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Abstract

An emerging model for computational grids intercon-
nects similar multi-resource servers from distributed sites.
A job submitted to the grid can be executed by any of the
servers; however, resource size or balance may be differ-
ent across servers. One approach to resource management
for this grid is to layer a global load distribution system on
top of the local job management systems at each site. Un-
fortunately, classical load distribution policies fail on two
aspects when applied to a multi-resource server grid. First,
simple load indicesmay not recognize that a resource im-
balance exists at a server. Second, classical job selection
policiesdo not actively correct such a resource imbalanced
state. We show through simulation that new policies based
on resource balancingperform consistently better than the
classical load distribution strategies.

1. Introduction

An emerging model in high performance supercomput-
ing is to interconnect similar computing systems from ge-
ographically remote sites, creating anear-homogeneous
computational grid system. Computing systems, or servers,
are homogeneous in that any job submitted to the grid may
be sent to any server for execution. However, the servers
may be heterogeneous with respect to their exact resource
configurations. For example, the first phase of the NASA�This work was supported by NASA grant NCC2-5268 and contract
NAS2-14303, and by Army High Performance Computing Research Cen-
ter (AHPCRC) cooperative agreement DAAH04-95-2-0003 and contract
DAAH04-95-C-0008. Access to computing facilities was provided by AH-
PCRC, Minnesota Supercomputer Institute.

Metacenter linked a 42-node IBM SP2 at Langley and a
144-node SP2 at Ames [7]. The two servers were homo-
geneous in that they were both IBM SP2s, with identical or
synchronized software configurations. However, they were
heterogeneous on two counts: the number of nodes in each
server, and the fact that the Langley machine consisted of
thin nodes while the Ames machine had wide nodes. A job
could be executed by either server without modifications,
provided a sufficient number of nodes were available on that
server.

The resource manager for the near-homogeneous grid
system is responsible for scheduling submitted jobs to avail-
able resources such that some global objective is satisfied,
subject to the constraints imposed by the local policies at
each site. One approach to resource management for near-
homogeneous computational grids is to provide aglobal
load distribution system (LDS) layered on top of thelocal
job management system (JMS) at each site. This architec-
ture is depicted in Figure 1. The compute server at each
site is managed by a local JMS. Users submit jobs directly
to their local JMS which places the jobs in wait queues un-
til sufficient resources are available on the local compute
server. The global LDS monitors the load at each site. In
the event that some sites become heavily loaded while other
sites are lightly loaded, the LDS attempts to equalize the
load across all serves by moving jobs among the sites. The
JMS at each site is then responsible for the detailed allo-
cation and scheduling of local resources to jobs submitted
directly to it, as well as to jobs which are assigned to it by
the global LDS. The local JMS also provides load status
to the LDS to support load distribution decisions, as well
as a scheduling Applications Programming Interface (API)
to implement these decisions. For example, in the NASA
Metacenter, apeer-aware receiver-initiated load balancing
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Figure 1. Near-Homogeneous Metacomputing Resource Management Architecture

algorithm was used to move work from one IBM SP2 to
the other. When the workload on one SP2 dropped below
a specified threshold, the peer-aware load balancing mech-
anism would query the other SP2 to see if it had any work
which could be transferred for execution.

The architecture depicted in Figure 1 is conceptually
identical to classical load balancing in a parallel or dis-
tributed computer with two notable exceptions. First, the
compute server at each site may be a complex combina-
tion of multiple types of resources (CPUS, memory, disks,
switches, and so on). Similarly, the applications submit-
ted by the users are described by multiple resource re-
quirements. We generalize these notions and define aK-resource server and correspondingK-requirement job.
Each serverSi hasK resources,S0i ; S1i ; : : : ; SK�1i . Each
job Jj is described by its requirements for each resource
type,J0j ; J0j ; : : : ; JK�1j . Note that the servers are still con-
sidered homogeneous from the jobs’ perspective, as any job
may be sent to any server for execution.

The second exception is that the physical configura-
tions of theK resources for each server may be heteroge-
neous. This heterogeneity can be manifested in two ways.
The amount of a given resource at one server site may be
quite different than the configuration of a server at another
site. For example, serverSi may have more memory than
serverSj . Additionally, servers may have a differentbal-
ance of each resource. For example, one server may have
a (relatively) large memory with respect to its number of
CPUs while another server may have a large number of
CPUs with less memory.

Classical load balancing attempts to maximize system
throughput by keeping all processors busy. We extend this
notional goal to fully utilizing allK resources at each site.
One heuristic for achieving this objective is tomatch the job
mix at each server with the capabilities of that server, in ad-
dition to balancing the load across servers. For example, if
a server has a large shared memory, then the job mix in the
local wait queue should be adjusted by the global LDS to
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contain jobs which are generally memory intensive. Com-
pute intensive jobs should be moved to a server which has
a relatively large number of CPUs with respect to its avail-
able memory. The goal of the LDS is to therefore balance
the total resource demand among all sites,for each type of
resource.

This work investigates the use of load balancing tech-
niques to solve the global load distribution problem for
computational grids consisting of near-homogeneous multi-
resource servers. The complexity of multi-resource com-
pute servers along with the multi-resource requirements of
the jobs cause the methods developed in past load balanc-
ing research to fail in at least two areas. First, the defini-
tion of theload at a given server is not easily described by
a single load index. Specifically, aresource imbalance, in
which the local job mix does not match the capabilities of
the local server, is not directly detectable. This impacts the
ability of the global LDS to match the workload at a site
to the capabilities of the site. We propose a simple exten-
sion to a classical load index measure based on aresource
balancing heuristic to provide this additional level of de-
scriptive detail. Second, once a resource imbalance is de-
tected, existing approaches to selecting which jobs to move
between servers fail to actively correct the problem. We
provide an analogous job selection policy, also based on re-
source balancing, which heuristically corrects the resource
imbalance. The combination of these two extensions pro-
vides the framework for a global LDS which consistently
outperforms existing approaches over a wide range of com-
pute server characteristics.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of relevant past research, con-
cluding with variants of a baseline load balancing algorithm
drawn from the literature. Section 3 investigates the limi-
tations of the baseline algorithms, and provides extensions
based on the resource balancing heuristic. A description
of our simulation environment is given in Section 4. The
performance results of our new load balancing methods as
compared to the baseline algorithms is also summarized in
Section 4. Finally, Section 5 provides conclusions and a
brief overview of our current work in progress.

2. Preliminaries

Research related to this effort is drawn from single server
scheduling in the presence of multiple resource require-
ments and general load balancing methods for homoge-
neous parallel processing systems.

Recent research in job scheduling for a single server has
demonstrated the benefits of including information about
the memory requirements of a job in addition to its CPU
requirements [13, 14]. The generalizedK-resource sin-
gle server scheduling problem was studied in [10], where

it was shown that simple backfill algorithms based on
multi-dimensional packing heuristics consistently outper-
form single-resource algorithms, with increasingK. These
efforts all suggest that the local JMS at each site should be
multi-resourceaware in making its scheduling decisions.
This induces requirements on the global LDS to provide a
job mix to a local server which maximizes the success rate
of the local server.

The general goal of a workload distribution system is to
have sufficient work available to every computational node
to enable the efficient utilization of that node. A central-
ized work queue provides every node equal access to all
available work, and is generally regarded as being efficient
in achieving this goal. Unfortunately, the centralized work
queue is generally not scalable as contention for the sin-
gle queue structure increases with the number of nodes. In
massively parallel processing systems where the number of
nodes was expected to reach into the thousands, this was a
key concern. In distributed systems, the latency for query-
ing the central queue potentially increases as the number of
nodes is increased. Load balancing algorithms attempt to
emulate a central work queue by maintaining a represen-
tative workload across a set of distributed queues, one per
compute node. In this paper, we investigate only the perfor-
mance of load balancing across distributed queues.

Classical load balancing algorithms are typically based
on aload index which provides a measure of the workload
at a node relative to some global average, and fourpolicies
which govern the actions taken once a load imbalance is
detected [15]. The load index is used to detect a load im-
balance state. Qualitatively, a load imbalance occurs when
the load index at one node is much higher (or lower) than
the load index on the other nodes. The length of the CPU
queue has been shown to provide a good load index on time-
shared workstations when the performance measure of in-
terest is the average response time [2, 11]. In the case of
multiple resources (disk, memory, etc.), a linear combina-
tion of the length of all the resource queues provided an
improved measure, as job execution time may be driven by
more than CPU cycles [5].

The four policies that govern the action of a load balanc-
ing algorithm when a load imbalance is detected deal with
information, transfer, location, and selection. Theinforma-
tion policy is responsible for keeping up-to-date load infor-
mation about each node in the system. A global information
policy provides access to the load index of every node, at the
cost of additional communication for maintaining accurate
information [1].

The transfer policy deals with the dynamic aspects of a
system. It uses the nodes’ load information to decide when
a node becomes eligible to act as a sender (transfer a job
to another node) or as a receiver (retrieve a job from an-
other node). Transfer policies are typically threshold based.
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Thus, if the load at a node increases beyond a thresholdTs,
the node becomes an eligible sender. Likewise, if the load
at a node drops below a thresholdTr, the node becomes an
eligible receiver. Load balancing algorithms which focus
on the transfer policy are described in [2, 15, 16].

Thelocation policy selects a partner node for a job trans-
fer transaction. If the node is an eligible sender, the location
policy seeks out a receiver node to receive the job selected
by the selection policy (described below). If the node is
an eligible receiver, the location policy looks for an eligible
sender node. Load balancing approaches which focus on
the use of the location policy are described in [8, 9].

Once a node becomes an eligible sender, aselection pol-
icy is used to pick which of the queued jobs is to be trans-
ferred to the receiver node. The selection policy uses several
criteria to evaluate the queued jobs. Its goal is to select a job
that reduces the local load, incurs as little cost as possible
in the transfer, and has good affinity to the node to which
it is transferred. A common selection policy islatest-job-
arrived which selects the job which is currently in last place
in the work queue.

The primary difference between existing load balancing
algorithms and our global load distribution requirements is
that our node is actually amulti-resource server. With this
extension in mind, we define the following baseline load
balancing algorithm:� Load Index. The load index is based on the average

resource requirements of the jobs waiting in the queue
at a given server. This index is termed the resource
average (RA) index. For our multi-resource server for-
mulation, each resource requirement for a job in the
queue represents apercentage of the server resource
that it requires, normalized to unity. Therefore, the RA
index is a relative index which can be used to compare
the loads on different servers.� Information Policy. As the information policy is not
the subject of this study, we choose to use a policy
which provides perfect information about the state of
the global system. We assume a global information
policy with instantaneous update.� Transfer Policy. The transfer policy is threshold based,
since it has been shown to provide robust performance
across a range of load conditions. A server becomes
a sender when its load index grows above the global
load average by a threshold,Ts. Conversely, a server
becomes areceiver when its load index falls below the
global average by a thresholdTr.� Location Policy. The location policy is also not the
subject of this study. Therefore, we use a simple lo-
cation policy which heuristically results in fast con-
vergence to a balanced load state. In the event that

the transfer policy indicates that a server becomes a
sender, the location policy selects the server which cur-
rently has the least load to be the receiver. However,
the selected server must also be an eligible receiver,
meaning that it currently has a load which isTr below
the global average. Conversely, if the server is a re-
ceiver, the location policy selects the server which cur-
rently has the highest load that isTs above the global
average. If no eligible partner is found, the load bal-
ancing action is terminated.� Selection Policy. A latest-job-arrived selection policy
(LSP) is used to select a job from the sending server
to be transferred to the receiving server. This selec-
tion policy generally performs well with respect to
achieving a good average response time, but suffers
from some jobs being moved excessively. Therefore,
each job keeps ajob transfer count which records the
number of times it has been moved. When this count
reaches a thresholdT, the job is no longer eligible to
be selected for a transfer. Jobs which are already exe-
cuting are excluded from being transferred.

The sender initiated (SI), receiver initiated (RI), and
symmetrically initiated (SY) algorithm variants are gener-
ated using a transfer policy which triggers a load balancing
action onTs, Tr, or both, respectively. All baseline variants
use the RA load index and the LSP job selection policy.

3. Multi-Resource Aware Load Balancing Poli-
cies

In this section, we first discuss the limitations of the re-
source average load index, RA, and the latest-job-arrived
selection policy, LSP, of the baseline load balancing algo-
rithms for the heterogeneous multi-resource servers prob-
lem. We provide an example which illustrates where these
naive strategies can fail to match the workload to the
servers, resulting in local workloads which exhibit a re-
source imbalance. We then provide extensions to the load
index and the job selection policy which strive to balance
the resource usage at each server.

3.1. Limitations of RA and LSP

The resource average load index, RA, and the latest-job-
arrived job selection policy, LSP, in the baseline algorithm
fail in the multi-resource server load balancing context. The
following discussion gives an example of these failures and
provides some insight into possible new methods. Our new
methods will be further discussed in Section 3.2.

In past research, the index used to measure the load on
a server with respect to multiple resources consisted of a
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linear combination or an average of the resource require-
ments for the actively running jobs in a time-shared sys-
tem. A corresponding index which may be applied to batch
queued space-shared systems is to use the average of the
total resource requirements of the jobs waiting in the wait
queue. However, this may not always indicate a system state
where there exists a resource imbalance, that is, the total
job requirements for one resource exceeds the requirements
for the other resources. Essentially, a server with a mis-
matched work mix will be forced to leave some resources
idle while other resources are fully utilized, resulting inan
inefficient use of the system as a whole.

Figure 2(a) depicts the state of the job ready queues,RQ0 andRQ1 for a two-server system,S0 andS1. As-
sume that each server has three resources,S0i ; S1i , andS2i ,
and that the configuration for the two servers is identical,S00 = S01 ; S10 = S11 , andS20 = S21 . Each of the two ready
queues currently has two jobs. The job which arrived lat-
est at each server is on the top of the ready queue for that
server. For example, the latest arriving job ,JL, inRQ0 has
the resource requirementsJ0L = 2; J1L = 3, andJ2L = 2.
Note that the resource requirements for a job are given as
a percentage of the total available in the server. The total
workload for each resource,k, in a given server,Si, is de-
noted asW ki = XJj2RQi(Jkj ); 0 � i < S; 0 � k < K:
The resource average load index for a given server,Si, is
then given byRAi = Avg(W ki ); 0 � k < K:
In this example,K = 3 andRA0 = RA1 = 4.

The third queue in Figure 2(a),RQAvg, represents the
global average workload for each resource inRQ0 andRQ1. The global average workload for resourcek, is then
given by W kAvg = Avg(W ki ); 0 � i < S:
Here,S = 2 andW 0Avg = W 1Avg = W 2Avg = 4, meaning
that on average, eachRQi has a total requirement of 4 per-
cent for each resource. The global resource average load
index is simplyRA = Avg(W kAvg); 0 � k < K;
which in this example isRA = 4. ServerSi is defined to be
in a load balanced state as long asRA � (1�Tx) < RAi <RA � (1+Tx), whereTx is the transfer policy threshold, as
defined in Section 2. SinceRA0 = RA1 = RA, the system
is believed to be in a load balanced state.

Even though the RA index indicates a balanced load, it is
clear from Figure 2(a) that the job mix inRQ0 has a higher

requirement for resourceS10 than for resourcesS00 andS20 .
The result is thatS0 will probably be unable to fully utilize
resourcesS00 andS20 as resourceS10 becomes the bottleneck.
Conversely, the job mix inRQ1 has a higher requirement
for resourcesS01 andS21 than forS11 , resulting in an ineffi-
cient use of resourceS11 . Therefore, the workload at each
server suffers from a resource imbalance.

In order to detect this problem, we define a second load
index, called resource balance (RB), which measures the
resource imbalance at a given server or globally across the
system. Namely, for serverSi; 0 � i < S,RBi = Max(W ki )Avg(W ki ) = Max(W ki )RAi ; 0 � k < K:
Similarly,RB = Max(W kAvg)Avg(W kAvg) = Max(W kAvg)RAAvg ; 0 � k < K:
Heuristically, the RB index of a server measures how bal-
anced the job mix is with respect to their different re-
source requirements. If the total resource requirements are
all the same, then the local RB measure is unity, sinceMax(W ki ) = Avg(W ki ) . This corresponds to the case
where the workload ismatched to the server. The global
RB is a measure of how well the total work in the system
matches the capabilities of all the servers in the system. The
goal of the load balancing algorithm is to move each server
towards this global balanced resource level. In Figure 2(a),RB0 = 6=4 or 1:5, while RB1 = 5=4 or 1:25. SinceRB = 4=4 or 1:0, the two servers recognize the existence
of a resource imbalanced state.

Once a resource imbalance is detected, the load bal-
ancing policies must actively correct the imbalance. Fig-
ure 2(b) shows the result of using the LSP policy to ad-
just the resource imbalance. ServerS0 sends its latest
job to S1, while S1 sends its latest job toS0. Note that
the resource balance index improves on both servers, withRB0 = 4=3:33 or 1:2, whileRB1 = 5=4:66 or 1:07. How-
ever, the resource balance could have been improved even
further, as shown in Figure 2(c), by transferring the jobs
which best balance the workload at both servers. We refer
to this heuristic policy as the balanced job selection policy
or BSP.

3.2. Resource Balancing Algorithms

In the following discussion, we extend the baseline load
balancing algorithm with the heuristic RB load index and
the BSP job selection policy. In general, the goal of these
extensions is to move the system to a state where the load is
balanced across the serversand the job mix at each server
matches the resource capabilities provided by that server.
These extensions are described below.
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Sender Initiated, Balanced Selection Policy: SI BSP.
The baseline sender initiated algorithm, SI, is extended to
SI BSP by modifying the selection policy as follows. The
fact that the load balancing action was triggered by the con-
dition that the load index, RA, of a given server was above
the global average implies that it has more work than at least
one other server. Thus, this heavily loaded server needs to
transfer work to another server. The BSP policy selects the
job for transfer (out) which results in the best resource bal-
ance of the local queue. Note that transferring a job may
actually worsen the resource imbalance, but we proceed
nonetheless so that the overall excess workload can be re-
duced. Also, the resource balance at the receiving server
may worsen as well. However, the receiving server cur-
rently has a workload shortage, so it may be executing less
efficiently anyway.

Sender Initiated, RB Index, Balanced Selection Pol-
icy: SI RB BSP. The SI RB BSP algorithm extends the
SI BSP algorithm by including the RB load index, and mod-
ifying the transfer and selection policies as follows. First,
the transfer policy triggers a load balancing action based on
RA or RB. If the action is based on RA, SIRB BSP pro-
ceeds as SIBSP. However, if the action is based only on
RB, the selection policy is further modified over that used
for SI BSP. The job whichpositively improves the resource
balance of the local queue the most is selected for transfer
(out). If no such job is found, no action occurs.

Receiver Initiated, Balanced Selection Policy: RI BSP.
The baseline receiver initiated algorithm, RI, is extendedto
RI BSP in a fashion complementary to SIBSP.

Receiver Initiated, RB Index, Balanced Selection Pol-
icy: RI RB BSP. The RI RB BSP algorithm extends
the RI BSP algorithm in a fashion complementary to
SI RB BSP.

Symmetrically Initiated, Balanced Selection Policy:
SY BSP. The baseline symmetrically initiated algorithm,
SY, is extended to SYBSP as follows. If the transfer pol-
icy triggers a send action, SYBSP proceeds as SIBSP. Al-
ternatively, if the transfer policy triggers a receive action,
SY BSP proceeds as RIBSP.

Symmetrically Initiated, RB Index, Balanced Selection
Policy: SY RB BSP. The SYRB BSP algorithm ex-
tends the SYBSP algorithm as follows. If the action is
based on RA, SYRB BSP proceeds as SYBSP. However,
if the action is based only on RB, then SYRB BSP per-
forms both sendand receive actions using methods identi-

cal to SIRB BSP and RIRB BSP. Heuristically, this main-
tains the RA index but improves the RB index.

4. Experimental Results

The baseline and extended load balancing algorithms
were implemented on a simulated system that is described
in Section 4.1. The experimental results are summarized in
Section 4.2.

4.1. System Model

The simulation system follows the general form of Fig-
ure 1. The server model, workload model, and performance
metrics are discussed below.

Server Model. A system with 16 servers was used for the
current set of experiments. A server model is specified by
the amount of each of theK resource types it contains and
the choice of the local scheduler. For all simulations, the lo-
cal scheduler uses a backfill algorithm with a resource bal-
ancing job selection criteria [10]. To our knowledge, this
is the best performing local scheduling algorithm for the
multi-resource single server problem. At this point, we as-
sume that the jobs arerigid, meaning that they must receive
the required resources before they can execute. We also
assume that the execution time of a job is the same on any
server. Simulation results are reported for a value ofK = 8.

Two independent parameters were used to specify the
degree of heterogeneity across the servers in the simulated
system. First, within a single server, theserver resource
correlation, Sr, parameter specifies how the resources of a
given server are balanced. This represents theintra-server
resource heterogeneity measure. For example, assume each
server has two resources, CPUs and memory. If a cor-
relation value of about one were specified, then a server
with a large memory would also have a large number of
CPUs. Conversely, if a correlation value of about negative
one were used, then a server with a large memory would
probably have a low number of CPUs. Finally, a correla-
tion value near zero implies that the resource sizes within a
given server are unrelated. The value of the resource cor-
relation ranged from 0.15 to 0.85 in the simulations (our
simulator is capable of generatingSr values in the range�1:0=(K � 1) < Sr � 1:0).

The second parameter is theserver resource variance,Srv, which is used to describe range of sizes for a single
resource which may be found across all of the servers. This
represents theinter-server heterogeneity measure. Again,
a resource variance about one implies that the number of
CPUs found in serverSi will be approximately the same as
the number of CPUs found in serverSj for 0 � i; j < S.
In general, a resource variance ofSrv = V implies that
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the serverSi with the largest amount of a resourcek hasV times as much of that resource as the serverSj which
has the smallest amount of that resource. All other servers
have some amount of resourcek betweenSki andSkj . The
value of the resource variance ranged from 1.2 to 8.0 for our
experiments.

Workload Model. The two main aspects of the simulated
workload are the generation of multi-resource jobs and the
job arrival rate. Recent studies on workload models have fo-
cused primarily on a single resource — the number of CPUs
that a job requires. Two general results from these studies
show that the distribution of CPU requirements is gener-
ally hyperexponential, but with strong discrete components
at powers of two and squares of integers [3]. An addi-
tional study investigated the distribution of memory require-
ments on the 1024 processor CM-5 at Los Alamos National
Laboratory. The conclusion was that memory requirements
are also hyperexponentially distributed with strong discrete
components. Additionally, there was a weak correlation be-
tween the CPU and memory requirements for the job stream
studied [4].

We generalize these results to aK-resource workload as
follows. The multiple resource requirements for a job in
the job stream are described by two parameters. Thekth
resource requirement for jobj, Jkj , is drawn from a hyper-
exponential distribution with meanXk. Additionally, the
correlation between resource requirements within a single
job,Jr is also specified. A single set of workload parame-
ters was used for all of the initial simulations reported here,
in whichXk = 0:15; 0 � k < K, and the resource cor-
relationJr = 0:25. Essentially, the average job requires
15% of each resource in an average server, and its relative
resource requirements are near random.

Figure 3(a) shows the single resource probability distri-
bution used for the workload. Note that the probability for
small resource requirements is reduced over a strictly expo-
nential distribution. We justify this modification by noting
that small jobs are probably not good candidates for load
balancing activity as they do not impact the local job sched-
uler efficiency significantly (except to improve it). Fig-
ure 3(b) shows the joint probability distribution for a dual
resource(K = 2) system. In general, the joint probability
distribution shown in Figure 3(b) is nearly identical for all
pairs(i; j); 0 � i; j < K, of resources in the job stream.
This workload model has also been used to study multi-
resource scheduling on a single server [10].

The job arrival rate generally affects the total load on the
system. A high arrival rate results in a large number of jobs
being queued at each server, while a low arrival rate reduces
the number of queued jobs. For our initial simulations, we
selected an arrival rate that resulted in an average of 32 jobs
per server in the system. As each job arrives, it is sent to a

server selected randomly from a uniform distribution rang-
ing from 0 toS � 1. A final assumption is that the nature
of the workload model impacts only the absolute values of
the system performance, not the relative performance of the
algorithms under study.

Performance Metrics. A single performance metric,
throughput, is our current method for evaluating these al-
gorithms. Throughput is measured as the total elapsed time
from when the first job arrives to when the last job departs.

4.2. Simulation Results

Our initial simulation results are depicted in Figures
4(a)–(f). Recall that load balancing algorithms essentially
try to mimic a central work queue from which any server
can select jobs as its resources become available. Therefore,
the performance results for the load balancing algorithms
are normalized against the results of a system with a central
work queue. For each graph in the figure, thex axis rep-
resents the server resource variance parameter,Srv, as de-
scribed previously, while they axis represents the through-
put of the algorithms, normalized to the throughput of the
central queue algorithm. The following paragraphs summa-
rize these results.

Impact of the Resource Balancing Policies. Figures
4(a)–(c) depict the performance of the sender initiated, re-
ceiver initiated, and symmetrically initiated baseline and
extended algorithms, normalized to the performance of the
central queue algorithm. For these experiments,K = 8 andSr = 0:50 (resources within a server are very weakly cor-
related). In comparing the performance of the baseline and
the extended algorithms, we see that the extended variants
consistently out-perform the baseline algorithm from which
they were derived. The addition of the intelligent job se-
lection policy, BSP, provides a 5–10% gain in the SIBSP,
RI BSP, and SYBSP algorithms over the SI, RI, and SY
algorithms, respectively. Moreover, the addition of the RB
load index and associated transfer policy further increases
these gains for SIRB BSP, RIRB BSP, and SYRB BSP.

Effects of Server Resource Correlation, Sr. The jobs
which arrive at each server may or may not have a natu-
ral affinity for that server. For example, if a server has a
large memory and a few CPUs, a job which is memory in-
tensive has a high affinity for that server. However, a job
which is CPU intensive has a low affinity to that server.
For a job stream with a fixed intra-job resource correla-
tion,Jr, the probability that an arriving job has good affin-
ity to a server increases asSr increases. A larger natural
affinity increases the packing efficiency of the local sched-
ulers, improving the throughput. Figures 4(d)–(f) compare
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Figure 3. Multi-Resource Workload Model

the performance of the RIRB BSP, SIRB BSP, and the
SY RB BSP algorithms, over the range of server resource
correlation values,Sr = f0:15; 0:50; 0:70g. Generally, as
the value ofSr increases, the performance of the load bal-
ancing algorithms also improve, due to an increased proba-
bility of natural affinity.

The SI RB BSP algorithm performs slightly better than
RI RB BSP at low values ofSr as seen in Figure 4(d).
However, RIRB BSP begins to outperform SIRB BSP at
higher values ofSr, as seen in Figures 4(e) and 4(f). At low
values ofSr, the SI variant can actively transfer out jobs
with low affinity, which occur with high probability, while
the RI variant can only try to correct the affinity of their to-
tal workload. Higher values ofSrv magnify this problem.
Therefore, the performance advantage goes to the SI vari-
ant. For higher values ofSr, the probability of good job-
server affinity is also higher. When accompanied by higherSrv, the system may be thought of as having some larger
servers and some smaller servers, with good job affinity to
any server. In this case, the throughput of the system is
driven by the efficiency of the larger servers. In the SI vari-
ant, the smaller servers will tend to initiate load balancing
actions, by sending work to the larger servers. So while the
smaller servers may execute efficiently, the larger servers
may not. However, in the RI variant, the larger servers will
tend to initiate load balancing, and intelligently select which
work to receive from the smaller servers. Now, the larger
servers will tend to execute more efficiently. For this rea-
son, the performance advantage goes to the RI variant.

Impact of Server Resource Variation, Srv. As the re-
source variation,Srv, increases in the graphs of Figure 4,
the throughput of the load balancing algorithms drops rela-
tive to the central queue algorithm. This is due to the fact

that the average job size (size of the jobs resource require-
ments) is not taken into account when selecting jobs for
transfer. At higher server resource variances, some servers
have a very small amount of one or more resources. How-
ever, the average job size ending up on the servers with
small resource capacities is the same as those ending up
on the larger servers. The small size of the resources in
these servers, relative to the average resource requirement
of the arriving jobs, causes packing inefficiencies by the lo-
cal scheduler, due to job sizegranularity. In the case of a
centralized queue, the servers with small resource capacities
are more likely to find jobs with smaller resource require-
ments. In short, simply balancing the workload resource
characteristics is not sufficient. Other workload character-
istics must also be emulated in the local queues, such as the
average job requirements relative to the server resource ca-
pacities. This is a topic in our current work in progress and
is briefly discussed in Section 5.

Central Queue vs. Load Balancing. A final observation
may be drawn from the graphs in Figure 4. Even when
the servers are all similarly configured (e.g.Srv � 1 andSr � 1), there is a consistent performance gap of15% for
all baseline and extended load balancing algorithms with re-
spect to the central queue algorithm. This is due to the fact
that even if the load balancing algorithms are successful in
balancing the load, the local scheduler at each server may
not be able to find a job in itslocal queue to fill idle re-
sources, even if such a job exists in the queue of a different
server. Closing this gap is the subject of our current work
and is briefly discussed in Section 5.
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5. Summary and Work in Progress

In this paper, we defined a workload distribution prob-
lem for a computational grid with near-homogeneous multi-
resource servers. First, servers in the grid have multiple
resource capacities, and jobs submitted to the grid have re-
quirements for each of those resources. Additionally, the
servers are homogeneous in that any job submitted to the
grid can be executed by any of the servers, but heteroge-
neous in their various resource configurations. We next
investigated a load balancing approach to workload distri-
bution for this grid. We showed how previous baseline
load balancing policies for single resource systems failed
to maintain a workload at each server which had a good
affinity towards that server. We then proposed two orthog-
onal extensions based on the concept of resource balanc-
ing. The basic idea of resource balancing is that the local
scheduler is more effective in utilizing the resources of the
local server, if the total relative resource requirements of
all jobs in a local work queue match the relative capacities
of the server. Our simulation results show that our policy
extensions provided a consistent 5–15% increase in system
throughput performance over the baseline load balancing al-
gorithms.

However, there is still significant room for improvement
in the workload distribution approach. First, as the re-
source variance between servers grows, additional work-
load characteristics, beyond the total resource balance, must
be taken into account when evaluating the workload for a
given server. Specifically, we noted that the granularity
of jobs in a local queue impacts the performance of the
smaller servers. Intuitively, small jobs should be sent to
small servers, and large jobs should be sent to large servers.
Here, a large job is one that generally has large resource
requirements, and a large server is one that generally has
large resource capacities. Note that the size of a job is rela-
tive to the size of the server to which it is being compared.
Our current work in progress is investigating refinements to
the load balancing policies which improve the affinity of the
local workload to the local server. Note that these investi-
gations apply to single resource servers as well.

Second, there is a persistent performance gap between
a central queue approach to workload distribution and our
load balancing algorithms. Our conjecture is that even if the
load is perfectly balanced, restricting a server,Si, to execute
jobs only from its local queue will increase the percentage
of time that some ofSi’s resources remain idle, when there
may be a job in the queue of a different server,Sj , which
would fit in to the idle resources of serverSi. These effects
were noted in our simulations in that even when the servers
were all nearly identical, and an equal load was being de-
livered to each server, the system throughput was still sig-
nificantly below the performance of the central queue algo-

rithm. Load balancing schemes were limited to about 85%
of the throughput of the central queue scheme at all tested
values ofSrv andSr, as seen in Figures 4(a)–(f).

We are further motivated to look at a more central-
ized approach by real-world computational grids, such as
NASA’s Information Power Grid (IPG) [6]. The current
implementation of the IPG uses services from the Globus
toolkit to submit jobs, query their status, and query the state
of the grid resources. Globus uses a centralized directory
structure, the Metacomputing Directory Service (MDS) to
store information about the status of the metacomputing
environment and all jobs submitted to the grid. Informa-
tion in the MDS is used to assist in the placement of new
jobs onto servers with appropriate resources within the grid.
While this approach is currently being used in the IPG,
there are questions about the scalability of such a central-
ized structure. For example, can a central structure han-
dle hundreds of sites and thousands of jobs? How about
fault tolerance? Our current work in progress is therefore
investigating compromises between a single central queue
and completely distributed queues. The general concept is
to keep work close to the servers where it will most likely
execute, and move work to a specific server when needed.
Recent research in dynamic matching and scheduling for
heterogeneous computing systems use similar approaches,
along with heuristics for matching a job to idle server re-
sources [12]. Our work in progress attempts to combine the
centralized nature of current mapping approaches with our
resource-balanced workload affinity approach.
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