
Load Balancing and Locality in Range-Queriable Data
Structures

James Aspnes ∗† Jonathan Kirsch∗‡ Arvind Krishnamurthy∗§

ABSTRACT
We describe a load-balancing mechanism for assigning elements to
servers in a distributed data structure that supports range queries.
The mechanism ensures both load-balancing with respect to an
arbitrary load measure specified by the user and geographical lo-
cality, assigning elements with similar keys to the same server.
Though our mechanism is specifically designed to improve the per-
formance of skip graphs, it can be adapted to provide deterministic,
locality-preserving load-balancing to any distributed data structure
that orders machines in a ring or line.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Network Proto-
cols—Applications, routing protocols

General Terms
Algorithms, Performance, Experimentation

Keywords
Peer-to-peer systems, Overlay networks

1. INTRODUCTION
A peer-to-peer data storage system can be viewed as a very large

distributed data structure where pointers cross machine boundaries.
The design of the data structure itself may or may not constrain
which machine stores each element; current systems in the litera-
ture include both distributed hash tables (DHTs), in which assign-
ment of elements (or, applying an additional level of indirection,
pointers to elements) to machines is tightly controlled by the hash
function, practical systems like SkipNets [9], in which elements do

∗Yale University Department of Computer Science.
†Email: aspnes@cs.yale.edu. Supported by NSF grants
CCR-0098078 and CNS-0305258.
‡Email: jonathan.kirsch@yale.edu.
§Email: arvind@cs.yale.edu. Supported by NSF grants
CCR-9985304, ANI-0207399, and CCR-0209122.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’04, July 25–28, 2004, St. Johns, Newfoundland, Canada.
Copyright 2004 ACM 1-58113-802-4/04/0007 ...$5.00.

not cross organizational boundaries but in principle may otherwise
be assigned arbitrarily within the servers owned by an organization,
and more theoretical data structures like skip graphs [2], where
the data structure links elements directly, with no requirements on
where the elements are placed. Unlike DHTs, these latter systems
provide additional capabilities, like support for range queries, and
provide additional flexibility in choosing how to place elements.
However, this additional flexibility comes at a price: because the
system must track each element individually, the number of point-
ers in the data structure—each of which requires periodic network
traffic to maintain—will be much larger than in systems that can
group elements together. (We describe current systems in more de-
tail in Section 2.)

The present work addresses this problem by designing a dis-
tributed load-balancing policy for allocating elements of a skip graph
in which each machine controls some interval in the keyspace, with
the property that elements with nearby keys are stored on the same
machine. This allows the full skip graph to be replaced by a trun-
cated data structure that contains only a constant number of sample
elements from each machine, thus reducing the number of inter-
machine pointers from O(n log n), where n is the number of ele-
ments or keys, to O(m log m), where m is the (presumably much
smaller) number of machines in the system. This gives a num-
ber of intermachine pointers comparable to that of systems like
Chord [22], Pastry [21], or Tapestry [25], while providing better
load-balancing and retaining the skip graph’s ability to perform
range queries.

The difficulty in supporting range queries while providing load
balancing is that we must preserve the order of elements within
the data structure. As a result, executions in which many elements
with similar keys are inserted will tend to produce high load on
the machine that handles the interval containing these keys. Any
system that reduces this load must do so by dynamically recruiting
new machines to carry part of this load by splitting off part of the
interval. Our mechanism does so dynamically by adopting a pair-
ing strategy in which heavily-loaded machines are placed next to
lightly-loaded machines in the data structure, so that insertions on
heavily-loaded machines can be dealt with by migrating elements
to their lightly-loaded neighbors. We also maintain a small popu-
lation of empty machines that can be moved freely within the data
structure to add new lightly-loaded machines to particular regions
as the machines in those regions fill up.

The pairing strategy ensures that a typical insertion requires mov-
ing at most one element to a new node to preserve ordering. Re-
cruitment of new empty partners occurs only when a previously-
recruited node fills, and so the amortized cost per insertion of the
recruitment operation is inversely proportional to the capacity of
a node. Finally, the skip graph is thinned by a simple sampling

mechanism, in which each node keeps one of its central elements
in the skip graph, that ensures that the skip graph only needs to be
updated when this sample element drifts to an adjacent node, an
event that occurs in the worst case after a number of insertions pro-
portional to the node capacity. It follows that most insertions (and
any deletions) can be performed with no modification to the skip
graph and at most one element move.

In the simplest version of the algorithm (described in Section 3),
the basics of the insertion and migration of elements and the cre-
ation and recruitment of empty machines is handled locally, while
a centralized mechanism is used to tune certain global parame-
ters (such as the threshold that distinguishes lightly-loaded from
heavily-loaded machines). Aside from requiring a central con-
troller, which creates a single point of failure in the system, this
basic algorithm also suffers from periods of sudden high network
traffic as these global parameters suddenly change and all nodes
simultaneously start migrating elements to achieve updated load-
balancing goals. In Section 4, we describe a distributed mechanism
that avoids these problems by replacing the global controller with
a distributed mechanism based on statistical sampling and by stag-
gering the local adjustments made by individual nodes to response
to changes in global system load to avoid massive migratory stam-
pedes.

Our results are not purely theoretical; in Section 5, we provide
both simulation results and experimental results on a real imple-
mentation that show that our mechanisms provide excellent load-
balancing and search performance in practice.

Our mechanism does not depend specifically on properties of
skip graphs, and can be applied to any system that uses an ordered
allocation of elements to machines organized in a line or ring. It
also allows for arbitrary measures of the additional load created by
a single element, so that it can be used, for example, to simulta-
neously balance space and network traffic. We believe that such a
load-balancing mechanism may be useful in many existing systems
that currently rely on the weaker averaging effects of probabilistic
placement.

2. RELATED WORK
In this section, we start by describing how current systems achieve

the goals of load-balancing and (for some systems) supporting range
queries. We conclude by describing work on the problem, closely
related to ours, of maintaining sorted lists when it is expensive to
move individual elements.

2.1 Distributed Hash Tables
Distributed hash tables (DHTs) [19, 21, 22, 25] view the over-

lay as a distributed data structure that dictates both network topol-
ogy and message routing. DHTs use hashing schemes, such as
consistent hashing [12], to map machines and keys to a single,
modular ID space. This results in a setting where the objects are
(probabilistically) uniformly distributed over the ID space. These
approaches have been shown to be massively scalable, requiring
O(log m) neighbor information and guaranteeing O(log m) diam-
eter for arbitrarily-sized networks.

DHTs effectively solve the load-balancing problem probabilis-
tically; the difficulty is in supporting range queries. The prob-
lem is that the hash function destroys the logical integrity of the
keyspace, making it difficult to efficiently support complex simi-
larity searches and range queries [8, 14].

Ratnasamy et. al. [20] outline an approach to overcome this lim-
itation of DHTs by organizing the keys into a distributed trie, with
each node of the trie stored as an object in the DHT. Given a query,
the system attempts to identify the longest prefix of the query that

appears as a trie-node. Given the data domain D, this operation
can be performed using O(log log |D|) DHT lookups, where each
DHT lookup typically incurring a O(log m) cost. The system is
load-balanced, since the trie nodes are (probabilistically) uniformly
distributed across the machines. The system does suffer from hot-
spots, since the top-level trie-nodes are likely to be more frequently
accessed than the lower-level trie-nodes.

In addition to such work on permitting range queries, some re-
cent work has concentrated on improving the load-balancing pro-
vided by random assignments in DHTs. In Chord, for example,
each machine takes responsibility for all points in a circular keyspace
that are closest to its hashed identity. If the machines are placed
randomly in the circle (a reasonable assumption given a strong
enough hash function), the ratio between the largest and small-
est regions belonging to individual machines can be large, and it
is likely that some particular machine will be responsible for an
Ω(log n/n log log n) fraction of the keyspace. Karger and Ruhl [13],
have recently shown how to avoid this problem by allowing nodes
to choose between O(log n) random locations according to a clever
rule; with high probability this ensures that no node owns more than
O(1/n) of the keyspace.

Karger and Ruhl describe a second load-balancing algorithm that
is similar in many respects to the one described in the present work.
Their second algorithm is aimed at balancing load between ma-
chines when the distribution of items in the keyspace is unbal-
anced, and is based on a probabilistic work-stealing mechanism
in which underloaded nodes periodically move themselves next
to overloaded nodes found by sampling; it depends on nodes be-
ing able to move to arbitrary positions in the keyspace and is not
compatible with their first algorithm. This yields a “push” load-
balancing algorithm, where underloaded nodes push themselves
into high-traffic parts of the keyspace; in contrast, we describe a
“pull” algorithm where overloaded nodes pull waiting empty nodes
from an explicit free list. The “pull” approach has the advantage
of ensuring that no node ever becomes so overloaded that it must
turn away inserts; instead, insertion of an item always succeeds as
long as the free list is not empty and requires moving at most a con-
stant number of items between nodes. The “push” approach has the
advantage of simplicity, a more uniform placement of elements on
nodes, and the avoidance of a separate mechanism to adjust the ad-
vertised capacities of nodes. It is an interesting question whether a
combination of the two approaches might achieve the best proper-
ties of both.

2.2 Searchable Concurrent Data Structures
Distributed implementations of data structures such as skip lists

and skip graphs can be used to support range queries. These data
structures offer a randomized alternative to the more complex bal-
anced-tree data structures, such as red-black trees or b-trees. They
provide a probabilistic guarantee that the standard dictionary oper-
ations can be performed in O(log n) time, where n is the number
of keys currently in the system. Skip lists are simply collections of
linked-lists, and are organized as follows. All keys in the system
appear in sorted order in the bottom-most list, which is referred to
as Level 0. Each key that appears in the list at Level i, would also
appear in the list at Level i + 1 with some probability p. At each
level, a key stores pointers to its left and right neighbors (in the
case of a doubly-linked skip list). To locate a key, one searches the
highest level (which might have just a few keys), dropping down to
the more densely-populated lower levels if needed. There are, on
average, O(log n) levels in the system, meaning that a search will
traverse O(log n) keys until it reaches its destination [15, 16, 18].

Skip lists are not directly suitable for use in a distributed envi-

ronment for several reasons. First, since all operations begin in the
highest level of the skip list, which is sparse, these top-level keys
become hot-spots, and will be involved in an operation with high
probability, potentially overwhelming the machines who own them.
Furthermore, the sparsity of the top-level list creates single points
of failure: if the machines owning these keys go down, the system
will be partitioned. These issues are addressed by the skip graph.

The skip graph extends the skip list into a distributed environ-
ment by adding redundant connectivity and multiple handles into
the data structure. It is equivalent to a collection of up to n skip
lists that happen to share some of their lower levels [2]. More for-
mally, all keys appear in sorted order in the list at Level 0. Each
Level i, for i > 0, can now contain multiple linked-lists. Each key
maintains a membership vector, which is a random string of bits.
A list at Level i contains all keys that have the same i-length prefix
for their membership vectors (as illustrated by the top portion of
Figure 1). This continues until the key becomes a singleton, which
will result in, on average, O(log n) levels in the skip graph. For a
complete description of the data structure, please see [2].

The search, insertion, and deletion algorithms for a skip graph
are essentially the same as for a skip list, with slight modifications
to generalize them into a distributed environment. Every key be-
comes a handle into the data structure, making the skip graph both
highly concurrent and resistant to node failures. More importantly,
that the skip graph does not employ a hashing function allows it
to support range queries, since logically similar keys will become
neighbors in the skip graph. Despite these attractive features, there
are still several barriers to the use of the skip graph as is, which we
describe below.

Each key must store pointers to an average of two neighbors for
each of the O(log n) levels. The result is a cost of O(log n) state
per key, considerably more than in a distributed hash table, which
requires O(log m) state per machine. Another limitation of the
skip graph as it was proposed in [2] is that it does not describe
the method by which keys are assigned to machines in the sys-
tem. Therefore, the skip graph makes no guarantees about system-
wide load-balancing nor does it make any guarantees about the ge-
ographic locality of neighboring keys.

2.3 Hybrid Strategies
Since we are able to achieve each of the desired goals using ei-

ther the skip graph or the distributed hash table, it is logical to at-
tempt to combine the desirable properties of the two into a single
system. This is essentially what was proposed by Awerbuch and
Scheideler in [3]. More formally, their scheme incorporates two
orthogonal, concurrent data structures. One data structure, F, is
used to maintain the keys, or files, in the system, and must support
the range query operation. Another, S, is used to organize the sites
in the system, and only needs to support the look-up operation. To-
gether, these concurrent data structures interact through a minimal
interface. Awerbuch and Scheideler suggest using the skip graph as
F, and a distributed hash table, such as Chord, as S. Intuitively, this
scheme simply uses the skip graph to perform the search operation,
and then hashes the key to a machine using the Chord protocol.
Note that the system can still support efficient range queries, be-
cause there is no need to repeatedly search through the skip graph
after the initial search; one can simply follow the pointers along
Level 0 of the skip graph. Furthermore, the system achieves the
theoretical load-balancing property inherent to the use of the con-
sistent hashing mechanism.

The real problem with this approach, however, is that the hash
function destroys any notion of geographic locality for the keys.
With keys assigned to random machines around the system, two

keys are still likely to be geographically far apart, hurting perfor-
mance. It also still suffers from the fact that the skip graph main-
tains more state than is ideal. Further, the traversal of any pointer
in the skip graph requires a lookup operation in S, thus increasing
the overall cost by a factor of O(log m).

One possibility might be to combine either load-balancing scheme
described here or that of Karger and Ruhl with the hybrid mecha-
nism of Awerbuch and Scheideler, to obtain both range queries and
strong load-balancing. But the increased cost of searches relative
to simple skip graphs might be prohibitive.

2.4 Concurrent B-trees
If most pointer dereferences are to be local, it seems clear that

most logically-related keys should be located in close geographic
proximity. One way to achieve this goal is to assign logically sim-
ilar keys to the same machine. This method is used in the dE-tree,
a data structure based on the distributed b-tree. In [11], Johnson
and Colbrook define an extent to be a maximal length sequence
of neighboring leaves that are owned by the same machine. Each
machine then owns some portion of the extents in the system. In-
tuitively, the leaves of the system are grouped together, and each
group is owned by a single machine.

We are, however, left with a scenario in which we can obtain
good geographic locality, but suffer from potential data skew and
load-imbalance. To remedy this, Johnson and Colbrook suggest
that local changes can be initially attempted. For example, a heavily-
loaded machine can try to dump some of its keys into the extent of
a lightly-loaded, neighboring machine. If all machines are heavily-
loaded, a new extent is created for the best candidate machine. This
might mean the machine with the least data load, or the machine
who would provide the best communication locality.

While the dE-tree sounds promising, there are several signifi-
cant drawbacks that limit its applicability to efficient, peer-to-peer
systems. The first problem is that the dE-tree requires a signif-
icant amount of data replication to reduce its message complex-
ity. Each machine maintains a relatively large portion of the tree,
with the motivation being that the most expensive b-tree operations,
such as node-merges and node-splits, can be done on a (mostly)
local basis. Such replication requires a sophisticated (and costly)
cache-coherency scheme. The more important issue, however, is
that no formal method is given for achieving system-wide load-
balancing. Johnson and Colbrook describe the need to propagate
load-balancing information throughout the system quickly, in order
to keep the heuristic regarding the election of a candidate machine
reasonably efficient and up-to-date. This is undesirable because it
means that changes cannot truly be local, and therefore the need
to propagate information will increase the message complexity of
the system. Clearly we would like a more formal method which
provides provable guarantees of load-balancing.

2.5 Ordered-Array Data Structures
Our problem is similar in some respects to the problem of main-

taining an ordered array with gaps, where elements are inserted
and deleted dynamically and the goal is to minimize the amortized
number of element moves. This problem, known as the on-line
monotonic list labeling problem or the file maintenance problem,
has been extensively studied [1, 4, 6, 7, 10, 24]. Typical solutions
(e.g. [4,24]) implicitly treat an array of n elements as an O(log n)-
level binary tree, and perform rebalancing operations on this tree
when particular subtrees become too heavy or too light. The cost
of rebalancing adds O(log2 n) work in the worst case to each in-
sert or delete. Our load-balancing mechanism, which maintains a
sprinkling of light nodes throughout the data structure similar to the

gaps in ordered arrays, is inspired in part by this work.
Unfortunately, a direct application of the ordered-array approach

suffers from the same need to propagate load information through
the system suffered by the dE-tree. Our suspicion is that attempts to
avoid such problem would be more trouble than the results would
be worth in our particular setting, as the ability to move nodes al-
lows for simpler solutions that are not possible in the ordered-array
setting. However, if node order is fixed (for example, because it
reflects geographical placement of the nodes), then solutions based
on ordered arrays may be necessary.

2.6 Game-Theoretic Issues for Load-Balancing
Mechanisms

One of the goals of our experiments has been to measure the
effectiveness of heuristic load-balancing strategies based on local
information. Such uncoordinated strategies have been studied from
a game-theoretic perspective by Suri, Tóth, and Zhou [23], where
clients placing resources on servers are assumed to engage in self-
ish, strategic behavior. Their results are not directly applicable to
systems that have to preserve ordering, but their work suggests in-
teresting possibilities for further analysis of our algorithms and oth-
ers from a game-theoretic perspective (which we defer to future
work).

3. BASIC ALGORITHM
We assign similar keys to the same machine, so that logically-

related keys are located in close geographic proximity and most
pointer dereferences are local. Specifically, we group keys into
buckets, with each machine owning some number of buckets and
taking responsibility for all items whose keys fall into these buck-
ets. We do not place any requirements on keys except that they can
be ordered; applications may assign keys to items in whatever way
is most useful for them.

Each bucket elects a representative key to appear in the skip
graph. These representative keys are used during search opera-
tions to navigate to the appropriate bucket. Notice that this scheme
reduces the space complexity of a skip graph to O(b log b) point-
ers, where b is the number of buckets in the system, by limiting
the number of keys inserted into the skip graph to about one per
bucket. This mechanism requires only minimal modification to the
skip graph algorithms presented in [2], but significantly reduces the
amount of state required by the data structure. Representatives are
generally chosen from the central items of a bucket; this allows
items on the end to be migrated to adjacent buckets without having
to update the skip graph unless the representative itself is migrated
and must be replaced.

It is worth noting that the bucketing scheme described above also
has the useful property of dividing the system into two (almost)
orthogonal data structures. We can therefore think of the system as
being composed of two layers. We refer to the combination of the
skip graph and the bucketing layer as the two-layer system.

The top layer consists of the skip graph, where each key now
stores, in addition to its neighbor pointers, a pointer to the bucket
in which it is located. This acts as an overlay network supporting
both searches and the maintenance of a free list. The lower layer
consists of the chain of buckets, distributed among the machines in
the system. This division is useful because it allows us to make op-
timizations to the skip graph indirectly, by manipulating the bucket
layer and the interface between layers, without losing the desirable
properties of the top-layer skip graph.

While we can obtain good geographic locality with this scheme,
it suffers from potential data skew and load-imbalance as keys are
added to and deleted from the system. We now describe our load-

/H
YH

O��
/H

YH
O��

��� ��� ������ ��� ���

/H
YH

O��
/H

YH
O��

Sk
ip

 G
ra

ph
L

ay
er

B
uc

ke
t

L
ay

er

Membership
vectors

� �� ��
�� ����

� �� �� �� ����

� �� ��
�� ��

��

� �� ��
�� ����

����

��

��

��

� � ��

�� �

�� ��

�� �

��

Figure 1: A sample layout illustrating the two-layered approach.

balancing mechanism which addresses these issues within the con-
text of the two-layer system described above.

3.1 Searching
The search algorithm for the two-layer structure is essentially

identical to a standard skip graph search for the skip graph element
closest to the target, plus an additional search within the bucket
that contains this element and the bucket’s two immediate neigh-
bors. The cost of a search is thus logarithmic in the number of skip
graph elements, which will be approximately equal to the number
of buckets. Range query operations proceed similarly.

THEOREM 1. In a two-layer structure with b buckets, the oper-
ations of SEARCH, NEAREST-MATCH, NEAREST-PREDECESSOR,
and NEAREST-SUCCESSOR require O(log b) time and O(log b)
messages. Enumerating all elements between two targets takes
O(k + log b) time, where k is the number of elements found.

3.2 Load-Balancing
Our algorithm uses local changes to remedy load-imbalance. The

basic idea is that a heavily-loaded machine can try to dump some
of its keys into the bucket of a lightly-loaded neighboring ma-
chine. We maintain a “free list” of buckets, so that if all buckets
are heavily-loaded, a new empty bucket is enlisted to bear some of
the load, thereby classifying each bucket as active or free. We can
use a separate skip graph to implement a fault-tolerant and efficient
free-list. We simply associate each free bucket with a random key
value, insert a pointer to the bucket into the skip graph, and sat-
isfy requests for free buckets by returning any one of the elements
stored in the skip graph. This strategy provides fault-tolerant loca-
tion of free buckets at O(log b) cost from any one of the multiple
entry points of the skip graph.

We further classify each bucket to be either open or closed. There
are a number of ways we can make this distinction. For example, a
closed bucket might have some threshold number of keys, or might
be using up some threshold percentage of its network bandwidth.
For the purposes of this discussion, we consider the former to be
our criterion.

We next partition the list of active buckets into groups of two or
three, maintaining the invariant that every closed bucket is adjacent
to an open bucket and that every open bucket has a closed bucket

to its left. Note that this invariant requires that there are at least
two buckets in the system; if there is only a single machine in the
initial state, we assume that it provides both buckets. Each group
must have one of the following two patterns, with C representing a
closed bucket, and O representing an open bucket:

1. C-O

2. C-O-C

We maintain this structure by transferring keys from neighboring
buckets as needed. Thus, if a key is to be inserted into a closed
bucket, one key from the closed bucket is transferred to the ad-
jacent open bucket. Similarly, the deletion of a key from a closed
bucket involves transferring a key from an open bucket. As an open
bucket takes on more keys, it can declare itself closed, requiring a
regrouping of the bucket structure. The details of such regroupings
are described below.

3.2.1 Insertions
Insertions on closed buckets which do not cause the adjacent

open bucket to become closed are straightforward, and involve the
key transfers described above. There are two interesting patterns
to consider for insertions involving a regrouping of the buckets. In
each of the following cases, O’ represents a fresh bucket from the
free list, and a key is being inserted into the closed bucket C1:

1. C1-O2 ⇒ C1-O’-C2

2. C1-O2-C3 ⇒ C1-O2 | C3-O’

In Case 1, the new key is inserted into C1, causing the transfer of
a key from C1 to O2. This causes O2 to become closed. The new
bucket O’ is taken from the free list to restore the structure. In Case
2, the new key is inserted into C1, causing the transfer of a key
from C1 to O2. In turn, O2 transfers a key to C3, in order to stay
open. C3 must then transfer a key to the empty bucket, O’.

3.2.2 Deletions
There are three interesting patterns to consider for deletions in-

volving a restructuring of the buckets. Note that a bucket is only
placed back on the free list when a restructuring occurs; it is per-
fectly valid to have an open bucket, with no keys, as part of a group.
In each case below, O* represents the empty bucket which will be
returned to the free list:

1. C1-O*-C3 ⇒ C1-O3

2. C1-O2 | C3-O* ⇒ C1-O2-C3

3. C1-O2-C3 | C4-O* ⇒ C1-O2 | C3-O4

In Case 1, C3 transfers one of its keys to C1, and they form a 2-
group. In Case 2, after the key is deleted from C3, O2 transfers a
key to C3, resulting in a single 3-group. If O2 is also empty, then
C1 can pair up with C3, which is now open, to form a single 2-
group. In Case 3, similar shifting can occur to form two 2-groups.

3.2.3 Analysis
We now analyze the scheme proposed above, highlighting both

its attractive features and its limitations. The first thing to notice
about this scheme is that it only requires highly-localized changes.
Operations which do not require a restructuring of the groups in-
volve at most two buckets. Since one machine owns the entire
bucket, at most two machines will need to communicate for the
given operation. Similarly, operations which require a restructur-
ing of the groups involve at most three buckets, and one move of a

bucket to or from the free list. Furthermore, since at least half of
the active buckets are closed, this mechanism ensures that, when
the free list is empty, the system is within a factor of two of the
maximum load obtained under perfect load-balancing conditions.

Formally, we have:

LEMMA 2. Between 1/3 and 1/2 of all buckets are open.

PROOF. Immediate from the decomposition of the buckets into
C − O and C − O − C groups.

COROLLARY 3. Let M be the capacity of a closed bucket, and
let M∗ = n/b be the average load on any bucket if all n items
are evenly distributed. Let εb be an upper bound on the number of
buckets on the free list. Then the ratio M/M∗ between the maxi-
mum load and the ideal average load bounded by

M/M∗ ≤
2

1 − ε
.

PROOF. There are at least (1 − ε)b buckets not on the free list,
of which at least 1

2
(1 − ε)b are closed by Lemma 2. These closed

buckets between them contain 1
2
(1 − ε)bM ≤ n elements. It fol-

lows that M ≤ 2n

(1−ε)b
, and that M/M∗ ≤ 2

1−ε
.

Two points are worth noting about the bound in Corollary 3: the
first is that even with an empty free list, we may still lose a factor
of two in maximum load compared to even load balancing. That
this is a real issue and not merely an artifact of the proof can be ob-
served by considering a scenario like the following, in which each
O* represents an empty, open bucket which has not been returned
to the free list:

C1-O* | C2-O* | C3-O* ...

Here, while the average load across each group might be roughly
the same, one machine might be doing considerably more work
than another. It is possible that increasing the amount of virtual-
ization by using more buckets per machine could address such load
skews.

A second point is that the quality of the load balancing depends
strongly on keeping the free list small. We describe a strategy for
doing this by resizing buckets in Section 3.3 below. Such a mecha-
nism is also necessary for handling growing dynamic loads.

The payoff for the complexity of the bucket-handling mechanism
is that we can guarantee that any insertion or deletion involves only
a small, constant number of machines (not counting any preceding
search to find the right location) and a constant number of item
relocations. We state this result formally as:

THEOREM 4. In the basic load-balancing algorithm, any inser-
tion or deletion moves a total of at most 2 items between at most 3
buckets.

3.3 Dynamic Resizing of Buckets
If the number of keys in the system continues to grow, there

are several approaches one might take. The first would be to con-
tinue to allocate more and more buckets. Although this would keep
the system load-balanced, it increases the likelihood that a pointer
dereference will be non-local and also increases the state associated
with the skip-graph layer. Therefore, such a scheme threatens the
locality that we gained by grouping keys into buckets in the first
place. In order to preserve locality and minimize global state, a
mechanism is needed by which the number of buckets in the sys-
tem is proportional to the number of machines in the system, not
the number of keys. This is accomplished by dynamically adjust-
ing the threshold number of keys required to classify a bucket as

closed. We now proceed to describe such a mechanism, and in turn
analyze some of its properties.

We first describe the process of bucket compression, which oc-
curs when the threshold is increased. Recall that we begin with
some set of buckets, divided into 2-groups and 3-groups. We in-
crease the threshold by a factor of two. Note that all buckets in
the system now become open. Our scheme transfers keys between
neighboring buckets in order to restore the 2-group/3-group struc-
ture described above. The compression proceeds in two phases.
During the first phase, each 2-group is combined to form a tempo-
rary singleton, returning the left-over bucket to the free list; we also
combine each 3-group into a 2-group:

1. C-O ⇒ O

2. C-O-C ⇒ C-O

In Phase 2, we restore the structure by either grouping adjacent
singletons together into 2-groups, or by grouping an adjacent 2-
group and singleton into either a 2-group or a 3-group:

1. O | O ⇒ C-O

2. C-O | O ⇒ C-O

3. C-O | O ⇒ C-O-C

Note that Case 2 occurs when the total number of keys in the two
groups is less than twice the new threshold.

In the case of bucket decompression, which occurs when the
threshold is decreased by a factor of two, we once again start with
a set of 2-groups and 3-groups. Clearly, in order to maintain this
structure, we will need to allocate some empty buckets from the
free list, based on the number of keys in the group in question.

1. C-O ⇒ C-O-C

2. C-O ⇒ C-O | C-O

3. C-O ⇒ C-O | C-O-C

4. C-O-C ⇒ C-O | C-O-C

5. C-O-C ⇒ C-O-C | C-O-C

6. C-O-C ⇒ C-O-C | C-O | C-O

Case 1 shows that if the number of keys in the open bucket of a
2-group is less than the new threshold value, we can simply form
a 3-group. Otherwise, we will need to make either two 2-groups
or one 2-group and one 3-group, in order to accommodate the keys
according to the decreased threshold. Similar logic can be applied
to 3-groups.

To reduce the storage complexity of the skip graph, we imple-
ment a scheme in which, on average, one key from each bucket
will appear in the skip graph layer. When a key is first inserted into
the system, we generate a string of bits at random for the key. Only
those keys which match on the first log t bits, where t is the current
bucket threshold, will appear in the skip graph. As the threshold is
dynamically adjusted, the number of elements participating in the
skip graph will change accordingly.

We observe that this mechanism does not affect the grouping
invariant:

LEMMA 5. The bucket compression mechanism preserves the
grouping of nodes into C − O and C − O − C groups.

COROLLARY 6. Lemma 2 continues to hold with bucket com-
pression.

It remains to specify a policy for when to adjust the load thresh-
old for closing buckets. One simple strategy is to double the thresh-
old when the free list becomes empty and halve it when half the
buckets are on the free list; this guarantees a maximum free list size
of b/2 (giving a worst-case maximum load of 4 times the optimum)
while providing enough hysteresis to avoid frequent relocation of
items. It has the disadvantage of requiring global control to imple-
ment, and putting the system through periodic mass migrations as
all buckets simultaneously resize. In Section 4, we describe other
ways to estimate average system load and also propose a heuris-
tic approach that randomly staggers resizing to avoid simultaneous
resizing.

4. ALGORITHM ENHANCEMENTS
The basic algorithm described in the previous section suffers

from several problems that led to poor performance in our exper-
iments. In this section, we describe improvements on the algo-
rithm that reduce or eliminate these problems. At present we have
only experimental validation of these techniques (described in Sec-
tion 5).

4.1 Localized resizing of buckets
The biggest problem is caused by simultaneous global resizing

of buckets. Not only does this require a global controller, but it also
causes many machines to simultaneously attempt to migrate data.

We can eliminate the global controller by employing a distributed
algorithm for determining when to resize buckets. We first modify
the resizing policy to work based on the average load of buckets,
thereby enabling the use of schemes where active buckets exchange
load information along with heartbeat messages in order to com-
pute the current system load. One possibility is to exploit the prob-
abilistically balanced property of skip graphs to accumulate sys-
tem load information in a distributed and replicated manner. Re-
call that a skip graph comprises of a number of skip lists, each of
which could be used to accumulate the current system load after
an overall delay associated with sending messages up through the
O(log b) levels of a skip list. Another possibility is to use a dis-
tributed sampling approach, wherein pairs of nodes exchange their
current estimates of average system loads. In this scheme, each
node maintains its estimate of average load as ln, and when two
nodes s and t exchange load information, they average out their
estimates and set them to (ls + lt)/2. This scheme is inspired by
previous efforts that have used work stealing to balance load in
massively parallel systems (Blumofe and Leiserson [5]) and peer-
to-peer systems (Karger and Ruhl [13]). The difference, however,
is that the pair-wise interactions are used to only exchange load es-
timates rather than relocate items. We expect the load estimates
to converge quickly (as shown in Figure 11) based on the analysis
presented in the earlier papers. The pair-wise interactions could be
between random pairs of nodes in the system, or it could be per-
formed along some of the skip graph links. Because the high-level
links in the skip graph approximate a random graph, a simple pro-
cedure that samples load on neighbors in the skip graph performs
well. This sampling operation is still more expensive than a simple
search or insert operation, so it is performed only when the number
of elements stored at a particular machine increases or decreases by
more than a fixed threshold.

To avoid the further problem of simultaneous expansion or con-
traction, the buckets are organized into groups, each consisting of
two closed-open pairs or a single closed-open-closed triplet, and for
each group g, two random thresholds are chosen. One is the expan-
sion threshold eg that satisfies 1/4 < eg < 1/2. When the local
load estimate of g indicates that the system has utilized a fraction

 0

 1

 2

 0 2000 4000 6000 8000 10000

N
or

m
al

iz
ed

 L
oa

d
B

al
an

ce

Number of buckets

Min and max loads

Figure 2: Normalized loads of machines with our bucketing scheme.

of maximum capacity that is in excess of eg , it performs localized
expansion. The other threshold is the contraction threshold cg that
satisfies 1/8 < cg < 1/4 and is used in a similar manner for con-
traction. It follows that as new elements are added to the system,
expansion or contraction occurs in a staggered fashion, avoiding
sudden mass migrations. Furthermore, the ranges for the thresh-
olds are chosen to introduce hysteresis into the system and prevent
rapidly alternating bucket expansions and contractions.

The effect of this strategy can be seen by comparing Figures 5
and 6, which show the number of element moves with global bucket
resizing under sequential and random insertions, with Figures 7
and 8, which show the corresponding results with local resizing
and does not exhibit drastic spikes in data movement traffic.

4.2 Weighted objects
We have seen that one possible way to define the openness or

closedness of a bucket is directly related to its maximum number
of keys; a bucket becomes closed when the number of keys reaches
this threshold value. It is important to note that this is not the only
way to define a bucket as “closed,” and by adjusting our definition,
we can obtain an alternate notion of system-wide load-balance. For
example, we can obtain customizable load-balance with the follow-
ing scheme.

We assign each key a weight, corresponding to the load it repre-
sents. This load may reflect storage space requirements, network
traffic generated by the object (with more “popular” objects as-
signed higher weights), or other properties of the object that affect
the machine that hosts it. The result is that the machine that owns
this key will balance its popular key with fewer keys overall. We
can continue to adjust the bucket threshold as before, expanding
and contracting buckets as needed. The benefit of such a scheme is
that the structure of the bucket layer can more accurately reflect the
usage of the individual keys.

4.3 Heterogeneous systems
So far we have been describing a system in which all machines

are assumed to have comparable capacity, and load is balanced
evenly among machines. In practice, we are likely to find that some
machines have much higher storage capacity or network bandwidth
than others, and as a result we will want to assign more objects to
these high-capacity machines. A simple strategy would be to have
high-capacity machines volunteer to hold more buckets, but this in-
creases the number of inter-machine pointers. Instead, it may make
sense to define a machine-specific threshold for bucket sizes, so that
higher-capacity machines store larger buckets. The disadvantage of

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2000 4000 6000 8000 10000

N
or

m
al

iz
ed

 L
oa

d
B

al
an

ce

Number of virtual processors

Min and max loads

Figure 3: Normalized loads of machines with keys mapped to ma-
chines using SHA-1.

such an approach is that it increases the complexity of the system;
because of this added complexity, we have not yet carried out ex-
periments to determine if this approach improves performance.

 0

 500

 1000

 1500

 2000

 0 2000 4000 6000 8000 10000

R
un

 L
en

gt
hs

Number of buckets

Min., average, and max. run lengths

Figure 4: Run lengths of buckets.

5. EXPERIMENTAL RESULTS
In this section, we evaluate various aspects of our proposed mech-

anisms and present results obtained from both a simulator and a real
deployment on the PlanetLab infrastructure [17]. We examine the
trade-off between locality and load-balance and empirically com-
pare the load-balance obtained by our system with that obtained
by systems that use hashing. We then examine the communica-
tion costs associated with different kinds of workloads and show
that the average number of keys moved per operation is small and
that the data movement traffic associated with bucket resizing oper-
ations could be staggered to avoid mass simultaneous movements.
We then provide measurements that demonstrate that the size of the
skip graph is roughly linear in the number of buckets maintained by
the system, thereby allowing the system to perform operations us-
ing O(log b) overlay hops.

5.1 Load Balance and Key Locality
We begin by studying the load-balance and key locality prop-

erties of our proposed system. We consider the load after insert-
ing a million keys into a system with 1000 machines. We vary
the number of buckets per machine from 1 to 10. Figure 2 shows

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

K
ey

s
M

ov
ed

 (
x

10
0,

00
0)

Operation count (x 100,000)

During inserts
During bucket resizing

Figure 5: Inserts made in a sequential order under globally synchro-
nized resizing.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

K
ey

s
M

ov
ed

 (
x

10
0,

00
0)

Operation count (x 100,000)

During inserts
During bucket resizing

Figure 6: Inserts made in a random order under globally synchro-
nized resizing.

the minimum and maximum loads on machines after normaliza-
tion. For purposes of comparison, we also consider the key assign-
ments made by a system like Chord that uses the SHA-1 hash func-
tion. Figure 3 presents normalized load-balance results for such
a scheme as we again vary the amount of virtualization from 1 to
10. Our load-balancing mechanism spreads keys much more evenly
across machines.

The load skew could be reduced by increasing the number of
buckets assigned to a machine. An increase in virtualization, how-
ever, results in a corresponding decrease in the extents of logically
consecutive keys assigned to the same machine, as illustrated by
Figure 4.

5.2 Key Reorganization Costs
We consider different kinds of workloads under the two bucket

restructuring techniques. Our first workload inserts a million keys
in sequential order into a 1000 machine system. This workload
would evaluate the costs associated with spreading the load when
the key insertions are localized to a particular region of the keyspace,
namely at the current extreme position. The second workload in-
serts a million keys in random order. We consider both globally
synchronized resizing as well as the staggered mechanism that makes
localized changes. We classify the key movements into two cate-
gories: those corresponding to offloading inserts made into closed

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

K
ey

s
M

ov
ed

 (
x

10
0,

00
0)

Operation count (x 100,000)

During inserts
During bucket resizing

Figure 7: Inserts made in a sequential order under staggered, local-
ized resizing.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

K
ey

s
M

ov
ed

 (
x

10
0,

00
0)

Operation count (x 100,000)

During inserts
During bucket resizing

Figure 8: Inserts made in a random order under staggered, localized
resizing.

buckets and those corresponding to the resizing of buckets. Fig-
ures 5 through 8 demonstrate that the average number of keys moved
per operation is less than two and that simultaneous mass migration
of data could be avoided through the use of randomized thresholds.
Similar behavior is exhibited by the system for a wide variety of
workloads, including ones that perform repeated sequences of in-
sertions and deletions localized to a particular interval. Figures 9
and 10 graphs the data movement traffic associated with workloads
that repeatedly perform 100,000 insertions followed by 100,000
deletions, thereby triggering a sequence of expansion and contrac-
tion operations.

We also evaluated the distributed, sampling algorithm used to
compute the average system load. We consider systems with highly
skewed loads, where a randomly chosen processor has an extremely
high load and all other processors experience minimal load. Each
processor begins with its local load as its estimate of the average
system load and uses pairwise interactions to refine this estimate.
We consider a setting where each processor, in each iteration, inter-
acts with a fixed set of four other processors that are chosen at ran-
dom, possibly from among the processor’s peers at the top-levels of
the skip graph. Figure 11 graphs the mean absolute deviation of the
local estimate from the actual system average (measured in terms of
number of keys) and shows that the local estimates converge after
a small number of iterations even for large systems.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

K
ey

s
M

ov
ed

 (
x

10
0,

00
0)

Operation count (x 100,000)

During inserts/deletes
During bucket resizing

Figure 9: Repeated sequence of inserts and deletes made in a sequen-
tial order under globally synchronized resizing.

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10

K
ey

s
M

ov
ed

 (
x

10
0,

00
0)

Operation count (x 100,000)

During inserts/deletes
During bucket resizing

Figure 10: Repeated sequence of inserts and deletes made in a random
order under globally synchronized resizing.

5.3 Skip Graph Costs
We next consider the performance of the skip graph that com-

prises the top layer of our two-layer scheme. Since we select on
average one key from each closed bucket to insert into the skip
graph, the number of keys in the skip graph is typically less than
the number of active buckets in the system. This property limits the
amount of global state maintained to O(log b) per bucket, where b
is the number of buckets in the system, as previously observed in
Theorem 1 and as illustrated by Figure 12. Furthermore, the cost of
an insert, delete, or search operation is simply the cost of perform-
ing O(log b) overlay hops to navigate the skip graph data structure,
assuming that the costs of intra-bucket operations are negligible.
This is supported by experimental results obtained on a 100-node
overlay network (see Figure 13).

6. CONCLUSIONS AND OPEN PROBLEMS
We have described a mechanism for providing load balancing

in skip graphs and similar distributed data structures, which both
provides better load balancing than the randomized approaches fa-
vored by many previous systems and eliminates the excessive inter-
machine pointers that plague unmodified skip graphs. In its sim-
plest form, the mechanism is based on a global threshold, where
nodes with load below the threshold continue to accept new el-
ements and nodes with load above the threshold attempt to shed
elements. We provide a simple heuristic for adjusting this thresh-

 0

 500

 1000

 1500

 2000

 0 1 2 3 4 5 6

M
ea

n
ab

so
lu

te
 d

ev
ia

tio
n

Number of iterations

1M nodes
100K nodes

10K nodes
1K nodes

Figure 11: Convergence of estimate of average load.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000

N
um

be
r

of
 s

ki
p

gr
ap

h
no

de
s

Number of buckets

Figure 12: Number of keys inserted into the skip graph layer.

old locally, without requiring a global controller, and for avoiding
mass migrations caused when all nodes simultaneously adjust their
threshold.

Several questions remain. The greatest of these is: though our
mechanism appears to work in practice, does it work in theory? We
have yet to do a complete analysis of the effect of the distributed
threshold heuristic on stability and efficiency of the load-balancing
mechanism over very long executions, and it is possible that odd be-
havior might occur in atypical segments of the skip graph. It would
be particularly interesting to analyze the combination of our pair-
ing mechanism and threshold sampling based on the work-stealing
algorithm of Karger and Ruhl [13].

Another question that deserves further study is how best to han-
dle arrival and departure of machines. In our current testbed system
new machines are simply assigned to the free list, but it is possible
that a more sophisticated strategy in which new machines imme-
diately take on load from existing machines could lead to better
performance in systems with high turnover. This is closely related
to the question of fault-tolerance, since departing machines are un-
likely to politely migrate off all of their items before vanishing. We
do not address this question at all in the present work, but believe
that some sort of local replication strategy should handle all but
adversarial faults.

 300

 400

 500

 600

 700

 800

 100 1000 10000

A
ve

ra
ge

 s
ea

rc
h

la
te

nc
y

(m
s)

Number of active buckets

Figure 13: Search latency on a 100-node PlanetLab overlay network.

7. REFERENCES
[1] A. Andersson and O. Petersson. Approximate Indexed Lists.

Journal of Algorithms, 29, 1998.
[2] J. Aspnes and G. Shah. Skip Graphs. In Proceedings of

Symposium on Discrete Algorithms, 2003.
[3] B. Awerbuch and C. Scheideler. Peer-to-peer systems for

Prefix Search. In Proceedings of the Symposium on
Principles of Distributed Computing, 2003.

[4] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton,
and J. Zito. Two Simplified Algorithms for Maintaining
Order in a List. In 10th European Symposium on Algorithms,
pages 152–164, 2002.

[5] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. Journal of the
ACM, 46(5):720–748, 1999.

[6] P. Dietz, J. I. Seiferas, and J. Zhang. A Tight Lower Bound
for On-Line Monotonic List Labeling. In 4th Scandinavian
Workshop on Algorithm Theory, volume 824 of Lecture
Notes in Computer Science, pages 131–142. Springer-Verlag,
1994.

[7] P. Dietz and J. Zhang. Lower Bounds for Monotonic List
Labeling. In 2nd Scandinavian Workshop on Algorithm
Theory, volume 447 of Lecture Notes in Computer Science,
pages 173–180. Springer-Verlag, 1990.

[8] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica. Complex queries in DHT-based peer-to-peer
networks. In Proceedings of IPTPS02, 2002.

[9] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and
A. Wolman. SkipNet: A Scalable Overlay Network with
Practical Locality Properties. In Proc. of Fourth USENIX
Symposium on Internet Technologies and Systems, 2003.

[10] A. Itai, A. G. Konheim, and M. Rodeh. A sparse table
implementation of priority queues. In Eighth International
Colloquium on Automata, Languages and Programming,
volume 115 of Lecture Notes in Computer Science, pages
417–431. Springer-Verlag, 1981.

[11] T. Johnson and C. A. A Distributed Data-Balanced
Dictionary Based on the B-Link Tree. Technical Report
MIT/LCS/TR-530, MIT Laboratory for Computer Science,
1992.

[12] D. Karger, E. Lehman, F. T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In Proc. of Symposium on Theory of

Computing, 1997.
[13] D. R. Karger and M. Ruhl. Simple Efficient Load Balancing

Algorithms for Peer-to-Peer Systems. In ACM Symposium on
Parallelism in Algorithms and Architectures, June 2004.

[14] P. Keleher, B. Bhattacharjee, and B. Silaghi. Are virtualized
overlay networks too much of a good thing. In Proc. of the
1st International Workshop on Peer-to-Peer Systems, 2002.

[15] P. Kirschenhofer and H. Prodinger. The path length of
random skip lists. Acta Inf., 31(9), 1994.

[16] T. Papadakis, J. I. Munro, and P. V. Poblete. Analysis of the
expected search cost in skip lists. In Proceedings of the
second Scandinavian workshop on Algorithm theory, 1990.

[17] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A
Blueprint for Introducing Disruptive Technology into the
Internet. In Workshop on Hot Topics in Networks (HotNets),
2002.

[18] W. Pugh. Skip Lists: A Probabilistic Alternative to Balanced
Trees. In Workshop on Algorithms and Data Structures,
1989.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
Proceedings of ACM SIGCOMM, 2001.

[20] S. Ratnasamy, J. Hellerstein, and S. Shenker. Range Queries
over DHTs. Technical Report IRB-TR-03-009, Intel
Research, 2003.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In International Conference on Distributed Systems
Platforms, 2002.

[22] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-To-Peer Lookup
Service for Internet Applications. In Proceedings of
SIGCOMM, 2001.

[23] S. Suri, C. D. Tóth, and Y. Zang. Uncoordinated Load
Balancing and Congestion Games in P2P Systems. In
Proceedings of the Third International Workshop on
Peer-to-Peer Systems, 2004.

[24] D. E. Willard. A density control algorithm for doing
insertions and deletions in a sequentially ordered file in good
worst-case time. Information and Computation,
97(2):150–204, Apr. 1992.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. Kubiatowicz. Tapestry: A Resilient Global-scale
Overlay for Service Deployment. IEEE Journal on Selected
Areas in Communications, 2004.

