
. The Least Squares family of algorithms try to solve

(2)

The values in , or , are used to apply different weights
to the measurements. A largermay be assigned to measure-
ments of higher quality, while measurements obtained from
poor quality equipment will have smaller values.

Eq. (2) represents a Weighted Least Square problem whose
solution is well known and obtained by replacingobtained
from Eq. (1) in Eq. (2).

(3)

The solution in terms of the state variables X is obtained from

(4)

where represents the Jacobian measurement matrix.
This set of equations can be solved iteratively using the

Newton-Raphson’s method. At the ( )th iteration the
refreshed values of the state variables can be obtained from
their values in the -th iteration by

(5)

where is the gain matrix given by

(6)
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Several techniques [6] are described in the literature to solve this
problem. The most common and well-known are the fully cou-
pled version of the normal equation method and its decoupled
formulation.

B. Fuzzy State Estimation

In a Fuzzy State Estimation problem where the fuzzy data
are given by triangular fuzzy numbers, the first step is to run a
classical crisp State Estimation procedure for the most credible
data, i.e., for the vertices of the triangles. The result will be the
state vector ; it will serve as a basic linearization point for
the estimation of the fuzzy state variables.

If a new measurement vector is available, variations
can be reflected on the results of the state estimation

using the gain matrix G obtained in the last iteration of the crisp
calculation. Therefore, estimates of the variations and new state
variables can be approximated by

(7)

(8)

If instead of deviations we consider now fuzzy numbers, Eq.
(7) and Eq. (8) must be fuzzified, i.e., in the expressions indi-
cated operations must obey the rules of fuzzy arithmetics [7].

will be the vector of fuzzy state variables, calculated from a
vector of crisp “most credible” state variables and a vector
of fuzzy deviations.

If we take for node voltages as state variables, we cannot
compute directly from them the values of currents and power
flows. Instead, the procedure is the following:

• define as generically representing either the branch
active, reactive power flows or the currents, all stored in
vector .

• linearize , taking the first terms of the Taylor series
around , using as the voltages and angles
in buses and

(9)

The derivatives of and can be organized in the
matrix . Each element of this matrix corresponds to
the derivatives of the active and reactive flows and currents re-
garding the elements of the state vector. Defining as
the vector of the fuzzy deviations of these variables, we can
rewrite Eq. (9) in the form of

(10)

- - - - - - - - - - - - - - -

- - - - - - - - - - - - - - -

Using Eq. (7) in Eq. (10) we obtain

(11)

This expression is used to evaluate the fuzzy deviations of
and directly from the fuzzy measurement data.

The final membership functions are obtained adding their fuzzy
deviations to

(12)

C. Currents and Alarm Levels

Similarly to the situation described in [5], due to linearization,
errors may occur when building current membership functions,
namely for very small current values and the current magnitude
may appear with negative values. This happens when triangular
fuzzy results are no longer an acceptable approximation for the
exact fuzzy membership functions. Corrected values may be ob-
tained if their real and imaginary parts are also calculated. In this
case the derivatives of these real and imaginary parts regarding
the state variables must be integrated in the matrix and
their deviations calculated using Eq. (11).

The real an imaginary parts of a current, at a level, define
a rectangle in the complex plane. This happens namely at the 0
and 1 levels. If one remembers that, for every instantiation of a
real and imaginary part, the magnitude of the current must be
given by , we just have to check which pairs
of give the calculated , obtained from Eq. (11), in the
feasible region (positive values of ).

This gives an indication on the trajectory followed by ,
within the rectangular region mentioned above; then the calcu-
lation of corrected values is straightforward. Of course, if
the same magnitude value occurs at different levels and

, we take with a level Max .
Given a calculated possibility distribution for a branch

current and a maximum admissible current ( - thermal
constraint), one may derive an Alarm Level according to

Alarm Max

If all the distribution is below the admissible limit, the Alarm
Level will be zero (0); if the most credible value for the current
exceeds the admissible limit, the Alarm Level is set to one (1).
An intermediate case is illustrated in Fig. 2.
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Fig. 2. Deriving an Alarm Level from the uncertainty distribution of branch
current and thermal maximum current.

V. ILLUSTRATIVE EXAMPLE

The Fuzzy State Estimation technique has been illustrated
with real size examples in previous papers [3], [4]. We opted
therefore to present here a small scale illustrative example of
the interesting consequences the Load Allocation procedure.

Figs. 3 and 4 represent variations on a system where at the
MV substation we admitted the existence of active and reactive
injected power measurements. All the lines have 1 km in length
and a series impedance of , with capacitance ne-
glected.

We have run a rough load allocation procedure
(ROUGH_ALLOC) giving at each of the LV substations,
1 MW and 0.5 MVAr, with an estimated uncertainty range of

% (i.e. a 50 kW and 25 kVAr of estimated range) for nodes
2 to 8, 11 and 13, and l.5 MW, 0.75 MVAr, % for nodes
10 and 12.

We defined aBase Case, with measurements of active and
reactive power at the root (node 1 - 12 MW, 6 MVAr), and an
Extra Injection case, with measurements in node 1 (7 MW, 3.5
MVAr), in line 7-9 ( MW, MVAr) and with an inde-
pendent generation connected to node 9 injecting a measured
power (5 MW, 2.5.MVAr).

The most important results for theBase Caseare in Fig. 3,
Tables I and II. In Table I, we have the estimated central ac-
tive load (MW) and reactive load (MVAr), and the uncertainty
ranges around central load values in %; in Table II we have the
Sending and Receiving nodes (S-R), the Current in A, the max-
imum estimated current in A (Max), the thermal line limit in A
(Admis.) and the Alarm level.

The Fuzzy State Estimation provided the definition of load
uncertainty ranges coherent with the measurements available in
this case, at Substation 1. Furthermore, it corrected the rough
load allocation by accounting for the line losses.

The ROUGH_ALLOC procedure not only adjusted the esti-
mated uncertainty at each node, but it also provided information
about each line flow and its uncertainty range. It is interesting
to notice that the relative uncertainty of current in line 1-3 is
rather small, although there is a considerable global uncertainty
in load allocation dependent of this line (all nodes below 3).

The relative uncertainty grows in lines 3-4, 4-7, 7-9, 9-10, as
one moves closer to extreme nodes; the uncertainty at extreme
branches (such as 1-2 or 9-12) is similar to the uncertainty in
the loads they supply (it should be so). Also, notice that in line
(7-9) an alarm level Alarm has been set.

Fig. 4, Tables III and IV illustrate the results for theExtra In-
jection Case. The ROUGH_ALLOC allocation is strongly cor-
rected in this case, because of the constraints imposed by the
known measured values in line 7-9. Also, the uncertainty ranges

Fig. 3. Base Case—Predicted relative uncertainty range for line currents, in
percentage of each line flow.

Fig. 4. Extra Injection Case (power measurement in line 7-9).

TABLE I
BASE CASE—CORRECTEDLOAD ALLOCATION

TABLE II
BASE CASE—LINE FLOWS

TABLE III
EXTRA INJECTIONCASE - CORRECTEDLOAD ALLOCATION
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TABLE IV
EXTRA INJECTIONCASE - LINE FLOWS

for the sections between the substation and line 7-9 are much
narrower than for the sections below this line; this is the con-
sequence of having there more information (measurements at
two topologically very separated and distinct points) to be made
compatible with load predictions. Fig. 4 also shows that the rel-
ative uncertainty range in currents grows in sections away from
measurement points.

One should notice the special case of power flow in line 4-7;
we obtained for the active power flow the central value of
kW and the uncertainty interval of kW; there is
a possible reversal of power flow direction in this branch. The
credible value for the current is very small (0.11 A) and so the
relative uncertainty range is very large although it is a small
interval in A values (maximum 2.9 A). The model also matched
correctly the current in line 7-9 and assigned no uncertainty to
it, as it was a measured value.

VI. CONCLUSIONS

This paper summarizes an interesting application of fuzzy set
techniques to power distribution. It describes how from uncer-
tain data one may produce, in a DMS environment, a consistent
load allocation to the system nodes, so that other calculus mod-
ules may work, namely load flow routines. DMS modules de-
mand a specific Load Allocation procedure because, contrary to
EMS environments for Generation-Transmission systems, there
are usually no real time information or measurements of loads
in distribution systems.

The results can be no better than the data - this is an elemen-
tary truth so many times forgotten. By keeping an explicit in-
terval or fuzzy set representation of uncertainty in load alloca-
tion, we wanted to avoid giving to operators a false security im-
pression, which might prove dangerous for equipment or people.

The resulting algorithm gives not only an indication of some
range of uncertainty on load allocation, but also allows opera-
tors to become aware of levels of risk and possible alarm, if the
combination of uncertainties open the possibility to have branch
limits to be exceeded by power flows.

The elegant solution reached, making use of Fuzzy State Es-
timation concepts, is the only one that may guarantee not only
a load allocation where total load matches power injections, but
also where flows are described by the possible ranges compat-
ible with actual measurements in the distribution network. And,
furthermore, the FSE model isgeneral, so it can be applied to
meshed systems as well as to radial systems.

Finally, it is fair to say that the model described in the paper is
currently implemented in a DMS package offered in the market

- making it not only a theoretical exercise, but also a case of
successful transfer from science to industry.
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