
Preprint BUW-SC 03/3

Bergische Universität Wuppertal

Fachbereich C – Mathematik und Naturwissenschaften

Mathematik

Holger Arndt

Load Balancing: Dimension Exchange on
Product Graphs

November 2003

http://www.math.uni-wuppertal.de/SciComp/

Load Balancing: Dimension Exchange on
Product Graphs

Holger Arndt

Abstract

Load balancing on parallel computers aims at equilibrating some
initial load which is initially different from one processor to another.
Nearest neighbour load balancing algorithms can be divided basically
into two classes: diffusion and dimension exchange. Whereas the first
is appropriate for the so-called all-port-model where a processor can
send tokens to all its neighbours at a time, the latter relies on the
one-port-model.

In the last few years finite diffusion algorithms for general graphs
as well as for product graphs like grids and tori have been developed.
Recently finite dimension exchange algorithms have been proposed by
the author. In the present paper we will introduce one new diffusion
and two new dimension-exchange schemes for product graphs. We will
show that the latter two can achieve nearly minimal communication
operations and therefore short run-times. Additionally some modifica-
tions of the algorithms will be presented that reduce the flows so that
only very few load items are moved via longer paths than necessary.

1 Introduction

We consider the problem of load balancing on parallel computers. The prob-
lem is modeled by an undirected connected graph G with a given initial load
on every node. We suppose that the load consists of a number of equally
sized items. This load distribution is to be balanced by moving load items
along the edges of the graph.

The nodes of our graph G always represent the processors of the parallel
computer. If the processors are connected by some special network (e. g. in

1

a torus) the graph should correspond to this topology. If the machine has
a network so that the communication between any two processors is equally
fast, a graph should be chosen that allows fast load balancing. Unless the
number of processors is a power of two and you can take a hypercube, a
torus is often a good choice. All algorithms we study are based on nearest
neighbour communication: All information and load items are exchanged
only via the edges of G.

Parallel computers can be modeled in two ways according to their com-
munication hardware. The first one is the so-called all-port-model where a
processor can send messages to or receive messages from all its neighbours
at the same time. In the more realistic one-port-model, the communication
is restricted to pairs of processors at a time.

In correspondence to the two communication models load balancing al-
gorithms can be divided into two classes, diffusion and dimension exchange
(see [3, 5]).

Load balancing algorithms usually proceed in two phases. During the
first phase only information about load numbers is exchanged and a flow
along the edges is computed, but no load is moved. In the second phase a
scheduling algorithm is applied that moves load items according to the flow.
In this paper we will only look at the first phase.

A good load balancing procedure should have three properties: it should
be fast (as every call of the load balancer interrupts some major calculation),
it should be numerically stable and it should produce small flows so that no
more load is moved than necessary. The algorithms described in this paper
will be examined with respect to these three aims.

The paper is organized as follows. In Section 2 some basic notation is
introduced. Section 3 summarizes finite diffusion and dimension exchange
algorithms. Section 4 addresses algorithms for product graphs. After re-
viewing one of the algorithms from [7] new diffusion and dimension exchange
schemes for product graphs are presented. Additionally some heuristic flow
reduction techniques are described. Numerical results are given in Section 5.
We conclude the paper in Section 6 with a short summary.

2 Definitions

Let G = (V, E) be a connected undirected graph consisting of n = |V | nodes
and N = |E| edges. On each node i ∈ V we are given an initial load w0

i ≥ 0.

2

The load balancing algorithm has to determine the vector w of balanced
loads, w =

(
1
n

∑n
i=1 w0

i

)
· (1, . . . , 1)T .

Let α ∈ (0, 1) be a constant edge weight. Then the matrix MDiff =(
mDiff

ij

)
∈ Rn×n is defined by

mDiff
ij =

1− α deg(i) if i = j

α if {i, j} ∈ E

0 else .

MDiff is called a diffusion matrix if all elements mDiff
ij are non-negative. Let

A ∈ {−1, 0, 1}n×N be the node-edge incidence matrix of G having in each
column exactly two non-zero entries 1 and −1 which represent the nodes
incident to the corresponding edge. The directions of the edges can be chosen
arbitrarily. Now the Laplace matrix of G is defined as

LDiff = AAT .

Then the diffusion matrix can also be expressed as MDiff = I − αLDiff .
Let x ∈ RN be a flow on G. The direction of the flow is determined by

the directions of the edges in the incidence matrix A. The flow x is called a
balancing flow if

Ax = w0 − w .

It is unique if and only if the graph is acyclic.
At last we give the definition of product graphs. Let G(1) = (V (1), E(1))

and G(2) = (V (2), E(2)) be connected undirected graphs. Then the product
graph G = G(1) ×G(2) with G = (V, E) is defined by

V = V (1) × V (2)

and

E =
n“

(u(1), u(2)), (v(1), v(2))
”

:
“
u(1) = v(1) ∧ (u(2), v(2)) ∈ E(2)

”
∨

“
(u(1), v(1)) ∈ E(1) ∧ u(2) = v(2)

”o
.

Grids and tori can be interpreted as products of two paths resp. cycles.

3 Load Balancing on General Graphs

In this section we state the most important diffusion and dimension exchange
algorithms for general graphs and some of their properties.

3

3.1 Diffusion Algorithms

In [4, 7] two finite load balancing algorithms were introduced. Both of them
are diffusion algorithms and require the knowledge of eigenvalues related
to the underlying graph. Let µDiff

1 > µDiff
2 > . . . > µDiff

m be the distinct
eigenvalues of the diffusion matrix MDiff . The eigenvalue µDiff

1 = 1 belongs to
the eigenvector w. Analogously let λDiff

1 = 0 < . . . < λDiff
m be the eigenvalues

of the Laplace matrix LDiff where λDiff
i = 1− αµDiff

i .
The simpler of the two aforementioned algorithms, OPT [7], can then be

expressed in the following way:

for k = 1, . . . ,m− 1 do

wk =
(
I − 1

λDiff
k+1

LDiff
)

wk−1

xk = xk−1 + 1
λDiff

k+1
AT wk−1

end for

After m − 1 steps we have wm−1 = w and xm−1 is a balancing flow.
Unfortunately there are often stability problems with OPT. In particular,
if the eigenvalues are inappropriately ordered the intermediate errors can
become very large. Best numerical results are achieved by orderings based
on weighted Leja points [12, 6, 1, 2]. We consider only the weight functions
ωg(z) = |z|g. Rather good numerical results can be achieved by using the
special cases ω0(z) = 1 and ω1(z) = |z|.

Nevertheless the other algorithm, OPS [4], should be preferred. It is
based on a three-term-recurrence and achieves small bounds of the l2-norms
of the errors after each step. Before the load balancing can be started, some
parameters αi, βi and γi have to be computed once for a given graph. We
define an inner product for polynomials p, q by

〈p, q〉 :=
m∑

j=2

ωjp(µj)q(µj)

with ωj = 1 − µj. For k = 0, . . . ,m − 1 the polynomials pk are given as
the (scaled and shifted) so-called kernel polynomials, see [8]. They satisfy
p0(t) = 1, p1(t) = 1

γ1
[(α1 − t) p0(t)], pk(t) = 1

γk
[(αk − t) pk−1(t)− βkpk−2(t)],

k = 2, . . . ,m − 1 and αk = 〈tpk−1,pk−1〉
〈pk−1,pk−1〉

, βk = γk−1
〈pk−1,pk−1〉
〈pk−2,pk−2〉

, γ1 = α1 − 1,

γk = αk − 1− βk. The values for the γk are chosen such that p(1) = 1 which
guarantees that the total amount of load is unchanged. Once these values
are computed, OPS can be applied as follows:

4

w1 = 1
γ1

[
α1w

0 −MDiffw0

]
x1 = − 1

γ1
αAT w0

for k = 2, . . . ,m− 1 do
wk = 1

γk

[
αkw

k−1 −MDiffwk−1 − βkw
k−2

]
xk = 1

γk

[
(αk − 1) xk−1 − αAT wk−1 − βkx

k−2
]

end for

Both OPT and OPS have the property that they need exactly m−1 steps
where m is the number of distinct eigenvalues of the graph. It was shown
in [4] that this is a substantial improvement compared to other iterative but
non-finite methods like FOS or SOS (first / second order scheme) [3, 11].

A balancing flow for a given initial load distribution is usually not unique
— unless the graph is a tree. It is known that the balancing flow produced
by any diffusion algorithm (including OPS and OPT) has minimal l2-norm
[4, 10]. Such flows will be called minimal flows in the sequel.

3.2 Dimension Exchange

Whereas the diffusion algorithms shown so far are designed for the all-port-
model, most parallel computers rely on the one-port-model. Therefore di-
mension exchange algorithms are more appropriate because in this case each
step of the algorithm is divided into substeps — one substep per neighbour.
In each substep the most recent load value (from the last substep) is then
used. Dimension exchange was first suggested for the hypercube by Cybenko
in [3], edge-colourings of graphs have been proposed in [9] and [13] and finite
dimension exchange procedures have been introduced in [1] and [2].

An edge-colouring of the graph is needed for the definition of substeps.
The edge-set E is divided into c disjoint non-empty sets Ei so that E =
E1 ∪ . . . ∪ Ec and for any pair of edges incident with one common node it
holds that they are in different sets Ei and Ej.

The edge-colouring of G induces subgraphs Gi = (V, Ei). The diffusion
and Laplace matrices of these subgraphs are denoted by Mi and Li.

Before we can precisely formulate dimension exchange algorithms we first
have to introduce some additional notation:

MDE = Mc · · ·M1

LDE =
1

α

(
I −MDE

)
5

Here DE stands for dimension exchange. A multiplication of MDE by a load
vector w means precisely that c substeps are applied to w and the most recent
information is used for each substep. In addition we will need the eigenvalues
µDE and λDE of the matrices MDE and LDE respectively.

Next we need the incidence matrices Ai ∈ {−1, 0, 1}n×N of the Gi. In con-
trast to the usual definition of an incidence matrix we do not delete columns
which are not coloured with colour i from A but we replace the 1’s and -1’s
in those columns with zeros.

Now we can construct new algorithms DE-OPT and DE-OPS as follows.
We use the same iteration as for OPT resp. the same polynomials as for OPS,
but we replace the matrices MDiff resp. LDiff by their dimension exchange
counterparts MDE and LDE. Of course we also have to replace the eigenvalues
by those of the new matrices. We start with the DE-OPT algorithm which

computes wk =
(
I − 1

λDE
k+1

LDE
)

wk−1. To show the substeps explicitely we

rewrite this algorithm as follows:

for k = 1, . . . ,m− 1 do
ŵ0 = wk−1

for j = 1, . . . , c do {loop over the colours}
ŵj = Mjŵ

j−1

x = x + 1
λDE

k+1
AT

j ŵj−1

end for
wk =

(
1− 1

αλDE
k+1

)
wk−1 + 1

αλDE
k+1

ŵc

end for

Finally we give the substep-version of DE-OPS.

ŵ0 = w0; x̂0 = 0
for j = 1, . . . , c do {loop over the colours}

ŵj = Mjŵ
j−1; x̂j = x̂j + αAT

j ŵj−1

end for
w1 = 1

γ1
[α1w

0 − ŵc]; x1 = − 1
γ1

x̂c

for k = 2, . . . ,m− 1 do
ŵ0 = wk−1; x̂0 = xk−1

for j = 1, . . . , c do {loop over the colours}
ŵj = Mjŵ

j−1; x̂j = x̂j + αAT
j ŵj−1

end for

6

wk = 1
γk

[
αkw

k−1 − ŵc − βkw
k−2

]
xk = 1

γk

[
αkx

k−1 − x̂c − βkx
k−2

]
end for

The edge weight α should always be chosen equal to 1
2

because this usually
results in the least number of different eigenvalues and therefore lowest run-
times, cf. [2, 1]. This factor is assumed in all tables and figures in the sequel.

3.3 Comparison of Diffusion and Dimension Exchange

We summarize the most important results from [2]. Table 1 shows that di-
mension exchange often needs less communication steps than diffusion and is
therefore faster. The diameter of the graph is a lower bound for the number
of steps because the information about the initial load distribution has to
be transported through the entire graph. This minimal number is (nearly)
achieved by dimension exchange for paths, cycles of even lengths and hyper-
cubes.

Whereas diffusion can have numerical problems for certain graphs, di-
mension exchange almost always converges well. The flows computed by
dimension exchange are not minimal but it could be shown in [1, 2] that they
are bounded.

4 Load Balancing on Product Graphs

From Table 1 one can see that for grids and tori the run-time of all algorithms
differ from the minimum by a factor of order n. In this section algorithms
with (nearly) optimal run-times will be introduced. We will restrict ourselves
to square product graphs, but all algorithms can easily be adopted to the sit-
uation of two different factor graphs. The OPT-variants are even applicable
to higher dimensional products.

4.1 Existing Approaches

If we are given a product graph the following strategy can always be used.
First apply some load balancing algorithm to all copies of the first factor
graph and after that balance along the second direction which results in a
globally balanced state.

7

Unfortunately this approach yields too large flows. This problem can be
reduced by applying the load balancing steps alternatingly to both directions.

Let G = G(1) × G(1) be a square product graph, LDiff (1)
the Laplace

matrix of G(1) and let λ
(1)
1 , . . . , λ

(1)
m denote the eigenvalues of LDiff (1)

. The
following ADI-OPT (ADI = alternating direction iteration) procedure has
been introduced in [7].

for k = 1, . . . ,m− 1 do

wk =

(
I − 1

λ
(1)
k+1

LDiff (1) ⊗ I

) (
I − 1

λ
(1)
k+1

I ⊗ LDiff (1)

)
wk−1

xk = xk−1 + 1

λ
(1)
k+1

[(
I ⊗A(1)T

)
+

(
A(1)T ⊗ I

) (
I − 1

λ
(1)
k+1

I ⊗ L(1)

)]
wk−1

end for

Even better flows are achieved by a slight modification called MDI-OPT
(MDI = mixed direction iteration) in [7].

4.2 A New Diffusion Algorithm: ADI-OPS

It is known that OPS is numerically more stable than OPT. Thus for product
graphs it would be desirable to have an ADI-OPS. Because OPS uses the
last two iterates in each but the first step the construction of an ADI-version
becomes more complicated and needs additional intermediate load values. We
will now use double indices for load vectors. The indices r, c (row / column)

indicate from which direction a new value is computed. The parameters α
(1)
k ,

β
(1)
k and γ

(1)
k are associated with the factor graphs.

w0,0 = w0

wk,1
r =

1

γ
(1)
1

(
α

(1)
1 I −M (1) ⊗ I

)
wk,0 k = 0, . . .

8

w1,l
c =

1

γ
(1)
1

(
α

(1)
1 I − I ⊗M (1)

)
w0,l l = 0, . . .

wk,l
r =

1

γ
(1)
l

((
α

(1)
l I −M (1) ⊗ I

)
wk,l−1 − β

(1)
l wk,l−2

)
l = 2, . . . ; k = 0, . . .

wk,l
c =

1

γ
(1)
k

((
α

(1)
k I − I ⊗M (1)

)
wk−1,l − β

(1)
k wk−2,l

)
k = 2, . . . ; l = 0, . . .

By induction on k + l the following result can be shown:

Theorem 1. For the load vectors defined above it holds that wk,l
r = wk,l

c =:
wk,l for k, l ≥ 1.

With this theorem convergence can easily be proven.

Corollary 2. The vector wm−1,m−1 equals the vector of balanced load w.

Proof. According to the last theorem it is irrelevant via which wi,j’s the
vector wm−1,m−1 is computed. In particular we can choose the “sequential
directions path” w0,0, w0,1, . . . , w0,m−1, w1,m−1, . . . , wm−1,m−1.

The path from the last proof generates unnecessarily large flows. In-
stead of that, in each but the first step we compute four new values wk,k−2,
wk,k−1, wk−1,k and wk,k using four old values wk−2,k−2, wk−1,k−2, wk−2,k−1 and
wk−1,k−1.

(k, k)

(k − 1, k)

(k, k − 2)

(k − 1, k − 2)

(k − 2, k − 2)(k − 2, k − 1)

(k − 1, k − 1)

(k, k − 1)

The number of communication operations per step is not higher than for
ADI-OPT as the data needed for the computation of wk,k−2 and wk,k−1 can
be sent together as well as those for wk−1,k and wk,k.

The complete ADI-OPS algorithm is shown below.

w11 = w0

w01 = 1
γ1

(
α1I − I ⊗M (1)

)
w11; x01 = − 1

γ1
α

(
I ⊗ A(1)T

)
w01

9

w10 = 1
γ1

(
α1I −M (1) ⊗ I

)
w11; x10 = − 1

γ1
α

(
A(1)T ⊗ I

)
w10

w = 1
γ1

(
α1I −M (1) ⊗ I

)
w01; x = − 1

γ1

[
(α1 − 1) x01− α

(
A(1)T ⊗ I

)
w01

]
for k = 2, . . . ,m− 1 do

w22 = w11; w12 = w01; w21 = w10; w11 = w
x22 = x11; x12 = x01; x21 = x10; x11 = x
w02 = 1

γk

[(
αkI − I ⊗M (1)

)
w12− βkw22

]
x02 = 1

γk

[
(αk − 1) x12− α

(
I ⊗ A(1)T

)
w12− βkx22

]
w01 = 1

γk

[(
αkI − I ⊗M (1)

)
w11− βkw21

]
x01 = 1

γk

[
(αk − 1) x11− α

(
I ⊗ A(1)T

)
w11− βkx21

]
w10 = 1

γk

[(
αkI −M (1) ⊗ I

)
w11− βkw12

]
x10 = 1

γk

[
(αk − 1) x11− α

(
A(1)T ⊗ I

)
w11− βkx12

]
w = 1

γk

[(
αkI −M (1) ⊗ I

)
w01− βkw02

]
x = 1

γk

[
(αk − 1) x01− α

(
A(1)T ⊗ I

)
w01− βkx02

]
end for

4.3 Dimension Exchange on Product Graphs

As for the general case, dimension exchange algorithms for product graphs
can simply be generated from diffusion algorithms by replacing the respective

matrices and eigenvalues, e. g. by taking LDE(1)
instead of LDiff (1)

. The new
algorithms are called DE-ADI-OPT and DE-ADI-OPS. We show only the
first algorithm where c is the number of colours of each factor graph and the

λk are the eigenvalues of LDE(1)
.

for k = 1, . . . ,m− 1 do
ŵ0 = wk−1

for j = 1, . . . , c do {loop over the colours of G(1)}
ŵj = (I ⊗Mj) ŵj−1

x = x + 1
λk+1

(
I ⊗ AT

j

)
ŵj−1

end for
wk− 1

2 =
(
1− 1

αλk+1

)
wk−1 + 1

αλk+1
ŵc

w̃0 = wk− 1
2

for j = 1, . . . , c do {loop over the colours of G(1)}
w̃j = (Mj ⊗ I) w̃j−1

10

x = x + 1
λk+1

(
AT

j ⊗ I
)
w̃j−1

end for
wk =

(
1− 1

αλk+1

)
wk− 1

2 + 1
αλk+1

w̃c

end for

4.4 Comparison of Diffusion and Dimension Exchange
on Product Graphs

It can be seen from Table 2 that the combination of ADI and dimension ex-
change yields a minimal or at least nearly minimal number of communication
steps on grids and on tori of even dimension. An example for the convergence
of different ADI- and non-ADI-algorithms is shown in Figure 1.

4.5 Flows for ADI algorithms

The flows computed by any ADI algorithm are not l2-minimal, neither for
diffusion nor dimension exchange — but there are several techniques that
can reduce the flows.

The whole computation can be applied twice: Once the standard ADI-
algorithm is used (starting each step with direction one and considering the
second direction afterwards) and once starting with the second direction.
This results in two different balancing flows. The average of these two is
also a balancing flow and generally has a lower l2-norm than the two original
flows. The computational costs of course increase by a factor 2, but the
dominating number of communication steps just increases by the substeps
for one direction if both computations are done nearly at the same time –
shifted by a half step. The following figure shows the sequence of the steps
affecting the horizontal and vertical factor graphs.

V

V

H

H

V

V

H

H

V

V

computation 1: H

computation 2: H

The resulting methods will be denoted by (DE-)ADC-OPS/T. The following
two modifications can be combined with this technique.

Whereas the flows generated by (DE-)OPT are invariant under different
orderings of the eigenvalues, they are highly dependent on this ordering for
(DE-)ADI-OPT. Generally Leja orderings should be used because of stability

11

reasons. It can be observed by experiments that the exponent g in the weight
function ωg(z) = |z|g has two different impacts. If g is increased the norm
of the flow decreases whereas the error em−1 = wm−1 − w after the last step
increases, cf. Figure 2. A value of g = 1.5 seems reasonable for practical
situations.

In (DE-)OPS the ωj = 1− µj were chosen such that the error after each
step is as small as possible. The fact that the error becomes zero after m− 1
steps is independent of this choice. Whereas the flows are independent of the
ωj for (DE-)OPS they can be reduced for ADI-(DE-)OPS by using ωη

j , η > 1
instead. Thus the new inner product is

〈p, q〉 =
m∑

j=2

ωη
j p(µj)q(µj) .

Experiments show that the flows decrease and the final errors increase if η
is increased, cf. Figure 3. In practice, values for η between 3 and 4 yielded
satisfying results.

5 Numerical Results

Table 3 shows results of numerical experiments done on a cluster of Linux-
PCs. The initial load consisted of 6400 randomly distributed load items. The
times are scaled such that the simplest algorithm, an OPT-implementation
using synchronous MPI communication, equals 100. All other diffusion algo-
rithms implement faster asynchronous communication, dimension exchange
is inherently synchronous.

It is impossible to achieve minimal run times and minimal flows at the
same time, but the two algorithms DE-ADC-OPT and DE-ADC-OPS are
quite close to this optimum. Usually the first is the faster one and produces
slightly lower flows.

6 Summary

We have presented several new load balancing algorithms designed for prod-
uct graphs like grids and tori. The algorithms DE-ADC-OPT and DE-ADC-
OPS are nearly time-optimal, produce flows which are usually only a few
percent higher than the l2-minimal flow and are numerically stable.

12

References

[1] H. Arndt. Loadbalancing auf Parallelrechnern mit Hilfe endlicher
Dimension-Exchange-Verfahren. PhD thesis, Bergische Universität
Wuppertal, Fachbereich Mathematik, July 2003.

[2] H. Arndt. On finite dimension exchange algorithms. Linear Algebra and
its Applications, 2003. to appear.

[3] G. Cybenko. Dynamic load balancing for distributed memory multi-
processors. Journal of Parallel and Distributed Computing, 7:279–301,
1989.

[4] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest
neighbor load balancing. Parallel Computing, 25:789–812, 1999.

[5] R. Diekmann, B. Monien, and R. Preis. Load balancing strategies for
distributed memory machines. In B. Topping, editor, Parallel and Dis-
tributed Processing for Computational Mechanics: Systems and Tools,
pages 124–157. Saxe-Coburg Publications, 1999.

[6] R. Elsässer. Spectral Methods for Efficient Load Balancing Strategies.
PhD thesis, Universität Paderborn, Fachbereich Mathematik / Infor-
matik, Feb. 2002.

[7] R. Elsässer, A. Frommer, B. Monien, and R. Preis. Optimal and
alternating-direction loadbalancing schemes. In P. Amestoy, P. Berger,
M. Daydé, I. Duff, V. Frayssé, L. Giraud, and D. Ruiz, editors, Euro-
Par’99 Parallel Processing, Lecture Notes in Computer Science, No.
1685, pages 280–290. Springer-Verlag, 1999.

[8] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear
Systems. Wiley-Teubner series in advances in numerical mathematics.
Wiley-Teubner, Chichester, Stuttgart, 1996.

[9] S. H. Hosseini, B. Litow, M. I. Malkawi, J. McPherson, and K. Vairavan.
Analysis of a graph coloring based distributed load balancing algorithm.
Journal of Parallel and Distributed Computing, 10:160–166, 1990.

[10] Y. F. Hu and R. J. Blake. An improved diffusion algorithm for dynamic
load balancing. Parallel Computing, 25:417–444, 1999.

13

[11] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First and second
order diffusive methods for rapid, coarse, distributed load balancing. In
SPAA ’96. Proceedings of the 8th annual ACM symposium on Parallel
algorithms and architectures, pages 72–81, 1996.

[12] L. Reichel. The application of Leja points to Richardson iteration and
polynomial preconditioning. Linear Algebra and its Applications, 154–
156:389–414, 1991.

[13] C. Xu and F. C. M. Lau. Analysis of the generalized dimension exchange
method for dynamic load balancing. Journal of Parallel and Distributed
Computing, 16(4):385–393, Dec. 1992.

Figures and Tables

Graph diameter OPS/T DE-OPS/T

path Pn 2 | n n− 1 2n− 2 n
cycle Cn 4 | n 1

2
n n 1

2
n

3 | n 1
2
n− 1

2
n 2n

grid Gn 2 | n 2n− 2 2n2 1
2
n2 +O(n)

torus Tn 4 | n n 1
2
n2 +O(n) 1

8
n2 +O(n)

hypercube Hd d d2 d

Table 1: Number of communication steps for some graphs and algorithms

Graph diameter ADI-OPS/T DE-ADI-OPS/T

grid Gn 2 | n 2n− 2 4n− 4 2n
2 - n 2n− 2 4n− 4 2n + 2

torus Tn 4 | n n 2n n
2 | k, 4 - k n 2n n + 2

Table 2: Number of communication steps for ADI on grids and tori

14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

0 20 40 60 80 100 120

ek

Schritte

G16

OPT
OPS

DE-OPS
ADI-OPS

DE-ADI-OPS

Figure 1: Convergence of ADI- and non-ADI-algorithms for the grid G16

1

1.02

1.04

1.06

1.08

1.1

0 0.5 1 1.5 2 2.5 3 3.5 4
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

‖x
(g

)‖
2

‖x
m

i
n
‖ 2

em
−

1

g

T24, ADC-OPT

Figure 2: Dependency of ADC-OPT using Leja ordering on the exponent g
of the weight function ωg(z) = |z|g. It is shown, by which factor the flow
is above the minimum (solid line, left axis) and the final error em−1 (dashed
line, right axis)

15

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 2 3 4 5 6 7 8

10−12

10−11

10−10

10−9

‖x
(η

)‖
2

‖x
m

i
n
‖ 2

em
−

1

η

T16, ADC-OPS

Figure 3: Dependency of ADC-OPS on η: It is shown, by which factor the
flow is above the minimum (thick line, left axis) and the final error em−1 (thin
line, right axis)

algorithm grid G8 torus T8

time
‖x‖2

‖xmin‖2
time

‖x‖2
‖xmin‖2

OPT (unopt) 100 1 100 1
OPS 79 1 90 1
DE-OPT 34 1.14 25 1.23
MDI-OPT, g = 1.5 23 1.02 37 1.03
ADC-OPT, g = 1.5 22 ≈ 1 39 ≈ 1
ADC-OPS, η = 4 25 1.006 40 1.005
DE-ADI-OPT, g = 1.5 16 1.16 21 1.24
DE-ADC-OPT, g = 1.5 16 1.037 22 1.059
DE-ADI-OPS, η = 4 16 1.20 21 1.28
DE-ADC-OPS, η = 4 19 1.047 24 1.07

Table 3: Results for the grid G8 = P8 × P8 and the torus T8 = C8 × C8

16

	1 Introduction
	2 Definitions
	3 Load Balancing on General Graphs
	3.1 Diffusion Algorithms
	3.2 Dimension Exchange
	3.3 Comparison of Diffusion and Dimension Exchange

	4 Load Balancing on Product Graphs
	4.1 Existing Approaches
	4.2 A New Diffusion Algorithm: ADI-OPS
	4.3 Dimension Exchange on Product Graphs
	4.4 Comparison of Diffusion and Dimension Exchange on Product Graphs
	4.5 Flows for ADI algorithms

	5 Numerical Results
	6 Summary

