
International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

43

Load Balanced Min-Min Algorithm for Static Meta-Task

Scheduling in Grid Computing

T. Kokilavani

J.J. College of Engineering & Technology and
Research Scholar, Bharathiar University,

 Tamil Nadu, India

Dr. D.I. George Amalarethinam

Reader & Director, Department of MCA
 Jamal Mohamed College

Tamil Nadu, India

ABSTRACT

Grid computing has become a real alternative to traditional

supercomputing environments for developing parallel

applications that harness massive computational resources.

However, the complexity incurred in building such parallel

Grid-aware applications is higher than the traditional parallel

computing environments. It addresses issues such as resource

discovery, heterogeneity, fault tolerance and task scheduling.

Load balanced task scheduling is very important problem in

complex grid environment. So task scheduling which is one of

the NP-Complete problems becomes a focus of research scholars

in grid computing area. The traditional Min-Min algorithm is a

simple algorithm that produces a schedule that minimizes the

makespan than the other traditional algorithms in the literature.

But it fails to produce a load balanced schedule. In this paper a

Load Balanced Min-Min (LBMM) algorithm is proposed that

reduces the makespan and increases the resource utilization. The

proposed method has two-phases. In the first phase the

traditional Min-Min algorithm is executed and in the second

phase the tasks are rescheduled to use the unutilized resources

effectively.

Keywords

Grid Computing, Load Balancing, Min-Min Algorithm, Meta

Task Scheduling.

1. INTRODUCTION
Mixed-machine heterogeneous computing environments [1] are

a group of heterogeneous high-performance machines

interconnected with high-speed links. They are used to solve a

variety of computationally intensive applications that require

different computing environments. Computation Grids [2] are

considered as the next generation of distributed system.

Computation Grids are formed by combining geographically

distributed resources and various applications. The users who

submit their jobs need not be aware of the location of the

resources that are used for executing their jobs.

Currently Grid Computing has evolved as a great potential

technology that effectively utilizes the idle time of the resources.

Grid is distinguished from traditional distributed computing

because of its focus on large-scale resource sharing and high

performance orientation. Grid is defined by Ian Foster [3] as

flexible, secure, coordinated resource sharing among dynamic

collection of individuals, institutions and resources which is

referred as virtual organizations.

Most complex scientific, engineering and business problems

need huge amount of resources for execution. Grid Computing is

considered as the best solution for solving these problems [4].

Grid Computing is also used in application areas like weather

prediction, astrophysics, bioinformatics, earth quake research,

ground water pollution and multiparticle physics. Since the use

of Grid is increased on many fields, many developers and

researchers focus on the development of both hardware and

software needed for Grid architecture. Some of the challenging

issues like scheduling, performance prediction and resource

management are important in grid computing area [5].

Scheduling is proved to be one of the NP-hard problems in

parallel computing itself. Grid scheduling has its own

difficulties because of its nature of heterogeneity in operating

systems, architecture, resource providers and resource

consumers.

Scheduling [4] is considered to be an important issue in the

current Grid scenario. The demand for effective scheduling

increases to achieve high performance computing. Typically, it

is difficult to find an optimal resource allocation which

minimizes the schedule length of jobs and effectively utilize the

resources. The three main phases [6] of grid scheduling are

resource discovery, gathering resource information and job

execution. The choice of the best pair of jobs and resources in

the second phase has been proved to be NP-complete problem.

Grid users compose their application as a distributed application.

Then the users submit their jobs to Grid Resource Broker. The

resource broker then queries the Grid Information Service for

the availability of resources and to know their properties. The

Grid Resources are registered within one or more information

service. The resource broker is responsible for scheduling the

jobs on the resources that match job’s requirements. After

scheduling the resource broker monitors the execution of jobs

and after execution it collects the results and send back to the

users [6].

Large numbers of task scheduling algorithms are available to

minimize the makespan [10], [12], [15], [16], [18], [19]. All

these algorithms try to find resources to be allocated to the tasks

which will minimize the overall completion time of the jobs.

Minimizing overall completion time of the tasks does not mean

that it minimizes the actual execution time of individual task.

Two simple well-known algorithms used for grid scheduling are

Min-Min and Max-min [1], [10], [15], [16], [17], [19]. These

two algorithms work by considering the execution and

completion time of each task on the each available grid resource.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

44

The Min-Min algorithm first finds the minimum execution time

of all tasks. Then it chooses the task with the least execution

time among all the tasks. The algorithm proceeds by assigning

the task to the resource that produces the minimum completion

time. The same procedure is repeated by Min-Min until all tasks

are scheduled.

The limitation of Min-Min algorithm is that it chooses smaller

tasks first which makes use of resource with high computational

power. As a result, the schedule produced by Min-Min is not

optimal when number of smaller tasks exceeds the large ones.

To overcome this difficulty [7], Max-min algorithm schedules

larger tasks first. But in some cases, the makespan may increase

due to the execution of larger tasks first. The waiting time of

smaller tasks is also increased in Max-min.

To avoid the drawbacks of the Min-Min algorithm many

improved algorithms have been proposed in the literature. All

the problems discussed in those methods are taken and analyzed

to give a more effective schedule. The algorithm proposed in

this paper outperforms all those algorithms both in terms of

makespan and load balancing. Thus a better load balancing is

achieved and the total response time of the grid system is

improved. The proposed algorithm applies the Min-Min strategy

in the first phase and then reschedules by considering the

maximum execution time that is less than the makespan

obtained from the first phase.

The remaining parts of this paper are organized as follows:

Section 2 presents the related works and several well known

scheduling algorithms which are benchmarks of many other

works. In Section 3, the concept of task scheduling in grid

environments is introduced. In Section 4, a new scheduling

algorithm is proposed and the prominence of the algorithm is

demonstrated through an example. Section 5 compares the

scheduling algorithms and presents the results of the

comparison. Finally, Section 6 concludes the paper and presents

future works.

2. RELATED WORKS
A load balancing algorithm aims to increase the utilization of

resources with light load or idle resources thereby freeing the

resources with heavy load. The algorithm tries to distribute the

load among all the available resources. At the same time, it aims

to minimize the makespan with the effective utilization of

resources.

In classical distributed systems comprised of homogeneous and

dedicated resources, load balancing algorithms have been

intensively studied. But these algorithms will not work well in

Grid architecture because of its heterogeneity, scalability and

autonomy [8]. This makes load balanced scheduling algorithm

for grid computing more difficult and an interesting topic for

many researchers.

The Non-traditional algorithms differ from the conventional

traditional algorithms in that it produces optimal results in a

short period of time. There is no best scheduling algorithm for

all grid computing systems. An alternative is to select an

appropriate scheduling algorithm to use in a given grid

environment because of the characteristics of the tasks,

machines and network heterogeneity [6].

Braun et al [1] have studied the relative performance of eleven

heuristic algorithms for task scheduling in grid computing. They

have also provided a simulation basis for researchers to test the

algorithms. Their results show that Genetic Algorithm (GA)

performs well in most of the scenarios and the relatively simple

Min-Min algorithm performs next to GA and the rate of

improvement is also very small. The simple algorithms proposed

by Braun are Opportunistic Load Balancing (OLB), Minimum

Execution Time(MET), Minimum Completion Time(MCT),

Min-Min, Max-min.

Opportunistic Load Balancing (OLB) assigns the jobs in a

random order in the next available resource without considering

the execution time of the jobs on those resources. Thus it

provides a load balanced schedule but it produces a very poor

makespan.

Minimum Execution Time (MET) assigns jobs to the resources

based on their minimum expected execution time without

considering the availability of the resource and its current load.

This algorithm improves the makespan to some extent but it

causes a severe load imbalance.

Minimum Completion Time (MCT) assigns jobs to the resources

based on their minimum completion time. The completion time

is calculated by adding the expected execution time of a job on

that resource with the resource’s ready time. The machine with

the minimum completion time for that particular job is selected.

But this algorithm considers the job only one at a time.

Min-Min algorithm starts with a set of all unmapped tasks. The

machine that has the minimum completion time for all jobs is

selected. Then the job with the overall minimum completion

time is selected and mapped to that resource. The ready time of

the resource is updated. This process is repeated until all the

unmapped tasks are assigned. Compared to MCT this algorithm

considers all jobs at a time. So it produces a better makespan.

Max-Min is similar to Min-Min algorithm. The machine that has

the minimum completion time for all jobs is selected. Then the

job with the overall maximum completion time is selected and

mapped to that resource. The ready time of the resource is

updated. This process is repeated until all the unmapped tasks

are assigned. The idea of this algorithm is to reduce the wait

time of the large jobs.

Doreen. D et al., [9] have proposed an efficient Set Pair Analysis

(SPA) based task scheduling algorithm named Double Min Min

Algorithm which performs scheduling in order to enhance

system performance in Hypercubic P2P Grid (HPGRID). The

simulation result shows that the SPA based Double Min Min

scheduling minimizes the makespan with load balancing and

guarantees the high system availability in system performance.

He. X et al., [10] have presented a new algorithm based on the

conventional Min-Min algorithm. The proposed algorithm

which is called QoS guided Min-Min, schedules tasks requiring

high bandwidth before the others. Therefore, if the bandwidth

required by different tasks varies highly, the QoS guided Min-

Min algorithm provides better results than the Min-Min

algorithm. Whenever the bandwidth requirement of all of the

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

45

tasks is almost the same, the QoS guided Min-Min algorithm

acts similar to the Min-Min algorithm.

Kamalam et al., [11] presents a new scheduling algorithm

named Min-mean heuristic scheduling algorithm for static

mapping to achieve better performance. The proposed algorithm

reschedules the Min-Min produced schedule by considering the

mean makespan of all the resources. The algorithm deviates in

producing a better schedule than the Min-Min algorithm when

the task heterogeneity increases.

Sameer Singh et al., [12] have presented two heuristic

algorithms: QoS Guided Weighted Mean Time-Min(QWMTM)

and QoS Guided Weighted Mean Time Min-Min Max-Min

Selective(QWMTS). Both algorithms are for batch mode

independent tasks scheduling. The network bandwidth is taken

as QoS parameter.

Singh.M et al., [13] present a QoS based predictive Max-Min,

Min-Min Switcher algorithm for scheduling jobs in a grid. The

algorithm makes an appropriate selection among the QoS based

Max-Min or QoS based Min-Min algorithm on the basis of

heuristic applied, before scheduling the next job. The effect on

the execution time of grid jobs due to non-dedicated property of

resources has also been considered. The algorithm uses the

history information about the execution of jobs to predict the

performance of non-dedicated resources.

Yagoubi. B et al., [14] have offered a model to demonstrate grid

architecture and an algorithm to schedule tasks within grid

resources. The algorithm tries to distribute the workload of the

grid environment amongst the grid resources, fairly. Although,

the mechanism used here and other similar strategies which try

to create load balancing within grid resources can improve the

throughput of the whole grid environment, the total makespan of

the system does not decrease, necessarily.

 Among all the algorithms stated the Min-Min algorithm is

simple and fast, at the same time it produces a better makespan.

But it considers the shortest jobs first so it fails to utilize the

resources efficiently which leads to a load imbalance. The aim

of this work is to overcome the drawback of the Min-Min

algorithm. So a two-phase Min-Min algorithm is proposed

which improves the load balancing as well as produces a

makespan better than the Min-Min algorithm.

3. PROBLEM DEFINITION
Due to the NP-completeness nature of the mapping problem, the

developed approaches try to find acceptable solutions with

reasonable cost considering many trade-offs and special cases.

In this study, the proposed algorithms have been developed

under a set of assumptions:

 The applications to be executed are composed of a

collection of indivisible tasks that have no dependency

among each other, usually referred to as metatask.

 Tasks have no deadlines or priorities associated with

them.

 Estimates of expected task execution times on each

machine in the HC suite are known. These estimates

can be supplied before a task is submitted for

execution, or at the time it is submitted.

 The mapping process is to be performed statically in a

batch mode fashion.

 The mapper runs on a separate machine and controls

the execution of all jobs on all machines in the suite.

 Each machine executes a single task at a time in the

order in which the tasks are assigned (First Come First

Served - FCFS).

 The size of the meta-tasks and the number of

machines in the heterogeneous computing

environment is known.

In static heuristics, the accurate estimate of the expected

execution time for each task on each machine is known a priori

to execution and is contained within an ETC (expected time to

compute) matrix where ETC (ti ,mj) is the estimated execution

time of task i on machine j.

The main aim of the scheduling algorithm is to minimize the

makespan. Using the ETC matrix model, the scheduling problem

can be defined as follows:

 Let task set T = t1, t2, t3, …. , tn

be the group of tasks submitted to scheduler and

Let Resource set R = m1, m2, m3, …. , mk

Be the set of resources available at the time of task arrival

Makespan produced by any algorithm for a schedule can be

calculated as follows:

 makespan = max (CT (ti, mj))

 CTij = Rj+ETij

 Where CT completion time of machines

 ETij expected execution time of job i on resource j

 Rj ready time or availability time of resource j after

completing the previously assigned jobs.

The Load Balanced Min-Min algorithm is developed to work for

the above stated problem.

3.1 LBMM
Our proposed grid scheduling algorithm, LBMM, is presented in

Figure 1. The algorithm starts by executing the steps in Min-Min

strategy first. It first identifies the task having minimum

execution time and the resource producing it. Thus the task with

minimum execution time is scheduled first in Min-Min. After

that it considers the minimum completion time since some

resources are scheduled with some tasks. Since Min-Min

chooses the smallest tasks first it loads the fast executing

resource more which leaves the other resources idle. But it is

simple and produces a good makespan compared to other

algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

46

Figure 1. LBMM Heuristic

So LBMM executes Min-Min in the first round. In the second

round it chooses the resources with heavy load and reassigns

them to the resources with light load. LBMM identifies the

resources with heavy load by choosing the resource with high

makespan in the schedule produced by Min-Min. It then

considers the tasks assigned in that resource and chooses the

task with minimum execution time on that resource. The

completion time for that task is calculated for all resources in the

current schedule. Then the maximum completion time of that

task is compared with the makespan produced by Min-Min. if it

is less than makespan then the task is rescheduled in the

resource that produces it, and the ready time of both resources

are updated. Otherwise the next maximum completion time of

that task is selected and the steps are repeated again. The process

stops if all resources and all tasks assigned in them have been

considered for rescheduling. Thus the possible resources are

rescheduled in the resources which are idle or have minimum

load.

This makes LBMM to produce a schedule which increases load

balancing. Since it compares the maximum completion time

with makespan LBMM reduces the overall completion time

also. The steps to be carried out in the second phase of LBMM

are shown in figure 2.

Figure 2. Rescheduling phase of LBMM

4. AN ILLUSTRATIVE EXAMPLE
Consider a grid environment with two resources R1 and R2 and

a meta-task group Mv with four tasks T1, T2, T3 and T4. The

grid scheduler is supposed to schedule all the tasks within Mv on

the available resources R1 and R2. Since Min-Min algorithm is

simple and produces a better makespan than the other algorithms

discussed in the literature, the proposed algorithm executes the

Min-Min algorithm in the first phase to schedule the jobs. But to

remove the limitation of unbalanced load in Min-Min the jobs

are rescheduled in the second phase. In this problem the

execution time of all tasks are known prior. They can also be

calculated if the number of instructions in each job and the

computation rate of each resource is known. They are

represented (in sec) in Expected Time to Compute (ETC) table.

Table 1 represents the execution time of the tasks on each

resource.

for all tasks Ti

 for all resources

 Cij=Eij+rj

 do until all tasks are mapped

 for each task find the earliest completion time and the

resource that obtains it

 find the task Tk with the minimum earliest completion time

 assign task Tk to the resource Rl that gives the earliest

completion time

 delete task Tk from list

 update ready time of resource Rl

 update Cil for all i

end do

// rescheduling to balance the load

sort the resources in the order of completion time

for all resources R

Compute makespan = max(CT(R))

End for

for all resources

 for all tasks

 find the task Ti that has minimum ET in Rj

 find the MCT of task Ti

 if MCT < makespan

 Reschedule the task Ti to the resource that produces it

 Update the ready time of both resources

 End if

 End for

End for

//Where MCT represents Maximum Completion Time

No

Yes

No

Yes

Find the makespan &

Resource Rj producing it

Find task Ti with minET in Rj

Find the maxCT for Ti &

Resource Rk producing it

maxCT <

makespan

Reschedule Ti in Rk & update

 ready time of both Rj and Rk

Find the resource Rj with next maxCT

All resources

considered Stop

Find the task Ti

with next maxCT

& resource Rk

producing it

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

47

Table 1. Expected Execution Time of Tasks

Static mapping of tasks to machines based on Min-Min is shown

in Figure 3. Min-Min choose the minimum completion time and

so all tasks are scheduled to resource R2 and resource R1

remains idle. The makespan produced by Min-Min is 10 sec.

 Completion time (sec)

Figure 3. Gantt chart of Min-Min Algorithm

Completion time (sec)

Figure 4. Gantt chart of LBMM Algorithm

According to the proposed LBMM task T1’s maximum

completion time is less than makespan produced by Min-Min.

Other task’s maximum completion time is not less than

makespan. So task T1 is rescheduled in resource R1 and the

remaining tasks are scheduled in the same resource R2. The

result of LBMM is shown in Figure 2. Thus the rescheduling of

Min-Min algorithm utilizes the idle resource R1 as well as

reduces the makespan to 8 sec. Mapping of tasks based on

LBMM is shown in figure 4.

5. RESULTS AND DISCUSSION
To evaluate the efficiency of the proposed algorithm, problems

having machine heterogeneity and task heterogeneity are

collected from various literature [10], [8], [16], [11], [14] and

executed for both Min-Min and proposed LBMM algorithm.

Interactive software is developed in C++ to execute both

algorithms. The results obtained (in sec) for the algorithms are

tabulated and shown in Table 2.

Table 2. Comparison of Min-Min and LBMM algorithm

To show how LBMM outperforms Min-Min the results are

plotted in a graph and shown in Figure 5. From this figure we

can observe that LBMM produces less makespan than the Min-

Min algorithm for all problems.

Figure 5. Graphical representation to show improvement of

LBMM over Min-Min

Tasks
Resources

R1 R2

T1 7 2

T2 11 3

T3 12 3

T4 6 2

Problem set Min-Min (sec) LBMM (sec)

P1 8 6

P2 17 12

P3 33.4 26.6

P4 33.9 32.01

P5 11 10

R1 R2

2

4

7

T1

T4

T2

T3
10

5

2

R1

R2

7

8

T4

T2

T3 T1

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

48

Figure 6. Graphical representation to show more resource utilization of LBMM over Min-Min

Further to show how LBMM balances the load by using the

unutilized resource in phase 2 resource utilization of Min-Min

and LBMM is calculated for all problems. Table 3 shows the

resource utilization rate of both algorithms. From this table we

can observe that LBMM tries to use all the available resources.

In some problems proposed algorithm uses the same amount of

resources, but balances the load in those resources than Min-

min. Resource utilization for a particular problem is calculated

using the following formula.

TARUMiRU /100*

TARU

Here TARU represents Total Amount of Resource Used

The resource utilization rate is represented as graph in Figure 6.

From this figure we can observe that LBMM uses the maximum

amount of resources while reducing the makespan obtained from

Min-Min algorithm. Thus LBMM uses the idle resources for

small tasks to reduce the makespan.

6. CONCLUSIONS AND FUTURE WORK

Min-Min and Max-Min algorithms are applicable in small scale

distributed systems. When the number of the small tasks is more

than the number of the large tasks in a meta-task, the Min-Min

algorithm cannot schedule tasks, appropriately, and the

makespan of the system gets relatively large. Furthermore it

does not provide a load balanced schedule. To overcome the

limitations of Min-Min algorithm, a new task scheduling

algorithm, is proposed. It is performed in two-phases. It uses the

advantages of Max-Min and Min-Min algorithms and covers

their disadvantages. The experimental results obtained by

applying the proposed algorithm for various problems shows

that it outperforms the existing scheduling algorithms. This

study is only concerned with the number of the resources and

task execution time. The study can be further extended by

considering low and high machine heterogeneity and task

heterogeneity. Also, applying the proposed algorithm on actual

grid environment and considering the cost factor can be other

open problem in this area.

Table 3. Resource Utilization in Percentage

Problem

Set

Algorithm

Used
M1 M2 M3 M4 M5

P1
Min-Min 100 0 - - -

LBMM 83.33 100 - - -

P2
Min-Min 100 0 - - -

LBMM 100 100 - - -

P3
Min-Min 100 0 - - -

LBMM 80 100 - - -

P4
Min-Min 0 0 0 100 0

LBMM 0 17 0 100 9.52

P5
Min-Min 100 13 72 18 14

LBMM 97 100 90 85 18.04

International Journal of Computer Applications (0975 – 8887)

Volume 20– No.2, April 2011

49

7. REFERENCES

[1] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L.,

Maheswaran, M., Reuther, A.I., Robertson, J.P., et al. “A

comparison of eleven static heuristics for mapping a class

of independent tasks onto heterogeneous distributed

computing systems”, Journal of Parallel and Distributed

Computing, Vol. 61, No. 6, pp.810–837, 2001

[2] Chapman. C, Musolesi. M, Emmerich. W, Mascolo. C,

”Predictive Resource Scheduling in Computational Grids”

in Parallel and Distributed Processing Symposium, IEEE

International Vol. 26, pp.1 – 10, 2007

[3] Ian Foster, Carl Kesselman, Steven Tuecke, “The Anatomy

of the Grid Enabling Scalable Virtual Organizations”

International Journal of Supercomputer Applications, 2001.

[4] Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan

Abdullah, and Chai Chompoo-inwai, “An Ant Colony

Optimization for Dynamic Job Scheduling in Grid

Environment”, World Academy of Science, Engineering

and Technology 29, pp. 314- 321, 2007.

[5] Dantong Yu and Thomas G. Robertazzi “Divisible Load

Scheduling for Grid Computing”, PDCS’2003, 15th Int’l

Conf. Parallel and Distributed Computing and Systems.

IASTED, pp. 1 – 9, 2003.

[6] Kokilavani.T and George Amalarethinam.D.I, Applying

Non-Traditional Optimization Techniques to Task

Scheduling in Grid Computing, International Journal of

Research and Reviews in Computer Science, Vol. 1, No. 4,

Dec 2010, pp. 34 - 38

[7] Saeed Parsa, Reza Entezari-Maleki RASA: A New Grid

Task Scheduling Algorithm , International Journal of

Digital Content Technology and its Applications Volume 3,

Number 4, December 2009

[8] Geoffrey Falzon, Maozhen Li, “Enhancing list scheduling

heuristics for dependent job scheduling in grid computing

environments”, Journal of Supercomputing, Springer,

March 2010.

[9] Doreen Hephzibah Miriam. D and Easwarakumar. K.S, A

Double Min Min Algorithm for Task Metascheduler on

Hypercubic P2P Grid Systems, IJCSI International Journal

of Computer Science Issues, Vol. 7, Issue 4, No 5, July

2010.

[10] He. X, X-He Sun, and Laszewski. G.V, "QoS Guided Min-

min Heuristic for Grid Task Scheduling," Journal of

Computer Science and Technology, Vol. 18, pp. 442-451,

2003.

[11] Kamalam.G.K and Muralibhaskaran.V, , A New Heuristic

Approach:Min-Mean Algorithm For Scheduling Meta-

Tasks On Heterogenous Computing Systems, IJCSNS

International Journal of Computer Science and Network

Security, VOL.10 No.1, January 2010.

[12] Sameer Singh Chauhan,R. Joshi. C, QoS Guided Heuristic

Algorithms for Grid Task Scheduling, International Journal

of Computer Applications (0975 – 8887), pp 24-31,

Volume 2, No.9, June 2010.

[13] Singh. M and Suri. P.K, QPS A QoS Based Predictive

Max-Min, Min-Min Switcher Algorithm for Job

Scheduling in a Grid, Information Technology Journal,

Year: 2008, Volume: 7, Issue: 8, Page No.: 1176-1181.

[14] Yagoubi. B, and Slimani. Y, "Task Load Balancing

Strategy for Grid Computing," Journal of Computer

Science, Vol. 3, No. 3, pp. 186-194, 2007.

[15] Dong. F, Luo. J, Gao. L and Ge. L, "A Grid Task

Scheduling Algorithm Based on QoS Priority Grouping,"

In the Proceedings of the Fifth International Conference on

Grid and Cooperative Computing (GCC’06), IEEE, 2006.

[16] Etminani .K, and Naghibzadeh. M, "A Min-min Max-min

Selective Algorithm for Grid Task Scheduling," The Third

IEEE/IFIP International Conference on Internet,

Uzbekistan, 2007.

[17] Maheswaran. M, Ali. Sh, Jay Siegel. H, Hensgen. D, and

Freund.R.F, "Dynamic Mapping of a Class of Independent

Tasks onto Heterogeneous Computing Systems, Journal of

Parallel and Distributed Computing, Vol. 59, pp. 107-131,

1999.

[18] Ranganathan, K. and Foster, I., “Decoupling Computation

and Data Scheduling in Distributed Data Intensive

Applications”, Proceedings of the 11th IEEE Symposium

on High Performance Distributed Computing (HPDC-11),

Edinburgh, Scotland, July 2002.

[19] Ullah Munir. E, Li. J, and Shi. Sh, 2007. QoS Sufferage

Heuristic for Independent Task Scheduling in Grid.

Information Technology Journal, 6 (8): 1166-1170.

http://scialert.net/asci/author.php?author=M.&last=Singh
http://scialert.net/asci/author.php?author=P.K.&last=Suri

