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Load Balancing for Parallel Forwarding
Weiguang Shi, M. H. MacGregor, Senior Member, IEEE, and Pawel Gburzynski

Abstract—Workload distribution is critical to the performance
of network processor based parallel forwarding systems. Sched-
uling schemes that operate at the packet level, e.g., round-robin,
cannot preserve packet-ordering within individual TCP connec-
tions. Moreover, these schemes create duplicate information in pro-
cessor caches and therefore are inefficient in resource utilization.
Hashing operates at the flow level and is naturally able to maintain
per-connection packet ordering; besides, it does not pollute caches.
A pure hash-based system, however, cannot balance processor load
in the face of highly skewed flow-size distributions in the Internet;
usually, adaptive methods are needed.

In this paper, based on measurements of Internet traffic, we
examine the sources of load imbalance in hash-based scheduling
schemes. We prove that under certain Zipf-like flow-size distribu-
tions, hashing alone is not able to balance workload. We introduce
a new metric to quantify the effects of adaptive load balancing on
overall forwarding performance. To achieve both load balancing
and efficient system resource utilization, we propose a scheduling
scheme that classifies Internet flows into two categories: the ag-
gressive and the normal, and applies different scheduling policies
to the two classes of flows. Compared with most state-of-the-art
parallel forwarding schemes, our work exploits flow-level Internet
traffic characteristics.

Index Terms—Load balancing, parallel IP forwarding, Zipf-like
distribution.

I. INTRODUCTION

T
OGETHER, the continuing Internet bandwidth explosion

and the advent of new applications have created great chal-

lenges for network forwarding devices, e.g., Internet routers.

They have to offer high throughput, computation power, as well

as flexibility. One answer to these challenges is network pro-

cessors (NP) which provide the right balance between perfor-

mance and flexibility. (In this paper, we use the two terms, for-

warding engine (FE) and NP, interchangeably.) To achieve high

throughput, NPs are optimized for key packet forwarding al-

gorithms and high-speed I/O. More importantly, multiple net-

work processors are employed to forward packets in parallel to

achieve scalability.

Although designs from vendors vary, Fig. 1 shows a gen-

eralized conceptual model where the forwarding engines are

the basic packet processing units. Essential to such a multi-FE

system is the scheduler that dispatches incoming packets to the

FEs. It is necessary for the scheduler to distribute workload in

a balanced manner so that the system can achieve its full for-

warding potential. In this paper, we divide a scheduler into two
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Fig. 1. Multi-processor forwarding system.

functional units: the load splitter and the balancer/adapter. The

former implements a general packet distribution policy and the

latter is invoked when necessary to adjust load distribution to

achieve load balance.

In some scheduling schemes, the two functions are naturally

integrated. For example, workload may be distributed in a

round-robin fashion, or an incoming packet may be delivered to

the FE that is least-loaded. Such schemes schedule workload at

the packet level and complicate IP forwarding for two reasons.

First, reordering of packets within individual TCP connections

occurs very frequently in these schemes. Packet reordering

within a TCP connection gives TCP false congestion signals

and therefore is detrimental to end-to-end system performance

[1], [2]. Second, these schemes are not efficient in FE cache

utilization [3]: by dispatching packets from the same flow to

different FEs, these schemes leave copies of identical data in

the caches of the individual FEs.

Hashing is a popular means to distribute load [4]–[9] in net-

work systems. It is used in parallel IP forwarding systems be-

cause, in contrast to round-robin or minimum-load mapping, it

is able to maintain the packet order of individual TCP connec-

tions. Hashing operates at flow level. The scheduler typically

bases its decision on one or more header fields of an incoming

IP packet, e.g., the destination address (DA), the source address

(SA), the destination port (DP), the source port (SP), and the

transport layer protocol number (PN). These fields define a flow

and are used as a key to a hash function; the return value is

used to decide the target FE that the packet should be forwarded

to. Since the selected fields remain constant for all the packets

transmitted over a TCP connection, the FE selected is always

the same and therefore packet order within individual TCP con-

nections is maintained. In addition, since packets from one flow

are directed sequentially to the same FE instead of being scat-

tered over several FEs, a hashing scheme is efficient in cache

utilization [3].

Hashing alone, however, is not able to balance workload

under highly variable Internet traffic. Adaptive schemes are

needed to accommodate the burstiness and the presence of

1063-6692/$20.00 © 2005 IEEE
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extremely large flows [7], [8]. According to our terminology,

in a load scheduler, the splitter implements the hashing scheme

and the balancer/adapter implements load adjustment. We call

such a scheduler hash-based.

This paper makes the following three contributions.

• First, we prove that due to highly skewed Internet flow

size distributions, hashing alone cannot achieve load bal-

ance. By characterizing a wide range of IP traces, we

localize the sources of load imbalance in a hash-based

scheduler.

• Second, we introduce a new metric for adaptation disrup-

tion to quantify the efficiency of adaptive load balancing

schemes. For a system to achieve high forwarding rates,

the disruption to FE caches caused by load adaptation

should be as small as possible.

• Third, we develop a highly efficient load balancer which,

compared with state-of-the-art scheduling schemes,

is unique in capitalizing on flow-level Internet traffic

characteristics. The balancer implements an adaptation

algorithm that shifts only aggressive flows to balance

workload among FEs. This design is inspired by IP

traffic characterization and the goal to achieve minimum

adaptation disruption.

The rest of the paper is organized as follows. In Section II

we review studies in flow-level Internet traffic character-

ization, load-splitting schemes based on highly variable

workload distributions in network systems, and hash-based

load-splitting schemes in proxy Web cache systems and parallel

forwarding systems. In Section III, we present the system

model that this study targets and introduce notations used in

the paper. Section IV discusses three sources of load imbalance

in a hash-based distribution scheme. We prove that gener-

ally, hashing alone cannot balance workload given Zipf-like

flow-size distributions. We discuss the concept of adaptation

disruption and describe the load balancer design in Section V. A

critical step in our load balancer is the detection of aggressive

Internet flows, which is discussed in Section VI. Section VII

presents simulation results for three adaptation policies under

varying design parameters. Section VIII concludes this work.

II. RELATED WORK

A system design is hardly sound without taking the charac-

teristics of its workload into consideration. For a parallel for-

warding system, it is well known that its workload, the Internet

traffic, consists of elephants and mice [10], [11]: elephants rep-

resent the small number of high-volume transmissions that con-

stitute the majority of the traffic mix; mice, on the contrary, are

flows that are large in number but consume much less band-

width. At the connection level, recent measurement studies [12]

have found that the burstiness of Internet traffic is solely due to

a few aggressive flows dominating the others. These large flows,

called alpha flows, are the result of large files transmitted over

high-bandwidth connections. As a coarser flow aggregation, IP

destination address reference patterns have been found [13] to

follow Zipf-like [14] distributions:

(1)

which says that the frequency of some event as a function

of its rank often obeys the power-law function with the

exponent close to 1. It is also shown in [13] that the largest

flows have a significant impact on load balancing in hash-based

scheduling schemes.

The ubiquitous phenomenon of highly biased workload in

many Internet systems has motivated a class of schemes which,

to achieve performance goals, divide workload into two groups

and process them differently. To efficiently transfer diverse

traffic, packet switches take advantage of hardware advances

and create short-cuts for long-lived Internet flows [17]–[19]

which represent a large portion of system workload. To im-

prove routing stability and to balance Internet traffic on different

links, [20] proposes routing long-lived flows dynamically while

forwarding short-lived flows on static, pre-provisioned paths.

The idea is to limit load-sensitive routing only to long-lived

flows to reduce the frequency of link-state update messages. To

balance workload for Web server cluster systems, [21] divides

the domains of Web requests into two classes: hot and normal,

and schedules requests from them independently, using two

round-robin schemes.

Ref. [5] outlines four design goals of load mapping algo-

rithms in the context of multi-server Web proxy cache systems:

low overhead, load balancing, high cache hit rate, and minimum

disruption. The authors propose the hash mapping scheme,

highest random weight (HRW). To map a Web request, HRW

takes the combinations of the object name and the identifiers of

the proxy servers, e.g., their IP addresses, as keys and returns

a list of weight values, one for each server. The server with

the largest weight is chosen to serve the request. Since the

mapping is hash-based, requests for the same object are usually

forwarded to the same server, and therefore cache hit rate is

much higher than in replication-based schemes where an object

can have multiple copies on the servers (see also [3]). The main

strength that distinguishes HRW from other hashing schemes,

however, is its ability to achieve fault tolerance with minimum

disruption, meaning that only a minimum number of object

requests are migrated among the servers during server failures.

HRW is extended to heterogeneous server systems in [22],

which leads to the popular cache array routing protocol (CARP).

The idea is to assign cache servers with multipliers to scale the

return values (i.e., the weights) in HRW. A recursive algorithm

is developed to calculate the multipliers such that the object re-

quests are divided among the servers according to a pre-defined

list of fractions.

Ref. [7] describes a load balancer for parallel forwarding sys-

tems. A two-step table-based hashing scheme [6] is used to split

traffic. Packet header fields are used as a hash key to a hash func-

tion. The return value is used as an index to a look-up memory to

retrieve the target FE. Flows that yield the same index value are

called a flow bundle. Three techniques are used to achieve load

balancing. First, a time stamp is kept and updated at every packet

arrival for each flow bundle. Before the update, this time stamp

is compared with the current system time. If the difference is

larger than a pre-configured value, the flow bundle is assigned

to the processor that is currently least-loaded. Second, flow re-

assignment monitors the states of the input queues of the proces-

sors. Flow bundles are redirected from their current over-loaded
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processor to the processor with the minimum number of packets

in its queue. Third, excessive flow bundles are detected and re-

peatedly assigned to the least-loaded processors. This is called

flow spraying. (See Section V-A for more discussion.)

Refs. [8] and [9] propose a scheduling algorithm for par-

allel IP packet forwarding based on HRW [5] and the robust

hashing [22]. It is noticed that although HRW provides load bal-

ancing over the request object space, load imbalance still occurs

due to uneven popularities of the individual objects. An impor-

tant goal of the adaptive scheme is to minimize the amount of

packet-to-FE re-mappings when balancing workload. The algo-

rithm includes two parts: the triggering policy and the adapta-

tion. Periodically, the utilization of the system is calculated and

compared to a pair of thresholds to determine if the system is

under or over-utilized. In either condition, the adaptation is in-

voked which adjusts the weights (called multipliers in [22]) for

the FEs to affect load distribution. In other words, the algorithm

treats over or under-load conditions as changes of processing

power of the FEs. It is proved that the adaptation algorithm can

keep the minimal disruption property of HRW.

III. SYSTEM MODEL

We consider a parallel forwarding system where FEs

process packets dispatched from the sched-

uler. A packet destined to , is processed at once if

is idle; otherwise, it is stored in a shared buffer of size

(in packets) in front of the FEs. Logically, the packet is also

appended to the input queue of . Since the buffer size

is fixed, the length of an input queue is between zero and the

buffer size. At any time the limit of a queue’s length depends

on the number of packets in other queues.

The hash-based load splitter maps the incoming flows onto

the individual FEs. The mapping scheme is a function that

establishes relationships between two sets, the set of flow iden-

tifiers and the set of FE indices. That is

A flow identifier is defined as a vector of one or more fields

of a packet header that remain the same for all the packets in

the flow. It can be one or a combination of DA, SA, DP, SP,

PN. We use the destination IP addresses of incoming packets

as flow identifiers in this paper. This is a coarser level of ag-

gregation than the popular definition of a flow, identified by the

five-tuple, DA, DP, SA, SP, PN . The justification here is that

DA sequences represent workload for major forwarding algo-

rithms, e.g., routing table lookup and filtering. Thus, contains

all the possible destination IP addresses and the notion of flow

size distribution is equivalent to that of address popularity dis-

tribution. Hereafter, we sometimes use destination addresses to

refer to flows and this usage should be clear from the context.

We also measured the flow size distribution (the most impor-

tant Internet traffic characteristic considered in this paper) where

a flow is identified by the five-tuple. The results are similar when

the flow identifier is the destination IP address. We therefore be-

lieve that the results in this paper apply for other flow definitions.

The processing power of is defined as its service rate .

The total processing power is . The packet arrival

rate at is which is determined by the aggregate arrival

rate and the mapping scheme . In this paper,

we consider only , for .

IV. SOURCES OF LOAD IMBALANCE

We discuss three sources of load imbalance in a hash-based

traffic splitting scheme.

A. Hash Function

The mapping scheme has to be able to generate uniformly

distributed random FE identifiers for the source set . This en-

sures that, on average, flows are mapped to each FE. Al-

though for a nonrandom input, it is theoretically impossible to

define a hash function that generates random output, it is not

difficult in practice to find a scheme that approximates random

data generation [23]. Refs. [4]–[6] have found that the Internet

checksum algorithm and the CRC over the five-tuple DA, SA,

DP, SP, PN give good random outputs.

B. Burstiness of Internet Traffic

Packet network flows are known to be bursty, i.e., packets

of a flow travel in groups [24]. A large number of packets from

one flow arriving at one FE in a short period can swamp the pro-

cessor. At the same time, other FEs may be idling. The bursty na-

ture of Internet traffic can lead to temporary load imbalance and

cause packet loss. Aside from adjusting flow mappings adap-

tively, buffering and provisioning are the common practices to

accommodate bursty packet arrivals.

C. Skewed Flow Size Distribution

1) Flow-Level Internet Traffic Characteristics: To study

flow level Internet traffic characteristics, we have experimented

with traces collected from networks ranging from campus to

major Internet backbones. We show the results for five traces

(see Table I). The address popularity distributions in these traces

are shown in Fig. 2. Although their scales differ, each curve can

be matched by a straight line, i.e., a Zipf-like function, in the

log-log plot. The slopes fitted for the five traces, SDSC, FUNET,

UofA, IPLS, and Auck4, are

and , respectively. Common to all traces is the presence

of several popular addresses dominating a large number of less

popular addresses. Table II shows the the number of packets

in the ten most popular flows of each trace. This common

phenomenon is the motivation of the load balancing scheme

developed in this paper.

2) Implications for Load Balancing: The flow size distri-

bution adds another dimension to the load balancing problem.

In [6], it is realized that “long packet trains will have negative

effects on traffic splitting performance”, and “traffic splitting

is significantly harder when there is a small number of large

flows.” Their solution is a table-based hashing scheme where

mapping can be tuned by adaptive load monitoring mechanisms,

which forms the basis for the load balancing scheme described

in [7].

While hashing may manage to balance workload in the av-

erage sense when the flow size distribution is homogeneous,

i.e., with a finite variance, as proved for HRW in [5], it cannot
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TABLE I
TRACES USED IN EXPERIMENTS

Fig. 2. IP address popularity distribution follows Zipf’s law.

TABLE II
NUMBER OF PACKETS OF 10 LARGEST FLOWS IN THE TRACES

when the distribution is so skewed that the coefficient of varia-

tion (CV) is infinite.

Let be the number of identical FEs in a parallel forwarding

system and let be the number of distinct addresses, i.e., the

size of . Let be the popularity of address

and let be the number of distinct addresses dis-

tributed to FE . It is derived in [5] that HRW, or any hash func-

tion that generates uniformly distributed random numbers over

its hash key space, distributes workload in a balanced way. This

occurs when the the load imbalance of the system, expressed as

the CV of :

(2)

approaches zero as and the number of packets approach in-

finity. The condition here is that should be finite.

The discrete-form probability density function (PDF) of a

Zipf-like distribution (1) is

(3)

where is a normalizing constant:

(4)

Given that the average popularity of the objects, , is ,

we have

(5)

Substituting the in (2), we have

(6)

As and , items and converge, and

thus is nonzero.
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Zipf-like distributions (1) are known to have infinite vari-

ance when and infinite mean when . This is the

reason that a hash based scheme, such as HRW [5], is not able

to achieve load balancing when the population distribution of

objects in its input space, in our case destination IP addresses,

is Zipf-like with .

V. LOAD BALANCER

In addition to general desirable features for load-splitting

schemes, to measure the efficiency of adaptive load balancing

schemes, we introduce a new metric for adaptation disruption.

Minimizing this metric is achieved by scheduling only aggres-

sive flows.

A. Goals

The goals of load-splitting algorithms [5] for Web proxy

cache systems apply for the packet schedulers in parallel for-

warding systems. First, the scheduler shown in Fig. 1 sits in

the data forwarding path and therefore should be as efficient as

possible to reduce delay. Second, load balancing is crucial for

the system to achieve its full forwarding potential. As proven in

Section IV, hashing alone cannot achieve load balancing; it is

therefore necessary for the scheduler to monitor the workload

on the FEs and perform adjustment at appropriate times. Third,

since each FE usually has its own local fast storage functioning

as cache, higher hit rate is desirable. FE cache hit rate is mainly

determined by temporal locality in IP traffic. Scheduling

schemes have a big impact on temporal locality seen at each

FE [3]. Finally, the system has to be fault-tolerant to provide

reliability and graceful degradation when one or more FEs fail.

Typically, when a system is unbalanced to some degree, the

adaptation mechanism will be triggered to make adjustments

to the mapping from the system’s input to output [7], [8]. The

result is that some flows will be shifted from the most loaded

processors to less loaded ones.

In adaptation, migration of flows from one FE to another

renders some previously cached data in the source FE useless

and causes cold start in the target FEs cache. We call this phe-

nomenon adaptation disruption. Obviously, flow migration is

harmful to forwarding performance and should be done as infre-

quently as possible. Thus, in a hash-based parallel forwarding

system, another feature is desirable; we call it minimum adapta-

tion disruption (MAD). For packets forwarded, adaptation

disruption, denoted by , is quantified as follows:

(7)

where is the number of flow-shifts. Thus, .

Note that MAD is different from the minimum disruption in

HRW which describes the desirable behavior of a distributed

system in the face of partial failure. Redirecting only flows for a

failed FE causes least disruption to the states of other FEs. Adap-

tation disruption, on the other hand, is caused by flow migrations

among FEs as a result of load balancing efforts. It measures the

degree of disturbance to cache during forwarding. As the per-

formance gap between computer processor and memory keeps

widening, it is important for an adaptive scheduler to achieve

MAD to maintain overall forwarding performance. The param-

eter is introduced to relate cache performance to the frequency

of flow-shifts.

In addition, MAD is desirable for maintaining packet order

within TCP connections. When flows are shifted from a heavily

loaded FE to a less loaded one as the result of adaptive load bal-

ancing, it is hard to maintain the original packet order for these

flows. Packets of the shifted flows arriving after the migration

are very likely forwarded before some previous packets that still

wait in the queue of the previously heavily loaded FE. For this

reason, minimizing adaptation disruption also minimizes the

occurrence of packet reordering, which is important for main-

taining end-to-end TCP performance.

A goal of the load sharing scheme in [8] is to minimize flow

re-mapping and thus to minimize packet reordering. FE states,

e.g., cache, are not taken into account. Ref. [8] extends the work

on HRW in [5] and [22]. Although nonuniform object popularity

is realized as a potential reason for load imbalance, this aspect

of the workload is not characterized or explored in [8] but is

listed as future work.

Ref. [8] uses the fraction of flow remappings over all flows

existing during a time interval as a measure of disruption. This

is different from the concept of adaptation disruption introduced

by (7).

The denominator in (7), , is the number of packets instead

of the number of flows forwarded. The former corresponds to

the router performance metric, i.e., packet-per-second (pps), not

flow-per-second. This is essential because flows vary in size and

therefore cannot be used to measure throughput.

The numerator, in (7), is defined as “the number of

flow-shifts” instead of “the number of flows remapped” as in

[8, Table I]. is incremented by one each time a flow is

shifted, or remapped, from one FE to another; it does not matter

if this flow has been in the set of flows shifted hitherto. As each

flow-shift can result in a cold-start of the cache in the target

FE, (7) represents the upper-bound of the cache disturbance

caused by shifting flows. On the other hand, “the number of

flows remapped” in [8, Table I] should be understood as the

size of the set of flows remapped and therefore does not reflect

cache disturbance.

It is worth noting that the packet spraying in [7] is proposed to

deal with “rare” “emergency” situations when an excessive flow

bundle by itself exceeds the processing power of one FE. The

scheme does not actively spray to achieve load balance. In addi-

tion, both flow reassignment and packet spraying in [7] operate

on bundles instead of individual flows. A bundle by definition

contains more than one flow. The larger the number of flows

shifted, the more disruption is caused to the states of the FEs. It

is possible that shifting one bundle causes a large portion of the

target FE cache to be flushed. In contrast, our goal is specifically

to balance load with minimum disruption. We achieve this goal

by identifying and shifting only aggressive flows.

B. Design

Most state-of-the-art schedulers migrate flows without con-

sidering their rates, but this is ineffective. As indicated by

our measurements in Section IV, the probability of shifting

low-rate flows should be high since there are many of them.



SHI et al.: LOAD BALANCING FOR PARALLEL FORWARDING 795

Fig. 3. Load balancing packet scheduler.

Shifting these flows does not help re-balance the system much,

but causes unnecessary disruption. The high rate flows are few

so it is unlikely that they would be shifted, but it is usually

these flows that cause trouble [13]. While the scheduler is busy

shifting low-rate flows, the high-rate ones keep swamping the

overloaded processor(s).

The Zipf-like flow size distribution and, in particular, the

small number of dominating addresses, indicate that scheduling

the most aggressive flows should be effective in balancing

workload among parallel forwarding processors. Since there

are few aggressive flows, the adaptation disruption should be

small. Our scheduler design takes advantage of this observation

and divides Internet flows into two categories: the aggressive

and the normal. By applying different forwarding policies to

the two classes of flows, the scheduler achieves load balancing

effectively and efficiently.

Fig. 3 shows the design of our packet scheduler. When the

system is in a balanced state, packets flow through the hash

splitter to be assigned to an FE. When the system is unbalanced,

the load adapter may decide to override the decisions of the hash

splitter. When making its decisions, the load adapter refers to a

table of high-rate flows developed by the flow classifier.

The hash splitter uses the packet’s destination address as

input to a hash function. The packet is assigned to the FE whose

identifier is returned by the hash function. There are several

possible choices for the hash function. For example, the func-

tion could use the low order bits of the address and calculate the

FE as the modulus of the number of FEs. Alternatively, HRW

could be used to minimize disruption in the case of FE failures.

The load adapter becomes active when the system is unbal-

anced. It checks each passing packet to see whether it belongs

to one of the high-rate flows identified by the classifier. If the

packet belongs to one of these flows, the load adapter sets it

to be forwarded it to the FE with the shortest queue. Any for-

warding decisions made by the load adapter override those from

the hash splitter; the selector gives priority to the decisions of the

load adapter. In this sense, the hash splitter decides the default

target FE for every flow.

As noted above, the load balancer functions only when the

system is unbalanced, which is decided by the triggering policy

(see Section V-C). Periodically, the system is checked and if it is

unbalanced, the load balancer is activated; the least loaded (pos-

sibly idle) FE is identified and the high-rate flows are shifted to

it from their default FEs decided by the hash splitter. Later even

if, as a result of the adaptation, the system becomes balanced

and the balancer is inactivated, the flows previously identified

in the flow table are still directed to the FE assigned by the bal-

ancer. This is to prevent unnecessary flow migration.

An important design parameter is , the size of the bal-

ancer’s flow table. Generally, shifting more aggressive flows,

i.e., having more flows in the table, is more effective as far

as load balancing is concerned. Nevertheless, to reduce cost,

speedup the lookup operation, and minimize adaptation disrup-

tion, the flow table should be as small as possible.

Another component in the system that is critical to the suc-

cess of the load balancing scheme described above is the flow

classifier (see Fig. 3). The flow classifier monitors the incoming

traffic to decide which flows are aggressive and should be put

in the balancer’s flow table. We discuss in detail the aggressive

flow identification procedure in Section VI.

C. Triggering Policies

The adapter implements the scheduling scheme that decides

when to remap flows (the triggering policy), what flows to

remap, and where to direct the packets. To effectively achieve

load balancing with minimum adaptation disruption, the

adapter only schedules packets in the largest flows. Packets in

the smaller flows are mapped to FEs by the hash scheduler.

There are multiple choices for deciding when the system is

unbalanced and the adapter should be activated to redirect

packets. For example, the adapter can be invoked periodically,

i.e., triggered by a clock after every fixed period of time. This

scheme is easy to implement, as it does not require any load

information from the system. It may not be efficient, however,

as far as minimizing adaptation disruption is concerned since

it could shift load unnecessarily, i.e., when the system is not

unbalanced.

The adapter can also monitor the lengths of the input queues,

using them as indicators of the workload of the FEs. Remapping

can be triggered by events indicating that the system is unbal-

anced to some degree, based on the input buffer occupancy, the

largest queue length, or the CV of the queue length growing

above some pre-defined threshold. The system load condition

could be checked at every packet arrival. This overhead can be

reduced by periodic checking. We simulate several triggering

policies in Section VII.

As another design dimension, the remapping policy decides

to which processor(s) the largest flows should be migrated. One

solution is to redirect all the largest flows to the FE with the

shortest queue.

VI. DETECTING AGGRESSIVE FLOWS

In this section, we describe the mechanism used in the flow

classifier to identify aggressive flows.

A. Definition of Aggressive Flows

We define aggressive flows as high-rate flows. Flows that

are both large and fast are the source of long-term load imbal-

ance and are most effective when shifted to balance load. These
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flows are similar to the alpha flows in [12]. In addition, taking

the bursty nature of Internet traffic into consideration, we also

classify flows that are smaller in size but are fast enough to

cause short-term load imbalance or buffer-overflow as aggres-

sive flows.

It is pointed out in [11] that flow size and lifetime are inde-

pendent dimensions. There might be correlation between flow

size and rate but generally, the notion of long-lived flows in

most previous studies is not accurate for our purposes. As a re-

sult, short-cut establishment triggering [19] for long-lived flows

cannot be used to detect aggressive flows. Instead, we need a

mechanism that takes into account both the number of packets

and the length of time during which the packets arrive.

B. Detecting Aggressive Flows

We define window size, , as the number of packets over

which flow information is collected. Therefore, the incoming IP

traffic is a sequence of windows: ,

each containing packets. Suppose we are receiving packets

in . We find the set that contains the largest flows in .

The number of flows in equals to the size of the flow table,

. At the end of , we replace the flows in

the flow table by those in . This mechanism benefits from the

phenomenon of temporal locality in network traffic. Due to the

packet train [24] behavior of network flows, it is highly possible

that flows in are also some of the largest ones over the next

packets. That is, .

Let . To measure the effect of on the con-

tinuity of the content of the flow table due to temporal locality,

we define

(8)

where

and is the number of packets forwarded during the measure-

ment. Thus, . The larger the value of , the better

flow information collected in the current window predicts ag-

gressive flows for the next window.

Small values are preferred when the input buffer size is

small and load adjustment must be made to reflect the existence

of smaller scale, short-term bursty flows. Larger values can

be used for larger buffers where the system can tolerate the load

imbalance caused by bursts of small flows. Fig. 4 shows the

effects of on for the first one million entries of the four

larger traces in Table I with . The larger the value of ,

the better the current aggressive flows predict the future. This

high predictability is critical to the success of the flow classi-

fier. Despite the window size, however, experiments show that,

the largest flow of an entire trace is almost always identified as

the largest flow of every window (the smallest experimented

with is 100). We will see that shifting even only the one largest

flow is very effective in balancing workload.

Fig. 4. Effects of W on �(F = 5).

TABLE III
ARRIVAL RATES (NUMBER OF PACKETS/SECOND) OF FOUR TRACES

VII. SIMULATIONS

In this section, we conduct trace-driven simulations of an

eight-FE system under static hash mapping and adaptive load

balancing schemes. In the former, packets are directed to the

FEs by the hash splitter only and the results serve as perfor-

mance bounds for the adaptive load balancing scheme. For the

latter, we simulate three adaptation triggering policies for the

balancer.

A. Trace Driven Simulation

The average packet arrival rates are measured for the four

larger traces (Table III1). IP traffic is well known for its large

variability; here serves only as a gross estimation and is used

to derive the service rates for the FEs given some system uti-

lization

(9)

Given a trace (so that is fixed) and an overall service rate

, parameters that have major effects on system performance

include: the input buffer size , the number of FEs , the

number of aggressive flows in the flow table, , the adaptation

policy, and classifier window size . We are mainly concerned,

however, about the effects of scheduling policies and the input

buffer size on two performance metrics: the packet loss rate

and the adaptation disruption . Throughout the simula-

tions, , and .

B. Hash Splitter

The hash splitter implements the following operation:

where is the 16-bit cyclic redundancy check, % is the

modulo operator, and is the number of FEs. According to

previous studies of hash function performance [4], [6], the CRC

is a very good hash function.

1The FUNET trace does not have arrival time stamp information.
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C. Triggering Policies

We tested three triggering policies:

• Periodic Mapping (PM): The adapter schedules aggres-

sive flows periodically (after each interval of packets),

regardless of system load situation.

• Buffer Occupancy Threshold (BOT): The adapter is in-

voked if the buffer is filled above some percentage.

• Maximum Queue Length Threshold (MQLT): The adapter

is invoked if the length of the largest queue grows above

some pre-defined threshold, also expressed as a per-

centage of the total buffer size.

For comparison purposes, we also simulated hash-based load

splitting without adaptation. For BOT and MQLT, periodic

checking of the system workload condition is implied; for

comparison purposes, we would assume this period is the same

as that in PM. Thus, the results for PM set upper bounds on the

frequency by which the aggressive flows are shifted from one

FE to another and the amount of adaptation disruption for BOT

and MQLT.

D. Adaptation Disruption

Two sources in our load balancing scheduler contribute most

to adaptation disruption (AD).

First is the decision of the adapter to re-map aggressive flows

to the least loaded FE. If the flows in the flow table are not

currently destined to the target FE, flow-shifts occur. We call

this type of flow-shift explicit disruption (ED). .

Second, after processing a window of packets, the flow classi-

fier replaces the content of the current flow table with the largest

flows calculated during the past window. This implicitly moves

the flows that were not in the table from their current destina-

tion FE, determined by the hash splitter, to the FE decided by

the adapter and, at the same time, shifts the replaced flows to the

FEs determined by the splitter. Flow-shifting caused by the flow

classifier is called implicit disruption (ID). When the classifier

updates the content of the flow table at the end of window , the

total number of flows to be shifted is .

For the PM balancing policy

For the other two adaptive policies, the balancer is not always

on, and therefore their ID values should be smaller.

E. Packet Reordering and Loss

Adaptive load balancing in hash-based distribution schemes

comes at the price of packet reordering. Whenever a flow is

shifted from a busy FE to a less loaded one, there is the risk

of packet reordering within this flow. Therefore, the sources of

adaptation disruption are also the sources of potential packet

reordering. Shifting a few aggressive flows minimizes adapta-

tion disruption and, for the same reason, causes less packet re-

ordering than adaptation schemes that shift flows with no regard

to their rates.

Let be a flow in a trace, where and is the

set that contains all the flows in the trace. Let be a packet in

Fig. 5. Loss Rate vs Buffer Size (For PM, BOT, and MQLT, the system load
condition checking is done every 20 packets. For BOT, the threshold is 80% of
the buffer size. For the MQLT, the threshold is 30% of the buffer size. There are
eight FEs and the system utilization � = 0:8. For this simulation, the number
of aggressive flows in the flow table is 1.

, where and is the number of packets in .

Let be the time that the packet is observed at the input

port and the time that it is observed at the output port. At

the input port, . At the output port,

however, due to possible packet reordering, might be larger

than . If

if

otherwise

then the packet reordering rate for packets forwarded is

In our simulations, there are two reasons for packet loss. First,

the load may not be properly balanced among the FEs. The ser-

vice capability of the whole system is adequate, but while some

FEs are busy forwarding, other FEs can be idling. Therefore, the

system is not utilized at its full potential. Over time, the number

of packets in the busy FE’s queues increases to the limit of the

buffer size and newly arriving packets are dropped. The second

reason for packet loss has little to do with scheduling schemes:

the service rate of each FE is calculated based on the average

arrival rate of packets; during traffic bursts, packet arrival rates

can be much more than the system can handle.

F. Simulation Results

Figs. 5 and 6 show packet loss rates of different adaptation

policies under varying buffer sizes for the UofA and the IPLS

traces. For both traces, the hash-only scheme (no adaptation)

has the highest loss rate and, moreover, increasing buffer size

does not help. On the other hand, the three adaptation schemes

all respond positively to buffer increases. PM achieves the best

loss rates compared to BOT and MQLT.

Fig. 7 shows that changes in buffer size have very slight ef-

fects on adaptation disruption for the three adaptation schemes,

except when the sizes are small. The hash-only policy does

not shift flows from one FE to another and therefore does not

incur any adaptation disruption. The PM strategy has the highest

adaptation disruption and this explains why it achieves the the
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Fig. 6. Loss rate versus buffer size (with the IPLS trace).

Fig. 7. Adaptation disruption versus buffer size (the same setting as Fig. 5).

best loss rate: it re-maps the aggressive flow much more fre-

quently than BOT and MQLT. The difference in adaptation dis-

ruption between MQLT and BOT is small; it seems that MQLT

achieves better loss rates (Fig. 5) than BOT at the cost of a little

more adaption disruption.

An important parameter of the adaptation policies is the

checking period. It controls the system’s responsiveness to

load imbalance. The smaller the interval, the more quickly the

system responds to load imbalance; this leads to lower packet

loss rate. On the other hand, system load checking is one of the

major parts of the adaptation overhead and could cause more

adaptation disruption. Frequent load checking also consumes

more CPU cycles.

Figs. 8 and 9 show how the checking interval affects loss rate

and adaptation disruption. Generally, the decrease in respon-

siveness to load imbalance leads to more packet loss. Fig. 8

shows that compared with PM and MQLT, BOT (with 80% oc-

cupancy threshold value) is more susceptible to checking period

increases. Fig. 9 shows that increasing the checking period is ef-

fective in reducing adaptation disruption.

Simulations with other traces show similar trends to the above

results for the UofA and IPLS traces. Differences in scale are

caused by the peculiarities of the largest flows in the individual

traces. For example, as shown in Table II, the largest flow in the

Auck4 trace is not significantly larger than the second, which

is unlike the UofA trace where a single largest flow dominates.

This implies that, for the Auck4 trace, scheduling only the one

Fig. 8. Loss rate versus checking period. (The buffer size is 400 packets. The
other parameters are the same as those of Fig. 5.)

Fig. 9. Adaptation disruption versus checking period (the same setting as
Fig. 8).

largest flow might not be able to spread load evenly over mul-

tiple processors. This can be solved partly by adding more flows

into the flow table at the cost of more adaptation disruption.

In the following simulations, we experiment with the Auck4

trace to study the effect of scheduling a larger number of aggres-

sive flows on packet loss rate, adaptation disruption, and packet

reordering. The results are shown in Figs. 10–12. In each figure,

the axis denotes the number of most aggressive flows. That is,

represents the case when only the most aggressive flow

in the trace is used in load balancing; means the largest

two flows are scheduled, and so on.

Fig. 10 shows the effectiveness of scheduling more aggressive

flows in reducing loss rates for the Auck4 trace for the three

adaptive policies. It seems that for a given configuration, beyond

a certain number of aggressive flows, the benefit of scheduling

more flows becomes negligible. On the other hand, as shown in

Fig. 11, adaptation disruption increases linearly with the number

of flows scheduled. Therefore, it is both important and desirable

to limit the number of flows in the flow table.

Fig. 12 shows simulation results of packet reordering rates for

the Auck4 trace. Like adaptation disruption, packet reordering

is affected mainly by the number of flows shifted. Among the

three triggering policies, BOT performs best.

To further illustrate the advantages of shifting the most

aggressive flows, we compare the results of two simulations:
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Fig. 10. The effectiveness of scheduling more aggressive flows. (The checking
period is 20 and the buffer size is 400. The other parameters are the same as those
in Fig. 5.)

Fig. 11. The effects of scheduling more flows on adaptation disruption (with
the same setting as Fig. 10).

Fig. 12. The effects of scheduling more flows on packet reordering (with the
same setting as Fig. 10).

scheduling only the most aggressive flow (MAF) and sched-

uling only a number of less aggressive flows (LAF) to achieve

similar loss rates as with shifting MAF. In the simulations,

the MAF is the largest flow identified in the flow table by the

aggressive flow detection mechanism described in Section VI.

The LAFs are the second largest, the third largest, etc., in the

same flow table. We simulate the PM policy with a 20-packet

checking period.

TABLE IV
COMPARISON BETWEEN SHIFTING ONLY THE MOST AGGRESSIVE FLOW AND

SHIFTING ONLY LESS AGGRESSIVE ONES

Note that the simulations for each trace are designed to

achieve similar loss rates. If system throughput can be ex-

pressed as forwarding rate, the throughput achieved by the two

scheduling strategies is similar, too. What we want to show are

the differences in the CV, the adaptation disruption, and the

reordering rate under the two schemes for each trace.

Table IV summarizes the results for four traces. With similar

packet loss rates , MAF scheduling always causes less adap-

tation disruption and packet reorders . For the Auck4,

IPLS, UofA traces, MAF scheduling also balances load better,

as shown by the smaller CV. More than one LAF is always

needed to achieve similar packet loss rates as MAF scheduling.

The least number of LAFs needed is two, as in the SDSC case

where scheduling LAFs achieves a lower miss rate and .

One reason might be that in the SDSC trace, the MAF identi-

fied by the mechanism in Section VI only accounts for a small

portion of the total traffic, not significant enough for the MAF

scheduling strategy to outperform LAF scheduling by a large

margin. The other extreme is the UofA trace, where the MAF

by itself represents around 16% of the aggregate traffic; when it

is scheduled onto an FE, even if the rest of the traffic is spread

evenly among the other seven FEs (each 12%), the system is still

not perfectly balanced.

It is important to note that the arrival rate for the Auck4

trace (see Table III) used to decide the FE service rates (9) in the

simulations of Figs. 10–12 is the average rate over five hours.

Arrival rates during shorter intervals may be much higher. For

example, the arrival rate for the first one million packets in the

Auck4 trace is 1.3 times the average rate. The service rate of the

system, however, is only 1.25 times the average arrival rate. In

such situations, packet losses occur regardless of the scheduling

scheme. Therefore, under similar adaptation configurations, dif-

ferences in arrival rate variability account for different loss rates,

adaptation disruption, and packet reordering rates, for different

traces.

VIII. CONCLUSION

The highly skewed Internet flow size distribution has pro-

found implications for Internet forwarding system design. First,
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we have proved in this paper that the Zipf-like flow popularity

distribution, which has infinite mean and variance, is a major

source of load imbalance in a hash-based packet dispatching

scheme. Second, to measure the efficiency of adaptive sched-

uling schemes, we introduce a new metric, the adaptation dis-

ruption, which quantifies the effect of adaptive algorithms on

cache performance and is an important touchstone for evalu-

ating overall parallel forwarding system performance. Third,

flow-level Internet traffic characterization inspires the classifica-

tion of flows into two categories: the aggressive and the normal.

By applying different scheduling policies to the two classes, we

have been able to build a highly effective and efficient scheduler

that can be used in parallel Internet forwarding devices.

Instead of migrating flows, regardless of their nature, from

heavily load FEs to less loaded ones, our scheduler shifts only

a few aggressive flows when the system is unbalanced. Ma-

nipulating these flows is effective because they are the major

source of load imbalance. At the same time, since their number

is small, migrating only these flows has the potential to cause

little adaptation disruption to the FE’s cache. We expect much

higher disruption in adaptive load balancing schemes that do not

take flow size distribution into account. Experiments show that

due to temporal locality in Internet traffic, the aggressive flows

can be readily identified, which indicates that the proposed load

balancer is highly feasible.

Highly skewed popularity distributions exist in workloads for

many network systems. Dividing these workloads into two or

more categories and treating each group differently is a general

idea that could be effective in improving system performance.

For example, WWW server cluster systems could benefit from

hash-based load distribution schemes, e.g., HRW, to improve

cache hit rate and to reduce response time. It is pointed out in

[5], however, that requests for a hot object alone could present

enough load to swamp a server. Such systems could implement

object replication for the most popular objects so that these ob-

jects have copies on more than one servers and object space

partition by hashing for the other not-so-popular objects so that

each server only hosts a partition of these objects. A load dis-

tribution scheme similar to the one outlined in this paper could

then be used to balance the load. For such systems, a centralized

scheduling mechanism is essential.
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