Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 00-013

Load Balancing Across Near-Homogeneous Multi-Resource Servers

William Leinberger, George Karypis, Vipin Kumar, and Rupak Biswas

February 16, 2000

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
16 FEB 2000 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

L oad Balancing Acr oss Near-Homogeneous M ulti-Resour ce Servers £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army Resear ch L aboratory,2800 Powder Mill REPORT NUMBER
Road,Adelphi,MD,20783-1197

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 14
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Accepted in 9th Heterogeneous Computing Workshop (HCW 2000)

Load Balancing Across Near-Homogeneous Multi-Resourcecse

William Leinberger, George Karypis, Vipin Kumar
Army High Performance Computing and Research Center
Department of Computer Science and Engineering, Uniyeo$iMinnesota

{l ei nberg, karypis,

kumar }@s. um. edu

Rupak Biswas
MRJ Technology Solutions, Numerical Aerospace Simulaonsion
NASA Ames Research Center, Moffett Field, CA 94035
rbi swas@as. nasa. gov

February 16, 2000

Abstract

An emerging model for computational grids intercon-
nects similar multi-resource servers from distributed sites.
A job submitted to the grid can be executed by any of the
servers, however, resource size or balance may be differ-
ent across servers. One approach to resource management
for thisgrid isto layer a global load distribution systemon
top of the local job management systems at each site. Un-
fortunately, classical load distribution policies fail on two
aspects when applied to a multi-resource server grid. First,
simple load indicesmay not recognize that a resource im-
balance exists at a server. Second, classical job selection
policiesdo not actively correct such a resource imbalanced
state. We show through simulation that new policies based
on resource balancingerform consistently better than the
classical load distribution strategies.

1. Introduction

Metacenter linked a 42-node IBM SP2 at Langley and a
144-node SP2 at Ames [7]. The two servers were homo-
geneous in that they were both IBM SP2s, with identical or
synchronized software configurations. However, they were
heterogeneous on two counts: the number of nodes in each
server, and the fact that the Langley machine consisted of
thin nodes while the Ames machine had wide nodes. A job
could be executed by either server without modifications,
provided a sufficient number of nodes were available on that
server.

The resource manager for the near-homogeneous grid
system is responsible for scheduling submitted jobs td-avai
able resources such that some global objective is satisfied,
subject to the constraints imposed by the local policies at
each site. One approach to resource management for near-
homogeneous computational grids is to providglabal
load distribution system (LDS) layered on top of théocal
job management system (JMS) at each site. This architec-
ture is depicted in Figure 1. The compute server at each
site is managed by a local JMS. Users submit jobs directly
to their local IMS which places the jobs in wait queues un-

An emerging model in high performance supercomput- til sufficient resources are available on the local compute
ing is to interconnect similar computing systems from ge- S€rver. The global LDS monitors the load at each site. In

ographically remote sites, creating near-homogeneous

the event that some sites become heavily loaded while other

computational grid system. Computing systems, or serversSites are lightly loaded, the LDS attempts to equalize the
are homogeneous in that any job submitted to the grid mayl0ad across all serves by moving jobs among the sites. The
be sent to any server for execution. However, the serversIMS at each site is then responsible for the detailed allo-
may be heterogeneous with respect to their exact resourc&ation and scheduling of local resources to jobs submitted

configurations. For example, the first phase of the NASA directly to it, as well as to jobs which are assigned to it by

the global LDS. The local JMS also provides load status
*STzhiS \évgék WféSbSUDported kr]]y NAfSA grant(':\lCCZ-S_ZGB a:g @C;:tfact to the LDS to support load distribution decisions, as well

NAS2-14303, and by Army High Performance Computing Re - : : ; ;

ter (AHPCRC) cooperative agreement DAAH04-95-2-0003 amwtract as .a SChedu“ng Appllcaltlc.)ns Programming Int.erface (API)

DAAH04-95-C-0008. Access to computing facilities was pded by AH- to implement these decisions. For example, in the NASA

PCRC, Minnesota Supercomputer Institute. Metacenter, geer-aware receiver-initiated load balancing

Sparse, High Bandwidth Communications Infrastructure

i i i i
! I ! I
. | GlobalLoad Distribution | ! . | GlobalLoad Distribution | !
i Load Index i i Load Index i
[Information Policy i [Information Policy i
! Transfer Policy [! Transfer Policy [
! Location Policy ! ! Location Policy !
: Selection Policy ! : Selection Policy !
i i i i
| |

| > |0 | i > |0 |
! I g w ! I |g w
! c i ! c i
P AP S w o } — mm m— - [AU A w o I
— Local IMS l Local IMS

UserJob i : UserJob i :
| |
| |

Submission ! Local

Submission! Local
<> Scheduler L

<=1 Scheduler

Compute Server

%O %l %2 %K-l

Figure 1. Near-Homogeneous Metacomputing Resource Management Architecture

algorithm was used to move work from one IBM SP2 to The second exception is that the physical configura-
the other. When the workload on one SP2 dropped belowtions of theK resources for each server may be heteroge-
a specified threshold, the peer-aware load balancing mechneous. This heterogeneity can be manifested in two ways.
anism would query the other SP2 to see if it had any work The amount of a given resource at one server site may be
which could be transferred for execution. quite different than the configuration of a server at another
site. For example, servef; may have more memory than
The architecture depicted in Figure 1 is conceptually serverS;. Additionally, servers may have a differelpl-
identical to classical load balancing in a pal’a||e| or dis- ance of éach resource. For example’ one server may have
tributed computer with two notable exceptions. First, the 4 (relatively) large memory with respect to its number of

compute server at each site may be a complex combinaCpus while another server may have a large number of
tion of multiple types of resources (CPUS, memory, disks, cpus with less memory.

switches, and so on). Similarly, the applications submit-

ted by the users are described by multiple resource re- Classical load balancing attempts to maximize system
quirements. We generalize these notions and define ahroughput by keeping all processors busy. We extend this
K-resource server and correspondiigrequirement job. notional goal to fully utilizing allK resources at each site.
Each serveS; hasK resourcesS?, S}, ..., Sf(*l. Each One heuristic for achieving this objective isrtatch the job

job .J; is described by its requirements for each resource mix at each server with the capabilities of that server, in ad
type,.];’, J]O, cey Jj’(*] . Note that the servers are still con- dition to balancing the load across servers. For example, if
sidered homogeneous from the jobs’ perspective, as any jola server has a large shared memory, then the job mix in the
may be sent to any server for execution. local wait queue should be adjusted by the global LDS to

contain jobs which are generally memory intensive. Com- it was shown that simple backfill algorithms based on
pute intensive jobs should be moved to a server which hasmulti-dimensional packing heuristics consistently outpe
a relatively large number of CPUs with respect to its avail- form single-resource algorithms, with increasiiig These
able memory. The goal of the LDS is to therefore balance efforts all suggest that the local JMS at each site should be
the total resource demand among all sifes,each type of multi-resourceaware in making its scheduling decisions.
resource. This induces requirements on the global LDS to provide a
This work investigates the use of load balancing tech- job mix to a local server which maximizes the success rate
nigues to solve the global load distribution problem for of the local server.
computational grids consisting of near-homogeneous multi The general goal of a workload distribution system is to
resource servers. The complexity of multi-resource com- have sufficient work available to every computational node
pute servers along with the multi-resource requirements ofto enable the efficient utilization of that node. A central-
the jobs cause the methods developed in past load balancized work queue provides every node equal access to all
ing research to fail in at least two areas. First, the defini- gvailable work, and is generally regarded as being efficient
tion of theload at a given server is not easily described by in achieving this goal. Unfortunately, the centralized kvor
a single load index. Specifically,rasource imbalance, in queue is generally not scalable as contention for the sin-
which the local job mix does not match the capabilities of gle queue structure increases with the number of nodes. In
the local server, is not directly detectable. This impaetst massively parallel processing systems where the number of
ability of the global LDS to match the workload at a site nodes was expected to reach into the thousands, this was a
to the capabilities of the site. We propose a simple exten-key concern. In distributed systems, the latency for query-
sion to a classical load index measure based oes@urce ing the central queue potentially increases as the number of
balancing heuristic to provide this additional level of de- nodes is increased. Load balancing algorithms attempt to
scriptive detail. Second, once a resource imbalance is deemulate a central work queue by maintaining a represen-
tected, existing approaches to selecting which jobs to movetative workload across a set of distributed queues, one per
between servers fail to actively correct the problem. We compute node. In this paper, we investigate only the perfor-
provide an analogous job selection policy, also based on remance of load balancing across distributed queues.
source balancing, which heuristically corrects the reseur Classical load balancing algorithms are typically based
imbalance. The combination of these two extensions pro-g ai0ad index which provides a measure of the workload
vides the framework for a global LDS which consistently 5t 5 node relative to some global average, and policies
outperforms existing approaches over a wide range of com-yhich govern the actions taken once a load imbalance is
pute server characteristics. _ detected [15]. The load index is used to detect a load im-
The remainder of this paper is organized as follows. Sec-pjance state. Qualitatively, a load imbalance occurs when
tion 2 provides an overview of relevant past research, con-ihe |0ad index at one node is much higher (or lower) than
cluding with variants of a baseline load balancing algonith e |0ad index on the other nodes. The length of the CPU
drawn from the literature. Section 3 investigates the limi- queue has been shown to provide a good load index on time-
tations of the baseline algorithms, and provides extession gn5red workstations when the performance measure of in-
based on the resource balancing heuristic. A descriptionigrest js the average response time [2, 11]. In the case of
of our simulation environment is given in Section 4. The multiple resources (disk, memory, etc.), a linear combina-
performance results of our new load balancing methods as;jgn of the length of all the resource queues provided an

compared to the baseline algorithms is also summarized i”improved measure, as job execution time may be driven by
Section 4. Finally, Section 5 provides conclusions and a more than CPU cycles [5].

brief overview of our current work in progress. The four policies that govern the action of a load balanc-

ing algorithm when a load imbalance is detected deal with
2. Preiminaries information, transfer, location, and selection. Thiorma-
tion policy is responsible for keeping up-to-date load infor-

Research related to this effort is drawn from single server mation about each node in the system. A global information
scheduling in the presence of multiple resource require-policy provides access to the load index of every node, at the
ments and general load balancing methods for homoge-cost of additional communication for maintaining accurate
neous parallel processing systems. information [1].

Recent research in job scheduling for a single server has Thetransfer policy deals with the dynamic aspects of a
demonstrated the benefits of including information about system. It uses the nodes’ load information to decide when
the memory requirements of a job in addition to its CPU a node becomes eligible to act as a sender (transfer a job
requirements [13, 14]. The generalizéttresource sin- to another node) or as a receiver (retrieve a job from an-
gle server scheduling problem was studied in [10], where other node). Transfer policies are typically thresholdsas

Thus, if the load at a node increases beyond a threshold
the node becomes an eligible sender. Likewise, if the load
at a node drops below a threshdld the node becomes an
eligible receiver. Load balancing algorithms which focus
on the transfer policy are described in [2, 15, 16].

Thelocation policy selects a partner node for a job trans-
fer transaction. If the node is an eligible sender, the iooat
policy seeks out a receiver node to receive the job selected
by the selection policy (described below). If the node is
an eligible receiver, the location policy looks for an dbigi
sender node. Load balancing approaches which focus on
the use of the location policy are described in [8, 9].

Once a node becomes an eligible sendeg ection pol-
icy is used to pick which of the queued jobs is to be trans-
ferred to the receiver node. The selection policy uses akver
criteria to evaluate the queued jobs. Its goal is to selemh a |
that reduces the local load, incurs as little cost as passibl
in the transfer, and has good affinity to the node to which
it is transferred. A common selection policyletest-job-
arrived which selects the job which is currently in last place
in the work queue.

The primary difference between existing load balancing
algorithms and our global load distribution requiremests i
that our node is actually maulti-resource server. With this
extension in mind, we define the following baseline load
balancing algorithm:

the transfer policy indicates that a server becomes a
sender, the location policy selects the server which cur-
rently has the least load to be the receiver. However,
the selected server must also be an eligible receiver,
meaning that it currently has a load whicHhlisbelow

the global average. Conversely, if the server is a re-
ceiver, the location policy selects the server which cur-
rently has the highest load that1§ above the global
average. If no eligible partner is found, the load bal-
ancing action is terminated.

Selection Policy. A latest-job-arrived selection policy
(LSP) is used to select a job from the sending server
to be transferred to the receiving server. This selec-
tion policy generally performs well with respect to
achieving a good average response time, but suffers
from some jobs being moved excessively. Therefore,
each job keeps pob transfer count which records the
number of times it has been moved. When this count
reaches a thresholf., the job is no longer eligible to

be selected for a transfer. Jobs which are already exe-
cuting are excluded from being transferred.

The sender initiated (SI), receiver initiated (RI), and

symmetrically initiated (SY) algorithm variants are gener
ated using a transfer policy which triggers a load balancing
action onTy, T,., or both, respectively. All baseline variants

e Load Index. The load index is based on the averageuse the RA load index and the LSP job selection policy.

resource requirements of the jobs waiting in the queue

at a given server. This index is termed the resource 3, M ulti-Resour ce Awar e L oad Balancing Poli-

average (RA) index. For our multi-resource server for-
mulation, each resource requirement for a job in the
gueue represents [@rcentage of the server resource

cies

In this section, we first discuss the limitations of the re-
source average load index, RA, and the latest-job-arrived
selection policy, LSP, of the baseline load balancing algo-
rithms for the heterogeneous multi-resource servers prob-
Information Policy. As the information policy is not lem. We provide an example which illustrates where these
the subject of this study, we choose to use a policy naive strategies can fail to match the workload to the
which provides perfect information about the state of servers, resulting in local workloads which exhibit a re-
the global system. We assume a global information source imbalance. We then provide extensions to the load
policy with instantaneous update. index and the job selection policy which strive to balance
the resource usage at each server.

that it requires, normalized to unity. Therefore, the RA
index is a relative index which can be used to compare
the loads on different servers.

Transfer Policy. The transfer policy is threshold based,
since it has been shown to prlo.wde robust performance3_1_ Limitations of RA and L SP
across a range of load conditions. A server becomes
a sender when its load index grows above the global
load average by a threshold,. Conversely, a server
becomes aeceiver when its load index falls below the
global average by a threshdld.

The resource average load index, RA, and the latest-job-
arrived job selection policy, LSP, in the baseline algarth
fail in the multi-resource server load balancing contexte T
following discussion gives an example of these failures and
Location Policy. The location policy is also not the provides some insight into possible new methods. Our new
subject of this study. Therefore, we use a simple lo- methods will be further discussed in Section 3.2.
cation policy which heuristically results in fast con- In past research, the index used to measure the load on
vergence to a balanced load state. In the event thata server with respect to multiple resources consisted of a

linear combination or an average of the resource require-requirement for resourcg} than for resources andS2.
ments for the actively running jobs in a time-shared sys- The result is thaf, will probably be unable to fully utilize
tem. A corresponding index which may be applied to batch resourcesy andSg as resourcé} becomes the bottleneck.
gueued space-shared systems is to use the average of tHeonversely, the job mix ilR@Q; has a higher requirement
total resource requirements of the jobs waiting in the wait for resourcess? andS? than forS;, resulting in an ineffi-
queue. However, this may not always indicate a system statecient use of resourcé;. Therefore, the workload at each
where there exists a resource imbalance, that is, the totakerver suffers from a resource imbalance.

job requirements for one resource exceeds the requirements In order to detect this problem, we define a second load
for the other resources. Essentially, a server with a mis-index, called resource balance (RB), which measures the
matched work mix will be forced to leave some resources resource imbalance at a given server or globally across the

idle while other resources are fully utilized, resultingain
inefficient use of the system as a whole.

Figure 2(a) depicts the state of the job ready queues
R@Qy and RQ), for a two-server system§, and.S;. As-
sume that each server has three resou§@ss,;, andS?,
and that the configuration for the two servers is identical,
SY =8V, St = Si, andS2 = S?. Each of the two ready
gueues currently has two jobs. The job which arrived lat-

system. Namely, for servei;, 0 <i < S,
_ Maz(W}) Maz(W})
AogWE) ~ T RA;
Similarly,
B Mazx(W},,) _ Mazx(W},,)
Avg(W],,) RAAu

RB; 0<k<K.

0<k<K.

est at each server is on the top of the ready queue for that

server. For example, the latest arriving jok,, in RQ has
the resource requirement§ = 2,.J} = 3, andJ? = 2.
Note that the resource requirements for a job are given a
a percentage of the total available in the server. The total
workload for each resourcg, in a given servers;, is de-

noted as
>

J;ERQ;

Jk

k _
Wi = J

2

), 0<i<S, 0<Ek<K.

The resource average load index for a given serSgris
then given by

RA; = Avg(WF), 0<k<K.

In this exampleKX = 3 andRAy = RA; = 4.

The third queue in Figure 2(aRQ 4.4, represents the
global average workload for each resourceRip, and
R(@Q:. The global average workload for resouigds then
given by

Wﬁv_q = Avg(Wik)7 0 S Z < S

Here,S = 2 andW}, = W}, = W3, = 4, meaning
that on average, ead®); has a total requirement of 4 per-
cent for each resource. The global resource average loa
index is simply

RA = Avg(W},,), 0<k<K,

which in this example i&? A = 4. Servers; is defined to be
in a load balanced state as longlad x (1 — T,,) < RA; <
RAx(1+T,), whereT, is the transfer policy threshold, as
defined in Section 2. SindBA; = RA; = RA, the system
is believed to be in a load balanced state.

Even though the RA index indicates a balanced load, it is
clear from Figure 2(a) that the job mix RQ), has a higher

Heuristically, the RB index of a server measures how bal-
anced the job mix is with respect to their different re-

gource requirements. If the total resource requiremeets ar

all the same, then the local RB measure is unity, since
Maz(W}F) = Avg(WF) . This corresponds to the case
where the workload isnatched to the server. The global
RB is a measure of how well the total work in the system
matches the capabilities of all the servers in the systera. Th
goal of the load balancing algorithm is to move each server
towards this global balanced resource level. In Figure,2(a)
RBy = 6/4 or 1.5, while RB; = 5/4 or 1.25. Since
RB = 4/4 or 1.0, the two servers recognize the existence
of a resource imbalanced state.

Once a resource imbalance is detected, the load bal-
ancing policies must actively correct the imbalance. Fig-
ure 2(b) shows the result of using the LSP policy to ad-
just the resource imbalance. Servgy sends its latest
job to Sy, while S; sends its latest job t§;. Note that
the resource balance index improves on both servers, with
RB, =4/3.33 0r1.2, while RB; = 5/4.66 or 1.07. How-
ever, the resource balance could have been improved even
further, as shown in Figure 2(c), by transferring the jobs
which best balance the workload at both servers. We refer

(ﬁ)o this heuristic policy as the balanced job selection golic
r BSP.

3.2. Resource Balancing Algorithms

In the following discussion, we extend the baseline load
balancing algorithm with the heuristic RB load index and
the BSP job selection policy. In general, the goal of these
extensions is to move the system to a state where the load is
balanced across the servargl the job mix at each server
matches the resource capabilities provided by that server.
These extensions are described below.

}RBO il __ _szl RBayg

<2l 2 e <
RA, - RA 1, RAvg

e
[[
|
w
|
|

N

N
N
N
N

«OE

RO, RO, RQug

(a) Comparison of RA and RB Load Index Measures

_l __ -y RB, RBAvg

RA RAug

o
[
|
/
N

N
N
/
py)
>
o
w
N
I
N

«OE

RQ, RQ, RQavg
(b) Result of Latest Job Selection Policy (LSP)

RB, o RB, o RByyq

RA : RA : : R
0 3E 1 alil 4l 4 Aﬁvg

2 T2 o

N
N
N

-~z -

eoé

F\)QO RQl RQAvg
(c) Result of Balance Job Selection Policy (BSP)

Figure 2. Limitations of RA and LSP

Sender Initiated, Balanced Selection Policy: SI_BSP. cal to SLRB_BSP and RIRB_BSP. Heuristically, this main-
The baseline sender initiated algorithm, Sl, is extended totains the RA index but improves the RB index.

SI_.BSP by modifying the selection policy as follows. The

fact that the load balancing action was triggered by the con-4. Experimental Results

dition that the load index, RA, of a given server was above

the global average implies that it has more work than at least The baseline and extended load balancing algorithms

one other server. Thus, this heavily loaded server needs Qe implemented on a simulated system that is described
transfer work to another server. The BSP policy selects thej, gection 4.1. The experimental results are summarized in
job for transfer (out) which results in the best resource bal Section 4.2

ance of the local queue. Note that transferring a job may
actually worsen the resource imbalance, but we proceed 4.1. System Model
nonetheless so that the overall excess workload can be re-

duced. Also, the resource balance at the receiving server 1. «imulation system follows the general form of Fig-

may worsen as well. However, the receiving server cur- ure 1. The server model, workload model, and performance

rer'1tl'y has a workload shortage, so it may be executing Iessmetrics are discussed below.
efficiently anyway.

Server Model. A system with 16 servers was used for the
Sender Initiated, RB Index, Balanced Selection Pol- current set of experiments. A server model is specified by
icy: SI_RB_.BSP. The SLRB_BSP algorithm extends the the amount of each of th& resource types it contains and
SI_BSP algorithm by including the RB load index, and mod- the choice of the local scheduler. For all simulations, the |
ifying the transfer and selection policies as follows. Eirs cal scheduler uses a backfill algorithm with a resource bal-
the transfer policy triggers a load balancing action baged 0 ancing job selection criteria [10]. To our knowledge, this
RA or RB. If the action is based on RA, S!B.BSP pro- s the best performing local scheduling algorithm for the
ceeds as SBSP. However, if the action is based only on multi-resource single server problem. At this point, we as-
RB, the selection policy is further modified over that used sume that the jobs arégid, meaning that they must receive
for SLBSP. The job whiclpositively improves the resource the required resources before they can execute. We also
balance of the local queue the most is selected for transferassume that the execution time of a job is the same on any
(out). If no such job is found, no action occurs. server. Simulation results are reported for a valuE of 8.

Two independent parameters were used to specify the
degree of heterogeneity across the servers in the simulated
system. First, within a single server, therver resource
correlation, S,.., parameter specifies how the resources of a
given server are balanced. This representsritra-server
resource heterogeneity measure. For example, assume each
Receiver Initiated, RB Index, Balanced Selection Pol- server has two resources, CPUs and memory. If a cor-
icy: RI_RB_BSP. The RLRB_BSP algorithm extends relation value of about one were specified, then a server
the RLBSP algorithm in a fashion complementary to with a large memory would also have a large number of
SI_.RB_BSP. CPUs. Conversely, if a correlation value of about negative
one were used, then a server with a large memory would
probably have a low number of CPUs. Finally, a correla-
tion value near zero implies that the resource sizes within a
given server are unrelated. The value of the resource cor-
relation ranged from 0.15 to 0.85 in the simulations (our
simulator is capable of generatiitfy. values in the range
~1.0/(K = 1) < S, < 1.0).

The second parameter is therver resource variance,

Srv, Which is used to describe range of sizes for a single
Symmetrically Initiated, RB Index, Balanced Selection resource which may be found across all of the servers. This
Policy: SY_RB_BSP. The SY.RB.BSP algorithm ex- represents thenter-server heterogeneity measure. Again,
tends the SYBSP algorithm as follows. If the action is a resource variance about one implies that the number of
based on RA, SYRB_BSP proceeds as SBSP. However, CPUs found in serves; will be approximately the same as

if the action is based only on RB, then SRB_.BSP per- the number of CPUs found in servgy for 0 < i,j < S.
forms both sen@nd receive actions using methods identi- In general, a resource variance 8f, = V implies that

Receiver Initiated, Balanced Selection Policy: RI_BSP.
The baseline receiver initiated algorithm, R, is extentted
RI_BSP in a fashion complementary to. BEP.

Symmetrically Initiated, Balanced Selection Policy:
SY_BSP. The baseline symmetrically initiated algorithm,
SY, is extended to SBSP as follows. If the transfer pol-
icy triggers a send action, SBSP proceeds as HSP. Al-
ternatively, if the transfer policy triggers a receive anti
SY_BSP proceeds as HBSP.

the serverS; with the largest amount of a resourkehas server selected randomly from a uniform distribution rang-
V times as much of that resource as the se/ewhich ing from 0 toS — 1. A final assumption is that the nature
has the smallest amount of that resource. All other serversof the workload model impacts only the absolute values of
have some amount of resourkdetweenS* and Sf The the system performance, not the relative performance of the
value of the resource variance ranged from 1.2 to 8.0 for ouralgorithms under study.
experiments.
Performance Metrics. A single performance metric,

Workload Model. The two main aspects of the simulated throughput, is our current method for evaluating these al-
workload are the generation of multi-resource jobs and thegorithms. Throughputis measured as the total elapsed time
job arrival rate. Recent studies on workload models have fo-from when the first job arrives to when the last job departs.
cused primarily on a single resource — the number of CPUs
that a job requires. Two general results from these studies?-2. Simulation Results
show that the distribution of CPU requirements is gener-
ally hyperexponential, but with strong discrete compogent ~ Our initial simulation results are depicted in Figures
at powers of two and squares of integers [3]. An addi- 4(@)—(f). Recall that load balancing algorithms esselgtial
tional study investigated the distribution of memory requi try to mimic a central work queue from which any server
ments on the 1024 processor CM-5 at Los Alamos National can select jobs as its resources become available. Theyefor
Laboratory. The conclusion was that memory requirementsthe performance results for the load balancing algorithms
are also hyperexponentially distributed with strong diser ~ are normalized against the results of a system with a central
components. Additionally, there was a weak correlation be- work queue. For each graph in the figure, thexis rep-
tween the CPU and memory requirements for the job streamresents the server resource variance paramgtgras de-
studied [4]. scribed previously, while thg axis represents the through-

We generalize these results tdaresource workload as ~ Put of the algorithms, normalized to the throughput of the
follows. The multiple resource requirements for a job in central queue algorithm. The following paragraphs summa-
the job stream are described by two parameters. fhe fize these results.
resource requirement for joh]7’” is drawn from a hyper-
exponential distribution with meai¥,. Additionally, the ~ Impact of the Resource Balancing Policies. Figures
correlation between resource requirements within a single4(a)—(c) depict the performance of the sender initiated, re
job, J,.. is also specified. A single set of workload parame- ceiver initiated, and symmetrically initiated baselinedan
ters was used for all of the initial simulations reportedeher extended algorithms, normalized to the performance of the
in which X, = 0.15,0 < k¥ < K, and the resource cor- central queue algorithm. For these experimefits; 8 and
relation.J,. = 0.25. Essentially, the average job requires Sr. = 0.50 (resources within a server are very weakly cor-
15% of each resource in an average server, and its relativéelated). In comparing the performance of the baseline and
resource requirements are near random. the extended algorithms, we see that the extended variants

Figure 3(a) shows the single resource probability distri- consistently out-perform the baseline algorithm from wviahic
bution used for the workload. Note that the probability for they were derived. The addition of the intelligent job se-
small resource requirements is reduced over a strictly-expo lection policy, BSP, provides a 5-10% gain in theESP,
nential distribution. We justify this modification by nogin ~ RI-BSP, and SYBSP algorithms over the SI, RI, and SY
that small jobs are probably not good candidates for load algorithms, respectively. Moreover, the addition of the RB
balancing activity as they do not impact the local job sched- load index and associated transfer policy further increase
uler efficiency significantly (except to improve it). Fig- these gains for SRB_BSP, RLRB_BSP, and SYRB_BSP.
ure 3(b) shows the joint probability distribution for a dual
resourcg K = 2) system. In general, the joint probability Effects of Server Resource Correlation, S,... The jobs
distribution shown in Figure 3(b) is nearly identical fot al which arrive at each server may or may not have a natu-
pairs(i,j),0 < i,j < K, of resources in the job stream. ral affinity for that server. For example, if a server has a
This workload model has also been used to study multi- large memory and a few CPUs, a job which is memory in-
resource scheduling on a single server [10]. tensive has a high affinity for that server. However, a job

The job arrival rate generally affects the total load on the which is CPU intensive has a low affinity to that server.
system. A high arrival rate results in a large number of jobs For a job stream with a fixed intra-job resource correla-
being queued at each server, while a low arrival rate reducesgion, .J,.., the probability that an arriving job has good affin-
the number of queued jobs. For our initial simulations, we ity to a server increases &s. increases. A larger natural
selected an arrival rate that resulted in an average of 32 job affinity increases the packing efficiency of the local sched-
per server in the system. As each job arrives, it is sent to aulers, improving the throughput. Figures 4(d)—(f) compare

0.009 T T T T T T T T T
0.008 r

Joint PDF

0.007 r
0.006 r
0.005
0.004

Frequencey

0.003

0.002

0.001

0 1 1 1 1 1 1 1 " . .
0O 01 02 03 04 05 06 07 08 09 1 ' Resource 0
Range

(a) Single Resource Probability Distribution (b) Dual Resource Joint Probability Distribution, Correlation=0.25

Figure 3. Multi-Resource Workload Model

the performance of the RRB_.BSP, SIRB_BSP, and the that the average job size (size of the jobs resource require-
SY_RB_BSP algorithms, over the range of server resource ments) is not taken into account when selecting jobs for
correlation values$,.. = {0.15,0.50,0.70}. Generally, as transfer. At higher server resource variances, some server
the value ofS,.. increases, the performance of the load bal- have a very small amount of one or more resources. How-
ancing algorithms also improve, due to an increased proba-ever, the average job size ending up on the servers with
bility of natural affinity. small resource capacities is the same as those ending up
The SLRB_BSP algorithm performs slightly better than on the larger servers. The small size of the resources in
RI_RB_BSP at low values of,. as seen in Figure 4(d). these servers, relative to the average resource requitemen
However, RIRB_BSP begins to outperform SRB_.BSP at of the arriving jobs, causes packing inefficiencies by the lo
higher values of,.., as seen in Figures 4(e) and 4(f). Atlow cal scheduler, due to job sigganularity. In the case of a
values ofS,.., the Sl variant can actively transfer out jobs centralized queue, the servers with small resource cégacit
with low affinity, which occur with high probability, while are more likely to find jobs with smaller resource require-
the RI variant can only try to correct the affinity of their to- ments. In short, simply balancing the workload resource
tal workload. Higher values of,., magnify this problem. characteristics is not sufficient. Other workload chanacte
Therefore, the performance advantage goes to the Sl variistics must also be emulated in the local queues, such as the
ant. For higher values d,., the probability of good job- average job requirements relative to the server resource ca
server affinity is also higher. When accompanied by higher pacities. This is a topic in our current work in progress and
Srv, the system may be thought of as having some largeris briefly discussed in Section 5.
servers and some smaller servers, with good job affinity to
any server. In this case, the throughput of the system is
driven by the efficiency of the larger servers. In the Sl vari-
ant, the smaller servers will tend to initiate load balagcin
aCtionS, by Sending work to the |arger servers. So while thECentra| Queue vs. L oad Ba]ancing_ A final observation
Sma”er servers may execute efﬁciently, the |al’ger SerVerSmay be drawn from the graphs in Figure 4. Even When
may not. However, in the RI variant, the larger servers will the servers are all similarly configured (e$., ~ 1 and
tend to initiate load balanCing, and Intelllgently selebioh Src ~ 1), there is a consistent performance gaﬂgﬁf(’) for
work to receive from the smaller servers. Now, the larger || baseline and extended load balancing algorithms with re
servers will tend to execute more efficiently. For this rea- gpect to the central queue algorithm. This is due to the fact
son, the performance advantage goes to the Rl variant. that even if the load balancing algorithms are successful in
balancing the load, the local scheduler at each server may
Impact of Server Resource Variation, S,.,. As the re- not be able to find a job in itkocal queue to fill idle re-
source variations,.,, increases in the graphs of Figure 4, sources, even if such a job exists in the queue of a different
the throughput of the load balancing algorithms drops rela- server. Closing this gap is the subject of our current work
tive to the central queue algorithm. This is due to the fact and is briefly discussed in Section 5.

Normalized Throughput Normalized Throughput

Normalized Throughput

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

F Central Queue —— 4
RI

RIBSP —— A
RIRB BSP ——

T

1 2 3 4 5 6 7 8
Server Resource Variance, Srv
(a) Receiver Initiated Variants
F Central Queue —— 4
S| ———
+ SIBSP —— A
SIRBBSP ——
1 2 3 4 5 6 7 8
Server Resource Variance, Srv
(b) Sender Initiated Variants
F Central Queue —— 4
SY ——
+ SYBSP —— A

SYRBBSP ——

1 2 3 4 5 6 7 8

Server Resource Variance, Srv
(c) Symmetrically Initiated Variants

Normalized Throughput Normalized Throughput

Normalized Throughput

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

1.05

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6

T

T

T

T

Central Queue
SIRBBSP ——
RIRBBSP ——
SY RBBSP —+—

2 3 4 5 6 7
Server Resource Variance, Srv

(d) Server Resource Correlation: Src=0.15

T

T

T

T

Central Queue
SIRBBSP ——
RIRBBSP ——
SY RBBSP —+—

2 3 4 5 6 7
Server Resource Variance, Srv

(e) Server Resource Correlation: Src=0.50

T

T

T

Central Qqueue ——
SIRBBSP ——
RIRBBSP ——
SY RBBSP —+—

2 3 4 5 6 7
Server Resource Variance, Srv

(f) Server Resource Correlation: Src=0.70

Figure 4. Baseline and Extended Algorithm Performance Comparison

10

5. Summary and Work in Progress rithm. Load balancing schemes were limited to about 85%

of the throughput of the central queue scheme at all tested

values ofS,., andS,.., as seen in Figures 4(a)—(f).

lem for a computational grid with near-homogeneous multi- . We are further motivated to look E.ﬂ a more central-
ized approach by real-world computational grids, such as

resource servers. First, servers in the grid have multiple |) .
resource capacities, and jobs submitted to the grid have re-.NASAS Information Power Grid (IPG) [6]. The current

qguirements for each of those resources. Additionally, the'tmﬁ:ﬁt”t‘e”tag'o'f‘t 0 fbthe IPG iJhse.s steIV|ces ;rom theth(igtbus
servers are homogeneous in that any job submitted to the OO!KIL Lo submit jobs, query their status, and query a

grid can be executed by any of the servers, but heteroge—Of the grid resources. Globus uses a centralized directory

neous in their various resource configurations. We nextstructqre, the Metacomputing Directory Service (MDS) 'to
investigated a load balancing approach to workload distri- storg information abput the stqtus of the mgtacomputlng
bution for this grid. We showed how previous baseline environment and all jobs submitted to the grid. Informa-

load balancing policies for single resource systems faile yon in the MDS s used to assist in the placement of new

to maintain a workload at each server which had a goodJobs onto servers with appropriate resources within the gri

affinity towards that server. We then proposed two orthog-:/r\:hIIe this app;oach 'S cutJiLentIy ilaeklynlg'i usfed mh the lPtG’I
onal extensions based on the concept of resource balanc- ere are questions about the scajabliity of such a central-

ing. The basic idea of resource balancing is that the local :jzledhstrlécu(ljre. qutr exan&plﬁ, can 3 ce?t.rabl sotrulsture gan;
scheduler is more effective in utilizing the resources ef th € hundreds ot sites and thousands of Jobs# How abou

_ - | - . .
local server, if the total relative resource requiremerits o fault ttpler[gnce. Our cgrrentt) v;/ork n prqgrtlass IS :heirefore
all jobs in a local work queue match the relative capacities mvgs '9a ”I“gt ﬁog.p{qgmtsej N ween_l?hsmg © celn ra quethe
of the server. Our simulation results show that our policy and completely distributed gueues. The general conceptis

extensions provided a consistent 5-15% increase in systerrliO keep work close to the servers where it will most likely

throughput performance over the baseline load balancing al execute, and move work toa specn‘!c server when n-eeded.
gorithms. Recent research in dynamic matching and scheduling for

T, : heterogeneous computing systems use similar approaches,
However, there is still significant room for improvement . o ; . .
. S . along with heuristics for matching a job to idle server re-
in the workload distribution approach. First, as the re- :)
. - sources [12]. Our work in progress attempts to combine the
source variance between servers grows, additional work-

load characteristics, beyond the total resource balangst m centralized nature of current ma}p_ping approaches with our
: : resource-balanced workload affinity approach.
be taken into account when evaluating the workload for a
given server. Specifically, we noted that the granularity
of jobs in a local queue impacts the performance of the 6. Author Biographies
smaller servers. Intuitively, small jobs should be sent to
small servers, and large jobs should be sentto large servers William (Bill) Leinberger is a Ph.D. student and Re-
Here, a large job is one that generally has large resourcesearch Fellow in the Department of Computer Science and
requirements, and a large server is one that generally hagngineering at the University of Minnesota. He received a
large resource capacities. Note that the size of a job is rela BS in Computer and Electrical Engineering from Purdue
tive to the size of the server to which it is being compared. University in 1984. His thesis covers topics in schedul-
Our current work in progress is investigating refinements to ing in the presence of multiple resource requirements. His
the load balancing policies which improve the affinity of the other research interests include resource management for
local workload to the local server. Note that these investi- computational grids, and general topics in the area of high-
gations apply to single resource servers as well. performance computing architectures. Bill is currently on
Second, there is a persistent performance gap betweemn educational leave from General Dynamics Information
a central queue approach to workload distribution and our Systems, Bloomington, MN, where he has held positions as
load balancing algorithms. Our conjecture is that evendgf th a hardware engineer, systems engineer, and systems archi-
load is perfectly balanced, restricting a sen&rto execute tectin the area of special-purpose processing systems.
jobs only from its local queue will increase the percentage George Karypisis an assistant professor at the depart-
of time that some oF;’s resources remain idle, when there ment of Computer Science and Engineering at the Univer-
may be a job in the queue of a different servey, which sity of Minnesota. His research interests spans the areas of
would fit in to the idle resources of serv€y. These effects parallel algorithm design, data mining, applications af pa
were noted in our simulations in that even when the serversallel processing in scientific computing and optimization,
were all nearly identical, and an equal load was being de-sparse matrix computations, parallel preconditionersd, an
livered to each server, the system throughput was still sig-parallel programming languages and libraries. His recent
nificantly below the performance of the central queue algo- work has been in the areas of data mining, serial and parallel

In this paper, we defined a workload distribution prob-

11

graph partitioning algorithms, parallel sparse solvers] a References

parallel matrix ordering algorithms. His research has re-
sulted in the development of software libraries for senial a [1]
parallel graph partitioning (METIS and ParMETIS), hyper-
graph partitioning (hMEITS), and for parallel Choleskyfac
torization (PSPASES). He has coauthored several journal [2]
articles and conference papers on these topics and a book
title "Introduction to Parallel Computing” (Publ. Benjami
Cummings/Addison Wesley, 1994). He is a member of
ACM, and IEEE.

Vipin Kumar is the Director of Army High Performance
Computing Research Center and Professor of Computer [4]
Science at the University of Minnesota. His currentredearc
interests include high performance computing, parallel al
gorithms for scientific computing problems, and data min- [5]
ing. His research has resulted in the development of the
concept of isoefficiency metric for evaluating the scalabil
ity of parallel algorithms, as well as highly efficient par-
allel algorithms and software for sparse matrix factoriza-
tion (PSPACES), graph partitioning (METIS, ParMETIS), [6]
VLSI circuit partitioning (hMETIS), and dense hierarchi-
cal solvers. He has authored over 100 research articles, and
coedited or coauthored 5 books including the widely used [
text book "Introduction to Parallel Computing” (Publ. Ben-
jamin Cummings/Addison Wesley, 1994). Kumar has given (8]
numerous invited talks at various conferences, workshops,
national laboratories, and has served as chair/co-chair fo

(3]

D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptivelloa
sharing in homogeneous distributed systeriSEE Trans.

on Software Engineering, SE-12(5):340-353, May 1986.

D. L. Eager, E. D. Lazowska, and J. Zahorjan. A compar-
ison of receiver-initiated and sender-initiated adaplbad
sharing.Performance Evaluation, 6:53—68, 1986.

D. G. Feitelson. Packing schemes for gang scheduling. In
D. Feitelson and L. Rudolph, editotb Scheduling Srate-

gies for Parallel Processing, volume 1162, pages 65-88.
Springer-Verlag, New York, 1996. LNCS.

D. G. Feitelson. Memory usage in the lanl cm-5 work-
load. In D. Feitelson and L. Rudolph, editodsh Schedul-

ing Srategies for Parallel Processing, volume 1291, pages
78-94. Springer-Verlag, New York, 1997. LNCS.

D. Ferrari and S. Zhou. An empirical investigation of dba
indicies for load balancing applications. Rnoc. 12th Intl.
Symposium on Computer Performance Modeling, Measure-
ment, and Evaluation, pages 515-528. North-Holland, Am-
sterdam, 1987.

I. Foster and C. Kesselman, editorshe GRID: Blueprint

for a New Computing Infrastructure. Morgan Kaufmann,
1998.

J. P. Jones. Implementation of the NASA Metacenter: Bhas
1 report. Technical report, NASA Ames Research Center,
October 1997. Technical Report NAS-97-027.

L. V. Kale. Comparing the performance of two dynamic load
distribution methods. IfProc. Intl. Conference on Parallel
Processing, pages 77-80, August 1988.

many conferences/workshops in the area of parallel com- [9] V. Kumar, A. Gramma, and V. Rao. Scalable load balancing

puting and high performance data mining. Kumar serves on
the editorial boards of IEEE Concurrency, Parallel Comput-
ing, the Journal of Parallel and Distributed Computing, and [10
served on the editorial board of IEEE Transactions of Data
and Knowledge Engineering during 1993-97. He is a Fel- [11]
low of IEEE, a member of SIAM, and ACM, and a Fellow

of the Minnesota Supercomputer Institute.

Rupak Biswas is a Senior Research Scientist with MRJ [12]
Technology Solutions at NASA Ames Research Center.
He is the Task Leader of the Algorithms, Architectures,
and Applications (AAA) Group that performs research into
technology for high-performance scientific computing. The [13
AAA Group is part of the Numerical Aerospace Simulation
(NAS) Division of NASA Ames. Biswas has published over
70 technical papers in major journals and internationat con
ferences in the areas of finite element methods, dynamic[14]
mesh adaptation, load balancing, and helicopter aerody-
namics and acoustics. His current research interests are
in dynamic load balancing for NUMA and multithreaded
architectures, scheduling strategies for heterogeneisus d
tributed resources in the IPG, mesh adaptation for mixed-
element unstructured grids, resource management for mo-1¢]
bile computing, and the scalability and latency analysis of
key NASA algorithms and applications. He is a member of
ACM and the IEEE Computer Society.

[15]

12

techniques for parallel computerdournal of Parallel and
Distributed Computing, 22(1):60-79, July 1994.

] W. Leinberger, G. Karypis, and V. Kumar. Job scheduling

in the presence of multiple resource requirement&uprer-
computing ' 99, November 1999.

M. Livny and M. Melman. Load balancing in homogeneous
broadcast distributed systems.Rroc. ACM Computer Net-

work Performance Symposium, pages 47-55, April 1982.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F.
Freund. Dynamic matching and scheduling of a class of in-
dependent tasks onto heterogeneous computing systems. In
8th |IEEE Heterogeneous Computing Workshop (HCW 99),

April 1999.

] C. McCann and J. Zahorjan. Scheduling memory con-

strained jobs on distributed memory computers. Phac.
ACM S GMETRICS Joint Intl. Conference on Measurement

and Modeling of Computer Systems, pages 208-219, 1996.

E. W. Parsons and K. C. Sevcik. Coordinated allocatibn o
memory and processors in multiprocessors. Technical re-
port, Computer Systems Research Institute, University of
Toronto, October 1995.

N. G. Shivaratri, P. Krueger, and M. Singhal. Load dis-
tributing for locally distributed systemslEEE Computer,
25(12):33-44, December 1992.

M. Y. Wu. Symmetrical hopping: A scalable scheduling
algorithm for irregular problems.Concurrency: Practice

and Experience, 7(7):689-706, October 1995.

