
Load Balancing in Cloud Computing Systems Through Formation of Coalitions in a

Spatially Generalized Prisoner’s Dilemma Game

Jakub Gasior

Systems Research Institute, Polish Academy of Sciences

Warsaw, Poland

E-mail: j.gasior@ibspan.waw.pl

Franciszek Seredynski

Polish-Japanese Institute of Information Technology

Warsaw, Poland

E-mail: sered@pjwstk.edu.pl

Department of Mathematics and Natural Sciences

Cardinal Stefan Wyszynski University

Warsaw, Poland

E-mail: sered@pjwstk.edu.pl

Abstract—The efficiency, in terms of load balancing and
scheduling problems as well as security of both communication
and computation processes, belong to the major issues related
to currently built cloud computing systems. We present a
general framework to study these issues and our research goal
is to develop highly parallel and distributed algorithms working
in environments where only local information is available. In
this paper we propose a novel approach to dynamic load
balancing problem in cloud computing systems. The approach
is based on the phenomena of self-organization in a game-
theoretical spatially generalized Prisoner’s Dilemma model
defined on the two-dimensional cellular automata space. The
main concept of self-organization used here is based on the
formation of temporal coalitions of participants (computational
nodes) of the spatial game in the iterative process of load
balancing. We present the preliminary concept design for the
proposed solution.

Keywords-Cloud computing; Cellular automata; Load-
balancing; Spatial prisoner’s dilemma.

I. INTRODUCTION

Cloud computing is one of the emerging developments in

distributed, service-oriented, trusted computing. It offers the

potential for sharing and aggregation of different resources

such as computers, storage systems data centers and dis-

tributed servers. The goal of a cloud-based architecture is to

provide some form of elasticity, the ability to expand and

contract capacity on-demand. That means there needs to be

some mechanism in place to balance requests between two

or more instances of client’s applications. The mechanism

most likely to be successful in performing such a task is a

load balancer.

It provides the means by which instances of applications

can be provisioned automatically, without requiring changes

to the network or its configuration. It automatically handles

the increases and decreases in capacity and adapts its distri-

bution decisions based on the capacity available at the time

a request is made.

In this paper, we consider the aspect of effective load

balancing, i.e., the process of distributing the load among

various nodes of a distributed system to improve both

resource utilization and job response time. The load can

be defined as CPU load, memory capacity, delay, network

load, etc. We formulate a purely theoretical conceptual

model defined as follows: given a set of virtual resources

in the Cloud (M1,M2, ...,Mn), a number of cloud clients

(U1, U2, ..., Uk) and a random set of applications (also jobs

or tasks) run by the clients (J1, J2, ..., Ji), find such an

allocation of jobs to the resources to equalize the system

workload [1].

We are interested in parallel and distributed algorithms

working in environments with only limited, local informa-

tion. Therefore, we propose a game-theoretical approach

combining a spatially generalized Prisoner’s Dilemma (SPD)

model and the cellular automata (CA) paradigm. Each

computational node is presented as a selfishly rational agent.

Such a problem formulation is alike to a CA in the sense that

the strategy first determines the rule based on the neighbors’

configuration and the rule in turn determines the next action

[2].

Competing players in such a system should act as a

decision group choosing their actions in order to realize a

global goal. Main issues that must be addressed here are: a)

incorporating the global goal of the multi-agent system into

the local interests of all agents participating in the game;

and b) such a formulation of cellular automata’s local rules,

that will allow to achieve those interests [12].

The paper is organized as follows. The following section

presents the basic concepts of spatial Prisoner’s Dilemma

game and cellular automata theory. Section 3 presents our

mathematical model of cloud computing system. Section

4 details the load-balancing algorithm from the game the-

oretical point of view. Finally, Section 5 provides some

concluding remarks.

II. PRISONER’S DILEMMA AND CELLULAR AUTOMATA

The concept of the evolution of cooperation has been

successfully studied using various theoretical frameworks.

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Table I
A GENERAL PRISONER’S DILEMMA PAYOFF MATRIX

Cooperate Defect

Cooperate (R,R) (S,T)

Defect (T,S) (P,P)

In particular the Prisoner’s Dilemma (PD) is one of the

most commonly employed games for that purpose, a type of

non-zero sum game played by two players who can choose

between two moves, either to cooperate with or defect

from the other player. The problem is called the prisoner’s

dilemma, because it is an abstraction of the situation felt

by a prisoner who can either cut a deal with the police and

tell on his partner (defect) or keep silent and therefore tell

nothing of the crime (cooperate). While mutual cooperation

yields the highest collective payoff, which is equally shared

between the two players, individual defectors will do better

if the opponent decides to cooperate. The key tenet of this

game is that the only concern of each individual player is to

maximize his payoff during the interaction, which sets the

players as naturally selfish individuals.

The dilemma arises when a selfish player realizes that

he can not make a good choice without knowing what the

opponent will do. Non-zero sum describes a situation where

the winnings of one player are not necessarily the losses of

the other [4]. As such, the best strategy for a given player is

often the one that increases the payoff to the other player as

well. Table I shows a general payoff matrix, which represents

the rewards an entity obtains depending on its action and

the opponent’s one. In this matrix, T means the Temptation

to defect, R is the Reward for mutual cooperation, P the

Punishment for mutual defection and S the Sucker’s payoff.

To be defined as a PD, the game must accomplish the

condition T > R > P > S.

This payoff structure ensures that there is always the

temptation to defect since the gain for mutual cooperation

is less than the gain for one player’s defection. The out-

come (D,D) is therefore a Nash equilibrium - despite the

knowledge and awareness of the dilemma, both players opt

to defect even though both know they are going to receive

inferior scores [7]. In terms of evolutionary game theory

defection is the unique evolutionary stable strategy (ESS)

[8].

Nowak and May [3] have proposed a way to escape from

the dilemma. A variation of prisoner’s dilemma game work-

ing in the two-dimensional cellular automata space where

agents are mapped onto a regular square lattice with periodic

boundary conditions. In every round, players interact with

the immediate neighbors according to a strategy. The fitness

of each individual is determined by summing the payoffs

in games against each of its neighbors. The scores in the

neighborhood, including the individual’s own score, are

typically ranked. In the next round, all individuals update

their strategy deterministically. This approach is typical for

cellular automata models. From a biological perspective, the

utility of an individual is interpreted in terms of reproductive

success. Alternatively, from an economic perspective, the

utility refers to individuals adapting their strategy to mimic

a successful neighbor [7].

Nowak and May have shown that such spatial structure

enables the maintenance of cooperation for the simple

Prisoner’s Dilemma, in contrast to the classical, spatially

unstructured Prisoner’s Dilemma where defection is always

favored. It was determined that players do not need to

play the game with the whole population. By making this

assumption, different equilibria are likely to be established

in different neighborhoods. More importantly, the spatial

structure allows cooperators to build clusters in which the

benefits of mutual cooperation can outweigh losses against

defectors [2]. Thus, clusters of cooperative strategies can

invade into populations of defectors that constitute an ESS

in non-spatial populations [3].

III. PROBLEM FORMULATION

In this section, we formally define basic elements of

the model and provide corresponding notation. Then, we

define possible characteristics of the model that change the

available information and the type of jobs to be scheduled.

For the sake of simplicity, it is assumed that every node

placed on a two-dimensional cellular automata represents a

virtualized resource (Mk) - an abstraction of an entity that

process jobs. Computational power Ck of a certain resource

Mk is defined by a number of operations per unit of time it is

capable of performing. We distinguish between cooperative

(job taking) nodes and selfish (non-job taking) nodes. The

motivation for non-cooperative nodes to enter the cloud is to

just use resources to fulfill their own processing tasks in the

role of clients and refuse to contribute as a worker (although

they could due to their capabilities). Note that if nodes do

not benefit from cooperation incentives (e.g., the possibility

to submit jobs to others in the future), selfishness will be

the optimal strategy for each node.

Job (denoted as Jk) is an equivalent of application run

by the cloud clients. Every application is independent and

has no link between each other whatsoever, e.g., some

require more CPU time to compute complex tasks, and some

may need more memory to store data, etc. Resources are

sacrificed on activities performed on each individual unit

of service. In order to measure direct costs of applications,

every individual use of resources (i.e., CPU cost, memory

cost, I/O cost) must be measured. To simplify the problem,

we assume that job is simply an entity that, in order to be

completed, requires an access to a resource during certain

time pk. For the sake of the theoretical analysis, unless

otherwise stated, we assume that the jobs Jk are produced by

a Poisson process. The size of a job is known immediately

after the job has arrived to the system. At any given time,

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

let the local load Lk stand for the time moment when the

computation of the last currently known local job ends, thus

it can be defined as ratio between total size of node’s queued

jobs and its computational power:

Lk =

∑n

i=1
pik

Ck

, (1)

where: n stands for the total number of jobs assigned to a

single node.

Informally, the goal of the scheduler is to find the

allocation and the time of execution for each job. The

distribution of the tasks must be done in such a way that

the system’s throughput is optimized. All scheduling and

load balancing decisions are taken locally by the agents.

The algorithm analyzes the node’s status in terms of its

utilization and capabilities. This status is matched against

the job’s requirements (as given by the job’s meta-data, pk)

considering user-configurable policies that define the desired

degree of resource contribution. Subsequently, each node

may begin execution of assigned tasks, or split them among

its neighbors.

Ideally, each node should receive the same (or nearly

the same) number of tasks. If the same amount of work

is associated with all the nodes, equal distribution of tasks

ensures a good load balance. This statement holds true

assuming that communication cost between neighbor nodes

is negligible. However, such an assumption is unlikely to

be fulfilled in real-world environments. Thus, we introduce

one more parameter defining the amount of time needed

to transfer the workload from one node to another and

denote it as qij , where: i and j stand for identifiers of

nodes participating in the exchange. For simplicity’s sake,

we assume that communication cost between neighbor nodes

is equal to one, and grows linearly with each additional cell,

except, of course a node may communicate with itself at no

cost.

It is important to note that, in this work we make very

few assumptions. We can deal with either static or dynamic

load. The network topology can be of any type as long as it

is connected. Nodes and networks can be homogeneous or

heterogeneous. Load balancing algorithms are operating in a

fully localized, distributed fashion. The required knowledge

is limited to the computation speed, local workload of the

neighbors and the computation time per one unit of load.

All these information are supposed to be given, calculated

or estimated.

IV. THE DYNAMIC LOAD BALANCING PROBLEM

We wish to distribute the workload among resources of

the system to minimize both: a) load imbalance and b)

communication cost between them. For that purpose, a set of

cellular automata’s local rules must be evolved according to

a specific utility function. Let us start by defining the cost and

the benefit of a load balancing process. The cost is the time

lost by exchanging the workload, due to communication.

The benefit is the time gained by exchanging the workload,

due to a better balance and faster execution of tasks.

Let Eij stand for the exchange of workload between

nodes i and j. The benefit given by the exchange Eij can

be estimated by the computation time on i and j without

the exchange minus the computation time on i and j after

this exchange [1]. Intuitively, the benefit of a load exchange

must be positive if the computation time is reduced by this

exchange and negative in the other case. The following

equation denotes the benefit of load balancing scheme,

assuming that node i transfers workload to node j:

Benefit(Eij) = max(Li, Lj)−

max(Li − Eij , Lj + Eij), (2)

where Li and Lj define local loads on nodes i and j,

respectively. Let us now consider the communication part of

the load balancing process. The cost of communication from

one node to another depends on the network architecture

(i.e., network bandwidth, network traffic, buffer size). A

truly portable load balancing algorithm would have no

option but to send sample messages around and measure

those metrics, then distribute the workload appropriately. In

this paper, however, we shall avoid this question by assuming

that all pairs of computational resources are equally far apart.

We can make the assumption that the total communication

cost is equal to the amount of time needed to transfer the

workload from node i to node j (denoted as qij) and thus:

Cost(Eij) = qij . (3)

Additionally, we make an assumption that any node which

took part in the balancing operation is obliged to return

resulting data to the originating node. This issue can be

solved by simply propagating the results backwards through

the initial load balancing route. Such a problem formulation,

however, may become ineffectual in a case of large quantities

of workload being shared among many neighboring nodes.

It is possible, that in such a case, there exist an alternative

way back to the originating node; shorter than original load

balancing route. The issue is illustrated in Figure 1, where A,

represents source node, and B represents destination node.

Green line indicates original load balancing route, while red

line shows the optimal way back.

We propose a simple solution to this problem by imple-

menting a gradient-based communication model. We define

the node’s proximity (P) as the shortest distance from itself

to the sender node. All cells are initialized with a proximity

of Pmax, equal to the diameter of the system lattice. The

proximity is set to 0 if node becomes overloaded and its state

changes to sender. All other nodes i with local neighbors ni,

compute their proximity as:

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. The issue of determining communication cost between source

node (A) and destination node (B). Green route shows original communi-
cation route according to the load balancing algorithm. Red route indicates
an alternative (optimal) way back.

P (i) = min(P (ni)) + 1. (4)

The resulting proximity map is later used used to perform

the migration phase. Results are routed through the system

in the direction of the sender node (Figure 2).

Figure 2. The gradient-based communication model. Computational nodes
send results in the direction of the sender node (red) via the gradient map
of proximity values. Cellular automata space comprises the von Neumann
neighborhood - the four cells orthogonally surrounding a central cell on a
two-dimensional square lattice.

Given this parameter, the cost function of load balancing

process from Equation 3 can now be extended and denoted

as:

Cost(Eij) = qij + P (i), (5)

assuming that node i is transferring its workload to node

j. Such a formulation is possible because node’s proximity

is equal to the amount of time needed for propagating the

results back to the originating node. Additionally, it ensures

that load balancing profitability is decreasing linearly with

an increase in distance from the source.

We may now construct our utility function, Γ, as the sum

of parts describing benefits and costs of the load balancing

operation, respectively:

Γ =
∑

k

Benefit(Ek
ij)− µ

∑

k

Cost(Ek
ij), (6)

where: k denotes the amount of workload exchanged be-

tween neighbor nodes and µ is a parameter expressing the

Table II
THE PRISONER’S DILEMMA RESCALED PAYOFF MATRIX

C (Send load) D (Compute locally)

C (Accept) Γ/2, Γ/2 0, 0

D (Reject) Γ, 0 0, 0

balance between the two aspects of load balancing scheme -

communication and computation. For programs with a great

deal of calculation compared to communication, µ should

be relatively small, and vice versa. As µ increases, the

number of processors in use will decrease until eventually

the communication is so costly that the entire calculation

must be done on a single node. Score calculated according to

Γ is awarded to every node taking part in the load balancing

scheme. Its magnitude is strictly dependent on agent’s action

taken in the PD game as shown in Table II.

After s (strategy update cycle) steps of interactions with

the neighbors, all nodes are presented with an opportunity

to update their strategy in a similar manner to the standard

SPD game. The present set of strategy imitation rules

is based on pairwise comparison of payoffs between two

neighboring agents. In each subsequent elementary step of

the evolutionary process we choose two neighboring players

(i and j) at random, we determine their payoff Gi and Gj ,

and player i adopts the strategy sj with a probability given

by the Fermi-Dirac distribution function as proposed in [9]:

W (si ← sj) =
1

1 + exp[(Gi −Gj)/K]
, (7)

where: K characterizes the uncertainty related to the strategy

adoption process, serving to avoid trapped conditions and

enabling smooth transitions towards stationary states [5].

It is well known that there exists an optimal intermediate

value of K at which the evolution of cooperation is most

successful [6, 10], yet in general the outcome of the PD

game is robust to variations of K. For K ≪ 1, selection

is weak and the payoffs are only a small perturbation of

random drift. For K ≫ 1, selection is strong and the

individual with the lower payoff will change its strategy.

In statistical physics, K is the inverse temperature: for

K → 0, the dynamics of the system is dominated by

stochasticity (the temperature of selection is high), whereas

in the limit K →∞ stochastic effects can be neglected (the

temperature of selection is zero) [11]. This phenomenon is

fully illustrated in Figure 3. Without much loss of generality,

we use K = 0.1, meaning that it is very likely that the better

performing players will pass their strategy to other players,

yet it is not impossible that players will occasionally learn

also from the less successful neighbors.

It can be seen that agent’s performance in the dynamic

load balancing scheme directly affects its scores acquired in

the PD game, by shifting the magnitude of payoff values.

Thus, agent with a more effective balancing strategy will

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

W

Gi - Gj

K=0.01
K=0.1

K=0.3
K=0.5

K=0.8
K=1

K=2
K=5

Figure 3. Strategy adaptation probability graph as a function of the
payoff difference and variable K, characterizing the uncertainty related to
the strategy imitation process.

acquire higher scores in the PD game, which in turn will

increase the probability of imitating that strategy by his less

successful neighbors and propagating it in the system. This

in turn should lead to an optimal load distribution in the

cloud computing environment.

V. CONCLUSION AND FUTURE WORK

We have proposed in this paper a novel paradigm for a

parallel and distributed evolutionary computation in cloud

computing systems based on the model of spatio-temporal

Prisoner’s Dilemma game. We presented the rules of a local

interaction among agents providing a global behavior of

the system as well as the analysis of costs and benefits of

workload exchange. Game-theoretic approach allowed us to

model organizational heterogeneity of cloud computing sys-

tems. Currently, the model is a subject of the experimental

study.

Our future work is threefold. Firstly, we want to further

enhance our model in order to study the problem of evolution

of global behavior and formation of coalitions between

agents. Secondly, we intend to extend the model to enhance

security of both communication and data processing. In

particular, we want to focus on aspects of reputation and

cryptography. This could be important, for instance, when

agents have to decide which action to take against outsiders.

If these outsiders have a reputation degree, such information

could be used in the decision-making process. Also, rep-

utation may turn important among members of coalitions

themselves, for instance to decide when coalitions should

be dissolved. Finally, we would like to port this solution to

real-world scenarios that involve data networks such as P2P,

sensor, and ad-hoc networks.

ACKNOWLEDGMENT

This contribution is supported by the Foundation for

Polish Science under International PhD Projects in In-

telligent Computing. Project financed from The European

Union within the Innovative Economy Operational Pro-

gramme 2007-2013 and European Regional Development

Fund (ERDF).

REFERENCES

[1] E. Jeannot and F. Vernier, “A practical approach of diffusion
load balancing algorithms,” pp. 211–221, 2006. [Online]. Available:
http://dx.doi.org/10.1007/11823285 22

[2] Y. Katsumata and Y. Ishida, “On a membrane formation in a
spatio-temporally generalized prisoner’s dilemma,” pp. 60–66, 2008.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-79992-4 8

[3] M. Nowak and R. May, “Evolutionary games and spatial chaos,”
Nature 359, pp. 826–829, 1992.

[4] M. Osborne, An Introduction to Game Theory. USA: Oxford
University Press, 2003.

[5] M. Perc and A. Szolnoki, “Social diversity and promotion of
cooperation in the spatial prisoner’s dilemma game,” Physical

Review E 77, vol. 77, p. 011904, Jan 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.77.011904

[6] M. Perc, “Coherence resonance in a spatial prisoner’s dilemma game,”
New Journal of Physics, vol. 8, no. 2, p. 22, 2006.

[7] G. Rezaei and M. Kirley, “The effects of time-varying rewards
on the evolution of cooperation,” Evolutionary Intelligence, vol. 2,
pp. 207–218, 2009, 10.1007/s12065-009-0032-1. [Online]. Available:
http://dx.doi.org/10.1007/s12065-009-0032-1

[8] J. M. Smith, Evolution and the Theory of Games. Cambridge
University Press, 1982.

[9] G. Szabó and C. Tőke, “Evolutionary prisoner’s dilemma game on a
square lattice,” Phys. Rev. E, vol. 58, pp. 69–73, Jul 1998. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevE.58.69

[10] G. Szabó, J. Vukov, and A. Szolnoki, “Phase diagrams for prisoner’s
dilemma game on two-dimensional lattices,” Physical Review E,
vol. 72, p. 047107, 2005.

[11] A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic payoff
evaluation increases the temperature of selection,” Journal of Theo-

retical Biology, vol. 244, no. 2, pp. 349–356, 2007.
[12] M. Wooldridge, An introduction to multiagent systems. John Wiley

& Sons, 2009.

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

