
..

SANDIA REPORT
SA>’D2000-0183\ ‘
UnlimitedRelease

‘r%Janua’w~OOO)-’ ‘-

)> $’$ q: ~<

Load-Balanci~+g Techniques for a

d Rebecca S. Coats

SandiaNationalLaboratories

Er$rgy underContract DE-AC04-94AL85000.

/ Approvedfor publicrelease; furtherdisseminationunlimited.

/

ElSandia National laboratories

——. —. —.. —-. —.. ——-...—

Issued by Sandia National Laboratories, operated for the United States

Department of Energy by Sandia Corporation.

NOTICE This report was prepared as an account of work sponsored by an

agency of the United States Government. Neither the United States Government,

nor any agency thereof, nor any of their employees, nor any of their contractors,

subcontractors, or their employees, make any warran~, express or implied, or

assume any legal liability or responsibility for the accuracy, completeness, or

usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name,

lrademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,

any agency thereof, or any of their contractors or subcontractors. The views and

opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly

from the best available copy.

Available to DOE and DOE contractors from

Office of Scientific and Technical Information

P.O. BOX62

Oak Ridge, TN 37831

Prices available from (703) 605-6000

Web site: http:/ /www.ntis.gov/ordering. htm

Available to the public from

National Technical Information Service

U.S. Department of Commerce

5285 port Royal Rd

Springfield, VA 22161

0

3

DISCLAIMER

Portions of this document may be illegible

in electronic image products. images are

produced from the best available original

document.

. .

SAND2000-0183

Unlimited Release

Printed January 2000

Load-Balancing Techniques

for a Parallel Electromagnetic

Particle-in-Cell Code

Steven J. Plimpton

Parallel Computational Science Department

David B. Seidel, Michael F. Pasik, Rebecca S. Coats

Electromagnetic and Plasma Physics Analysis Department

Sandia National Laboratories

P.O. BOX 5800

Albuquerque, NM 87185-1111

Abstract

QUICKSILVER is a 3-d electromagnetic particlein-cell simulation code developed and used

at Sandia to model relativistic charged particle transport. It models the time-response of electr-

magnetic fields and low-density plasmas in a self-consistent manner: the fields push the plasma

particles and the plasma current modifies the fields.

Through an LDRD project a new parallel version of QUICKSILVER was created to enable

large-scale plasma simulations to be run on massively-parallel distributed-memory supercomput-

ers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandla.

The new parallel code implements nearly all the features of the original serial QUICKSILVER

and can be run on any platform which supports the message-passing interface (MPI) standard

as well as on single-processor workstations.

This report describes basic strategies usefil for parallelizing and load-balancing particl-in-cell

codes, outlines the parallel algorithms used in thk implementation, and provides a summary of

the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations

which have been run with the new code that illustrate its performance and parallel efficiency.

These calculations have up to a billion grid cells and particles and were run on thousands of

processors. This report also serves as a user manual for people wishing to run parallel QUICK-

SILVER.

r

3

Acknowledgements

As discussed in Sections 1 and 6, Gary Montry contributed in several ways to the key ideas and successful

code implementations described in this report. We enjoyed and benefited from our many discussions with

him about parallel PIC codes.

We appreciate the many other Sandians who have contributed over the years to QUICKSILVER’S

development and have been supportive of this parallelization effort. These include Mark Kiefer, Paul Mix,

Tim Pointon, Jeff Quintenz, Doug Riley, Joe Kotulski, and Ray Lemke. The QUICKSILVER team at

Sandia has also collaborated for several years with PIC experts at NASA’s Jet Propulsion Laboratory

including Victor Decyk, Paulette Liewer, and Joe Wang; they have given us valuable insight into the parallel

issues addressed in this report. Finally, we thank our management, including our center directors Bill Camp

and Don Cook, who have been supportive of this effort from its inception.

4

Contents

,

1

2

3

4

5

6

7

8

Introduction

QUICKSILVER Overview

2.1 Geometry .

2.2 Timestep .

2.3 Data Structures .

Parallel Strategy

User Instructions for Parallel QUICKSILVER

4.1 Settingup a Simulation. .

4.2 RunningParallelQUICKSILVER .

4.3 output .

4.4 Accuracy ofParallelResults .

Implementation Details

5.1

5.2

5.3

5.4

5.5

5.6

MERCURY .

5.1.1 Decomposition Algorithms .

5.1.2’ output .

5.1.3 Decomposition Strategies .

InputandSetup .

5.2.1 Blocks and Grids .

5.2.2 Parallel Initialization .

5.2.3 Boundary Conditions .

5.2.40utput Commands. .

5.2.5 Final Setup .

Fields .

5.3.1 Setup .

5.3.2 Connection .

5.3.3 BlockSurfaceInstabllities.... .

Particles .

5.4.1 Serialvs Parallel .

5.4.2 ModificationsforParallelQUICKSILVER .

output .

5.5.1 HISTORYCommands .

5.5.2 SNAPSHOTandKPWRITE/KPSAVE Commands

Unsupported Features .

Load Balancing

6.10ther Ideas .

6.20urSolution .

6.3 DetailsofInitiation .

6.4 DetailsofOperation .

Benchmark Calculations

7.1 Performanceand Scalability. .

7.2 Static Load-Balancing.. .

7.3 DynamicLoad-Balancing. .

Conclusions

7

9

9

10

11

12

14

14

17

17

17

18

18

18

20

21

21

21

22

22

24

24

25

25

29

30

32

32

32

34

34

35

36

37

37

38

39

42

44

45

48

51

54

A Appendix 59

A.l Modified QUICKSILVER Commands ...59

A.2New QUICKSILVER Commands ...60

A.3 MERCURY-Generated QUICKSILVER Commands . 62

A.4PDS2PFF File Conversion Utility ...63

List of Figures

1

2

3

4

5

6

7

8

9

10

11

12

An idealized 2-d cross-section of a QUICKSILVER geometry. 10

Computational stages of a QUICKSILVER simulation. 10

A hexahedral QUICKSILVER grid cell with its associated field quantities. 12

The indexing convention for a 2-d QUICKSILVER grid block. 13

A 2-d schematic of MERCURY’s recursive decomposition procedure. 20

Stages of creating a “plan” for field connections between all blocks. , 26

A 2-d diagram of edge-centered E= field components in two blocks. 27

Load-balancing of a block decomposition for three processors. 39

Steps to initialize particle Iosd-balancing in a parallel QUICKSILVER simulation. 40

QUICKSILVER timestep with load-balancing enabled. 43

Parallel efficiencies forthedata in Tabl=I-IV . 50

Parallel efficiencies for the data in Tables V-VIII . 55

List of Tables

I CPU time and parallel efficiency for a fields-only simulation of fixed size. 45

II CPU time and parallel efficiency for a fields-only simulation of scaled size. 46

III CPU time and parallel efficiency for a particle simulation of fixed size. .

IV CPU time and parallel efficiency for a particle simulation of scaled size.

V Performance of a fixed-size particle simulation with static imbalance. . .

VI Performance of scaled-size particle simulations with static imbalance. . .

VII Performance of a fixed-size particle simulation with dynamic imbalance.

VIII Performance of scaled-size particle simulations with dynamic imbalance.

. 48

. 49

. 51

. 52

. 53

. 54

6

1 Introduction

Plasma simulation via particlein-cell (PIC) methods has a long history extending back nearly 40 years to

the beginning of scientific computing. Over the ensuing decades many practitioners have developed a rich

set of numerical and computational techniques useful for simulating a variety of plasma phenomena [2, 5].

At Sandia, an interest in modeling plasma effects and understanding experiments within the pulsed-

power group led to the development of the QUICKSILVER package [3, 15]. QUICKSILVER (QS) is a

3-d, finite-difference, fully-relativistic, particle-in-cell codel which has been used both inside and outside

Sandia to simulate ion and electron diodes, magnetically insulated transmission lines, microwave devices,

electron beam propagation, and high-current plasma devices. It represents 15-20 person-years of development

effort over the last 14 years. QS is an electromagnetic PIC code which means it solves Maxwell’s equations

for the time-dependent speed-of-light propagation of electric and magnetic fields, rather than an electrostatic

PIC code, which captures field effects via solutions to Poisson’s equation. For computational efficiency, the

field and particle computations within QS are performed on regular (structured) grids.

PIC codes such as QS can be extremely computeintensive, employing a few million particles and grid

cells simulated for thousands of timesteps to capture necessary physical effects. On high-end workstations

and traditional vector supercomputers (the platform for which QS was originally designed) such simulations

often run for many hours or days. ThB naturally motivates a need for a parallel computing capability. This

has two beneficial effects. First, computations of this scale can be performed more quickly. More importantly,

particle and grid-cell counts can be expanded dramatically so that 3-d complexity in novel geometries can

be modeled with increased fidelity.

As an example, within DOE’s Accelerated Strategic Computing Initiative (ASCI), Sandia is tasked with

simulating plasma effects in neutron generators, a key weapon component. Other QS applications include

the understanding of system-generated electromagnetic pulse (SGEMP) effects on weapon components and

the understanding of power-flow physics in Z-pinch accelerators, a device for high-yield inertial-confinement

fusion. Back-of-the-envelope estimates predict that full 3-d PIC models of plasma effects in these devices

could essily require 100 million particles and 10 million grid cells, simulated for 100,000 timesteps. The ASCI

program has sited massively parallel supercomputers at Sandia, Los Alamos, and Livermore for performing

such simulations, which will require parallel PIC codes capable of running scalably on thousands of processors.

With this background, the goal of this LDRD project was two-fold: (a) to produce a fully-functional and

highly-scalable parallel implementation of QS suitable for running very large PIC simulations on 1000s of

processors, and (b) to implement a strategy in the parallel code to address a fundamental parallel performance

bottleneck with PIC codes – that of load-imbalance due to spatial and temporal inhomogeneities in particle

densities within the simulation domain. When combined with the need to statically balance field updates

across processors for the stationary grid and the fact that particles must exchange field information with

nearby grid points twice each timestep (gather/scatter), these particle densit y fluctuations can pose a serious

performance challenge to parallel implementation of a code such as QS.

The work of the LDRD was broken into two pieces. One effort, led by Gary Montry, a contractor with

Southwest Parallel Software, Inc. (http://www.spsoft.com), implemented a parallel version of QS for single-

block geometries (blocks are discussed in the next section). This allowed rapid experimentation with field

and particle kernels and with different parallelization strategies. It also led to new load-balancing ideas

which are discussed later in this report. The second thrust of the LDRD was to create a true multi-block

parallel QS; the resulting code is the subject of thw report.

1The QUICKS~vER ~tp~ge~~ is realy a suite of codes whkh includesQUICKSILVERitselfas well as Pm- and POs~

processingtools.

7

Other researchers have also long recognized the advantages parallel computation offers to PIC simulations,

since the pushing of particles and the advancing of field quantities are inherently parallelizable operations.

Notable implementations of structured-grid parallel PIC algorithms and codes include the following:

(1) General Concurrent PIC (GCPIC) algorithm in a l-d electrostatic PIC code [9]: Uses FFT-

based field solves and a standard particl~push formulation. Employs only a single l-d block with

each processor owning a spatial sub-domain of particles and grid cells. Dynamically compensates

for unequal particle distribution by adjusting the sizes of each processor’s sub-domain. Achieved

excellent speed-ups on early Intel hypercube machines for up to 32 processors.

(2) GCPIC algorithm in a 3-d electrostatic PIC code [10]: Uses FFT-based field solves and

standard particle pushes. Employs only a single block, spatially decomposed in a l-d, 2-d, or 3-d

fashion across processors. Only tested with uniform distributions of particles. Achieved good

speed-ups on up to 512 processors of the Intel Delta (predecessor to the Intel Paragon).

(3) Skeleton codes (kernels) for 3-d electrostatic PIC [4]: Uses FFT-based field solves and standard

particle pushes. Employs only a single block, spatially decomposed across processors. Load-

imbalance was not tested since particle densities only varied by 10Yo. Achieved good speed-ups

on several distributed memory parallel machines, includlng the Intel Paragon, Cray T3D, and

TMC CM-5.

(4) 3-d electromagnetic PIC code [21]: Uses a field-solve and particle-push formulation similar

to QUICKSILVER. Employs only a single block with uniform particle distribution, spatially

decomposed across processors. Achieved excellent speed-ups on up to 512 processors of the Intel

Delta.

(5) Kernel of SOS electromagnetic PIC code [20]: Uses a field-solve and particle-push formulation

similar to QUICKSILVER. Employs only a single block. Handles load-imbalance in particle

distribution by assigning particles to processors separately from field grid cells. Load balances

particles dynamically using orthogonal recursive bisectioning (ORB).

(6) 3DPIC electromagnetic PIC code [5]: Uses a field-solve and particle-push formulation similar

to QUICKSILVER. Employs multiple body-fitted blocks, each composed of a topologically

regular grid of hexahedral finite elements. Is parallelized by assigning one or more blocks with

their particles to each processor. Has the potential for load-balancing via reassigning grid blocks

and their particles to different processors, though it has not been implemented (to our knowledge).

Achieved reasonable speed-ups on 1800 processors of the Intel Paragon for problems with uniform

particle distributions.

Of these implementations, only the last one was for a true multi-block production-scale code, similar in

spirit and scope to QS. Thus the decomposition and load-balancing methods employed in efforts (l)-(5),

while educational for us, were not directly applicable to our work with QS. As will be discussed in Section 2,

we adopted a philosophy similar to that of effort (6) of parallelizing at the block level, assigning different grid

blocks with their particles to processors. For reasons that will be discussed in Section 6 the idea proposed in

effort (6) for achieving better load-balance by migrating entire blocks to new processors did not seem to be

the best option for QS; we opted instead for a novel idea whereby only particles within a “window” region

of a grid block migrate to another processor, but not the grid cells themselves. By dynamically creating and

destroying multiple windows of various sizes, we are able to balance the particle push separately from the

field update. The net effect is better load balance and parallel performance, as will be illustrated in Section

7.

There has also been work at Sandia on PIC algorithms for unstructured grid geometries (and elsewhere,

see [17, 7] for example). The VOLMAX code authored by Doug Riley and David Turner encapsulated

8

many of the algorithms needed for performing field updates on hybrid structured/unstructured grids [13].

This code was used in an LDRD effort led by Dave Seidel to create a hybrid PIC capability that led to

the QS/VOLMAX code [16]. These projects developed single-processor and shared-memory parallel codes.

Recently, an ASCI-funded effort to create a new parallel unstructured-grid electromagnetic PIC code has been

undertaken by Joe Kotulskl and others on the VOLMAX team. To date, they have successfully implemented

parallel field-solution algorithms in a new version of VOLMAX.

The remainder of this report is structured as follows. In the next section a brief overview of the com-

putational kernels and data structures used in parallel QS is given. In Section 3, our basic strategy for

parallelizing QS is outlined. Section 4 describes how to formulate problems for and run the parallel QS

code; this section may be the only one that users of the code wish to read. Section 5 is the most detailed

of this report; it provides a concise explanation of all the parallel algorithms used in the new code ss well

as a summary of all the changes made in both QS and the MERCURY pre-processor to enable a parallel

implementation. This section is intended to be a reference for current and future QS developers, so that

with the section as a guide and by reading the source code and its comments, they can (hopefully!) deduce

what the parallel modifications to the code are designed to do. In section 6 we discuss the load-balancing

strategies that were implemented in parallel QS. In section 7 we highlight several benchmark calculations we

performed on the Intel Tflops and CPlant machines at Sandla to test the new code’s accuracy, performance,

and scalabilityy. In Section 8 we offer some conclusions and plans for future work. Finally, an Appendix is

included which lists additions and changes to the set of valid QS input commands that were made for parallel

QS.

2 QUICKSILVER Overview

In this section we highlight the computational features and basic data structures of the original serial

QUICKSILVER (QS) code that are relevant to understanding the parallelization effort described in this

report. More detailed descriptions of serial QS can be found in [15].

2.1 Geometry

QS performs its computations within a simulation geometry conceptually similar to that shown in Figure 1.

Note that although the sketches in this report are typically 2-d for simplicity; all the attributes discussed

extend in the obvious way to the 3-d QS code.

A QS geometry consists of one or more user-defied grid %locks” , outlined with thick borders in the

figure. The blocks may be connected arbitrarily, but must be conformal in the sense that they adjoin each

other perfectly with no overlap. Each block contains a topologically regular 3-d mesh (thin lines), which

is aligned with the coordinate axes, though the grid spacings may be non-uniform in x, y, or z. (QS also

supports cylindrical and spherical coordinate systems.) Thus a grid “cell” is a small hexahedral element. An

important restriction on the grids in each block is that grid lines must be continuous across block boundaries,

as shown in the figure. For computational efficiency, regions outside the block volumes are not treated by

the QS simulation.

Each grid cell has 6 surfaces, and each of these surfaces is of one of 3 types: it adjoins another grid

cell in the same block, a grid cell in a different block, or an external surface. All external surfaces must

have boundary conditions assigned to them. QS supports a wide variety of these conditions which impose

different effects on fields and particles: absorptive and reflective surfaces, periodic boundaries, TEM inlet

9

inlet

outlet

Figure 1: An idealized 2-d cross-section of a QUICKSILVER geometry. Dielectric regions are shaded;

conductor regions are black.

planes, transmission line ports, etc. Inside a block, individual grid cells may also be assigned material

properties, such as being part of a conductor or dielectric medium.

Particles can be pr~loaded or created within the QS geometry due to boundary conditions or physical

effects such as beam injection or space-charge-limited field emission. Each particle moves in a continuous

fashion through the geometry but can always be located uniquely within a particular grid cell. Thus a particle

can move transparently across a block boundary to another block, but cannot cross an external boundary.

Particles can be deleted due to interactions with conductive surfaces or external boundary conditions.

2.2 Timestep

Logically, a QS simulation proceeds through the stages listed in Figure 2,

(1) Problem initialization and setup

(2) Loop over timeateps:

(2a) Leapfrog update of ~,~ fields on grid

(2b) Create new particles

(2c) Advance particle positions

(2d) Delete particles as required

(2e) Accumulate particle charge Q and current ~on grid

(2f) Output of desired diagnostics

Figure 2: Computational stages of a QUICKSILVER simulation.

10

In step (1), the problem geometry, boundary and initial conditions, and requested outputs are defined.

Step (2) is the computational heart of the code — the timestep loop.

In step (2a), Maxwell’s equations

(1)

(2)

for the electric 1? and magnetic ~ fields are solved, where p and e are the permeability and permittivity of

free space, respectively. QS wes a finite-difference tim~domain (FDTD) method (explicit [22] or implicit

[6]) to advance the fields as a fun~tion of their previous-tim&step values and the previous-timestep particle

current density ~. In the explicit case esch grid cell updates its field values using information from adjacent

grid cells. The implicit solver iterates several times on the same operation.

In steps (2b-2d) particles are created, pushed, and deleted (as necessary). The particle push involves a

“gather” operation where the average ~ and ~ fields from the 8 corner points of the particle’s cell are used

to interpolate a field value at the particle’s current position. Then the particle’s position and velocity are

updated via the relativistic form of Newton’s second law” where the Lorentz force ~ on the particle with

charge q and velocity Z is given by

(3)

Following the particle push, in step (2e) the final particle position is used to “scatter” charge density Q

back to the 8 corner points of the particle’s cell. Similarly, the path the particle traveled from its beginning

to final position during the timestep is used to scatter current density J to surrounding grid points in one

or more cells.

Finally, in step (2f), various diagnostic quantities can be computed and output to files as desired. These

include snapshots of subsets or all of the particle and field arrays, as well as time- or spatial-averaged

quantities, such as line or surface integrals over specified field components.

2.3 Data Structures

Each grid cell in the QS simulation has a unique i, j,k index within a block m. Several field quantities are

associated with each cell as illustrated in Figure 3. Each component of each field resides at a particular

point within the cell volume. As shown in the figure, electric-field (~) and current-density (~) components

are edge-centered quantities, while magnetic-field (~) components are face-centered. Scalar charge-density

(Q) andavw@eld components (~~~e and ~aue) used for interpolating fields to individual particles, are

located at cell corners. Other quantities associated with the cell itself, such as its conductor or dielectric

status, apply to the entire cell volume and are treated as cell-centered quantities.

QS stores each grid-based quantity (e.g., a field component) as a collection of 3-d arrays, one per grid

block.2 As shown in Figure 4, the size of a 3-d array in a single block is determined by 3 quantities:

imax,jmax,kmax. These specify the number of grid points (or lines) in each dimension, including the surface

faces that bound the block. Thus the number of grid cells in a dimension is one less; there are (imax – 1) x

zActuall~,for ~emow ~ana~ement~UwOSes,a fieldcomponentis storedas one long lineararraYencOmP-iw all blocks.

But it is accessedby block indexand 3-d spatialgrid location as discussedhere.

11

J
+

K

(i+l,j+l,k)
)

(i+l,j,k)

\
I

Figure 3: A hexahedral QUICKSILVER grid cell with its associated jield quantities. Gm”dpoint values are

shown in parentheses; the dotted lines lie along half-gn”d spacings. All 6 jield values are associated with the

ijk gm”dcell. ~ field components are edge-centered within the cell; ~ jield components are face-centered.

(jmax – 1) x (kmax – 1)grid cells within the block (unshaded region in the figure). For convenience in the

field update and particle push, the storage for each block also includes a layer of surrounding ghost cells.

Thus the grid points of the extended block are indexed from Oto imax + 1 (as shown in the figure) and the

grid cells from O to imaz.

Particle information (position, momentum, charge, ijk cell index, block number) within QS is stored

separately from the grid arrays as a on~dimensional list. For flexibility in creating and destroying particles,

this list is organized as a collection of fixed-length “caches” which can be allocated as needed. One “entry”

in a particular cache contains all the information about a single particle.

3 Parallel Strategy

The key question that must be addressed for implementation of any PIC code on a distributed-memory

parallel machine is how the field and particle data will be decomposed across processors. Before answering

this question for QUICKSILVER (QS), it is worth noting several points.

12

jrmx +

jmax-1 z

.

y-dim”.
.

2+
1+

12 ... x-dim ... imax- 1 imax

Figure 4: The indexing convention for grid points of a 2-d QUICKSILVER grid block with its surrounding

ghost cells (shaded).

First, all of the major computational stages outlined in Figure 2 of the previous section involve either

fields, particles, or interactions between them. The field update and particle push are inherently parallelizable

since each datum (grid cell or particle) can be computed independently of all others. This is an attribute

of collisionless PIC codes such as QS where particles do not interact with each other directly, but only

indirectly through particle-field ‘interactions. Similarly, the gather operation (interpolation from fields to

particles) is parallelizable over particles since the field arrays are only read from (not written to) during this

computation. The scatter operation (interpolation from particles to fields) is also parallelizable over particles

with the caveat that two (or more) particles cannot update the same grid array location simultaneously. In

QS, this caveat is not an issue, since each block has its own ghost cells that serve as duplicates of memory

locations that could otherwise be simultaneously overwritten.

Second, to run QS with high parallel efficiency, all processors must own (nearly) equal numbers of grid

cells and also own (nearly) equal numbers of particles. ThM is because the stages within a QS timeatep are

computed sequentially, one after the other. For example, it is not possible to have some processors updating

all the fields at the same time other processors are pushing all the particles.

Third, were-emphasize that the grid operations in QS are all block-based; for example, the field update

routine is structured as a loop over blocks, with the ijk cell values within the block being updated as inner

loops. Serial QS then invokes a sequence of routinea that update ghost cell field values using connection

information for block pairs that adjoin at faces, edges, and corners. The key point is that serial QS is already

structured so that it can efficiently run a simulation containing multiple blocks of field values and all the

particles inside those grid blocks.

Fourth, a QS simulation geometry can be partitioned into an arbitrary number of blocks and still represent

the same physical model. (The question of whether two simulations using different block partitionings

produce identical answers is discussed in the next section.) For example, the geometry of Figure 1 is

illustrated as a 3-block simulation; but if each block were further sub-divided, it could have been formulated

13

., . .

as a lo-block or 100-block simulation (so long as no block dimension is made smaller than 3 grid cells).

With these facts in mind, a natural strategy for parallel QS is to assign one or more blocks of grid cells

to each processor along with all the particles that reside in those blocks. If the initial problem specification

contains unequal-sized blocks or fewer blocks than processors, we can sub-divide the user blocks into smaller

blocks as a pm-processing step. If this is done in such a way that each processor can be assigned (nearly)

equal numbers of grid cells, then QS field updates will be load-balanced for the duration of the simulation,

since the grids are static. If this grid partitioning also assigns equal numbers of particles to each processor,

then the entire QS simulation is load-balanced. If not, then we still have a particle load-imbalance problem;

this issue is addressed in Section 6.

The great advantage of this strategy is that the vast majority of serial QS does not have to be modified to

work in parallel. On a single processor, the parallel QS code simulates all the grid blocks and all the particles

in those blocks, i.e. the entire problem. Running on a parallel machine, each processor is still computing

on a collection of grid blocks and the particles in those blocks, but they now comprise only a portion of the

global geometry. So long as each processor can acquire boundary-condition information for its blocks from

neighboring processors (e.g. ghost cell field values and incoming particles), then it can treat its blocks and

particles as if they comprised the entire simulation domain.

Since our target architecture for parallel QS was distributed-memory parallel machines, we programmed

in a message-passing paradigm. For portability we used the message-passing interface (MPI) standard [8].

This allows parallel QS to be run on any parallel machine which compiles standard Fortran (F77) and C

and provides an MPI library. This includes all current-generation distributed-memory parallel machines

(e.g. Intel Tf30ps, Cray T3E, IBM SP-2, workstation clusters) as well as shared-memory platforms (e.g. SGI

Origin and DEC 8400). We also emphasize that parallel QS runs on any number of processors, including

a single processor. Thus the parallel version of QS is also a serial code, which can be run on any Unix

workstation, in which case it operates essentially identically to the original serial QS.

Our starting point for this parallelization effort was version 3.0 of serial QS, which contains approximately

100,000 lines of mostly F77 code (including comments). The existing code required small modifications in

selected places for parallelization. For example, error checkhg had to be enhanced to allow for the (now)

legitimate case of applied boundary conditions having no overlap with a particular processor’s block(s). We

also added about 10,000 lines of F77 and C code to the new parallel QS. These were primarily routines that

implement new capabilities needed for parallel execution, such as the communication of ghost cell field values

to different processors or the migration of particles from one processor to another. All of these changes and

additions are detailed in Section 5. First, however we describe how to run the new parallel QS code, from a

user’s perspective.

4 User Instructions for Parallel QUICKSILVER

4.1 Setting up a Simulation

Instructions for creating serial QUICKSILVER (QS) input files and running serial QS are given in [3]. The

normal procedure is to first run the pre-processor MERCURY. MERCURY enables the user to setup the

problem geometry, define boundary conditions, specify outputs, etc. When MERCURY finishes it produces

a “qcks.in” and ‘pvlx” file, both of which are inputs to serial QS.3 The former contains a list of QS input

3More accurately, MERCURY ~roducm a singleoutput deck whkh is typicallyrun throughthe SPlitf utilitY or ~9c~s scriPt

to producethe two QS inputfiles.

14

commands that run the desired problem. The latter has a list of array bounds that QS uses for dynamic

memory allocation. As serial QS runs it produces a variety of output files, many of them in a portable file

format called PFF [14]. Post-processing analysis and visualization tools can then be run using the PFF files

as input.

The steps for running parallel QS are similar with a few additional options. MERCURY is still used to

create the desired problem geometry and simulation settings. There are two new MERCURY commands4

which are used to tell MERCURY how to partition the grid blocks for a parallei run:

CUSTOM PROCESSORS P [assign]

CUSTOM DECOMPOSE N M

CUSTOM DECOMPOSE N MX MY MZ

For a parallel run, the “CUSTOM PROCESSORS P [assign]” command is mandatory, where P ~ 1

specifies the number of processors the problem will be run on. The optional [assign] argument specifies

how the, blocks will be assigned to processors. If used it must be one of 3 values: “sorted”, “clumped”, or

“strided”. The default value is ‘sorted”, which will generally produce good results. For the interested user,

Section 5.1.1 provides more details about the 3 options.

When the CUSTOM PROCESSORS command is used, MERCURY will decompose the user-defined

blocks into sub-blocks, and assign them to the P processors. The decomposition procedure can be guided

by the optional “CUSTOM DECOMPOSE” commands. If used, one must be specified for each user block.

CUSTOM DECOMPOSE N M means chop user block N into M subblocks. CUSTOM DECOMPOSE N

MX MY MZ means chop user block N with planar cuts along each of the 3 dimensions into MX by MY by

MZ sub-blocks. If no CUSTOM DECOMPOSE commands are used, MERCURY will decompose the user

blocks as best it can into P equal-sized subblocks, assigning one to each processor. For example, if 3 user

blocks are decomposed for 100 processors, and one is twice as large as each of the other two, then MERCURY

will chop the large block into 50 sub-blocks and the two smaller blocks into 25 sub-blocks each. If there are

more user blocks than processors (and no CUSTOM DECOMPOSE commands are used), MERCURY will

simply assign the blocks to the processors. More details on how these operations are performed are discussed

in Section 5.1.1.

When finished, the MERCURY output in qcks.in for a parallel QS run will contain several new and

altered QS commands (UBLOCK, UGRID, PROCESSOR, BLOCK). These are discussed in Section 5.1.2,

but do not have to be understood to simply use parallel QS. MERCURY will also adjust the QS data array

bounds so as to be appropriate for running on P processors; these new values are part of the pvlx output

that MERCURY creates. For arrays that are distributed across processors, the corresponding bound will be

the maximum value needed by any single processor, based on the computed decomposition.

There are also several new QS commands which can be manually added to the qcks.in file, prior to

running parallel QS. The ones with a “CUSTOM” prefix can be specified in MERCURY the PARALLEL

command (if needed) must be added manually to the final qcks. in file.

CUSTOM SCREEN 10

CUSTOM EBJCHECK 201

CUSTOM LOADBALANCE 2.0,1.01

PARALLEL 1

4All newandmodifiedQS and MERCURYcommandsare summarizedin Awendk A

15

—. .— .

The “CUSTOM SCREEN N“ command tells QS to write a few run statistics for the current timestep to

the screen every N >= Otimesteps. N = 0 means never write which is the default. These statistics include

summations of the l?, ~, ~, and Q field components across the entire grid, and total particle counts for

creating, pushing, and deleting particles. These values are useful in determining whether a parallel QS run

is producing the same answer ss a serial QS run.

The “CUSTOM EBJCHECK N M’ command invokes a consistency check for E, ~, ~ field components

that lie on the shared surfaces between blocks. If N >0 the check is performed only on ~ and ~ field

components. If N < 0 then ~ field components are included in the check. The check is performed every

abs(N) timesteps; N = Omeans never perform it (the default). If the same component exists on the surface of

two (or more) blocks, but the value is not bit-wise identical in both blocks, an error is flagged and diagnostic

information is printed to the screen. If the 2nd parameter is M = O,just a total count of errors if printed; if

M = 1 then more detailed information is printed. This check is made across all block boundaries regardless

of whether an adj scent block is owned by the same or a different processor. As discussed in more detail in

Section 5.3.3, this error often gives rise to instabilities in a serial or parallel QS run, and should not occur if

the code is functioning properly.

The “CUSTOM LOADBALANCE TOL1 TOL2° command controls how dynamic load-balancing is per-

formed during a parallel QS run. The first parameter says to trigger are-balance operation when imbalance

is greater than TOLl ~ 1.0, where perfect balance = 1.0. The 2nd parameter TOL2 ~ 1.0 controls what

level of load-balance the operation attempts to achieve. Again perfect balance is a value of 1.0. Good settings

to use in a typical QS simulation are TOLI = 1.5 and TOL2 = 1.1. The effect and implementation of this

command, including a precise definition of ‘(imbalance”, are explained in Section 6.

There are also two array limits modified by MERCURY when a CUSTOM LOADBALANCE command

is encountered, and which can be further adjusted by the user. These are wbscal = N and wbsca3 = M. The

first parameter extends the memory allocated for l-d grid arrays by a factor of N; the second extends a few

of the 3-d grid arrays by a factor of M. N and M can be expressed as integer or real factors, e.g. N = 2.5.

As ducussed in 6, the extra memory is used for new grid blocks created during the load-balance procedure.

For typical problems where load-balancing is used, setting wbscal = 3.0 (since it consumes little memory)

and wbscd’ = 2.0 is adequate; this is what MERCURY outputs by default. If QS runs out of memory when

attempting to load-balance particles on a particular timestep, it will issue a warning which means these pvlx

settings should be boosted by the user.

When parallel QS is run on a single processor, it normally executes as if it were the original serial QS

code. For example, inter-block field connections are performed using the original QS routinea. Optionally,

the field connections (and other operations) can use the parallel algorithms described in the next section.

This is invoked using the “PARALLEL 1“ command in qcks.in. “PARALLEL 0“ is the default which means

to run in serial QS mode. Using the command on a single processor can be a useful debugging exercise to

compare parallel QS output with original serial QS output. The command must be placed in qcks. in before

or immediately after the BLOCK, GRID, and PERIODIC commands. When running on multiple processors,

this command is ignored, since only the “PARALLEL 1“ option makes sense.

Finally, the syntax of one QS command in qcks.in was changed for parallel QS. The PERIODIC command

now has the syntax, “PERIODIC N LO HI”. The first parameter N is the dimension I, J, or K. The LO/HI

parameters are the coordinates in that dimension that are the periodic boundaries of the simulation domain.

For example, “PERIODIC J 0.010.0” means the ZZ plane at y = 0.0 is conceptually the same ss the plane

at y = 10.0, and all grid cells in the simulation are assumed to lie between y = 0.0 to y = 10.0.

16

Note that all PERIODIC commands should be included in the same section of the gcks.in file where the

BLOCK and GRID commands are listed. The old serial QS syntax for the PERIODIC command should no

longer be used. The motivation for this change to PERIODIC is discussed Section 5.2.

4.2 Running Parallel QUICKSILVER

The only change needed when running parallel QS ss compared to serial QS is when using POISSON

boundary conditions. As discussed in the next section, parallel QS does not have the ability to generate

Poisson solutions on-the-fly for block surface inlet conditions.

Instead the user should generate the qsp2d.pff file which contains the solution by running parallel QS on

one processor on the original user-block description of the problem geometry for a timestep or two. This file

is created automatically by parallel QS (when running on one processor) if it does not already exist. Parallel

QS (on multiple processors) can then be run using qsp2d.pff as an additional input file.

4.3 output

When parallel QS runs, it produces many of the same PFF and text files ss serial QS. These files can be

post-processed and visualized in the usual way. It also produces new files in a PDS (parallel data set) format

[19] that can be converted into PFF files. This is discussed in more detail in Section 5.5.

At the end of a parallel QS run, various performance statistics will be printed to the screen. These include

a breakdown of CPU timings for different portions of the timestep, particle counts, and load-balance infor-

mation. The numbers include averages of various quantities across all processors, as well ss histogramming

by processor. For example, each processor keeps track of the CPU time it spends in particle pushing. For a

run on P processors, the average, minimum, and maximum of th~ collection of P times is printed out, along

with a histogram where the range (from minimum to maximum time) is divided into 10 bins and the time

for each of the P processors is tallied into one of the bins. The histogram data can be useful in determining

if load-imbalance occurred during the run.

4.4 Accuracy of Parallel Results

We now address the question of whether the user should expect parallel

(bit-wise identical) as serial QS. There are several questions to consider:

Is serial QS deterministic?

Is parallel QS deterministic?

Does serial QS give the same answer on different machines? “

QS to produce the same answers

Does serial QS give the same answer no matter how many blocks are used?

Doea parallel QS give the same answer no matter how many processors are used?

The answers are one ‘yea” and four “no’s”,, but since this isn’t a quiz, we should explain further!

First, serial QS is deterministic. Running the same input files on the same machine will produce bit-wise

identical answers (despite the use of random numbers, see Section 5.6). However, serial QS will not give

identical answers when run on. two different machhm. Thisi is due to round-off differences in computed

quantities which can propagate onward to the next timestep, causing the two sets of results to diverge over

time. In QS this effect may not only produce slightly different field values, but can alter whether a particular

17

particle is created or destroyed. This will cause future timesteps to be fundamentally different. Clearly, such

round-off problems are to be expected when running on two machines which treat floating-point operations

differently. Less obviously, they can also occur if a problem is decomposed into blocks in two different ways.

For example, if the geometry of Figure 1 were formulated as a 6-block simulation instead of 3-block, serial QS

would sum J field values in different orders near block surfaces, which could produce round-off differences,

and thus (eventually) lead to two different results.

Parallel QS suffers from these same limitations. Running the same physical problem on 100 versus 200

processors will typically be done with different numbers of blocks. Thus the simulation results will not agree

precisely with each other or with a serial QS run. Even if the same number of blocks are used (running

2 blocks/proc on 100 procs versus 1 block/proc on 200 procs), there is an additional source of round-off

differences when comparing two parallel QS runs. As will be discussed in Section 5.3, communication of ~

field values for grid locations shared between three (or more) blocks that reside on different processors is

done asynchronously. Because the messages can arrive in random orders, the data are summed in different

orders, and two runs on differing numbers of processors may not agree. This same effect can cause a repeat

run on the same number of processors to disagree as well. Hence parallel QS is not deterministic, though in

practice it may often turn out to be.

Notwithstanding these caveats, it is important to note that any two QS simulations of the same problem

geometry should still produce answeis that agree in a “statistical” sense, i.e. the two simulations should

compute the same physical effects to within some statistical error bar, just as if a Monte Carlo simulation

were run twice with a different initial random number seed. Parallel QS adheres to this looser standard; a

parallel QS run should produce the same statistical answer as a serial QS run, independent of how many

blocks and how many processors it is run on.

5 Implementation Details

In this section, we describe the changes and additions made to Version 3.0 of serial QUICKSILVER (QS)

to create parallel QS. The modifications can be broken into several categories, based on what portion of the

code they affect. We discuss each of these in turn: MERCURY (pre-processor), QS input and setup, QS

fields, QS particles, and QS output. At the end of the section we discuss unsupported features in the current

version of parallel QS.

For QS developers, this section (along with 6) serves as a detailed overview of the changes made for

parallel QS. When references are made to specific QS routines, there are typically comments included in the

code, prefixed by “c SJP”, that will correspond to the overview given here. New files were also added to

parallel QS; the majority are F77, C, and header files with the prefix parallel_ Most of the routines in those

files are also discussed in this section. Much of the new code has additional useful documentation (variable

definitions, routine overviews, etc) included in those files.

5.1 MERCURY

5.1.1 Decomposition Algorithms

As discussed in the previous section, a user can specify “CUSTOM DECOMPOSE” commands to tell

MERCURY how to decompose each user block into subblocks. This operation takes place in MERCURY’s

decompose routine which performs two operations. It sub-divides user blocks into smaller blocks and it

assigns the new blocks to individual processors.

18

I

The procedure for chopping a block into MX by MY by MZ pieces is straightforward. The procedure for

chopping a block into an arbitrary number of sub-blocks, where each subblock is roughly the same size and

as cubic in shape as possible, is more involved. The latter goal is desirable to minimize the surface area of

the sub-block, since the surface area represents field values that must be communicated to other processors.

This procedure is invoked when a CUSTOM DECOMPOSE N M command is used or when no CUSTOM

DECOMPOSE commands are specified. In the latter case, MERCURY performs the following heuristic,

where P is the number of processors being decomposed for:

(1) Compute NTOT = the total number of grid cells in all blocks

(2) For each block n:

(2a) FRAC(n) = cells in block n / NTOT

(2b) TARGET= FRAC(n) * P

(2c) Chop block n into TARGET sub-blocks (same as CUSTOM DECOMPOSE n TARGET)

The operation of step (2c) is performed in a recursive fashion. Consider the tssk of chopping a 10x13x15

block of cells into 5 (roughly) equal-sized pieces. First, the routine finds the longest dimension, in this case

the 2=15 direction. It then chooses to make an zy-planar cut (perpendicular to this dimension) at the

z-location that comes the closest to leaving 2/5 of the grid cells on one side of the cut and 3/5 of the cells on

the other side of the cut (2 + 3 = 5). In this case the cut would create one block of size 10x13x6 and one of

size 10x13x9. We have now broken the original problem into two self-similar new problems: chop a 10x13x6

block into 2 pieces, and a 10x13x9 block into 3 pieces. The routine recurses on this sequence of steps until

each sub-block is a single piece. A 2-d example of a recursive decomposition is shown in Figure 5. Note that

the nature of the algorithm often creates sub-blocks which border neighboring blocks in an irregular fashion.

Once all the user blocks have been sub-divided, the decompose routine assigns one or more sub-blocks

to each processor. For load-balance purposes the goal is to give each processor .ss equal a number of grid

cells as possible. This is done in one of 3 ways depending on the whether the optional “sssign” argument in

CUSTOM PROCESSORS is “sorted”, “clumped”, or “strided”. Consider a liit of M sub-blocks, each with

a (possibly) different number of grid cells, to be assigned to P processors.

The ‘(clumped” option assigns the 1st few sub-blocks in the list (a clump of blocks) to processor O, the

next few to processor 1, and so forth. How many sub-blocks are given to each processor depends on the

block sizes; the clump size is adjusted so as to give each processor an equal number of grid cells. This option

will tend to put sub-blocks that are geometrically close to each other on the same processor, since sub-blocks

from the same original user block are grouped together in the list of M sub-blocks.

The ‘strided” option simply assigns every Pth block in the list to the same processor. For example, for

10 blocks assigned to 3 processors: processor O gets blocks 1,4,7,10; processor 1 gets blocks 2,5,8; processor

2 gets blocks 3,6,9. This method is a poor choice for load-balancing since it doesn’t take into account block

sizes, but is useful for debugging purposes.

The “sorted” option (the default) does the best job at load-balancing, but does not keep nearby blocks

on the same processor. First the liit of M sub-blocks is sorted by size, largest to smallest. The largest block

is assigned to the processor with the least cells (initially all processors have O cells). Then the next largest

block is assigned to whatever new processor has the least cells, and so forth until all blocks are assigned to

processors. This is an implementation of the well-known bin-packing algorithm.

When the decompose routine finishes these two operations MERCURY prints a summary of the results

to the screen. Th~ data can be examined to see if a reasonable decomposition was created.

19

DA c

c

B

E
II I---- --
II 1

-I-4- -1-
11 1

‘I-T- ‘1-
11 I
1111

k
-1--k -1--1-
1111

I II--- ---
I II

-1- -1--1-
[II

--
I ‘r-l-
1 II

c

1 1 I

Ill---- --
Ill

IDI I
‘r-i-T-

111---- --
Ill

T-
1 1

‘r ‘T-
1 1--- --
I 1

-1-
1 I

-r--T-

1--
I

-1-
I

--
I
I--
1

1
--

I
I--

I

I
--
I

c

B

D

Figure 5: A 2-d schematic of one grid block chopped into 11 sub-blocks by MERCURY’s recursive decom-

position option. The original grid is shown with dotted lines; the sub-block boundaries are solid lines. The

letters represent cuts at various levels of the recursive algorithm. Initially a single cut A is made, then two

B cuts, etc.

5.1.2 Output

The pvlx tile produced by MERCURY contains array bounds which every processor will use to allocate its

local memory. These bounds are set to the maximum value any processor needs for the portion of the global

problem (blocks, grids, boundary conditions, etc.) that it is assigned. If parallel QS generates a memory-

overflow error when reading the qcks.in file due to insufficient pvlx settings, this is a bug, which should be

reported to the QS developers.

The qcks. in file will contain several commands new to serial QS users, for example

UBLOCK 0.0-8 .0-8.0100.08.08.0

UGRID 1 I 0.01001 .00.00.0

PROCESSOR 3

BLOCK 53.0 -8.0-8.069.08.00.0 1541170179

The UBLOCK and UGRID commands list the block bounds and grid spacings for the original user blocks

which were specified for the simulation using the standard BLOCK and GRID commands in serial QS. Every

processor storea a copy of these settings which it will use to create its local grids. The PROCESSOR N

command indicates that the next set of BLOCK commands are only relevant to processor N. This is in

effect until the next PROCESSOR command is read. In other words, all processors except N ignore these

commands. The BLOCK commands have additional appended arguments which specify the location of this

(smaller) block within the original (larger) user block it was derived horn.

20

5.1.3 Decomposition Strategies

QS users maybe wondering how, to best use the new MERCURY options so as to decompose a problem

to run the fastest on a given number of processors. While the CUSTOM DECOMPOSE commands give

considerable flexibility in this choice, a safe strategy is the following. The best decomposition for field

updates is one block/processor, with all blocks being the same (roughly cubical) size. This balances the field

computation, while minimizing inter-processor communication. If the CUSTOM DECOMPOSE command

is not used, MERCURY will attempt to do this by default.

For some problem geometries, chopping into P blocks may not be a good choice. For example if there

are more blocks than processors to begin with, or the blocks are of radically different size, then significant

load-imbalance may result. In these cases, the CUSTOM DECOMPOSE command should be used with the

goal of “over-decomposing” the problem into 2*P or 3*P blocks of as equal size as possible. Note that it

is better to assign one (or a few) processors significantly less work (grid cells) than the average, than it is

to assign one (or a few) processors significantly more. ThE is because during the field-update operation all

processors will have to wait for the slowest one (most work) to finish.

When particle effects on load-balance are included, the question of a “best” decomposition strategy is

more difficult. This issue is discussed further in Section 6 of the report.

5.2 Input and Setup

The majority of commands that parallel QS reads flom the qcks.in input script are not changed from serial

QS, either in syntax or meaning. To read this file in parallel, the opread routine in the QS iopack library was

modified so that only processor Oreads a line from the file, then broadcasts it to all the other processors.

Typically the first section of qcks. in contains global settings (e.g. timestep count and size). These set

global variables in the code which every processor stores a copy of. This is a natural location for the user

to add new parallel QS commands such as “CUSTOM SCREEN”, “CUSTOM EBJCHECK”, “CUSTOM

LOADBALANCE”, and “PARALLEL” which were discussed in Section 4.

5.2.1 Blocks and Grids

The next section of the file defines the problem geometry via BLOCK and GRID commands. In the previous

section we described how new PROCESSOR commands are interspersed with the BLOCK commands to

cause each one to be interpreted by only a single processor. During this process each block is assigned a

unique global ID from 1 to nblk-total (the total number of blocks on all processors). The subset of blocks

stored locally by a particular processor are numbered in the usual QS fashion from Oto nblk by the processor

itself. Each processor stores the global IDs for its blocks in an auxiliary blocktag array (see parallel. inc).

After BLOCK and GRID commands are read, QS calls its mkgrdroutine to create the l-d grid arrays that

store the grid coordinates for each dimension of each block. Special care ‘must be taken to insure that the

end points (at the surfzwe and ghost cells) of each blocks’s l-d arrays match up exactly with the opposite end

points in adjoining blocks, including periodic blocks. This is to insure that the field-differencing equations

which rely on grid spacings are consistent across block boundaries.

In serial QS end-point matching is relatively straightforward since the code knows about all blocks. In

parallel QS it is more troublesome, since blocks are distributed across processors. Initially we built grids for

each block, then communicated the grid arrays to other processors to match end point information. This

can cause small inaccuracies when one user-speciiled grid region (linear or quadratic) is chopped into pieces

for each of several sub-blocks. Instead, we now use the UBLOCK and UGRID commands to generate the

21

entire set of- global grids [still only l-d arrays) in duplicate on each processor for the orlgmal user-block

description of the problem geometry. End-point matching for the user blocks is done by each processor in

the usual serial way using these global grid arrays. Then, each processor can extract the subset of values it

needs for the l-d grid arrays in its local blocks. The end points of these arrays will now be guaranteed to

match since all processors extract identical values from copies of the same global arrays. All of this logic is

encoded in the mkgrd routine and the grdbuf and zoner routines it calls.

5.2.2 Parallel Initialization

At the end of the mkgrd routine a new parallel function is called, parallelsetup. ParaUel~etup initializes

several variables which are stored in duplicate on every processor. These are documented in parallel.inc.

They include block2proc which stores what processor owns every block in the simulation, and globa1210cal

which stores the local block index (from O to nblk on its owning processor) of every block in the simulation.

The routine also initializes the new bgcell array. This is a 3-d integer array for all the cells (interior and

ghost) of a processor’s blocks. It stores the global ID number of the block that owns the cell. Thus for cells

interior to a block it is set to the ID of the block itself. For ghost regions, the cell either corresponds to an

external boundary or is an image of a real cell in the interior of another block. In the former case, bgcell for

the ghost cell is set to O; in the latter case it is set to the global ID of the other block. Additionally, the

sign of the bgcell value is set negative if the ghost cell lies across a periodic boundary in any of the three

dimensions (see discussion of periodicity below). Setting ghost-cell values in bgcell requires inter-processor

communication. The details of this operation are discussed in 5.3.

5.2.3 Boundary Conditions

The next section of the qcks.in file typically defines various external boundary conditions (e.g. PEC, PMC,

INLET, POISSON, OUTLET, BEAM_EMIT, CUSTOM TLINE) and internal material properties (e.g.

CONDUCTOR, DIELECTRIC, FIELD_EMIT) for the QS simulation. PERIODIC boundaries are also

allowed; though the syntax of this command and its placement in the qcks. in file have changed as discussed

below.

After each command is read, the region (e.g. a 2-d surface) over which it is applied is checked against the

block extents. In serial QS it is an error if the applied condition does not coincide with any block surface.

This was changed in parallel QS to allow for the possibility that a particular processor’s blocks will not have

any overlap with a prescribed region. It is still an error if no processor’s blocks have any overlap. This

necessitated many (usually minor) changes in the error-checking logic for several commands in dtread.F and

the lower-level routines it calls.

Poisson Inlets The setup code for a few boundary conditions had to be modified more extensively. One

was the POISSON command. This option allows a 2-d solution to Poisson’s equation for ~ fields to be

applied at a surface as a time-dependent initiator of field flux entering one or more blocks. In serial QS, the

user can either solve the 2-d Poisson’s equation at start-up or read in a previously computed solution from

a qsp2d.p& file. For parallel QS, we limit the choice to reading in a solution from a file.

The reason for this is that parallelizing the 2-d Poisson solve across a limited set of processors that

own blocks adjoining the Poisson surface patch would be difficult. Since the solve itself is a on~time 2-d

calculation and thus not costly, it made more sense to require the user to create the Poisson input file before

running parallel QS. This is a portable PFF file which can be created via a serial QS run (one or more

22

timesteps with Poisson output enabled) on a workstation using the original user-block geometry. Eventually,

the QS developers will enhance MERCURY to produce the qsp2d.pflfile if needed, so that the user of parallel

QS will not be required to perform this extra run.

A paraUeLpoisson routine was added to parallel QS to enable reading of the PFF file and distribution of

the solution data to multiple processors. A single processor reads the surface solutions, one user block at

a time from the file, and broadcasts them to every processor. Each processor determines if any of its block

surfaces overlap with the Poisson solution surface, and extracts the appropriate subset of the solution data.

Applied B-Fields Another input command that needed similar I/O modification was APPLIED-B READ.

This QS option is used to define an external ~ fieId that is added to the average ~ fields used to push par-

ticles. A PFF file defining a (typically) 2-d azimuthally symmetric ~ field is read-in by QS and the # field

is interpolated to all grid points in the simulation geometry.

For parallel QS, we modified arzlmi.~to read this file on a single processor and broadcast the data to all

others. Each processor can then independently perform the interpolation to create field values appropriate

for only its blocks and grid cells.

‘lhnsmission Lines Transmission line models are typically used in QS to model source/load impedance

mismatches. For example, a series of transmission lines may be used to represent the pulsed power section

(generators, pulse forming lines, impedance transitions, etc.) of an accelerator. One-dimensional transmis-

sion lines connect to the 3-d simulation geometry at a plane on the external boundary of a simulation. Serial

QS has a restriction that a transmission line must only connect to a single block. Currently, this requirement

still exists in parallel QS, where it is now more restrictive since an original user block is typically decom-

posed into numerous smaller sub-blocks. This means the user must insure that MERCURY performs its

decomposition in such a way that the transmission line surface connection is not bisected by a new sub-block

boundary. This should not be overly restrictive since transmission line cross-sections tend to be small, but

it does require user attention.

The bulk of the coding changes for transmission lines in parallel QS occur in tlinit.F and tline.inc. User

definitions of transmission lines and generators are stored on all processors. Processors with block(s) that

contain transmission line ports build an index tlmap that maps from their local list to the global data

structures. The ebc and jldslv routines that apply the transmission line model were modified to use this

mapping.

Periodic Boundaries Another boundary condition that was modified for parallel QS was the PERIODIC

command. Serial QS allows the specification of multiple periodic surface ‘patches” in any dimension, that

effectively serve as conduits for particles and fields from some portion of the simulation geometry to another.

This capability can be used (or mis-used!) to create simple or arbitrarily complex connections. For simplicity,

we decided not to support this full generality in parallel QS. Rather we implemented the usual style of global

periodic boundaries. These are specified in parallel QS using a new form of the command, “PERIODIC N

LO HI” where n is a dimension index (I, J, or K), and LO/HI are the coordinates in that dimension that are

connected. An additional change is that these PERIODIC specifications must now be included in the first

section of the qcks. in file with the UBLOCK and UGRID commands

An example of this command’s usage was given in Section 4. Parallel QS treats periodic boundaries as

transparent to particle motion and as simply another kind of block connection for field updates (see the next

section 5.3).

23

—

5.2.4 Output Cornruands

The final section of a typical qcks.in file contains HISTORY and SNAPSHOT commands for specifying

simulation diagnostics. The syntax does not change for parallel QS, except for a few additional optional

arguments. These arguments and the parallel implementation of the output commands are discussed in

Section 5.5.

5.2.5 Final Setup

After the qcks.in file is processed, QS performs additional setup in qsinit.Fbefore beginning the main timestep

loop. In parallel QS, some new and modified tasks are performed:

(1) The pamllel.jield_setup routine is called to create the block connection “plans” used to com-

municate ~ and ~ fields between blocks on different processors (see Section 5.3 for a discussion

of plans).

(2) If particles are to be used in the simulation, the parallel~article-setup routine is called.

Similar to (1), a separate plan is formed for communicating ~ and Q fields, as well as ~ fields

that lie on block surfaces. Neighbor lists of which procasors will be exchanging particles are also

constructed – see Section 5.4. A new 3-d array, bgijk, is also constructed. This array stores in

compact form (a single integer) the ijk indices of each cell in a processor’s blocks. Similar to

what was done with the bgcell array, inter-processor communication is performed using the bgijk

array. This sets the ghost-cell values of the array to the ijk indices of the corresponding interior

cell in another block. The bgijk array is used when a particle migrates to a new block on another

processor to update the particle’s ijk indices – see Section 5.4.

It is worth noting that taken together, the bgceli and bgijk arrays give a processor all the infor-

mation it needs regarding how its blocks connect to all other blocks in the simulation. In serial

QS this information was stored in the bgcim arrays (block ID number) and bcm arrays (offsets for

how each block adjoined to every other). With a parallel simulation using potentially 1000s of

blocks, the bgcim array could no longer store large-enough ID numbers. And as will be discussed

in the next section, the all-to-all connectivity of the 2-d bcm arrays was not a scalable memory

option for storing inter-block connectivity information.

(3) The 3-d bgcim arrays store various cell-wise flags which describe each cell’s material and

boundary properties. In serial QS, each block set CIM values for its interior cells, then did

inter-block connections to initialize ghost-cell CIM values. In parallel QS, this would require

communication. Instead, the CIM initialization code was modhied so that each processor applies

the various material and boundary condition commands to entire blocks, including ghost cells.

Ghost-cell values are thus initialized explicitly without the need for inter-block information.

(4) When the bgcim array is initialized, each processor sets flags for each of its cells that are

indices into tables of various properties (e.g. dielectric, conductor, boundary conditions). Since

bgcim values will sometimes be exchanged between processors (see Section 6 on load-balancing),

it is important that each processor construct its tables and CIM indices with identical orderings.

Thus the code for processing the DIELECTRIC (and other) commands which affect the CIM

indices was modified to insure identical results on all processors, even if a particular processor’s

blocks did not overlap with a given DIELECTRIC region. This occurs in injinl and related

routines. Similar care is taken with the masks used to pack/unpack particle indices to insure

that all processors construct identical masks; this occurs in the mskdef routine.

24

5.3 Fields

Field “connections” between adjoining blocks take place at twopoints during aQS timestep. The first is

after ~ and ~ fields have been updated in the j7dslv routine. The second is in the jqdnsy routine after ~

and Q fields have been created by scattering particle current and charge. In both cases, fields have been

computed within individual blocks. Before the timestep can proceed field values at or near block boundaries

must be exchanged between blocks. In the case of 2 and ~ fields, this exchange serves to update ghost-cell

valuea. In the case of ~ and Q fields, the exchange sums values near block surfaces that have only been

partially computed in individual blocks. Serial QS accomplishes these tasks via a series of surface- and

edge-based operations (blkcnn, jledge, jqsurf, jqedge routines) using the pre-computed bcm arrays that store

information on how every possible pair of blocks are connected. These routines and data structures were not

designed for parallel operation or to be scalable to problems with 1000s of blocks, so we opted for a different

approach in parallel QS.

In a generic sense, a one-way “connection” between two blocks involves the mapping of one set of field

values in a “source” block to another set of values in a “destination” block. The connection itself may be

thought of as “send@” the set from the source block, followed by “receiving” the set into the destination

block. The destination block may sum the received values with pre-existing ones, or simply overwrite them.

Regardless of which field quantity is being treated, the ‘overlap set” of mapped values is a sub-section of

the 3-d array of field values in each block. Depending on the extent of the overlap between the two blocks, a

sub-section may be a 2-d plane (or several planes) of values, a l-d line, or even a single point, but can always

be represented as a set of 3-d array indices for the block, i.e. field(ilo:ihijlo:jhi,klo:ldi) in array syntax.

This paradigm for block-connection has two nice features. First, on-processor and off-processor connec-

tions can be treated essentially the same. If both blocks reside on the same processor, the “send/receive”

operation is simply an in-memory copy. If the blocks are on different processors, the “send/receive” op-

eration requires a message be sent by one processor and received by the other. Second, one routine can

handle multiple kinds of field connections (~, ~, ~, ~, and others), so long ss it knows the “mapping rules”

appropriate to each kind of field.

In parallel QS, this block connection operation is implemented in two parts: (1) a setup routine that

computes the overlaps for all pairs of blocks, and (2) a communication routine that actually connects the

blocks via sends and receives. The former operation is called only once since the grids in QS are static; the

latter operation is called every timestep. The latter operation takes the place of the original serial block

connection code in fidslv and jqdnsy. We describe bot~ the setup and connection routines in some detail as

they are a key kernel of parallel QS.

5.3.1 Setup

Grid connections are initialized using the parallel-connect-create routine. Called by each processor, its inputs

include the list of blocks owned by that processor and the l-d grid arrays for each of those blocks. The local

starting address of each component of each 3-d field array is also passed in as is information about periodicities

defined for the global simulation geometry. The function of this routine is to create a data structure that will

represent all of the block overlaps a processor needs to exchange (send and receive) with other processors.

The routine is written in C to enable easy creation of this fairly complex data structure (see the cplan struct

in parallel. h). The routine returns a pointer to this data structure, called a “plan”, to the F77 calling routine.

The sequence of operations used to create a plan within parallel-connect.create is listed in Figure 6.

The first step is to acquire the l-d grid arrays for all blocks from all processors; they will be used

25

(1) Acquire l-d grid arrays for all blocks.

(2) Count overlap sets for sends from my blocks to all others.

(3) Allocate memory for storing the overlap info.

(4) Generate overlap info for sends from my blocks to all others.

(5) Count overlap sets for receives into my blocks from all others.

(6) Allocate memory for storing the overlap info.

(7) Generate overlap info for receives into my blocks from all others.

(8) Allocate memory for all send and receive messages.

Figure 6: Stages of cTeating a ‘~lan” foT jield connections between all blocks.

numerous times in the remainder of the routine. Since they do not require much storage, a one-time

global communication (MPIAllgatherv calls in paralleLgrid_combine) is done to acquire a local copy on

each processor of the entire concatenated set of l-d grid arrays.

The next step (2) is a double loop: for each of my blocks check for an overlap with every other block in

the global simulation. This is a local computation which is performed by calling the povedap routine with

two sets of l-d grids, one for my block as a “sender” and one for the other block as a “receiver”. Because

periodic boundary conditions can affect how two blocks overlap (or even enable a block to overlap with

itself), the povedap routine checks if the sending block adjoins a periodic boundary on any of its 6 faces. If it

does, a periodic image of the l-d grid array in a particular dimension is generated by adding or subtracting

the appropriate periodic length to each grid coordinate. The poverlap routine then loops over all possible

periodic images and calls the lower-level overlap routine with a particular instance of a send block image

grid and the original receive block grid.

The ovedap routine does a quick check to see if the corner points of the two blocks overlap in each

dimension. If they do not (the predominant case), there can be no overlap and the routine exits. If this

test is passed, then a detailed check for overlap ensues. This check is specific to the field component being

communicated; we will list the overlap mapping rules for each field in a moment. In a geometric sense, the

task of finding an overlap can be viewed as in Figure 7.

As discussed in Section 2, within a grid cell a particular field component exists at a point in 3-d space.

In Figure 7, we consider the x-component of the ~ field. The “sending” block has E= values defined at a 2-d

array of points represented by circles (a 3-d array of points in 3-d QS). Note that E= values are on half-grid

spacings in x and full-grid spacings in y. As will be discussed below, the extent of the 2-d array for the

sender includes only E= values inside and on the surface of the block. The “receiving” block only needs E=

values that are a half-grid spacing outside the block, in its ghost cells whose extent is bordered by dashed

lines in the figure. These E= values are represented by the square points in the figure.

The overlap routine superimposes (see the superpose routine) these two sets of points (circles and squares).

If the two blocks adjoin, then the two sets have a subset of points in common. This subset of overlapping

points, shown as triangles in the figure, is the “overlap set” , stored in a set struct defined in parallel.h.

As indicated in the figure, depending on how the send and receive blocks adjoin, the overlap set can be a

contiguous set of triangles (Overlap 1) or be disjoint (Overlap 2). In the former case, the overlap set can be

represented by a set of 6 indices which bound the sub-array of triangular points. In the latter case, which

26

Send Receive
l--l------~ --

1,,,,1
------ _____

Overlap 1
Overlap 2

Figure 7: A 2-d diagram of edge-centered E= jield components in two blocks. If the two blocks adjoin, then

a few circular points in the %end” block overlap with some square points in the ghost cells of the ‘receive”

block. The triangular points represent the overlap ‘set”. Two kinds of possible overlap are shown. ”In the

jirst, the overlap set is contiguous; in the second, it is disjoint.

will be discussed below, the disjoint set is broken into multiple contiguous sets before being stored.

The low-level test for superposition of two points is handled carefully in parallel QS; the two points

are declared ‘(identical” if they are within a small d~tance “epsilon” of each other. This is because the

computation of (periodically shifted) grid arrays for different blocks can result in small round-off differences

in the grid values themselves. When the superposition test is performed, a conservative epsilon is computed

as a function of the grid spacing (in each dimension) of the grid arrays for each block; see the eps routine in

parallel~onnect.create.c.

At the end of step (2) in Figure 6 the total number of overlap sets that this processor has with all blocks

in the simulation has been tallied. In step (3) memory is allocated in the plan” data structure for storing

detailed information about these overlap sets. This information is organized so that the processor can send

a single message to ezwh partner processor. The message will contain all the overlap sets needed by the

partner, which may result from several of the. sending processor’s blocks overlapping with several of the

receiver’s blocks.

27

Step (4) is similar to step (2) except that this time the results of the overlap tests are stored in the

plan data structure in an array of pplan data structs (defined in parallel. h). This includes the extent of

each 3-d overlap set, i.e., the bounds of the array of triangles in Figure 7. When the message is sent,

the sending processor will first extract the field values for the overlap set from a particular field array and

pack them into a contiguous message buffer. This packing operation is a triply nested loop that strides

thru memory to extract the appropriate field values. The looping bounds and offset for this operation are

what is stored in the plan as a pplan struct (see parallel.h), along with the starting address for where the

overlap set begins in memory. The computation of this address uses the F77 field array addresses passed

into parallel.connect.create.

Steps (5)-(7) are identical to (2)-(4) except that each processor now computes what information it will

receive from all other processor’s blocks. Since the send/receive operation is asymmetric as can be inferred

from Figure 7, we compute the receive information explicitly from the receiver’s perspective. Instead of a

pack operation, now an unpacking of each received message will be performed to scatter the values from the

message buffer into their appropriate field array locations. The loop bounds and offsets appropriate for this

unpacking are again stored in a pplan struct along with a flag that indicates whether the unpacked values

should be summed to their destination locations or overwrite them.

Finally, in step (8) the total volume of field data that will be sent and received as part of this block

connection operation is now known. Each processor allocates a receive buffer, large enough to hold all its

incoming messages. It also allocates a send buffer with enough memory to hold the largest message it will

send to any other single processor. These buffers will be used in the actual message exchanges described in

the next section 5.3.2.

To this point, all of the block-connection discussion has been independent of what field component is

actually being exchanged. We now explain the specific overlap mapping rules that are applied to each kind

of exchange. First, we state the goal that the exchange is designed to accomplish. We then specify the

portions of the send block grid and receive block grid that are passed to the overlap routine to achieve this

goal. This is typically done once for each field component (e.g. E., E~, and E.) since each component

resides on different points in 3-d space. However, as shown in Figure 7, in some cases the overlap set is

not a contiguous 3-d array of points (see Overlap 2). Representing the triangular points as a 3-d sub-array

would include intermediate points which are not part of the overlap set. We solve this problem by breaking

the receive grid into smaller pieces (e.g. each vertical column of square points in Figure 7) and calling the

overlap routine multiple times for one field component exchange.

The parallel_connect-create routine is called with a “which” flag that specifies which field (or fields) is to

be exchanged. All of the logic we will describe for overlap calculations with different types of field exchanges

is encoded (with comments) inside the overlap routine in parallel-connect_create. c. We describe each option

in turn from the perspective of an individual processor.

(1) Cell-wise quantities (bgcell, bgijk, bgcim arrays): The goal is to acquire only the ghost-cell

values of my blocks. The send grid is all my interior cells. The receive grid is all my interior and

ghost cells. Since no send grid contains a point that corresponds to any interior cell of a receive

block, the overlap routine will only compute overlaps that include receiver ghost cells and I will

thus receive only ghost-cell values.

(2) ~ fields (bgei, bgej, bgek arrays): The goal is to acquire only the ghost-cell values that are a

half-grid spacing outside my blocks. The send grid is all points inside and on the surface of my

blocks. The receiv~ grid is only points a half-grid spacing outside my blocks, but NOT on the

surface. For each E field component there are 2 possible comiections between a send and receive

block which requires two calls to the overlap routine. Connections where one or both of the blocks

.

28 I

is a PML (perfectly matched layer [1]) are handled as a special case, since this requires two field

values be exchanged instead of one. This is done by generating two overlap sets (identical except

for their starting addresses in memory) for a single grid overlap.

(3) ~ ~lds (bgbi, bgbj, hgM arrays): The goa: and send and receive grids are exactly the same

as for E field connections. However, because B field components are facecentered quantities the

receive grid must be broken into 4 contiguous sub-arrays and the overlap routine called 4 times

for each component.

(4) ~ fields (bgji, bgjj, bgjk arrays): Because the movement of a particle can deposit current

density a full grid spacing outside my block (see Section 5.4), the goal is to obtain fully-summed

grid values up to a full-grid spacing inside my blocks and up to a half-grid spacing outside my

blocks. The send grid is thus all points inside and on the surface of my blocks as well as ghost

points a half-grid and full-grid outside my blocks. The receive grid is all points inside and on

the surface of my blocks as well as ghost points a half-grid outside my blocks (but not a full-grid

outside). Note that this overlap rule implies that a single point in one of my blocks may overlap

with multiple images in other blocks. This is correct since it must receive values from each of

those blocks to form a fully-summed J component for all particles that may have contributed

to it. We note that our field-connection paradigm handles this potentially complex overlap logic

straightforwardly even for arbitrary block connections.

(5) Q fields (bgq array): The goal is the same as for ~ fields except” that Q fields are corner-

centered quantities. Thus fully-summed grid values are only needed for points a full-grid spacing

inside and on the surface of my blocks. The corresponding send grid is all points on the inside,

surfzwe, and full-grid spacing outside my blocks. The receive grid is all points inside and on the

surface of my blocks. The charge density in QS is stored by charge groups for different species

of particles. This is essentially a 4th sto~age dimension over charge groups in the bgq array. This

is treated similarly to PML blocks for l? fields; one overlap set is created for each charge group,

each with a different starting address in memory.

(6) Average ~ and ~ fields (bgeai, bgeaj, bgeak, bgbai, bgbaj, bgbak arrays): Spatially-averaged E

and ~ fields are needed by QS to perform sub-cycling of particle motion within a single timestep.

~hese a$e corner-centered field quantities that are computed from the edge- and face-centered

E and B field components within each block. The connection goal is to acquire only ghost cell

values a full-grid spacing outside my blocks. The send grid is all points inside and on the surface

of my blocks. The receive grid is only points a full-grid spacing outside my blocks, but NOT on

the surface. This mesh.s the receive grid must be broken into 6 contiguous pieces (planes of ghost

cell values) and the overlap routine is thus called 6 times.

For options (1), (2), (3), and (6), the received values overwrite existing ghost cell values (except for

option (2) with PML blocks where summing of received values can also take place). For the ~ and Q fields

of options (4) and (5), the received values are summed to existing field values in the receiving block.

Finally, the ~ and ~ fields are communicated at the same time in a parallel QS timestep (in the jldslv

routine). Thus there is one plan, created at setup time, which stores both E and B field inter-block connection

information. Similarly, there is one plan created for both ~ and Q field connections whkh is used within the

jqdnsy routine.

5.3.2 Connection

The actual communication of field values is straightforward once block connections have been pre-computed

and stored in a plan. The operation is performed by the pamllel-connect routine. Given parallel QS’S

29

,. .,., ,, .,. --- ?., —.. ..

block-decomposition strategies and arbitrary assignment of blocks to processors, these connections can (in

general) require any processor to send/receive a message to/from any other processor. On a distributed

memory parallel machine, such message passing is most efficiently done in an asynchronous fashion. The

plan data structure is designed so as to enable this irregular pattern of message passing to be pe~ormed as .

quickly as possible each timestep.

First, each processor posts receives (MPIdrecv) for all the messages it expects to receive. This is to avoid

unnecessary message copying by the underlying MPI library. The processor then sends all of its outgoing

messages. For each processor it is sendhg to, a message buffer is packed using the overlap information stored

in the plan, and the message is sent (MPIJ3end). The processor then performs all block connections for cases

where it owns both the ‘sending” and “receiving” block. The overlap sets for these connections are stored

in the plan identically to how they are stored for off-processor connections, but in-memory copies can be

performed rather than message sending/receiving. These strided memory copies are accomplished by first

packing into a buffer, then unpscking from the buffer, the same as if a message were actually sent.

This strategy of treating on-processor connections the same as off-processor connections has two advan-

tages. First, it means that parallel QS will run as-is on a single processor. All block connections will simply

be handled by this on-processor portion of the pamllel-connect routine. Second, on a parallel machine, a

processor can potentially do useful work while waiting for incoming messages to arrive.

Once the on-processor connections (if any) have been completed each processor waits for incoming field

data. The MPI_Waitany routine will return when any of its incoming messages have arrived, at which point

the processor immediately unpacks the field data in that message. When all messages have been received

and unpacked, the block connection operation is complete.

5.3.3 Block Surface Instabilities

Implicit in the asynchronous nature of the block connection algorithm described in the previous section,

is the fact that incoming messages from other processors may arrive in random order. The order may be

different from one machine to the next, when a simulation is repeated on the same machine, or even from

one timestep to the next. In the case of ~ field communication, this means that field values may be summed

in different orders, producing slight differences (round-off in the last digit) in the results. Normally this

is not an issue; it only produces small statistical differences between two QS runs, as discussed in Section

4. However, in the case of ~ field values that lie on the surface between two blocks it can cause a subtle

instability.

~ fields are used in the next timestep by each block to update new ~ fields. If the same surface ~ field

value is different in two blocks, then so will the corresponding ~ field value be different. Because ~ field

values at block surfaces are never shared between blocks, this small difference can propagate to the next

timestep. The signature of this instability is that over the course of 100s or 1000s of timesteps, there is a

growing difference in the same surface ~ and ~ component as stored by two blocks that share the common

surface.

Our solution to this problem was to force the j values at block surfaces to be bit-wise identical across

all blocks that own images of the same physical edge-centered point. Since the normal J and Q field

communication involves significantly more data than just surface ~ field values, we implemented this with

a second communication step, called from jqdnsy. As with the other block connections we first setup a plan

via a call to pamlleLconnect_create. The overlap mapping rule for thk style of block connection is a new

seventh option, different from the six rules listed in the previous section:

(7) Block surface ~ fields (bgji, bgjj, bgjk arrays): The goal is to overwrite only the surface values

30

of my blocks. The send grid is all points inside and on the surface of my blocks. The receive grid

is also all points inside and on the surface of my blocks. Since no send grid contains a point inside

a receive block, the overlap routine will only compute overlaps that involve my surface values.

These overlap sets are stored in the plan in the usual way with one significant change. If a particular ~

field value has images on the surface of several blocks, we want exactly one of those image values to overwrite

all the others. Consider all the blocks in the simulation to be numbered globally from 1 to IV. If a surface

point has images in several blocks, we want the value in the lowest-numbered block to overwrite the value

in all higher-numbered blocks. We force this to occur by only storing an overlap set in the plan if it involves

a send from a lower-numbered block to a higher-numbered block. In other words, half of the overlap sets

generated by rule (7) above are discarded. ‘

This modified p]an will insure a processor only overwrites its surface ~field components with values from

lower-numbered blocks. However, high-numbered blocks may still receive two (or more) of such values, so the

value from the lowest-numbered block must be used in the last overwrite. This is enforced by changing the

MPI-Waitany call used in parallel-connect to an MPI_Wait for a specific message. The loop over expected

messages is ordered so that values from the lowest-numbered block overwrite ali previously overwritten

values. This altered logic is encoded in a separate pamllel_connect.ordered routine which is the one called

from jgdnsy for the ~ field surface communication.

It is worth noting that this instability is not a parallel issue, but a result of the new block-connection

algorithm itself. Once we knew what to look for, we were able to trigger the instability when running on

one processor. This is because the round-off differences in ; can also occur at the surface of two blocks

owned by the same processor, since the same surface field value is stored by both blocks and the two values

are computed by summing contributions in difierent orders. The original serial QS code did not suffer from

this instability (to our knowledge) because it used a different (non-parallelizable) block connection scheme.

The old algorithm which mapped one block’s faces/edges to another ,block’s, actually copied more field data

than was needed to satisfy the mapping rules outlined in the previous section. .h unexpected benefit of the

over-copying was that block surface ~ and ~ values were overwritten, forcing them to be the same on both

blocks.

In the process of finding and fixing this instability problem, we added an option to the block connection

routines that will flag an error whenever field components on shared block surfaces are not bit-wise identical.

This test is invoked by specifying a CUSTOM EBJCHECK command in qcks.in; see Section 4 for instructions

on using this command. Though it involves extra communication it is a usefid check to perform whenever a

user suspects that parallel QS may be producing incorrect answers.

It is implemented as (yet) another option for a new style of block connection. ~ and ~ fields on the

shared surfaces between blocks are communicated and tested for equality. If desired (see Section 4), ~ fields

can also be included in the test. The setup of such a communication plan requires a new eighth overlap rule

in parallelLconnect-create:

(8) Block surface l?, S, and ~fields (bgei, bgej, bgek, bgbi, bgbj, bgbk, bgji, bgjj, bgjk arrays): The

goal is to communicate only the surface V@MS of my blocks. The send grid is all points inside

and on the surface of my blocks. The receive grid is also all points inside and on the surface of

my blocks. As in rule (7), since no send grid contains a point inside a receive block, the overlap

routine will only compute overlaps that include surface values.

The check itself is performed from qcks.F via a call to parallel-connect. When messages are unpacked,

the received field values do not overwrite existing one+ rather they are compared to existing field values and

an error count is incremented (stored inside the plan) if they are not bit-wise identical. A subsequent call

31

..

from qcks.F to parallel.query_errors will print diagnostic information to the screen if any such errors were

found by any processors.

5.4 Particles

5.4.1 Serial vs Parallel

Before highlighting the changes/additions made for parallel QS, we first explain how particles are pushed in

serial QS. As discussed at the end of Section 2, each particle stores 4 indices corresponding to its location

within cell ijk in block m in addition to its position, momentum, and charge. The timestep size in QS is

bounded so that a particle can move at most one grid cell in a single timestep. After the move is computed,

the particle’s initial and final coordinates and initial and final ijk indices are known. If the particle ends up

in a cell inside the same block this stage of the push is done (though it could have been killed by entering an

internal conductor cell). If it ends up in a ghost cell of block m, then the status of the ghost cell is checked

in the bgcim array. There are several possibilities. Either the particle is killed (e.g. it is a conductor, outlet,

inlet), or put back into the block (e.g. reflection boundary), or it passes into another block. In the latter

case, the particle’s ijk and block m indices are immediately updated to reflect its new block location.

Thus in serial QS there are three possible outcomes of a particle move: the particle stays in the same

block, moves to a new block, or is killed. The final stage of the particle push is to scatter its charge Q

and current density ~ to the appropriate field arrays. Since each particle already has valid final ijk and m

indices, the field arrays associated with the particle’s final block are the ones that are updated.

For parallel QS, we alter thk sequence of steps, so that charge and current density are scattered to

the field arrays associated with the particle’s initial block. The reason is that there is now a 4th possible

outcome of a particle move: the particle moves to a new block owned by another processor. We call this

particle ‘(migration”. Migrating particles have to be communicated to their new processors every timestep

as part of the particle push. If we waited to scatter Q and ~ until after a particle arrived at its final block,

two complications arise. First, we would need to send extra information with the particle regarding its

initial location at the beginning of the move. This is so ~ could be scattered along the particle’s entire

path. Second, the code for performing the scatter would have to be invoked twice, once in the usual way for

particles staying on a processor, and once after new particles arrived from other processors.

5.4.2 Modifications for Parallel QUICKSILVER

With this change in mind, these are the modifications made to particle handling for pa;allel QS:

(1) In the QS setup phsse, several variables and lists are pre-computed by each processor for later

use in particle migration. The variables themselves are listed in parallel. inq they are initialized in paral-

lel_particle_setup.F by a call to neighbor.init. The most important of these are nneighsend and nneighrecv.

These are the number of “neighbor” processors that this processor will potentially send particles to and

receive particles from. A neighbor processor is one who owns one or more grid cells adj scent to a processor’s

blocks, i.e. that overlap with any of the processor’s ghost cells. A processor can quickly generate its list

of neighbor processors by looping over all its ghost cells and checking their bgcell values. The utility of the

neighbor list is that it identifies

migrating particles.

(2) New migrate caches (see

Recall that “caches” are the QS

the only other processors that a processor need communicate with when

caches.INC) were added in addition to the survive caches already used.

data structure used to store lists of particles while allowing their number

32

to grow and shrink from timestep to timestep. The new caches store particles tagged for migration during

the push; the particles will later be sent to other processors.

(3) A new paraUeLpartbc.f routine was added (to replace serial partbc.f), which is called after particles

have moved to their new positions, to check the outcome of the move. The new routine determines which

of four possible outcomes has occurred and places the particles in appropriate caches. The outcome options

for each particle are (a) killed, (b) stay in same block, (c) move to another block owned by this processor,

or (d) migrate to a new block on another processor. ParaUeLpartbc uses the bgcell value for the particle’s

final cell to determine which outcome has occurred. Recall that bgcell was initialized with the global block

number that is the owner of each of a block’s interior and ghost cells.

(4) Scattering of particle charge Q and current density ~is done in each particle’s initial block, even if it

moves to another block on the same or a different processor. This operation occurs in the jandro and jandrl

routines. To enable initial-block scattering, the updating of the block index m and grid indices ijk for each

particle to reflect its final position is delayed until after the calls to these routines. The change from final to

initial block scattering also means particle charge now accumulates in ghost cells of the Q field arrays. This

effect is accounted for in the inter-block field connection rules for Q described in Section 5.3.

(5) The vechdr routine was modified to pack and otherwise manipulate the new migrate caches. For

particles that have moved to a new block owned by the same processor, vechdr also now updates the particles

ijk and block m indices appropriately for the new block. (Recall that this operation was removed from partbc

so that particle charge and current could be scattered bssed on the particle’s initial block.)

(6) At the end of the particle push, a new parallel_migrate routine is called (from parhdr.F). Its purpose

is to have each processor send old particles that have left its blocks and receive new particles whose final

coordinates now reside inside its blocks. The first task is for each processor to count how many particles

need to be sent to each of its neighbors. A linear pointer (integer) list is allocated and the migrate cache is

scanned. For each particle, the new processor wh~ch will be sent that particle is determined and a counter

(neighsendcount) for that processor is incremented. The ijk and block m indices for the particle are set to

new values appropriate for the receiving processor using information in the bgijk array. As the scan proceeds,

the linear pointer list is used to store the subliit of particles that will be sent to each neighbor processor.

The next step of parallebnigrate is for each processor to tell its neighbors how many particles to expect.

Each processor senda and receives these counts, even if the count ia zero. It can then check its memory to

insure it has sufficient space for the incoming particles and allocate the needed message buffers.

Similar to the communication algorithm for field connections between blocks, each processor now posts

a receive (MPI&ecv) for each incoming message it expects. It then packs up and sends (MPI-Send) a list of

particles to each of its neighbors. The sub-list mentioned above is used to efficiently extract the appropriate

particles from the migrate cache during this operation. The processor then waits for its incoming messages

to arrive and adds the received particles to its caches.

We note that the asynchronous nature of thu communication procedure allows for particle exchanges

between any pair of neighboring processors. Typically for a QS run on large numbers of processors, each

processor will have only a few neighbors. Due to the irregular nature of MERCURY’s block decompositions

and assignment of blocks to processors, these neighbors could be any other random processor. This scheme

allows each processor to communicate with only its neighbors. It is also efficient since, other than the

handshaking exchange of particle counts, all particles migrating between a pair of processors are sent/received .

in a single message.

(7) The parhdr routine was modified to log new statistics on particle movement and migration, both for

individual processors and across processors. The parent. INC file contains the new data structures. Some of

33

these statistics can be printed to the screen via the CUSTOM SCREEN command and are also summarized

in the run’s final output. They can be useful for debugging purposes as well as analyzing the performance

and load-balance characteristics of a simulation.

(8) Finally, we note that QS has several commands that govern how particles are created including -

BEAM-EMIT, FIELDJ3MIT, and CUSTOM PRELOAD . These options work the same in parallel QS as

they did in serial QS, with each processor creating the appropriate particles in its own blocks each timestep.

For beam emission this required correct computation of weighting factors for emission regions spread across

multiple processors; this takes place in creini.f and crebmi.f. For field emission, there is a subtle difference

between serial and parallel QS, which is discussed in Section 5.6.

5.5 output

Simulatiomoutput from QS is specified via “HISTORY’, “SNAPSHOT”, “CUSTOM KPSAVE”, and “CUS-

TOM KPWIUTE” commands. There are no syntax changes in these commands, except for an additional

optional argument for the ones that control particle snapshots: SNAPSHOT PARTICLE, SNAPSHOT

MAXYARTICLE, and CUSTOM KPWRITE. In serial QS these commands take an (optional) argument

for the maximum number of particles to include in a single snapshot. In parallel QS

a global count of particles across all processors. An additional local maximum can

be used to limit the number of particles any single processor will output.

The following sections outline how the operation of the output routines haa been

for parallel QS and describe a new output file format used for snapshot quantities.

5.5.1 HISTORY Commands

this argument refers to

be specified which will

modified in some cases

HISTORY commands are used for integrating field strength or energy over lines/planes/volumes and for

summing particle and performance statistics, all as a function of time in the simulation. They typically

create a relatively small volume of output, which in parallel QS is still written into a file in the native QS

PFF format.

When the dtread routine reads a HISTORY FIELD command from qcks.in, its geometric extent is checked

against the simulation geometry for possible errors. In parallel QS we must now consider cases where none of

a processor’s blocks overlap with the HISTORY geometry or where two or more processors share an overlap.

In the former case, we simply allow this to not be an error, unless no processors have any overlap. In the

latter case, special care must be taken to insure each processor computes a valid fraction of the HISTORY

quantity. This is so that when the contributions are summed across processors, an accurate total will result.

Consider the case where a line integral is to be performed (S . do along a series of geometry segments

defined in a HISTORY FIELD command. In serial QS, this would be computed by stepping along the line

segments one grid cell at a time, assigning the segment to one unique block when it bordered two or more

blocks. In parallel QS, portions of these segments may run along the surfaces or edges of blocks owned by

different processors. The key question is how to coordinate all processor’s efforts to correctly compute the

contribution of each cell to the overall integral.

Our solution to this problem was to insure that only one processor computes each cell-wise contribution

to the HISTORY quantity. First, in a pr~processing operation, the addseg routine was modified to break

up each HISTORY segment into sub-segments, where each sub-segment has the same set of “neighbors”.

In th~ context, a set of neighbors are the blocks that own grid cells that border the line segment. Each

one-cell-length portion of the line segment will have 4 grid cells that border it (or less if it lies along a global

34

external boundary).

The break-up operation is performed by the line2many routine in pamllel~eg.~ It first checks the global

block owners (via the bgcell array) of the 4 cells that surround the initial portion of the line segment. It

then “walks” along the segment, one cell-length at a time, checking each set of 4 neighbors. Whenever the

set-of-4 changes, the segment is truncated and a new segment is begun. The routine returns a new list of

shorter segments that comprise the original segment. Conceptually, each processor now has an expanded list

of segments that describe the overlap of its blocks with the global HISTORY geometry. The addseg routine

then decides for each riew segment, whether this processor will compute it or not. The decision is made by

the seg.decide routine (also in parallel-seg.j) which checks the 4 neighbor blocks and masks out all but the

lowest-numbered one. Processors which own the other 3 blocks discard this segment from their HISTORY

list. Thus the contribution from each HISTORY segment will be computed by exactly one processor.

The same logic is applied to HISTORY FIELD commands for planar geometries (e.g. surface integra-

tions). In this case, the plane2many routine chops a planar patch in two dimensions into sub-patches where

every cell face in the sub-patch has the same two neighbor blocks on either side. Exactly one processor

keeps each sub-patch in its HISTORY list. HISTORY FIELD commands for volume geometries (e.g. energy

summation) do not require any special pre-processing. This is because the volume naturally breaks up into

sub-volumes within blocks that are already uniquely owned by a particular processor.

The above description implies that a processor may only contribute to a subset of the total number of

HISTORY outputs. The mapping of local histories to global ones is done with new variables defined in

chist, inc. At each timestep, a processor computes the values for its local Kwtories. In the psthis.F routine

these contributions are summed across processors (via MPIAllreduce) and written by processor Ointo the

gshis.pflfile. There is special logic in this routine to insure that every history quantity is accurately computed

when summed across all processors. For some quantities this means that only one processor should contribute

to the sum since the quantity is already stored in duplicate on multiple processors.

One final note about HISTORY command output is in order. At the end of a run, QS performs one final

data manipulation (essentially a transposition of the 2-d data set) on all history quantities before writing

out the qshis.pflfile in its final form. The field arrays are used as temporary memory to hold all the history

quantities. In parallel QS this operation is done by a single processor. If a small-geometry problem with

many histories is run on a large number of processors, it is possible that the field arrays on a single processor

will be too small to perform the data manipulation. Parallel QS will issue an error message if that occurs.

5.5.2 SNAPSHOT and KPWRITE/KPSAVE Commands

Particle and field snapshots generated by SNAPSHOT and CUSTOM KPWRITE/KPSAVE commands can

produce large volumes of output. In parallel this would be a problem if we throttled all output through a

single processor. Instea@, these commands take advantage of the PDS (parallel data set) 1/0 library recently

developed at Sandia [19, 18]. Similar to the QS PFF library, PDS creates portable binary files that can be

moved transparently from one machine to another. The files can contain multiple kinds of scalar, array, and

time-dependent data. On machhws with parallel disk systems (e.g. the Intel Tflops), PDS performs two

important tasks that maximize 1/0 throughput. First, it multiplexes a parallel code’s reads and writes (from

every compute processor) through the system’s multiple 1/0 nodes. Second, it buffers small 1/0 operations

so that the actual file reads and writes are done in large blocks.

Both of these tasks are performed invisibly by the library, so there is no special coding needed in the

application code to make 1/0 work in parallel. However, for parallel QS, we dld have to make numerous

modifications to output routines such as pstsnp that now call the PDS library in order to conform to the

35

library’s API.

Similar to the HISTORY commands, the SNAPSHOT and KPWRITE/KPSAVE geometries specified in

qcks.in are intersected with each processor’s blocks during parallel QS’S setup phase. On a timestep when

a snapshot is computed, each processor extracts the relevant information from its blocks and does a PDS

“write” simultaneously with all other processors. The PDS library routines aggregate this information into

one parallel output file. For field snapshots, this file also contains mappings from each processor’s local

blocks to the original user blocks. This map information is computed and written into the PDS file in the

pstsnp routine. This enables post-processing tools such as pds2pfl to re-map the parallel field values back to

the original user-block geometry. As its name implies, pds2pfl is used to convert PDS files into QS PFF files

suitable for further analysis. The syntax for use of this command is listed in the Appendix.

Finally, we note that when running parallel QS on one processor, the user can choose whether to use

the old snapshot file format (PFF) or the new default format (PDS). This is specified using the “CUSTOM

USE-PDS” command described in the Appendix.

5.6 Unsupported Features

There are a few capabilities of serial QS that have not yet been fully implemented in parallel QS. We discuss

each in turn.

(1) Random numbers (RNs) are used within “QS in several ways. First, they can be used to create a

particle at a randomized location within a grid cell. A new particle is then assigned a random number which

it uses throughout its simulation lifetime. This particle RN is used to select particles for diagnostic output.

RN’s are also used when a particle moves to a new cell. Technically, it should deposit current density in all

the cells it crosses. This can involve an expensive trajectory computation if the particle moves diagonally,

cutting across the corners of one or more cells. To avoid this, QS uses a RN to choose a random path that

deposits current density along a subset of the possible cell crossings. Averaged over many particles, the

results should be statistically the same as if exact trajectories were computed.

The problem for parallel QS is how to have each processor compute RNs independently. This could be

done rigorously using parallel RN generation techniques, but was deemed not important enough to pursue.

Instead we let every processor use the same RN generator and initial seed. Since each processor uses its

stream of RNs in a different way for different particles, this should not affect the statistical quality of the

results. We note that the use of RNs in this way is an additional source of statistical discrepancy between

parallel QS runs on different numbers of processors, as discussed in Section 4.4. This would still be the case

even if parallel RN generators were used. To avoid this problem (e.g. for debugging purposes) the RNs used

in parallel QS can be set to a specific value (e.g., 0.5) using the “CUSTOM FIXEDRANF value” command.

This effectively turns off RNs for everything except the selection of diagnostic particle output.

(2) Restart files are used in serial QS to checkpoint a lengthy calculation so it can be resumed in a new

run from precisely the point in simulation time that the restart file was written. The restart file contains all

the particle and field data, as well as all other state information needed to restart the simulation. This file

write is performed by the mtart routine. Rstart.F’ is the single largest file (over 4000 lines) in QS because of

all the detailed output that must be done. In principle, parallel QS could write a similar file from multiple

processors, using the PDS library described in the previous section, but this is not yet fully implemented.

Instead, parallel restarts are done by having each processor write a separate file in the original serial QS

format. This is not as scalable an operation as the PDS method would be, nor does it allow parallel QS to
#

be restarted on any number of processors.

(3) Field emission of particles from conductor surfaces can occur slightly differently in a serial versus

parallel QS run. Normally, emission occurs when the electric field normal to an emission surface exceeds

a breakdown threshold. The breakdown event causes a CIM value in bgcim to be set to insure the normal

electric field is zeroed. In parallel QS, if that grid cell and emission surface is at a block boundary between two

processors, the CIM setting is not communicated to the adjacent processor (see code comment in crefeq.~.

This means that particles in the other processor’s adjacent grid cell will experience a slightly different force

from the electric field than they should. However, unless there is a corner in the emission surface right at the

block boundary, this condition will self-correct within a few timesteps. In any case, such differences have a

negligible effect on the simulation dynamics. Thus we have not written specialized communication routines

to adjust the CIM setting on the adjacent processor.

6 Load Balancing

As discussed in Section 3, load imbalance often occurs in parallel PIC simulations. This is because the field

update and particle push are separate expensive computations which are difficult to independently spread

uniformly across all processors. There are also computations needed to gather/scatter information between

the field grids and the particle positions. This imposes the additional constraint that a processor should own

grid cells and particles in the same geometric region.

In parallel QS, as was discussed in Section 4, it is straightforward (via MERCURY) to decompose the

field grids evenly across processors. However, because particle densities in the simulation domain can vary

by orders of magnitude both spatially and temporally, this by itself can lead to huge particle imbalances

for some problems. Conversely, we could attempt to bias the MERCURY decomposition so processors in

regions of high particle density own less grid cells. Even if the density variationa were static in time (whkh

they aren’t for most problems) and this scheme was able to balance the particle load perfectly, we could

still have significant imbalance in the field update computation. Although particles often account for 9070 or

more of the total computational time in QS, the field imbalance would have a dramatic effect on the overall

scalability of parallel QS running on 100s or 1000s of processors.

6.1 Other Ideas

As we thought about this problem for parallel QS, several strategies were considered. One idea for large

problems was to statically over-decompose (via MERCURY) the grid into more blocks than processors. Thus

each processor would be assigned several blocks. The block-t~processor assignment could be made randomly

so that the blocks on one processor would be scattered throughout the simulation domain. Then even if there

were large particle density variations, one processor should own some blocks with few particles and others

with many. This scattered over-decomposition would hopefully produce a rough overall load-balancing of

the particle load.

This option requires no additional coding in QS, as it can be experimented with by proper MERCURY

usage. The drawbacks are that the inter-bIock communication cost for fields is increased due to using more

and smaller blocks, i.e. increasing the surface-to-volume ratio of individual blocks. Another drawback is

that there is no guarantee the random assignment of blocks to processors will not result in some processors

doing considerably more work for a particular simulation.

Another option that was considered was to dynamically load balance by moving entire grid blocks with

their interior particles to other processors. The same kind of initial over-decomposition would be used as

described above. At some point during the simulation, if load-imbalance was detected, a heavily loaded

37

—.. —.r,— . ,.. ,.lrs- ...

processor would send one or more of its blocks to lightly loaded processors. As the particle densities varied

in time, blocks could shift back and forth between processors to keep the load balanced. This is similar to

the idea that was proposed in [5] for their parallel PIC code, though to our knowledge it was never actually

implemented.

One disadvantage of this approach is that it would be difficult to implement in QS, without considerable

reworking of the code and data structures. There is no single data structure containing a block and its

particles that could be bundled up and sent to another processor. The boundary conditions and diagnostic

(output) requests apply to multiple blocks and are stored in separate lists which would have to be recomputed

and restructured if blocks moved between processors. Also, all the arrays which hold l-d grid and 3-d cell

values are densely packed block-by-block, due to the F77 usage of allocated memory. Deleting and inserting

new blocks in this packed structure would require considerable data copying. An additional drawback of

this approach is that the load-balancing is coarse-grained. Unless the field grids are chopped into hundreds

of blocks/processor (which would be very costly for inter-block communication), the smallest “unit” of work

which can be passed to another processor is an entire block of grid cells and particles. Thus in practice it

might not be effective at insuring load balance.

Another idea that was considered was to dynamically adjust block sizes. For example, if a block with too

many particles adjoined one with few particles, the boundary between them could be shifted to make the

first block smaller and the second block larger. This is similar to the approach used in [20] where density

variations in particles trigger a complete repartitioning of the (single block) grid into new varying-sized

sub-blocks. In QS it would be difficult to completely re-partition a general (many block) geometry on-the-fly

into a new set of balanced subblocks. It would incur the same data structure and code complexity issues

discussed above. Even incrementally adjusting a few block boundarie% so as to “grow” underworked blocks

at the expense of overworked ones, would be a coding challenge. If MERCURY’s recursive option were used

to partition a block, then irregularly joined sub-blocks result. It would thus be difficult to grow some blocks

whiIe shrinking others. If MERCURY were used to chop a block into a regular 3-d array of sub-blocks, then

block growth would require entire planes (boundaries for several blocks) to shift so that an entire row of

blocks grew at the expense of the next row. This many-block effect could adversely impact the hoped-for

load-balancing benefits.

6.2 Our Solu~ion

The approach we finally decided to implement was based on an idea originally proposed by Gary Montry,

a contractor working with the Sandla QS group. Under the LDRD, Gary experimented with various par-

allelization strategies in a version of parallel QS he and Mike Pasik developed. This version was restricted

to one initial user block. The new load-balancing strategy worked well in their code, so we adopted and

modified the ideas for use in the full multi-block parallel QS described in this report. So far as we know,

the idea is a novel one in parallel PIC code development; a journal article emphasizing the load-balancing

aspects of this work has been submitted for publication [12].

Gary’s idea was to continue to use a static (balanced) decomposition of the field grids, but to dynamically

migrate particles from overworked processors to underworked ones via “windows” within a processor’s blocks.

A “window” is a contiguous sub-region of grid cells within a heavily-loaded block that is mapped to a new

block on a lightly-loaded processor, as illustrated in Figure 8.

Particles within the window migrate from the “parent” block (on the heavily-loaded processor) to a new

‘child” block (on the lightly-loaded processor). The child processor pushes those particles so long as they

remain inside the window region. Particles that enterfexit the window migrate between the parent and

38

proc O

proc 1 proc 2 (
Figure 8: A three-processor decomposition with one block assigned to each processor (left side). Shaded

regions of processor 1‘s heavily-loaded block are designated as “windows” and assigned to processors O and 2

(right side). Processors O and 2 push particles in the shaded regions to achieve better load-balance.

child processors. For example, on the left side of the figure, each of 3 processors initially owns one block.

If processor 1’s block (the parent) has too many particles, two (shaded) window regions (the child blocks)

are created, one each for processors O and 2. Thus processor 1 will only push particles in the remaining

(unshaded) region of its block. Processors O and 2 will each push particles in two blocks, the original block

they owned and a new child block.

Note that within the window regions, the child processor will only push particles; the parent processor

will continue to compute ~ and # field updates in these regions. This is to maintain load balance in the

field computations. Since the child’s new particles actually reside (in a geometric sense) in the parent block,

this will require communication of additional field information between the parent and child processors. The

hope is that the extra overhead of this particle and field communication will be more than compensated for

by achieving load-balance in both the particle push and field update. As we shall see, parallel QS attempts

to maintain this balance by dynamically adjusting the number of windows and their sizes.

6.3 Details of Initiation

The load-balancing option in parallel QS is enabled by use of the “CUSTOM LOADBALANCE TOL1

TOL2” command in qcks.in, where TOL1, TOL2 > 1.0 are real numbers explained below. This invokes

a one-time call to the parallel-balance-setup routine from qsinit.F and a call to the pamllel-balance routine

every timestep from qcks.F. The setup routine pre-computes various static quantities that will be useful in

the balancing procedure. These include copies of the global l-d grid arrays for all user blocks which are used

to create grid arrays for the child blocks. The setup routine also allocates memory for various arrays used

39

by the balancer to store particle counts and block sizes; these are documented in parallel. inc.

The paralleLbalance routine creates window-block connections between parent/child pairs of processors

if it detects imbalance in the current timestep. It does this by computing the average particle count across

all processors and the maximum particle count on any processor. The ratio of max/ave is a measure of

load-imbalance in the particle push operation, where a value of 1.0 represents perfect balance. If this ratio

is smaller than TOL1, the first parameter in the CUSTOM LOADBALANCE command, then balance is

adequate and the routine simply exits. When it decides to turn load balancing ON, the routine proceeds

with the operations listed in Figure 9.

(1) Count particles in planes of all blocks.

(2) Perform serial balancing to determine parent/child pairings.

(3) Build l-d grids for child blocks.

(4) Set 3-d bgcell and bgijk arrays for parent/child connections.

(5) Communicate 3-d CIM array from parent to child blocks.

(6) Update particle migration neighbor lists.

(7) Create E/B and J/Q field connections between parent/child blocks.

Figure 9: Steps to initialize particle load-balancing in a parallel QUICKSILVER simulation.

In principle, window regions within a block could be of any size and shape. For simplicity, however, we

restrict their shape by only making l-d partitions perpendicular to the longest dimension of a parent block.

For example, if a particular block is 10z2OZ15 grid cells, then all window regions within that block will be

10xNx15 in size, where N is some number of xz planes. Choosing the longest dimension [independently in

each block) allows for the finest granularity in this style of partitioning. To determine the optimal value(s)

of N, we first must count the number of particles in each plane of every block. This is done in step (1). Each

processor loops over all its particles, extracts a current ijk cell index, and increments a counter associated

with the appropriate plane. This list of counts is then concatenated across processors (via MPI-Allgatherv)

so that every processor knows the entire set of counts for all block planes. Each processor also stores a count

of the total number of particles on each processor (accumulated via MPIAllgather).

These two lists are used in step (2) by the balancefierial routine, along with static information (rec-

omputed in pamllel.balance_setup) that describes the number and sizes of blocks on all processors. L3al-

ance_sem.al computes the optimal sizes of window regions for each parent block and assigns corresponding

child blocks to specific processors. It is a serial routine in the sense that every processor performs the entire

balance operation without communication; each processor receives the same global inputs and computes the

entire list of parent/child pairings for all processors. This means this portion of the load-balance creation

is not scalable in a parallel sense, but in practice it is a quick operation to produce these pairings (even for

1000s of windows on 1000s of processors), and it would also be difficult to achieve as near-optimal a result

if each processor dld not have global information about the state of imbalance.

The serial balancer works via an iterative process to reduce imbalance. Each time through its main loop,

one window region is created in a block on a parent processor and a corresponding block is assigned to a

child processor. This operation reduces the global imbalance before the next iteration of the loop. The loop

continues until the imbalance is less than TOL2, the 2nd parameter in the CUSTOM LOADBALANCE

40

command, or until no further progress can be made.

At any iteration, the processor with the most particles is chosen as the parent and the processor with the

least as the child. The optimal number of particles to migrate from one to the other (the itarget variable in

the code) is set equal to the smaller of either processor’s particle count variation from perfect balance. The

routine then checks all possible partition placements (or “cuts”) for each of the parent’s blocks. Starting from

each end of the block, the cut position is incremented one plane at a time. The total number of particles in

the proposed window region is tallied (by summing over plane counts) and compared to the desired itarget.

The “optimal” cut is the one which will create a window block that migrates a number of particles closest

to itarget without exceeding it. This may be an entire parent block or a fraction thereof. In either case,

the window planes are masked out in the parent block so they will not be considered again as a window

candidate. The parent and child processor IDs are stored along with the extent of the window region in the

parent (see outputs of the balance.serial routine). The particle counts of the parent and child processors are

then adjusted to reflect the one-way migration, and the routine proceeds to the next iteration.

In step (3) of Figure 9, each processor uses the lists of child blocks returned by balance_serial to update its

copy of the block2proc and globcr1210calvectors. As discussed in Section 5.2, these store a global mapping of

blocks to processors (see parallei.inc). Each processor also scans the output to determine if it is participating

in the load-balance operation and if so, whether it is a parent or child and which of its blocks are affected. If

it owns new child blocks, each processor augments its l-d block arrays (e.g. imax, jmax, kmax, loch, lenblk)

to reflect the new sizes. It also initializes l-d grid arrays for these blocks using the global grid information

stored for the original user block definitions. Six l-d arrays are needed to push particles in the new child

blocks; these are the full grid and reciprocal grid values in bgxif bgxjf bgxk~ bgrdi~ bgrdj~ bgrdkf.

During this operation, the child processors also check that they have sufficient memory for storing the

extended l-d arrays and the new 3-d field arrays that will be associated with their new blocks. When the

CUSTOM LOAD13ALANCE command is used in qcks.in, the memalloc routine allocates extra space at the

end of the appropriate l-d and 3-d arrays in anticipation of child-block creation. As discussed in Section 4,

the amount of extra memory is governed by use of two new parameters that must be specified in the pu?xfile.

If the extra memory is insufficient on any processor for the newly defined parent/child blocks, then a warning

message is printed and the routine exits without turning the load balancer on. If this occurs frequently in a .

particular run, the user should boost the settings for the wbscal and wbsca3 parameters in the pvlx file.

In step (4), the 3-d bgcell and bgijk arrays are modified as needed in parent blocks and are initialized in

child blocks. Recall that these arrays are used in the particle push to determine when a particle needs to

migrate to which processor and what new cell it will reside in on the receiving processor. Within a parent’s

window region, bgcell and bgijk are set to point to the new child block. The usual inter-block communication

operation is then performed without including child blocks. This is the same communication discussed in

Sections 5.2 and 5.3 for the initial setup of the bgcell and bgijk arrays. This operation updates all ghost

cells (except in child blocks) so that they point at any newly created blocks. A second communication is

then performed directly from parent processors to their partner child processors. Each parent sends bgcell

and bgijk values for the window region and the cells that immediately surround it. The child processors use

these values to initialize the interior and ghost cells of each child block. Note that the child processor has

no knowledge of the blocks that border its corresponding window region in the-parent block. This window

region could be adjacent to other windows or to other parent blocks (which could also contain windows).

This 2-step communication operation (parent-parent followed by parent~child) allows the child processor

to receive that information indirectly from its parent processor without having to communicate with the

(unknown) owners of the other blocks.

41

-=-, ,,, ,.. .-.. —— .-

In step (5), cell-wise CIM values are sent from each parent block to the corresponding child block. This

operation sets the interior and ghost ceil vahes for the 3-d bgcim array on the child processor in its new

block(s). This array stores conductor and dielectric information and is the final 3-d array needed by the

child processor to enable it to accurately push its new particles.

The creation of window” blocks means that a processor may now need to exchange particles with new

neighbor processors. Parent processors will be sending particles to child processors (and vice versa) who may

not previously have been an exchange partner. Two window regions within a parent block may border each

other (as in Figure 8) which will require child processors to communicate with each other. Parent and child

processors associated with a window region in one block may also have new exchange partners due to window

regions in a second block that borders the first. In step (6), the particle migration neighbor lists (discussed

in Section 5.4) are recomputed to reflect these new partners. This is done via a call to neighbor_init which

scans the modified bgcell values computed in step (4) for both parent and child blocks.

Finally, in step (7), new connection plans are formed for parent and child blocks which need to exchange

field data. Child processors need average ~ and ~ field values to push particles. These corner-centered

average quantities are computed by parent blocks after the normal S and ~ field update. Each child

processor needs values at all points inside and on the surface of its child block(s). These correspond to

points in the interior and on the surface of the window region in the parent block. Also, after the child

processor pushes its particles, it will accumulate ~ and Q field values in its 3-d arrays. These need to be sent

back to the parent processor from each child. Similar to the discussion in Section 5.3, this encompasses all ~

and Q values inside and on the surface of the child block as well as those a half-grid and full-grid cell outside.

These will be summed by the parent processor to cells in its window region and immediately surrounding it,

including ghost cells of the parent block if necessary.

The plans for storing these one-sided communication patterns (parenkt~child, or child-to-parent) are the

same data structures used for other kinds of inter-block connections (see Section 5.3 and parallel. h). However,

because the overlap of parent/child grids is defined explicitly by the window region, it is not necessary to

use all the logic of the overlap calculation in parallel_connect_create to create the new plans. Instead we call

a simpler routine, paralZeZ_connect_window_create, which constructs each processor’s local plan directly from

the global list of window-block connections computed by balance_serial. The same routine is used to create

plans for communicating cell-centered 3-d arrays (bgcell, bgijk, and bgcim) from parent blocks to children.

These plans were used in the load-balancing initiation phase in steps (4) and (5).

6.4 Details of Operation

We now describe how load balancing is performed within the context of a normal parallel QS timeatep.

Figure 10 outlinea the extra operations that occur each timestep when the CUSTOM LOADBALANCE

command is used.

Steps (1,2,5,7) are the normal parallel QS operations that occur every timestep; see Figure 2 for a

comparison. Steps (3,4,6) are new balancing operations, which may occur depending on whether load

balancing is turned ON or OFF in the current timestep.

The point in the QS timestep at which load-balancing is turned ON is at step (4a), after E and ~

fields have been updated and communicated, but before the particle push. The number of particles on each

processor is tallied and the imbalance criterion described in the previous section is applied. If balancing is

currently OFF and there is sufficient imbalance, then balancing is turned ON and window block sizes and

connections are computed and initialized as described in detail in the previous section.

The particle push then proceeds in step (5) and each parent processor will migrate a fraction of its

42

(1)

(2)

(3*)

(4a*)

(4b*)

(5)

(6*)

(7)

Leapfrog update of fi,~ fields on grid

Communicate ~, ~ fields between blocks

If BALANCE ON, communicate S, ~ fields in windows

If imbalance and BALANCE OFF, create windows and turn BALANCE ON

If imbalance and BALANCE ON, turn BALANCE OFF

Create, advance, delete, and migrate particles

If BALANCE ON, communicate ~, Q fields in windows

Communicate ~, Q fields between blocks

Figure 10: QUICKSILVER timestep with load-balancing enabied. Starred steps are the additional load-

balancing operations.

particles to its partner child processor(s). Note that during this first timestep with the balancer ON, the

parent processors still perform the (imbalance) push operation. This includes the accumulation of ~ and

Q fields in the parent blocks (steps 5 and 7), so actually there is no need to send them in step (6) from child

to parent at the end of the first timestep.

At the beginning of the next timestep, ~ and ~ fields are updated. Child blocks do not participate

in this operation, so it remains load-balanced across the original (static) block decomposition. After the

usual ghost-cell exchange of these field quantities in step (2) between parent processors, an additional call

is made in step (3) to parallel.connect with the new plan (plan-eb-window) that sends average ~ and ~

fields in a one-way fashion from parent blocks to child blocks. Since ch~ld blocks are now populated with

particles and fields, the ensuing particle push is now balanced. Child processors accumulate ~ and Q field

values in the usual way in the child block’s 3-d arrays. At the end of the timestep, a call is made in step (6)

to paraUeLconnect with the other new plan (plan-jg_windozu) that sends ~ and Q fields directly from child

blocks to parent blocks. This is done prior to the usual ~ and Q exchanges between parent blocks in step

(7), so that parent processors will have fully-summed field values in their blocks (interior and ghost cells)

before participating in that operation.

QS continues calling parallelhalance in step (4b) every timestep until the routine detects that particles

are again imbalance (greater than TOL1). When this occurs, load-balancing is turned OFF. This is ac-

complished by setting all the 3-d bgcell and bgijk values in the parent and child blocks to point only to

parent blocks. This will insure that all particles in any child block migrate back to a parent block on this

timestep. The timestep ends with one final communication of ~ and Q fields from child blocks to parent

blocks in step (6). On the next timestep the load balancer cleans up after itself by destroying all the plan

data structures used for load-balance communication and restoring the particle neighbor lists to their original

pre-load-balancing values.

Performance results for parallel QS runs using this load-balancing technique are presented in Section 7.

We conclude this section with several observations about the method and its implementation.

(1) A key advantage of this algorithm as implemented in parallel QS is that it required only minor

modifications to existing code. In particular, the particle push and field update coding did not change at

all. Additional communication calls were added (in j7dslv and jqdnsy) for ~/.fi and ~/Q field exchanges

between parent and child blocks, but the algorithm for inter-processor particle migration also did not need

43

to be changed.

(2) As outlined above, because of the way that load-balancing is turned ON and OFF, there is a one-

timestep delay between when imbalance is initially detected and when the particles are actually pushed by

the new child processors. Also, when load balancing is turned off, particles are always returned to their

parent processors before a re-balancing can be performed (e.g. on the next timestep). This means that if

Ioad-balancing is switching ON and OFF rapidly every N steps due to fast-varying particle densities, then

even in the best-case scenario, there is always one step out of N where particles are wholly imbalance

(pushed only by parent processors).

(3) There is an overhead cost associated with turning load balancing ON and OFF. This is to initialize

the various arrays and perform the serial operations that compute window block pairings. In practice this

is a small expense compared to the per-timestep cost of actually pushing all the particles. So long as load

balancing stays ON for several steps or more, this cost is also amortized over the duration of the balancing.

This will certainly be the case if particle densities vary only slowly in time (relative to a timestep), which is

the case for many problems.

(4) The per-timestep cost of load-balancing is the extra field communication and particle migration that

must be done between parent and child blocks. Note that after the initial migration from parent to child,

only particles crossing the boundary of the child block will need to migrate on subsequent timesteps. Also,

in contrast to the more general and irregular inter-block communication between parent blocks, the extra

field communication for load-balancing is of a one-tc-one nature: one parent block sends (or receives) field

quantities to (or from) one child block. There is also an additional memory overhead incurred by load

balancing. This is the additional l-d and 3-d array storage that must be set aside by the memalloc routine

to allow for new child block creation.

(5) The relative costs/benefits of using the CUSTOM LOADBALANCE option can be analyzed by

examining the balance statistics printed by parallel QS at the end of a run. The “actual” particle imbalance

(max/ave averaged over all timesteps) will be printed whether load balancing is used or not. This can be

compared between runs with load-balancing enabled versus disabled, as can the change in particle-push and

field-communication timings. The “ideaI” imbalance that is printed is a measure of the best load-balance

QS could hope to achieve given the l-d granularity of the window-block partitioning. It is computed from

the final imbalance remaining after the balance.serial routine has created all the windows it can. Additional

statistics are also printed for the average duration that the load-balancer is on and the number and aggregate

sizes of window blocks.

7 Benchmark Calculations

In the course of developing parallel QS, we performed a variety of small test runs to debug various changes

and features we were adding to the code and to see if everything worked on varying numbers of blocks and

processors. In this section we describe a series of full-scale benchmark runs we ran with the finished code to

test its overall performance and parallel scalability, as well as its load-balancing capabilities.

The tests were performed on two parallel machines at Sandia. The first is the Intel Tflops machine,

which is a conventional massively parallel machine built by Intel for Sandla’s ASCI program. It consists of

333 MHz Intel Pentium processors interconnected by an Intel-proprietary backplane and network interface

chips. Some of the tests were also run on Sandia’s new Computational Plant (CPlant) machine which is

a Beowulf-style [11] cluster of workstations built in-house by Sandia. It consists of 500 MHz DEC Alpha

workstations connected by Myrinet.

44

We first discuss the code’s performance on large-scale problems with a uniform spatial distribution of

work. In the final two subsections, problems that require static and dynamic load-balancing are benchmarked.

7.1 Performance and Scalability

The first benchmark problem is a fields-only calculation (no particles) on a single 8OX1OOX96grid block

of 768,000 grid cells run for 2000 timesteps with an explicit time integration scheme. A Poisson inlet

boundary condition is applied to one face of the block, with perfect electric conductor (PEC), perfect

magnetic conductor (PMC), and outlet conditions applied to the other faces. The block interior contains

three conducting strips. Several HISTORY FIELD commands are defined in the input script for diagnostic

purposes.

The CPU time for running this test problem on various numbers of processors of both the Tflops and

CPlant machines is shown in Table I. The resulting parallel efficiency is computed by dividing the one-

processor time by the quantity P times the P-processor run-time, where P is the number of processors.

Parallel speed-up is simply P times the parallel efficiency. Thus, the 1024-processor Tflops benchmark

would run optimally (1OOYOefficient) in 2754.2/1024 = 2.69 seconds. Since it actually ran in “9.08 seconds, it

is 2.69/9.08 = 29.6% efficient, which is O.296*1O24 = 303 times faster than it ran on a single processor.

mops CPlant

Procs CPU time Parallel Eff CPU time Parallel Eff

1 2754 100.0 1113 100.0

2 1337 103.0 604.5 92.0

4 643.9 106.9 309.2 90.0

8 326.4 105.4 161.0 86.4

16 172.5 99.8 88.7 78.4

32 90.8 94.8 57.2 60.8

64 44.7 96.3 42.2 41.2

128 26.8 80.3 34.1 25.5

256 17.9 60.1

512 12.4 43.4

1024 9.08 29.6

Table 1: CPU time (seconds) and parallel eficiency for a jields-only simulation of jixed-size run on var@g

numbers of processors on the Intel Tflops and Alpha-based CPlant machines. The problem had 7681000 grid

cells and was run for 2000 timesteps.

This problem was designed to be a large calculation that an analyst might reasonably perform on a single-

processor workstation. It illustrates the speed-up offered by the parallel version of QS even when the number

of grid cells per processor becomes small (a few hundred for 1024 processors). The reduced efficiencies are

due to the increased cost of field communication versus computation ss the surface-t~volume ratio of each

processor’s block increases. When the blocks are too small, the communication cost of exchanging field

information with neighboring processors dominates.

The super-linear performance (efficiencies greater than 100%) on a few processors of Tflops is due (we

believe) to cache effects. When the problem size per processor is reduced enough that significant portions

45

-. - -... ---

of the field arrays fit in cache, the field update computations mtually speed-up. The CPlant machine has

slower message-passing software and communication hardware than Tilops; hence the parallel efficiencies for

CPlant fall off much more quickly than for Tflops. However, the one-processor timing on the DEC Alpha

processor is about 2.5 times faster than on the Intel Pentiums. Thus the code’s raw speed on CPlant is still

competitive with Tilops out to 128 processors.

The second benchmark problem is also a fields-only calculation, but the number of grid cells is scaled

with the number of processors used. This benchmark illustrates the very large size of fields-only problems

that can be run on a large parallel machine. one large user block is specified for each run, so that when

partitioned for P processors, each processor owns a 30x30x30 block of 27,000 grid cells. As before, explicit

timestepping is used, a mixture of Poisson, PEC, PM(2, and outlet boundary conditions were applied to

the user block, and several HISTORY diagnostics were specified. This time the problem was run for 10,000

timesteps to allow the waveform incident at the Poisson inlet to travel throughout the simulation domain.

The CPU time for running the second test problem on ‘Tflops and CPlant is shown in Table H. The total

number of grid cells is also listed, from 27,000 on one processor to 86.4 million on 3200 processors. Because

this is a scaled-size problem, the parallel efficiencies are much better than in the previous fixed-size case. On

TYops there is still some degradation in performance on very large numbers of processors, presumably due

to message contention effects with each processor exchanging field data for its block with 26 surrounding

blocks (processors).

mops CPlant 1
Procs Grid Cells CPU time Parallel Eff CPU time Parallel Eff

1 27000 412.0 100.0 129.6 100.0 I

2 54000 414.8 99.3 147.3 88.0

4 108000 419.6 98.2 169.0 76.7

8 216000 416.4 98.9 194.4 66.7

16 432000 417.8 98.6 214.3 60.5

32 864000 425.2 96.9 247.0 52.5

64 1,728,000 430.0 95.8 283.1 45.8

128 3,456,000 433.8 95.0 293.7 44.1

256 6,912,000 442.4 93.1

512 13,824,000 452.1 91.1

1024 27,648,000 480.4 85.8

2048 55,296,000 558.8 73.7

3200 86,400,000 610.0 67.5.

Table II: CPU time (seconds) and parallel eficiency for a jields-only simulation of scaled-size run on vaying

numbers of processors on the Tflops and CPlant machines. The problem size is 27,000 gm”dcells per processor

and was run for 10,000 timesteps.

We aIso ran one much Iarger billion-grid-cell fields-only calculation on 3200 processors of the Intel Tflops

with similar boundary conditions and diagnostic settings. A run of 1000 timesteps required 545.8 seconds.

We estimated its parallel efficiency at 87.3% using the one-processor timings in Table II as a reference point.

It is interesting to note that each grid cell in a fields-only calculation uses 25 singl~precision words or 100

46

bytes of memory. Thus the billion-cell calculation required about 100 Gbytes of storage. However, each of

the 3200 processors on Tflops has 256 Mbytes of memory for an aggregate memory of 800 Gbytes. Thus this

very large problem required less than 1570 of the Tflops memory to run.

The one-processor timing data in Table II can also be used to compute a ‘grind” time for fields-only

calculations with parallel QS. On Tflops the explicit timestepping integrator requires 1.5 microseconds per

grid-cell per timestep. On CPIant it is approximately 0.5 microseconds per grid-cell per timestep. An explicit

update in a single grid cell requires about 60 floating-point operations (flop). Hence a Tflops processor is

running this benchmark at about 40 Mflops (million flop/see) and a CPlant processor at about 120 Mflops.

The billion-cell benchmark on 3200 Tflops processors runs at about 110 Gflops (billion flop/see).

The third benchmark problem is a fixed-size particle calculation. A one-block grid of 64x64x64 = 262,144

grid cells is populated with 3.1.5 million particles. This particle/cell count of 12 is typical of many QS

problems. Each grid cell is pm-loaded with 6 electrons and 6 positrons, each of which is given an initial

velocity in a different coordinate direction (dmj &y, +z) so that they moved approximately 1/2 grid cell

per timestep. PMC (mirror) boundaries were applied to all 6 faces of the user block. Because the number

density associated with the particles is set to a small value and pairs of oppositely charged particles move

in the same direction (no net current), the particles in this problem are essentially non-interacting. Over

time they stream back and forth within the user block, reflecting off the mirror boundaries. The simulation

was run for 256 timesteps with a 3-stage implicit integration scheme for the field solver. This means that

an individual particle traverses the simulation domain twice to return (roughly) to its initial position. As

., in the fields-only problems, various HISTORY FIELD and PARTICLE settings were specified in the input

script so as to generate a variety of diagnostic outputs.

The timing results for running this problem on various numbers of Intel Tflops processors are shown in

Table 111.5 These results exhhit better scalability than their fields-only counterparts in Table III, because

there is more computational work required to push particles on a per-grid-cell basis. On one processor the

code is spending 92% of its time in the particle push routines, and 7% in the field update. Even with

high-velocity particles (1/2 grid cell per timestep) causing a relatively large fraction of particles to migrate

to new blocks (and processors) each timestep, the particle migration time remains only a small fraction of

the overall run time even for very large processor counts.

As before, this benchmark was designed to be at the high end of the problem size an analyst might run

on a fast desktop workstation. The timings indicate that the Tflops machine is able to run this problem in

a highly scalable fashion out to many hundreds of processors.

A fourth benchmark problem is a scaled-size particle simulation with each processor owning a 30x30x30

block of 27,000 grid cells. As in the previous particle problem, each grid cell is populated with 12 particles

of two species, moving in all 6 coordinate directions. This problem was run for 200 timesteps with the same

3-stage implicit field solver as before.

Timing results for this problem are shown in Table IV. Total grid cell counts ranged from 27,000 on one

processor, to 86.4 million on 3200 processors. Similarly, total particle counts ranged from 324,000 on one

processor to over one billion on all 3200 processors. With particle push costs dominating the run time, the

code exhibits excellent scalability of over 9070 parallel efficiency for all numbers of processors.

The memory requirements of this benchmark were 9 words (36 bytes) per particle and 100 bytes per grid

cell. Thus the largest problem required about 46 Gbytes or roughly 670 of the memory available on 3200

Tflops processors.

swe wereunableto run our part,iclebenchmarkssuccessfullyon CPlant (as of DecemberIggg) due to softwarebus in the

CPlantsystemsoftware.Henceno CPlant timings are included in the particle benchmark tables.

4’7

Intel Tfiops

Procs CPU time Parallel Eff

1 7486 100.0

2 3783 98.9

4 1890 99.0

8 972.8 96.2

16 483.7 96.7

32 240.8 97.2

64 124.5 94.0

128 64.1 91.2

256 34.5 84.8

512 19.1 76.6

1024 11.8 62.0

Table III: CPU time (seconds) andparallel eficiency foraparticle simulation' of@ed-size run on varying

numbers of processors on the Intel Tfiops. The problem had 262, l,&/gm”dcells and 3.15 million particles and

was run for 256 timesteps.

As before, the ‘(grind” times for particle pushkg can be computed from the one-processor timings in

Table IV. Since particle pushing consumes 92% of the time, it is requiring 8.6 microseconds to push one

particle per timeztep. Similarly, the 3-stage implicit field solve requires 7.8 microseconds per grid cell per

timestep. A particle push requires approximately 355 floating-point operations; the implicit field update

takes 280 flops. Thus a Tflops processor is pushing particles at a rate of 44 Mflops and doing implicit field

updates at a rate of 36 Mflops. The billion-particle problem is running at an aggregate speed of 118 Gflops

on 3200 processors.

Finally, for comparison purposes, we combine the parallel efficiency data from the previous four tables

in one plot, shown in Figure 11. All on~processor timings are shown as 100% efficient. Hence the figure

disguises the raw performance difference between the Tilops Pentium and DEC Alpha CPlant processors.

As expected, the figure shows that scaled-size problems outperform fixed-size ones on both machines as

processor counts increase. This is true for both fields-only and particle problems. The faster computational

and slower communication rates on CPlant (relative to Tflops) degrade its parallel efficiency much more

quickly than occurs on Tflops.

7.2 Static Load-Balancing

In this section, benchmark results are presented for fixed- and scaled-size problems that require static load-

balancing. By “static”, we mean that the particle load is spatially inhomogeneous, but does not vary in

time.

The first benchmark problem is similar to the fixed-size particle benchmark of the previous section. A

one-block domain of 64x64x64 = 262,144 grid cells with mirror boundaries is populated with 3.15 million

particles. Recall that in the previous uniform-load problem, each cell in the simulation was pre-loaded with

12 particles (6 sets of 2 each). Each set was given a velocity in a different coordinate direction (+x, *y, +z)

so that they moved approximately 1/2 grid cell per timestep: Because each set filled the entire domain, ss

48

Intel Tflops

Procs Grid Cells Particles CPU time I Parallel Eff

1 27000 324,000 604.6 100.0
2 54000 648,000 608.8 99.3

4 108000 1,296,000 612.7 98.7

8 216000 2,592,000 635.4 95.2

16 432000 5,184,000 637.0 94.9

32 864000 10,368,000 639.0 94.6 {

64 1,728,000 20,736,000 646.8 93.4

128 3,456,000 41,472,000 649.0 93.2

256 6,912,000 82,944,000 650.3 93.0

512 13,824,000 165,888,000 655.3 “ 92.3

1024 27,648,000 331,776,000 655.7 92.2

2048 55,296,000 663,552,000 656.2 92.1

3200 86,400,000 1,036,800,000 662.8 91.2

Table IV: CPU time (seconds) and parallel eficiency for a particle simulation of scaled-size run on varying

numbers of processors on the Intel Tflops. The problem had 27,000 grid cells and 32.f, 000 particles per

processor and was ‘run for 200timesteps.

the simulation progressed, particle density stayed essentially constant throughout the simulation box.

In this benchmark, each of the 6 sets of particles is only loaded in 1/4 of the simulation domain (at a 4

times higher density). For example, the set of particles that moves in the +Z dwection fills a 64x16x64 slab

(thin in the g dimension) of grid cells with 8 particles/cell. Similarly, the sets that move in the &y or +Z

dimensions fill 64x64x16 and 16x64x64 slabs respectively.

The net effect of this strategy is three-fold. First, the total number of particles in the problem (3.15

million) is the same as in the uniform case. Second, the initial distribution of particles is very inhomogeneous.

Approximately 42% (27/64) of the cells in the simulation have no particles; another 27/64 of the cells have

16 particles/cell; another 9/64 have 32 particles/cell; and 1/64 of t~e cells have 48 particles/cell. Finally,

because the particles fill the entire box dimension in the direction they move, the particle count in each cell

stays essentially constant for the duration of the simulation.

The benchmark timings listed in Table V are for a simulation run on the Intel Tflops of 256 timesteps

with a 3-stage implicit integration scheme for the field solves. As before, this means that an individual

particle traverses the simulation domain twice to return (roughly) to its initial position.

The first three columns of data are for runs with load-balancing disabled. As expected, the relatively poor

parallel efficiencies are due to particle imbalance across processors. As discussed in Section 6, “imbalance”

is defined as the ratio of the maximum particle count on any processor to the average particle count across

all processors. The maximum imbalance in this problem is 4.0 which occurs on 64 or more processors when

one processor owns a region where all cells have 48 particles (versus the global average of 12).

The second set of 3 columns are results for runs with load-balancing enabled. Because the particle

distribution is essentially static, on the first timeatep the balancer computes an initial set of window blocks

that cause an equal redistribution of particles. This rebalanced state persists until the end of the simulation.

49

.,

‘“~ “0
100

90-

80 -

70 -

60 -

50 - - 50

40 -
\

30 -
“br

20

10

0 L
1248 16 32 64 128 256 512 10242048

Processors

Figurell: Pamllel efficiencies for the data in Tables I-IV. Solid lines are runson the Intel T~ops; dotted

lines are for CPlant. Data for~benchmarks areshown: @ed-size fields-only (circles), scaled-size fields-only

(squares), fixed-size particles (diamonds), and scaled-size particles (triangles).

As the efficiency results indicate, this rebalancing is quite good until there are so many processors that each

one owns only a very small (e.g. 8x8x8) sub-domain of grid cells. The imbalance figures with load-balancing

ON indicate the window-block redistribution is quite effective at equalizing particle counts across processors.

The last 3 columns are results from Table III for the same size probIem (262,144 grid cells, 3.15 million

particles) where all cells have 12 particles — a uniform load. These timings represent the ‘best” result that

the load-balancer could hope to atileve if it were 100% successful at balancing the particle load and incurred

no overhead in its re-distribution operations. The small speed-up for this problem on one processor on the

non-uniform problems (7210 versus 7486 seconds) is due (we believe) to cache effects in gathering/scattering

data from the particles to the grid. When particles only interact with a small fraction of the grid arrays,

more of the grid arrays can remain in fast-access cache memory, resulting in a small net speed-up. We note

that the efficiencies listed in the table for load-balancing ON are computed using the one-processor timing

for balancing OFF as a baseline, not from the slower one-processor uniform timing.

The next benchmark calculation is for a scaled-size problem requiring static load-balancing. Similar to

the scaled-size particle benchmark of the previous section, each processor owns a 30x30x30 block of grid

ceils. The global domain is pm-loaded with 6 sets of particles As in the fixed-size static load-balancing

benchmark, each set fills only a fraction of the global domain, but at a higher density. For this problem

a compression factor of 10x was used instead of 4x. Thus on 8 processors, the global simulation box is

60x60x60 and each set of particles is a 6x60x60 slab of particles. As before each of the 6 slabs is oriented

differently within the box and its particles are given initial velocities in different coordinate directions. In

these runs, about 73% (93/103) of the global box is devoid of particles, 1/1000 of the grid cells have 120

particles/cell (1OXthe average), and the particle density again stays roughly constant for the duration of the

50

Balance OFF Balance ON Uniform Problem

Procs CPU Eff Irnbal CPU Eff Imbal CPU Eff Imbal

1 7210 100.0 1.0 7281 99.0 1.0 7486 100.0 1.0

2 4723 76.3 1.33 3668 98.3 1.006 3783 98.9 1.0

4 2916 61.8 1.67 1882 95.8 1.003 1890 99.0 1.0

8 1784 50.5 2.0 949.6 94.9 1.004 972.8 96.2 1.0

16 1169 38.5 2.67 494.8 91.1 1.048 483.7 96.7 1.0

32 726 31.0” 3.33 247.0 91.2 1.009 240.8 97.2 1.0

64 434.4 25.9 4.0 127.5 88.4 1.012 124.5 94.0 1.0

128. 218.6 25.8 4.0 66.9 84.1 1.012 64.1 91.2 1.0

256 112.4 25.1 4.0 38.1 73.9 1.012 34.5 84.8 1.0

512 57.6 24.4 4.0 20.5 68.7 1.012 19.1 76.6 1.0

1024 32.9 21.4 4.0 16.0 44.0 1.012 11.8 62.0 1.0 I

‘I’able V: Performance (CPU-time, parallel-e ficiency, load-imbalance) for a fixed-size particle simulation with

a static imbalance in particle load on the Intel Tflops. Results with the load-balancer turned OFF and ON

are shown as well as for a problem of the same size with uniform particle load.

simulation.

Results for running this benchmark problem for 200 timesteps are given in Table VI for varying numbers

of processors on the Intel Tflops. The biggest simulation was on 1024 processors which had about 27.6

million grid cells and 332 million particles. As in the previous table, results for load-balancing disabled

versus enabled are shown, as well as results for runs of the samesize uniform-load problems from Table IV.

As before, the parallel efficiency for runs without load-balancing quickly de~ade as particle imbalances

near a peak of 10x. The runs with load-balancing ON are much more efficient though there is some extra

overhead when compared to the uniform-load runs. Certain processor configurations (e.g. 32 prom) also

do less well. This is probably due to the limited set of possible window-block sizes that the load balancer

has to choose from for a given grid and processor configuration. This effect is likely exacerbated for this

problem which contains some cells with 120 particles and others with none. Overall however, the timing

results in this and the previous table are evidence that our load-balancing technique of reassigning particles

to lightly-loaded processors (via window blocks) is very beneficial for simulations with static variations in

particle densities.

7.3 Dynamic Load-Balancing

We now benchmark problems that require dynamic load-balancing. By “dynamic” we mean that particle

densities vary not only spatially but also in time. ‘

The first benchmark is similar to the previous fixed-size particle benchmarks. It has 64x64x64= 262,144

grid cells and 3.15 million particles. The particles are pre-loaded in 3 sets (not 6 as before), each of which

is a slab that fills 1/4 of the global domain. The first set is a 16x64x64 grid-cell slab (thin in c) with 16

particIes/cell and each particle is given a velocity in the +Z direction. Similarly, the other 2 slabs are thin

in y and z and their particles move in the y and z directions respectively.

This particle assignment strategy gives the same initial particle distribution as in the static load-balancing

51

. .- , ,. $, ’...> ,., ,, --7---, :-- ,,-

.———.——.—

II Balance OFF II Balance ON
It 11 11

II Procs II CPU I Eff ‘] Imbal II CPU I Eff { Imbal
II I I II 1 I

II 1 I 582.5 I 100.0 I 1.0 I 578.1 I 100.1 I 1.0

II 2 II 758.9 I 76.8 I 1.33 II 593.0 I 98.2 I 1.002
11 11 f I II 1 !

4 934.6 62.3 1.67 599.1 97.2 1.003

8 1135 51.3 2.0 613.1 95.0 1.03
v ,, , , ,

II 16 II 1491 I 39.1 [2.67 II 654.3 [89.0 I 1.10
I t

32 1860 31.3 3.33 737.8 I 79.0 1.25

64 I 2226 26.2 4.0 672.0 I 86.7 1.10
u ,, ! ! !1 , ,

II 128 II 2935 I 19.8 I 5.33 II 675.5 I 86.2 I 1.09
II 1 I II I I

H 256 I 3669 I 15.9 6.67 I 754.7] 77.2 1.23

n512 II 4388 I 13.2 t 8.0 II 710.5 I 82.0 I 1.10
II 1 1 11 I 1

n1024 I 4724 I 12.3 8.67 I 755.0 I 77.2 1.19

Uni

CPU

604.6

608.8

612.7

635.4

637.0

639.0

646.8

649.0

650.3

655.3

655.7

xm Problem n

=1=1
Eff Imbal

100.0 1.0

99.3 1.0

=++

98.7 1.0

95.2 1.0

94.9 1.0

=+=!
93.2 1.0

93.0 1.0

92.3 1.0

92.2 I 1.0
u

‘Table VI: Performance (CPU-time, parallel-e ficiency, load-imbalance) for scaled-size particle simulations

with a static imbalance in particle load. Results with the load-balancer turned OFF and ON are shown and

for problems of the same size with uniform particle load.

benchmark. The 16x16x16 grid-cell region of highest density (48 particles/cell) is in the lower-left front corner

of the global simulation box. As time advances, this region of high density migrates diagonally toward the

upper-right back corner of the box. All particles are given velocities such that they require about 2 timesteps

to traverse a grid cell. Thus in a 256-timestep simulation, the region of higheat density moves from the lower-

left corner of the box to the upper-right and back to the lower-left. This is a quite rapid fluctuation in particle

density throughout the simulation domain for which the Ioad-balancer must attempt to compensate.

In Table VII we show timing results for this fixed-size dynamic problem running on varying numbers of

Intel T30ps processors. As before, results with the load-balancer turned off show significant degradation

in parallel efficiency. With the load-balance turned ON, the fa.+moving particles trigger the balancer to

rebalance the particle load every few timesteps. The net result is an improved efficiency though not as

dramatic an improvement as in the static case.

As more and more processors are used, a processor’s sub-domain becomes smaller and the fsst-moving

regions of high particle density cause the relative imbalances between processors to fluctuate more rapidly.

For example, on 32 processors this 256-timeatep run re-balanced 21 times; on 512 processors re-balancing

was performed 66 times. This contributes to a degradation in parallel efficiency in two ways. First, there is

the overhead cost of setting up a new window-block decomposition each time r~balancing is done. Second,

as described in Section 6, between re-balancings all the particles migrate back to their original processors

and are pushed in an unbalanced fashion for one timeatep. This effect is reflected in the imbalance column

(for load balancing ON) in the table, since it is an average over the imbalance present at every timestep. ,

Thus on 512 processors, the 26% of the timesteps (66 out of 256) where particles are wholly imbalance are

a significant slow-down factor for the overall simulation.

However, even with these caveats, the overall effect of load-balancing for this fixed-size problem is a
,

speed-up factor (versus no load-balancing) of roughly 2x on moderate numbers (16-256) of processors. It

is worth noting that this is a problem with very fast-moving particles (velocities of 4 to 8 timesteps per

- 52

Balance OFF Balance ON Uniform Problem

Procs CPU Eff Imbal CPU Eff Imbal CPU Eff Imbal

1 7128 100.0 1.0 7211 98.8 1.0 7486 100.0 1.0

2 4545 78.4 1.29 3962 90.0 1.10 3783 98.9 1.0

4 2757 64.6 1.58 2056 86.7 1.13 1890 99.0 1.0t u
8 1651 54.0 1.88 1176 75.8 1.28 972.8 96.2 1.0

16 1023 43.5 2.33 626.5 71.1 1.34 483.7 96.7 1.0

32 I 603.5 36.9 2.79 337.6 66.0 1.42 240.8 97.2 1.0-

64 II 353.4 31.5 3.25 186.3 59.8 1.51 124.5 94.0 1.0

128 202.0 27.6 3.67 110.3 50.5 1.71 64.1 91.2 1.0

256 112.7 24.7 4.08 63.7 43.7 1.84 34.5 84.8 1.0

512 66.6 20.9 4.50 44.3 31.4 2.35 19.1 76.6 1.0

1024 34.4 20.2 4.58 32.0 21.8 2.55 11.8 62.0 1.0

Table VII: Performance (CPU-time, parallel-e ficiency, load-imbalance) for a fixed-size particle simulation

with a dynamic imbalance in particle load on the Intel Tflops. Results with the load-balancer turned OFF

and ON are shown as is a problem of the same size with uniform particle load.

cell-crossing are more typical of QS problems); slower dynamic variation in the particle loads would cause

the load-balancer to be triggered less often and result in better parallel efficiencies.

Finally, we benchmark a scaled-size problem requiring dynamic load-balancing. As before, each processor

owns a 30x30x30 block of grid cells. The global domain is pre-loaded with 3 sets of particles, each of which

is a slab that fills 1/10 the domain at a 10x higher density than in the case of the uniform-load problems.

As in the fixed-size dynamic problem, particles in the 3 sets are given initial velocities so that they move

in the direction of the thin dimension of the slab. For example, on 512 processors the global domain is a

240x240x240 grid and the first set of particles (density of 40 particles/cell) fills a 24x240x240 slab and moves

in the +x direction (thin dimension of the slab). This means that 1/1000 of the domain is a high-density

region of particles (120/cell) that moves over time from the lower-left front corner to the upper-right back

corner of the box. As before, this occurs quickly as all particles cross a cell width in two timesteps.

Timing results for a 200-timestep run of this problem are shown in Table VIII. As in the previous table,

the results with the Ioad-balancer turned ON show a speed-up of roughly 2x on 16 or more processors versus

the non-load-balanced runs. In the 128-processor simulation, the balancer was invoked 26 times so that

the average lifetime of a set of created window blocks was only 7 timesteps. As previously discussed, the

fast-varying particle load in this test problem limits the effective parallel efficiency due to the relatively high

fraction of timesteps (1 out of 8 in this case) that the code spends in an unbalanced state. The largest

problem in the table was a run with 27 million grid cells and 324 million particles. Despite the highly

dynamic nature of the load variation, an overall speed-up of 373 (out of 1024) was still obtained.

Finally, in Figure 12, the parallel efficiency results from the load-balancing timings in Tables V-VIII are

plotted. The upper plot shows the results for the fixed-size problems; the lower plot is for the scaled-size

simulations. In both plots, square data points are results for running with the load-balancer turned OFF;

triangular data points are with the balancer ON. Similarly, the shaded symbols (squares or triangles) are

for problems with static spatial imbalance in particle load; open symbols are for simulations where the “hot

53

,. - . ..:

Balance OFF Balance ON

Procs CPU Eff I Imbal CPU Eff Imbal

1 576.7 100.0 I 1.0 573.1 100.2 1.0

2 744.6 77.4 1.31 625.6 92.2 1.07

4 911.4 63.3 1.63 725.6 79.5 1.25

8 1089 52.9 1.94 757.1 76.2 1.27

16 1390 41.5 2.51 873.8 66.0 1.43

32 1696 34.0 3.07 957.3 60.2 1.54

64 2008 28.7 3.64 1004 57.4 1.58

128 2530 22.8 4.61 1115 51.7 1.74

256 3045 18.9 5.57 1281 45.0 1.96

512 3572 16.1 6.54 1412 40.8 2.12

1024 4089 14.1 7.53 1584 36.4 2.34

w

r

Table VIII: Performance (CPWime, paraliel-eficiency, load-imbalance) for scaled-size particle simulations

with a dynamic imbalance in particle load. Results with the ioad-balancer turned OFF and ON are shown

along with results for same-size simulations with uniform particle load.

spots” of imbalance moved rapidly across the simulation domain.

In both plots, the circular data points (dotted lines) are efficiencies for perfectly-balanced (uniform load)

probIems with the same total number of grid cell and particle counts. These circular data are effectively

the highest efficiency that could be achieved on these problems, if the balancer were working perfectly.

As the plots indicate, for statically-imbalanced problems, the balancer comes close to achieving maximum

performance. For problems requiring dynamic load-balancing, the balancer is not as effective, but still

typically offers a marked improvement over running with no re-balancing of particle load.

8 Conclusions

In th~ report we have described the algorithms and performance of a new parallel version of the QUICK-

SILVER (QS) electromagnetic PIC code. The new code retains most of the original features that have

made serial QS an attractive and powerful simulation tool for the electromagnetic and plasma physics

group here at Sandla. Parallel QS uses the same multi-block grid description as serial QS, which enables

considerable flexibility in modeling general geometries. This strategy also leads to efficient and scalable

parallel algorithms for inter-block field connections and particle migration. Parallel QS also includes a novel

load-balancing capability that allows field and particle data to be independently distributed evenly across

processors. As highlighted in the previous section, the result is a code that can effectively run very large

PIC simulations on thousands of processors with a billion or more grid cells and particles.

As discussed at the end of Section 5 there is still some work that needs to be done on parallel QS. The

specification of transmission lines needs to be made more flexible. A robust restart-file capability needs

to be added, which is a challenge for very large simulations because of the size of the data sets involved.
.

There are also load-balancing enhancements that could be considered. One drawback of the current scheme

is that when load balancing is turned ON, particles are pushed for one timestep in an unbalanced state, as

54

““~”o
100

90 - - 90

80 -

70 -

60 -

50 -

40 -

30 -

20 -

10 - - 10

0 I I I I I t 1 t I I I 0
1248 16 32 64 128 256 512 1024

Processors

“o~
100

90

80

70

60

50

40

30

20

10

1248 16 32 64 128 256 512 1024

Processors

Figure 12: The upper plot is parallel eficienciesfor the fied-size problems simulated in Tables Vand

VII. The lower plot is for the scaled-size problems of Tables VI and VIII. The lower curves (squares) are

for load-balancing turned OFF; the intermediate results (triangles) are for load-balancing turned ON. Shaded

symbols are for problems wi~hstatic imbalance in particle load; open symbols are for simulations with dynamic

imbalance. The dotted lines (circles) are the efficiencies of the corresponding uniform-load problems.

55

.,,..l>,.~

they migrate to new processors. For simulations with rapidly changing particle densities, this means that as

load-balancing is turned ON and OFF at high frequency, there will be lost efficiency due to the fraction of

timesteps where particle pushing is (possibly severely) imbalance. We have discussed ideas for migrating

particles “instantly” to new processors to avoid this one-step delay, but it involves other trade-offs whose

effects are hard to predict.

Finally, the electromagnetic and plasma physics group at Sandia is actively investigating what the next

steps are in the evolution of plasma simulation capabllit y. The “holy grail” of PIC techniques for Sandia

(and others) would be to have a unified code that allows for hybrid structured/unstructured grids, is easily

maintainable and extensible, and has the potential to run in tandem with other simulation modules (e.g.

radiation transport) to model multi-physics effects. And, of course, this must all run in parallel on large-scale

machines, as well as on high-end workstations, and have a variety of user-friendly pre- and post-processing

tools. It remains to be seen whether such an ambitious goal will lead to a rewriting of (structured grid) QS

and (unstructured grid) VOLMAX in an object-oriented style, or an encoding of their basic algorithms in a

high-level framework such as SIERRA or ALEGRA, or some other ultimate solution.

56

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. P. Berenson. J. Comp. Phys., 114:185,1994.

C. K. Birdsall and A. B. Langdon. Plasma physics oia computer simulation. Adam Hilger, Bristol,

Philadelphia, 1991.

R. S. Coats, M. L. Kiefer, T. D. Pointon, and D. B. Seidel. QuickSilver user’s guide. Available from

authors, May, 1997.

V. Decyk. Skeleton PIC codes for parallel computers. Comp. Phys. Comm., 87:87-94, 1995.

J. W. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney. Body-fitted electromagnetic PIC software

for use on parallel computers. Comp. Phys. Comm., 87:155-178,1995.

B..B. Godfrey. Time-based field solver for electromagnetic PIC codes, 1980. presented at 9th Conference

on Numerical Simulation of Plasmas, Evanston, IL.

F. Kazeminezhad, S. Zalesak, and D. Spicer. A particle model on an unstructured mesh. Comp. Phys.

Comm., 90:267-292,1995.

Argonne National Laboratories. http://www-unix.mcs.anl.gov/mpi/index.html.

P. C. Liewer and V. K. Decyk. A general concurrent algorithm for plasma particle-in-cell simulation

codes. J. Comp. Phys., 85:302–322, 1989.

P. M. Lyster, P. C. Liewer, V. K. Decyk, and R. D. Ferraro. Implementation and characterization of

three-dimensional particle-in-cell codes on multipl~instuction-multipl~data massively parallel super-

computers. Computers in Physics, 9:420-432, 1995.

NASA. http://www.beowul f.org.

S. J. Plimpton, D. B. Seidel, M. F. Pssik, and G. R. Montry. Load-balancing a parallel electromagnetic

PIC code. to be submitted to Comp. Phys. Comm., 2000.

D. J. Riley and C. D. Turner. VOLMAX: A solid-model-based, transient volumetric maxwell solver

using hybrid grids. IEEE Antennas and Propagation Msg., 39:20–33, 1997.

D. B. Seidel, R. S. Coats, M. L. Kiefer, T. D. Pointon, and L. P. Mix. PFF - a compact machine

independent file format for simulation data, 1990. presented at 9th Biennial Cube Symposium, Santa

Fe, NM.

D. B. Seidel, M. L. Kiefer, R. S. Coats, T. D. Pointon, J- P. Quintenz, and W. A. Johnson. Load-

balancing a parallel electromagnetic PIC code. In Computational Physics, page 475. World Scientific, .

1991. edited by A. Tenner.

D. B. Seidel, M. F. Pasik, M. L. Kiefer, D. J. Riley, and C. D. Turner. Advanced 3D electromagnetic

and particle-in-cell modeling on structured/unstructured hybrid grids. Technical Report SAND97-3190,

Sandia National Laboratories, Albuquerque, NM, January, 1998.

E. Sonnendrucker, J. J. Ambrosiano, and S. T. Brandon. A finiteelement formulation of the darwin

PIC model for use on unstructured grids. J. Comp. Phys., 110:310-319,1994.

J. Sturtevant. http://sssg829.sandia.gov/pds/index.htm.

J. Sturtevant, M. Christon, P. Heerman, and P. Chen. PDS/PIO: Lightweight libraries for collective

parallel 1/0. In Proc. SC98. IEEE Computer Society Press, 1998.

57

. ——. ... ——-—

[20]D. W. Walker. The parallel implementation of a large-scale particl~in-cell plasma simulation code.

Concurrency, 2:257–288, 1990.

[21]J. Wang, P. Liewer, and V. Decyk. 3D electromagnetic plasma particle simulations on a MIMD parallel

computer. Comp. Phys. G’omm., 87:35–53, 1995. I

[22]K.S.Yee. ~EEE Transactions on Antennae Propagation, 14:2155-2163,1966.

58

A Appendix

This appendix provides a concise listing of all new and modified QUICKSILVER input commands supported

by the new parallel version of QS and the MERCURY pre-processor. They are listed in a format similar to

the QS Users Guide [3], so that these pages can be simply be added to the existing Users Guide if desired.

A.1 Modified QUICKSILVER Commaqds

The following QUICKSILVER (QS) commands have been modified:

PERIODIC

Define a periodic boundary condition. Boundary orientation is specified by its normal direction. The

locations of the two periodic planes are specified by their normal coordinate values.

format:

PERIODIC ijk d Z2

where:

ijk - coordinate direction of periodic plane normals: I, J, or K

xl x2 - normal coordinate ordinate value for the two periodic planes

SNAPSHOT

Save field or particle spatial data at specific times for postprocessing.

MAXYARTICLE

Specify the default maximum number of particles to write for particle snapshots. If the number of pro-

cessors equals one and both parameters are provided, each is set to the maximum of the two provided values.

format:

SNAPSHOT MAXJ?ARTICLE [max max.globaZl

where:

max - default number of particles for local particle snapshot storage (default is 3000)

maz-global - default maximum number of particles in particle snapshots (default is maz)

PARTICLE

Enter parameters to write particle spatial, momentum, and charge data for postprocessing. The SNAP-

SHOT MAX-PARTICLE command controls the default maximum number of particles to save. The particle

fraction is adjusted if the specified fraction exceeds the maximum number of particles. If no volume is

entered, the simulation limits are used. If the number of processors equals one and both max and max-global

are provided, each is set to the maximum of the two provided values.

format:

SNAPSHOT PARTICLE ‘title’ ktbeg ktend ktinc species~data_type] fraction [max [max-globa~] &

[tibeg zjbeg xkbeg xiend qjend xkend]

where:

‘title’ - title for particle snapshot (up to 32 characters)

ktbeg - beginning timestep number for particle snapshot

ktend - ending timestep number for particle snapshot

ktinc - timestep increment for particle snapshot

species - name of species to be saved in snapshot (ALL for all)

59

.—. ..,= -,, .-=.

data.type - flag that particle momentum, charge, or both are to be saved in addition to location; valid

types are p, q, and pq (default is location only)

fraction - fraction of species particles to be saved in snapshot

mm- number of particles for local particle snapshot storage (default given by SNAPSHOT MAX-PARTICLE)

max-global - maximum number of particles in particle snapshots (default is mm)

zibeg z-j”begzkbeg - beginning (i j ,k) ordinate of volume

m“end zjend xkend - ending (ij ,k) ordinate of volume

CUSTOM KPWRITE

Write saved killed particles out to the particle PFF file. (See CUSTOM KPSAVE command). If the

number of processors equals one and both pbufsize and lbufsize are provided, each is set to the maximum of

the two provided values.

format:

CUSTOM KPWRITE spe~tagname] pbufsize /2bufsize]pflbl

where:

spe[tagname] - Species/Tagname label (see CUSTOM KPSTAG command)

pbufsize - maximum number of particles in a KPS dataset

lbufsize - number of particles for local KPWRITE storage (default is pbufsize)

pflbl - label for KPS dataset

A.2 New QUICKSILVER Commands

The following new QUICKSILVER (QS) commands have been added:

CUSTOMPROCESSORS

Direct MERCURY to prepare a QS input deck for use with multiple processors.

format:

CUSTOM PROCESSORS P [assign]

where:

P - number of processors to be used

assign - specifies how the blocks are to be assigned to processors: sorted (default), clumped, or strided

CUSTOMDECOMPOSE

Optional commands to guide MERCURY in subdividing the blocks of the problem domain into new

blocks.

format:

CUSTOM DECOMPOSE n m or

CUSTOM DECOMPOSE n nu mg mz

where:

n - user-block number

m - subdivide block n into m sub-blocks

mx my mz - subdivide block n with planar cuts along each of the 3 dimensions into mx by my by mz

sub-blocks

PARALLEL

60

When parallel QS is running on just one processor, tell it whether to run in original serial mode or use

its new parallel algorithms.

format:

PARALLEL n

where:

n -0 for serial (the default) or 1 for parallel

CUSTOM SCREEN

Instructs QS to display run statistics for parallel performance to stdout.

format:

CUSTOM SCREEN n

where:

n - display statistics every

GUSTOM EBJCHECK

This command invokes a

surfaces between blocks.

format:

n timesteps (default is O, indicating never)

consistency check for ~, ~, and ~ field components that lie on the shared

CUSTOM EBJCHECK n m

where:

n - if n >0, the check is performed only on E and ~ components, if n <0, the J-components are also

included. The check is performed every [nl timesteps. (default is O, indicating never)

m - m = O: only a total count of errors is printed; m = 1:~more detailed, information is also displayed

CUSTOM LOADBALANCE

This command controls how dynamic load-balancing is performed during a parallel QS run.

format:

CUSTOM LOADBALANCE toll to12

whercx

toll - value (>= 1.0) of imbalance required to trigger a rebalance operation (perfect balance= 1.0)

to12 - value (>= 1.0) of imbalance that the balancing algorithm attempts to achieve (perfect balance =

i.o)

CUSTOM USEJ?DS

Force QS to write field and particle (including KPWRITE) snapshot data in PDS format when there is

only a single processor. By default, PFF format will be used if there is only one processor.

CUSTOM FIXEDRANF

Force QS to use a fixed value for all random numbers involved in particle creation and advancement

algorithms. Note that this does not modify the use of random numbers for limiting particle fractions in

snapshot diagnostics.

61

I

-- .-—_.. —_.

>. ————

format:

CUSTOM FIXEDRANF value

where:

value - value (between 0.0 and 1.0) to be used for random number calls
.

A.3 MERCURY-Generated QUICKSILVER Commands
,

The following new and modified QUICKSILVER (QS) commands are automatically generated by MER-

CURY. -

UBLOCK

Provides a description of the original block for the problem description provided

ING: this command should be modified only by experienced users who understand

format:

UBLOCK xibeg q“beg xkbeg xiend q-end xkend

. . . where:

m-begq-beg xkbeg - beginning (i.j ,k) ordinate

m“end ~“end xkend - ending (ij ,k) ordinate

UGRID

to MERCURY. WARN-

what they are doing!

Provides a description of the original grid for the problem description provided to MERCURY. The block

number refers to the blocks provided via the UBLOCK command. WARNING: this command should be

modified only by experienced users who understand what they are doing!

format:

UGRID m ijk XOnc a/% [c]]

where:

m - block number where mesh region is located

ijk - coordinate direction of region: I, J, or K

XO- beginning ordinate of mesh region

nc - number of cells in mesh region

a b c - linear, quadratic and cubic coefficient in mesh-generating function (b and c default to 0.0)

PROCESSOR

Toggles the processor number that is currently takhg ownership of BLOCK commands.

format:

PROCESSOR n

where:

n - processor number (O to nprocs-1)

BLOCK
..

Modified form of the bIock command for paraIlel runs. It provides additional information to locate the J

block on the original block structure (supplied via the UBLOCK command).

format:

62

BLOCK xibeg xjbeg xkbeg xiend q-end zkend lc12ublk ib jb kb ie je ke

where:

m-begxjbeg xkbeg - beginning (ij ,k) ordinate

m“endxjend xkend - ending (ij ,k) ordinate

lc12ublk- user block which contains this block

ib jb kb - grid index in user block describing beginning position of th~ block

ie je ke - grid index in user block describing ending position of thk block

A.4 PDS2PFF File Conversion Utility

QUICKSILVER now writes its field and particle snapshot data to PDS:formatted files when running in par-

allel. The pds2pjf utility has been developed to allow the user to convert these PDS files to PFF-formatted

files. The utility automatically senses the type of data in the input file (field or particle) and converts the

data to the corresponding PFF dataset types.

format:

pds2pff file

where:

file - file name (without extension) of PDS file to be converted; pds2pfl will convert the data in jde.pds

to PFF format and write the resulting data to the file jile.pfl.

63

— -.. —--=,m- , ,“.,, y-~.~-~..~ ,,.,.,. ,.\- - —.—.— ——

DISTRIBUTION:

1 Gary Montry

Southwest Parallel Software

11812 Persimmon NE

Albuquerque, NM 87111

1 Robert Peterkin

AFRL/DEHE

Kirtland AFB, NM 87117-5776

1 Paul Steen

Maxwell Technologies

8888 Balboa Ave.

San Diego, CA 92123-1506

1 Rene Vezinet

Centre D’Etudes de Gramat

Department Electromagnetism et

Rayonnements Ionisants

46500 Gramat

FRANCE

1 MS 0188 LDRD Office, 4001

1

1

1

1

1

1

20

1

1

1

1

1

5

1

1

1

1

1

5

1

1

5

5

1

1

1

0321 W. J: Camp, 9200

0323 D. L. Cook, 1900

0820 P. Barrington, 9232

0836 R. O. Griffith, 9117

0847 R. W. Leland, 9226

1111 S. S. Dosanjh, 9221

1111 S. J. Plimpton, 9221

1111 S. A. Hutchinson, 9221

1111 J. N. Sha&d, 9221

1111 N. D. Pundit, 9223

1111 K. D. Devine, 9226

1111 B. A. Hendrickson, 9226

1152 M. L. Kiefer, 1642

1152 J. D. Kotulakl, 1642

1152 K. O. Merewether, 1642

1152 D. J. Riley, 1642

1152 C. D. Turner, 1642

1166 G. J. Scrivner, 15332

1186 R. C. Coats, 1642

1186 R. W. Lemke, 1642

1186 L. P. Mix, 1642

1186 M. F. Pasik, 1642

1186 D. B. Seidel, 1642

1186 T. A. Mehlhorn, 1674

1186 T. D. Pointon, 1674

1186 S. A. Slutz, 1674

1 1186 R. A. Vesey, 1674

1 1190 J. P. Quintenz, 1600

1 1193 J. E. Maenchen, 1645

1 1194 D. H. McDaniel, 1640

1 1194 S. E. Rosenthal, 1644

1 1194 R. B. Spielman, 1644

1 9018 Central Technical Files, 8940-2

2 0899 Technical Library, 4916

1 0612 Review & Approval Desk, 4912

For DOE/OSTI

64

