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Abstract—Modern computer applications, especially at
enterprise-level, are commonly deployed with a big number of
clustered instances to achieve a higher system performance, in
which case single machine based solutions are less cost-effective.
However, how to effectively manage these clustered applications
has become a new challenge. A common approach is to deploy
a front-end load balancer to optimise the workload distribution
between each clustered application. Since then, many research
efforts have been carried out to study effective load balancing
algorithms which can control the workload based on various
resource usages such as CPU and memory. The aim of this
paper is to propose a new load balancing approach to improve
the overall distributed system performance by avoiding potential
performance impacts caused by Major Java Garbage Collection.
The experimental results have shown that the proposed load
balancing algorithm can achieve a significant higher throughput
and lower response time compared to the round-robin approach.
In addition, the proposed solution only has a small overhead
introduced to the distributed system, where unused resources
are available to enable other load balancing algorithms together
to achieve a better system performance.

I. INTRODUCTION AND RELATED WORK

Enterprise applications commonly require to achieve fast

response time and high throughput to constantly meet their

service level agreements. These applications make wide use

of variants of distributed architectures, usually using some

form of load balancing to optimise their performance. Since

then researchers have made efforts to improve the business

intelligence of load balancers to effectively manage workloads.

For example, the authors of [11] proposed a technique to

estimate the global workload of a load balancer to use this

information in the balancing of new workload. Meanwhile, the

work on [5] presented a framework for processor load balanc-

ing during the execution of application programs. Regarding

Java technologies, the authors of [2] enhanced a load balancing

algorithm for Java applications by considering the utilisation of

the JVM threads, heap and CPU to decide how to distribute the

load. Similarly the work in [6] proposes a function to calculate

the utilisation of an Enterprise JavaBean (EJB) and then uses

this information to balance the load among the available EJB

instances. However, Garbage Collection (GC) metrics have not

been considered so far. This gap offers an interesting niche

which is yet to be exploited.

GC is a core feature of Java which automates most of

the tasks related to memory management. However, when the

GC is triggered, it has an impact on the system performance

by pausing the involved programs. Even though milliseconds

pauses caused by GC does not necessarily lead to a harmful

problem, delays of hundreds of milliseconds, let alone full

seconds, can cause trouble for applications requiring fast

response time or high throughput. This is more likely to occur

in the Major Garbage Collection (MaGC), which has the most

expensive type of GC pauses [15].

Many research studies have provided evidence to quantify

the performance costs of the GC. For example, in [18] authors

identified the GC as a major factor degrading the behaviour

of a Java Application Server (a traditional Java business

niche) due to the sensitivity of the GC to the workload. In

these experiments the GC took up to 50% of the execution

time of the Java Virtual Machine (JVM), involving pauses as

high as 300 seconds. The MaGC represented 95% of those

pauses on the heaviest workload. Similarly, a survey conducted

among Java practitioners [14] reported GC as a typical area

of performance issues in the industry. For these reasons, it

is commonly agreed that the GC plays a key role in the

performance of Java systems.

The goal of this work is to predict the MaGC events and

use this information in the decision making process of a load

balancer to improve the system performance. Our solution con-

sists of two algorithms. A load balance algorithm which avoids

sending any incoming workloads to the application nodes

which are likely to suffer MaGC, and a forecast algorithm

to predict the MaGCs. The experiment results have shown

that this strategy offers a significant performance gain: The

average response time of the tested applications decreased be-

tween 74% and 99%, while the average throughput increased

between 4% and 51%.

In summary, the contributions of this paper are:

1) A novel load balance algorithm that uses MaGC forecasts

to improve the performance of distributed Java systems.

2) A novel forecast algorithm that enables Java systems to

predict when a MaGC event will occur.

3) A validation of the algorithms consisting of a prototype

and two experiments. The first proves the accuracy of

the MaGC forecast. The second demonstrates the perfor-

mance benefits of using the forecast for load balancing.



II. BACKGROUND

Memory Management in Java. GC is a form of automatic

memory management which offers significant software engi-

neering benefits over explicit memory management: It frees

programmers from the burden of manual memory manage-

ment, preventing the most common sources of memory leaks

and overwrites [17], as well as improving the programmer’s

productivity [9]. Despite these advantages, the GC comes with

a cost (as discussed in Section I).

Nowadays the most common heap type in Java is the

generational heap1, where the objects are segregated by age

into memory regions called generations. New objects are

created in the Youngest generation. The survival rates of

younger generations are usually lower than those of older

ones, meaning that younger generations are more likely to

be garbage and can be collected more frequently than older

ones. The GC in the younger generations is known as Minor

GC (MiGC). It is usually inexpensive and rarely causes a

performance concern. MiGC is also responsible of moving

the live objects which have become old enough to the older

generations, meaning that the MiGC plays a key role in the

memory allocation of older generations. The GC in the older

generations is known as MaGC and is commonly accepted as

the most expensive GC due to its performance impact[15].

Also, it is not possible to programmatically force the

execution of the GC [7]. The closest action a developer can

perform is to call the method System.gc() to suggest the JVM

to execute a MaGC. However, the JVM is not forced to fulfill

this request and may choose to ignore it. The usage of this

method is discouraged by the JVM vendors2 because the JVM

usually does a much better job on deciding when to do GC.

Garbage Collection Optimisation & Memory Forecast.

Multiple research works have proposed new GC algorithms

[3], [4], [10], [12] that have smaller performance impacts on

the applications. Even though all these works have helped to

reduce the impact of the MaGC, GC remains a concern due

to the different factors that can affect its performance.

Memory forecast is also an active research topic, looking

for ways to invoke a GC only when it is worthwhile. For

example, the work presented in [16] exploits the observation

that dead objects tend to cluster together to estimate how much

space would be reclaimable to avoid low-yield GCs. However

memory forecasts alone do not provide enough information to

know when the next MaGC would occur.

III. PROPOSED SOLUTION

A. Use case: Adaptive Load Balancer

In a distributed Java system, it is preferable that the oc-

currence of MaGCs in the individual nodes do not affect the

performance of the system. To achieve this goal, a system can

take different actions. For instance, a system might change

1http://www.oracle.com/technetwork/java/javase/memorymanagement-
whitepaper-150215.pdf

2http://docs.oracle.com/cd/E13150 01/jrockit jvm/jrockit/geninfo/devapps/-
codeprac.html

its workload schedule to avoid the impact of the MaGCs or

encourage a MaGC when a resource load (i.e. CPU) is low.
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Fig. 1. Adaptive Load Balancer

Among the potential use cases, our work centered on

enhancing the performance of a load balancer. This use case

was selected because variants of this distributed architecture

are commonly used at enterprise-level. This scenario is shown

in Figure 1, where the load balancer selects those nodes

which are less likely to suffer a MaGC pause as optimal

nodes for given workloads. This strategy can keep the system

performance safe from any major MaGC pauses.

B. Major GC Forecast Algorithm

The next sections describe our proposed forecast algorithm.

The below definitions will be used on the algorithm discussion:

Time is always expressed as the number of milliseconds

that have passed since the application started.

Young/Old Generation Samples are composed of a times-

tamp and the usage of the corresponding memory generation.

MiGC sample is composed of the start time, the end time

and the memory usage before and after the latest MiGC event.

Observations are used in a statistical context and are

composed of one independent and one dependent values.

When the dependent value does not contain historical data,

the observation is referred as a forecast observation.

Steady state is the state an application reaches after the

JVM finishes loading all its classes. It is assumed that this

state has been reached if the number of loaded classes remain

unchanged for a certain number of consecutive samples.

Fig. 2. MaGC Forecast Process - Overview

1) Algorithm Overview: Figure 2 depicts an overview of

the algorithm, which is composed of five main phases. First

the Initialisation which sets the parameters required by the

algorithm. After it occurs, the other phases are iteratively



done to produce MaGC forecasts continuously: New samples

are retrieved from the monitored JVM in the Data Gathering

phase. Then new observations are generated using the new

samples in the Observations Assembly phase. Next the Fore-

cast Calculation occurs. Finally, the logic awaits a Sampling

Interval before a new iteration starts. This loop continues until

the monitored application finishes.

Our algorithm is designed to work on generational heaps, as

it is the most common type of Java heap. It only uses standard

data that can be obtained from any JVM (such as GC) to make

it easy to implement either within or outside the JVM. If the

algorithm is implemented within the JVM, the interaction with

potential consumers would be simplified. If it is implemented

outside the JVM, the implementation would work with any

JVM currently available, facilitating the adoption.

2) Detailed Algorithm: It is presented in Algorithm 1, and

its phases are explained in the following sections.

Algorithm 1: MaGC Forecast

Input: Sampling Interval, Forecast Window Size,

Warm-up Window Size

Output: Forecast time of the next MaGC event

1 steadyState := not reached

2 while forecast is needed do

3 Get new OldGen sample

4 if steadyState is not reached then

5 Get new loaded classes sample

6 if warm-up period is over then

7 steadyState := reached

8 Get new MiGC sample

9 Calculate new memory deltas

10 Update memory totals

11 Generate new observations

12 if steadyState is reached then

13 Forecast memory pending to be allocated

14 Forecast time of the next MaGC event

15 Wait the Sampling Interval

Initialisation. Here the configuration parameters are set:

• Sampling Interval: How often the samples are collected.

• Forecast Windows Size (FWS): How many observations

are used as historical data in the forecast calculation.

• Warm-up Window Size: How many samples are used to

determine if the application has reached its steady state.

Data Gathering. Its objective is to capture an updated

snapshot of the monitored JVM. It starts by collecting a

new Old Generation sample. Then, if the application has not

reached the steady state yet, a new loaded classes sample is

collected and its history is reviewed. If the warm-up period is

over, a flag is set to indicate this. Later a new MiGC sample is

collected and added to the MiGC history. After having samples

from at least two MiGCs, the next metrics are calculated:

• Time between MiGCs (∆ TMiGC): How much time

elapsed between the latest two MiGCs.

• YoungGen Memory Allocation (∆ YMAMiGC): How

much memory was used to create new objects between

the latest two MiGCs.

• OldGen Memory Allocation (∆ OMAMiGC): How much

OldGen Allocation occurred because of the latest MiGC

(meaning that some objects have became old enough to

be moved to the OldGen by the latest MiGC).

The above metrics are added up into their respective totals

(e.g., Total Time between MiGCs) to keep track of how the

metrics grow through time. This data is the key input of the

regression models used by the algorithm, as explained below.

Observations Assembly. Two types of observations are

generated and added to their histories. Each is composed of

one independent (y axis) and one dependent (x axis) values:

The first type (YoungGen-OldGen) captures the relationship

between the memory allocation rates (MAR) in the Young

and Old Generations. This captures how the Old Generation

grows (eventually leading to a MaGC) in relation to the object

allocations requested by the application (which occur in the

Young Generation). In this observation the dependent value is

the Total YoungGen Memory Allocation and the independent

value is the Total OldGen Memory Allocation. The second type

of observation (Time-YoungGen) captures the relationship

between the time and the Young MAR. Here the dependent

value is the Total Time between MiGCs and the independent

value is the Total YoungGen Memory Allocation.

Fig. 3. Old memory exhaustion forecast

Forecast Calculation. This phase first evaluates if the

application has reached the steady state. If so, two projections

are calculated using linear regression models (LRM). The first

projection corresponds to how much memory allocation needs

to occur in the Young Generation before the free memory in

the Old Generation gets exhausted (hence triggering a MaGC).

This is calculated by initializing a LRM with a subset of

YoungGen-OldGen observations (defined by the FWS) and

then feeding the LRM with a forecast observation whose

independent value is the sum of the current Total OldGen Allo-

cation and the free OldGen memory. This is shown in Figure 3.

In this example, the free OldGen memory is 1,000MB. As our

Total OldGen Allocation is also 1,000MB, the independent

value of our forecast observation is 2,000MB. Using the

observations within the FWS (the rounded rectangle), the LRM



predicts how much memory allocation needs to occur in the

YoungGen before the next MaGC occurs (4,500MB).

The second projection is the core output of this algorithm:

The MaGC forecast time. It is calculated by initializing a LRM

with a subset of Time-YoungGen observations and feeding it

with a forecast observation whose independent value is the

result of the first projection. This is represented in Figure 4.

Using the observations within our FWS, the LRM predicts

when the necessary memory allocation in the YoungGen will

occur (4,500MB in our example), consequently triggering the

next MaGC (around the millisecond 13,000 in our example).

Fig. 4. MaGC event forecast

Sampling Wait Period. Finally, the process waits the num-

ber of milliseconds configured in the Sampling Interval before

starting the next round of iterative steps of the algorithm.

C. MaGC-Aware Load Balancing

To assess the performance benefits that can be achieved

by adapting the load balancing based on the MaGC forecast

information, we modified the well-known round robin load

balancing algorithm3. Our proposed algorithm is presented in

Algorithm 2. It requires two inputs: The Number of available

nodes from which the algorithm will select the next node

to send workload; and the MaGC Threshold, which is the

time threshold when a node stops being considered a feasible

candidate because the next MaGC is too close. For example,

if the MaGC Threshold is 5 seconds and the current time is

4:00:00PM, any nodes which report a MaGC forecast between

4:00:00PM and 4:00:05PM will be skipped as their forecasts

fall within the configured MaGC Threshold.

When compared against the normal round robin, our algo-

rithm has two differences. The main one is that it performs

an additional check to adapt the selection of the next node to

a close MaGC event. This check reviews if the pre-selected

node (as per the normal round-robin logic) will suffer a MaGC

within the MaGC Threshold. If it does, the node is skipped

and the next available node is evaluated (lines 11 to 15).

The second change is an escape condition (the forecastTries

variable) which counts the number of evaluated nodes to

3http://publib.boulder.ibm.com/infocenter/wsdatap/4mt/
topic/com.ibm.dp.xa.doc/administratorsguide.xa35263.htm

prevent an infinite loop in case all nodes are about to suffer

a MaGC within the MaGC Threshold. If this occurs, the

algorithm would behave as a normal round robin algorithm.

Algorithm 2: MaGC-Aware Load Balancing

Input: Number of available nodes avNodes, MaGC

Threshold maGCThres

Output: Next available node (nextNode)

1 indexNextNode := 0

2 forecastTries := 0

3 while load balance adaptiveness is needed do

4 nextNode := undefined

5 while nextNode is undefined do

6 indexNextNode := indexNextNode+1

7 if indexNextNode >avNodes then

8 indexNextNode := 1

9 nextNode := indexNextNode

10 if forecastTries <avNodes then

11 Get MaGC forecast of server

indexNextNode

12 remainingTime := forecast Time - current

time

13 if remainingT ime <=maGCThres then

14 nextNode := undefined

15 forecastTries := forecastTries+1

16 else

17 forecastTries := 0

18 else

19 forecastTries := 0

20 use nextNode for the next workload

D. Prototype Implementations

MaGC Forecast Algorithm. This prototype was devel-

oped external to the JVM, using Java Management Extension

(JMX)4 to interact with the monitored JVM. This technology

was chosen because it is a standard component of Java which

can retrieve all needed information (e.g., GCs).

MaGC-Aware Load Balancing Algorithm. This prototype

was built on top of the Central Directory5, which is a light-

weight load balancer. This solution was chosen because it

is open source and developed in Java, characteristics which

facilitated its integration with the MaGC forecast prototype.

IV. EXPERIMENTAL EVALUATION

A. Experiment #1: MaGC Forecast Accuracy

Environment. All experiments were performed in a virtual

machine (VM) equipped with 3 CPUs, 10GB of RAM, and

50GB of HD; Linux Ubuntu 12.04L 64-bit, and Oracle Hotspot

JVM 7. The JVM was configured to initialise its Java Heap to

its maximum size to keep it constant during the experiments.

The calls to programmatically request a MaGC were disabled.

4http://www.oracle.com/technetwork/java/javase/tech/javamanagement-
140525.html

5http://javalb.sourceforge.net/



Java Benchmarks. The DaCapo6 benchmark 9.12 was

chosen because it stresses the GC system more than other

benchmarks (as proved in [1]) and it also offers a wide range

of application behaviours to test. For each benchmark, the

largest Sample size was used (among the available pre-defined

sizes7). Also different Number of iterations (in increments of

5) and Heap sizes (in increments of 50MB) were tried until

achieving successful executions that triggered MaGCs. These

configurations are summarized in Table I.
TABLE I

DACAPO CONFIGURATIONS

Benchmark Sample Size #Iters Heap Size(MB)

avrora large 30 100

batik large 60 50

eclipse large 5 800

h2 huge 5 1600

pmd large 50 400

sunflow large 80 200

tomcat huge 10 100

tradebeans huge 5 800

tradesoap huge 5 800

xalan large 40 50

Also, a Warm-up timeframe of 5 seconds was found to be

big enough to allow all programs to finish loading their classes

before the first forecast was generated.

MaGC Forecast Algorithm parameters. As explained in

Section III-B, this algorithm requires 3 parameters. To evaluate

the behaviour of the algorithm to the FWS, a broad range of

values was tested (2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,

2048 and 4096). A value of 100ms was selected as Sampling

Interval, assuming that no more than one GC would occur

within that timeframe (hence not missing to sample any GC).

Finally, a Warm-up Window Size of 50 was used (the result of

dividing the Warm-up timeframe by the Sampling Interval).

GC strategies. Three of the most commonly used GC

strategies8 in the industry were selected: Serial GC is prefer-

able for client JVMs, Parallel GC is better for server JVMs

except when response time is more important than throughput.

If so, Concurrent GC is preferred.

Metrics. The key metric used was the Forecast Error (FE),

which is the ratio of the absolute forecasting error as a

proportion of the time elapsed since the previous MaGC:

FE =
(FT −RT )

(RT − PRT )
(1)

where FT is the Forecast Time of when the next MaGC will

occur, RT is the Real Time when the MaGC occurs and PRT

is the Real Time when the Previous MaGC occurred. FE=0

means a perfect match between the forecast and the reality.

FE>0 means the real MaGC occurred before the forecast, and

FE<0 means the real MaGC occurred after the forecast. It is

usually expressed as a percentage to be comparable among

different programs. To illustrate the metric, consider a case

where FT was 15 sec since the application started and RT was

14.8 sec. Assuming PRT was 10 sec, FE would be 4.17%.

6http://dacapobench.org/
7http://www.dacapobench.org/benchmarks.html
8http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html

Experimental Results. The objective was to assess the

accuracy of the forecast algorithm. Even though the results

varied among the different GC strategies, it was possible

to achieve a Forecast Error (FE) below 10% for all the

benchmarks. These results are presented in Figure 5.
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Fig. 6. Preferred FWS vs. MiGC AVG

As no single FWS achieved the lowest FE for all bench-

marks, the analysis centered in understanding the factors

behind the preferred FWS. As an initial step, the results were

sorted by the average number of MiGCs between MaGCs

(MiGCAVG). This criterion was chosen because it captures

the relationship between the allocation needs of an application

and the heap size (major factors influencing the GC, as proved

by [8] and [13] respectively). The smaller the MiGCAVG is,

the more frequent the application exhausts its Old Generation

memory. If the value is close to zero (i.e. 5 or less), the applica-

tion is close to an Out-Of-Memory exception. On the contrary,

a value far from zero (i.e. 1,000 or more) indicates that the Old

Generation is infrequently exhausted. The results showed a

relationship between the MiGCAVG and the preferred FWS: If

an application has a high MiGCAVG, a large FWS is preferred

because a small one does not capture the behaviour of the

allocations in the Old Generation, which happens infrequently.

Similarly, if an application has a low MiGCAVG, a small

FWS works better. This tendency is visually shown in Figure 6

and experimentally proved in Figure 7.

To further explore the sensitivity of the algorithm to

the FWS, the results were analyzed with the coefficient of

variation9 MiGCCV (standard deviation of the MiGCAVG

depicted as a percentage of the average) to compare the

applications in terms of variability. This analysis showed that

the higher the value of MiGCCV (reflecting a more heteroge-

neous behaviour of the application in terms of memory usage),

the more sensitive the algorithm is to changes in FWS. When

this occurs, a more precise selection of FWS is required to

achieve a low FE. On the contrary, if the MiGCCV is low, a

broader range of FWS can be used. Figure 7 exemplifies these

two scenarios: h2-Serial GC has a low MiGCAVG (13), so

smaller FWS are preferable. As h2 also has a high MiGCCV

9http://ncalculators.com/statistics/coefficient-of-variance-calculator.htm
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(70%), it requires a more exact FWS range (between 2 and 16).

On the contrary, larger FWS are preferable for tomcat-Serial

GC because it has a high MiGCAVG (12673). As tomcat also

has a low MiGCCV (7%), a low FE can be achieved using a

broader FWS range (between 1024 and 4096).

In conclusion, this experiment proved that the forecast

algorithm can achieve a low FE (below 10%) when configured

properly. Also two relevant factors to consider in the selection

of the FWS (MiGCAVG and MiGCCV ) were identified.

B. Experiment #2: MaGC-Aware Load Balancing

Environment. It was composed of seven VMs: Five ap-

plication nodes, one load balancer and one load tester (using

Apache JMeter 2.910). All VMs had the characteristics de-

scribed in the Experiment #1.

Java Benchmarks. From the DaCapo suite, the two pro-

grams closest to our use case were selected (tradebeans and

tradesoap). Internally they leverage on the DayTrader bench-

mark11 which simulates an online stock trading system. This

benchmark ran over a Geronimo Application Server12 2.1.4

with a 10GB heap, and an in-memory Derby13 database.

Load Balance Algorithms. Our algorithm was compared

against the normal round robin algorithm. To compensate

10http://jmeter.apache.org/
11http://www.dacapobench.org/daytrader.html
12https://geronimo.apache.org/
13http://db.apache.org/derby/

the Forecast Error (FE) of the MaGC forecast, the MaGC

Threshold was set to the FEAVG of the tested programs (5

seconds). Internally, our forecast algorithm used a FWS of 64.

GC. Among the strategies used in the experiment #1, the

two which suffer the longest pauses[15] (benefitting more from

our load balance algorithm) were used: Serial and Parallel.

Metrics. Throughput (tps) and response time (ms) were

collected with JMeter. The CPU (%) and memory (MB)

utilisations of the load balancer were collected with nmon14.

Experimental Results. The objective was to assess the

benefits of load balancing based on the MaGC forecast. Two

types of runs were performed for each program and GC

strategy: One used the normal round robin algorithm and was

considered the Baseline (BL). The other type used our load

balance algorithm (GCLB). Each run involved 150 concurrent

users, lasted approximately 30 minutes and produced around

50,000 transactions. Originally we considered to also compare

our algorithm against a reactive strategy, where the workload

got adapted once a MaGC occurs. However this strategy could

not be implemented because it is not possible to know, from

a JVM, when a GC is happening (only when it has ended)15.

The results proved that considering the MaGC forecast in

the load balance logic improves significantly the performance

14http://nmon.sourceforge.net/
15http://docs.oracle.com/javase/7/docs/api/java/lang/management/-

GarbageCollectorMXBean.html
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TABLE II
THROUGHPUT AND RESPONSE TIME COMPARISON - FULL EXPERIMENT

Bench. GC Response Time (ms) Throughput (tps)

RTAV G RTMAX TAV G TMIN

BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%)

tradebeans S 4,552.4 112.2 -97.5% 330,813.0 17,596.4 -94.7% 41.4 53.7 29.6% 20.8 38.1 83.5%

tradebeans P 1,900.1 494.9 -74.0% 305,098.0 33,366.0 -89.1% 46.7 48.5 3.8% 24.8 39.0 57.4%

tradesoap S 6,757.8 72.0 -98.9% 139,678.0 59,348.9 -57.5% 17.2 25.9 50.6% 11.1 19.2 72.4%

tradesoap P 845.5 146.0 -82.7% 115,655.0 21,389.7 -81.5% 16.6 17.8 7.4% 5.1 13.1 158.8%

of the system. The average response time (RTAVG) was re-

duced between 74% and 98.9%, while the maximum response

time (RTMAX ) was reduced between 57.5% and 94.7%. The

throughput experienced a similar improvement: The average

throughput (TAVG) increased between 3.8% and 50.6%, while

the minimum throughput (TMIN ) increased between 57.4%

and 158.8%. These results are presented in Table II.

The performance gains were the result of preventing that the

MaGCs in the nodes affected the performance of the system.

This behaviour is depicted in Figures 8 and 9, which show

the results of one of the tested configurations. In Figure 8.a,

it can be noticed how the response time of the Baseline is

affected when a MaGC occurs. On the contrary, Figure 8.b

shows that these peaks do not occur when using our algorithm.

The throughput (Figure 9) shows a similar behaviour.

To understand better the performance gains of our algo-

rithm over the Baseline, the results were analysed under two

perspectives. Firstly, the performance was compared during

the periods of time when there were no MaGC events (non-

MaGC time). These results (shown in Table III) proved that

our algorithm does not affect the performance of the system

during the non-MaGC time, as both algorithms performed

similarly. Then the performance was compared during the

periods of time of the MaGC events (MaGC time). These

results (shown in Table IV) demonstrated that our algorithm

improves the system performance during the MaGC time:

RTAVG decreased between 87.4% and 99%, while TAVG

increased between 42.6% and 97.5%. These improvements

were the result of minimising the number of transactions

affected by the MaGC. With our algorithm, the only affected

transactions were those in the pipeline to be processed by the

node which sufferred the MaGC, transactions which led to the

triggering of the MaGC.

To understand the costs of our algorithm, we also compared

the resource usages in the load balance node. Table V shows

these results. The average CPU usage (CPUAVG) increased

between 3.5% and 7.2%, and the maximum CPU usage

(CPUMAX ) between 1.5% and 5.5%. Regarding memory, its

average usage (MEMAVG) increased 0.3GB and its max-

imum usage (MEMMAX ) between 0.1 and 0.3GB. These

memory increases were caused by the historical information

that the forecast algorithm maintained. These increments were

considered tolerable because the load balancer was far from

exhausting its resources.

In summary, this experiment demonstrated the performance

gains of using our proposed algorithm. By avoiding the impact

of the MaGCs, the system performance was significantly

improved in terms of response time and throughput.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a new load balancing algorithm to im-

prove the throughput and response time of a distributed system

with a small performance overhead. The algorithm utilises

JVM data to predict the future occurrences of the MaGC event,

which can cause a long pause time on the underlying applica-

tion. The results have shown that the proposed load balance

algorithm can offer a high improvement in response time and

throughput (up to 99% and 51% respectively) by using the

forecast to decide on how to balance the workload among the

system nodes. Furthermore, the proposed algorithm explores

and uses a new aspect of the system resource information: The

GC. As a result, our work can be combined with other load

balancing algorithms to form a more sophisticated solution.

This scenario will be explored in our future work, as well as

how best to simplify the configuration of our algorithms (e.g.,

the FWS selection) to improve their applicability.
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Fig. 8. Performance Comparison - Response Time (tradebeans - Serial GC)
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Fig. 9. Performance Comparison - Throughput (tradebeans - Serial GC)

VI. ACKNOWLEDGMENTS

Supported, in part, by Science Foundation Ireland grant

10/CE/I1855.

REFERENCES

[1] S. M. Blackburn and et al. The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis. SIGPLAN, Oct. 2006.

[2] A. B. Carmona, J. Roca-Piera, C. H. Capel, and J. A. Álvarez Bermejo.
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TABLE III
THROUGHPUT AND RESPONSE TIME COMPARISON - NON-MAGC TIME

Bench. GC Response Time (ms) Throughput (tps)

RTAV G RTMAX TAV G TMIN

BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%)

tradebeans S 39.1 31.5 -19.4% 1,953.6 1,948.7 -0.3% 48.3 48.9 1.3% 39.2 40.1 2.3%

tradebeans P 241.6 336.5 39.3% 1,135.2 1,157.4 2.0% 49.6 49.5 -0.3% 37.1 39.00 5.0%

tradesoap S 22.3 19.8 -11.2% 287.1 267.9 -6.7% 25.6 26.3 2.5% 16.4 19.2 16.7%

tradesoap P 123.1 124.4 1.1% 376.8 391.4 3.9% 17.6 17.3 -1.7% 15.5 13.1 -15.2%

TABLE IV
THROUGHPUT AND RESPONSE TIME COMPARISON - MAGC TIME

Bench. GC Response Time (ms) Throughput (tps)

RTAV G RTMAX TAV G TMIN

BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%) BL GCLB Diff.(%)

tradebeans S 9,065.6 192.8 -97.9% 330,813.0 17,596.4 -94.7% 34.5 50.3 45.5% 20.8 38.1 83.5%

tradebeans P 10,192.5 1,287.0 -87.4% 305,098.0 33,366.0 -89.1% 29.4 43.5 47.9% 24.8 39.0 57.4%

tradesoap S 9,163.4 90.6 -99.0% 139,678.0 59,349.0 -57.5% 13.0 25.8 97.5% 11.1 19.2 72.4%

tradesoap P 3,012.9 210.8 -93.0% 115,655.0 21,389.7 -81.5% 13.6 19.4 42.6% 5.1 13.1 158.7%

TABLE V
RESOURCE USAGE COMPARISON - LOAD BALANCER

Bench. GC CPU Usage (%) Memory Usage (GB)

CPUAV G CPUMAX MEMAV G MEMMAX

BL GCLB Diff. BL GCLB Diff. BL GCLB Diff. BL GCLB Diff.

tradebeans S 6.0% 9.5% 3.5% 22.0% 23.7% 1.7% 2.50 2.80 0.30 2.60 2.90 0.30

tradebeans P 7.7% 12.2% 4.5% 24.2% 25.7% 1.5% 2.50 2.80 0.30 2.60 2.90 0.30

tradesoap S 4.2% 10.6% 6.4% 9.8% 15.3% 5.5% 2.50 2.80 0.30 2.60 2.80 0.20

tradesoap P 4.2% 11.4% 7.2% 11.8% 16.0% 4.2% 2.50 2.80 0.30 2.70 2.80 0.10


