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Abstract

QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used
at Sandia to model relativistic charged particle transport. It models the time-response of electro-
magnetic fields and low-density -plasmas in a self-consistent manner: the fields push the plasma
particles and the plasma current modifies the fields.

Through an LDRD project a new parallel version of QUICKSILVER was created to enable
large-scale plasma simulations to be run on massively-parallel distributed-memory supercomput-
ers with thousands of processors, such as the Intel Tlops and DEC CPlant machines at Sandia.
The new parallel code implements nearly all the features of the original serial QUICKSILVER
and can be run on any platform which supports the message-passing interface (MPI) standard
as well as on single-processor workstations.

This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell
codes, outlines the parallel algorithms used in this implementation, and provides a summary of
the modifications made to QUICKSILVER. I also highlights a series of benchmark simulations
which have been run with the new code that illustrate its performance and parallel efficiency.
These calculations have up to a billion grid cells and particles and were run on thousands of

processors. This report also serves as a user manual for people wishing to run parallel QUICK-
SILVER.
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1 Introduction

Plasma simulation via particle-in-cell (PIC) methods has a long history extending back nearly 40 years to
the beginning of scientific computing. Over the ensuing decades many practitioners have developed a rich
set of numerical and computational techniques useful for simulating a variety of plasma phenomena {2, 5].

At Sandia, an interest in modeling plasma effects and understanding experiments within the pulsed-
power group led to the development of the QUICKSILVER package [3, 15]. QUICKSILVER (QS) is a
3-d, finite-difference, fully-relativistic, particle-in-cell code! which has been used both inside and outside
Sandia to simulate ion and electron diodes, magnetically insulated transmission lines, microwave devices,
electron beam propagation, and high-current plasma devices. It represents 15-20 person-years of development
effort over the last 14 years. QS is an electromagnetic PIC code which means it solves Maxwell’s equations
for the time-dependent speed-of-light propagation of electric and magnetic fields, rather than an electrostatic
PIC code, which captures field effects via solutions to Poisson’s equation. For computational efficiency, the
field and particle computations within QS are performed on regular (structured) grids.

PIC codes such as QS can be extremely compute-intensive, employing a few million particles and grid
cells simulated for thousands of timesteps to capture necessary physical effects. On high-end workstations
and traditional vector supercomputers (the platform for which QS was originally designed) such simulations
often run for many hours or days. This naturally motivates a need for a parallel computing capability. This
has two beneficial effects. First, computations of this scale can be performed more quickly. More importantly,
particle and grid-cell counts can be expanded dramatically so that 3-d complexity in novel geometries can
be modeled with increased fidelity.

As an example, within DOE’s Accelerated Strategic Computing Initiative (ASCI), Sandia is tasked with
simulating plasma effects in neutron generators, a key weapon component. Other QS applications include
the understanding of system-generated electromagnetic pulse (SGEMP) effects on weapon components and
the understanding of power-flow physics in Z-pinch accelerators, a device for high-yield inertial-confinement
fusion. Back-of-the-envelope estimates predict that full 3-d PIC models of plasma effects in these devices
could easily require 100 million particles and 10 million grid cells, simulated for 100,000 timesteps. The ASCI
program has sited massively parallel supercomputers at Sandia, Los Alamos, and Livermore for performing
such simulations, which will require parallel PIC codes capable of running scalably on thousands of processors.

With this background, the goal of this LDRD project was two-fold: (a) to produce a fully-functional and
highly-scalable parallel implementation of QS suitable for running very large PIC simulations on 1000s of
processors, and (b) to implement a strategy in the parallel code to address a fundamental parallel performance
bottleneck with PIC codes — that of load-imbalance due to spatial and temporal inhomogeneities in particle
densities within the simulation domain. When combined with the need to statically balance field updates
across processors for the stationary grid and the fact that particles must exchange field information with
nearby grid points twice each timestep (gather/scatter), these particle density fluctuations can pose a serious
performance challenge to parallel implementation of a code such as QS.

The work of the LDRD was broken into two pieces. One effort, led by Gary Montry, a contractor with
Southwest Parallel Software, Inc. (http://www.spsoft.com), implemented a parallel version of QS for single-
block geometries (blocks are discussed in the next section). This allowed rapid experimentation with field
and particle kernels and with different parallelization strategies. It also led to new load-balancing ideas
which are discussed later in this report. The second thrust of the LDRD was to create a true multi-block
parallel QS; the resulting code is the subject of this report.

1The QUICKSILVER “package” is really a suite of codes which includes QUICKSILVER itself as well as pre- and post-
processing tools. )




Other researchers have also long recognized the advantages parallel computation offers to PIC simulations,
since the pushing of particles and the advancing of field quantities are inherently parallelizable operations.
Notable implementations of structured-grid parallel PIC algorithms and codes include the following:

(1) General Concurrent PIC (GCPIC) algorithm in a 1-d electrostatic PIC code [9]): Uses FFT-
based field solves and a standard particle-push formulation. Employs only a single 1-d block with
each processor owning a spatial sub-domain of particles and grid cells. Dynamically compensates
for unequal particle distribution by adjusting the sizes of each processor’s sub-domain. Achieved
excellent speed-ups on early Intel hypercube machines for up to 32 processors.

(2) GCPIC algorithm in a 3-d electrostatic PIC code [10]: Uses FFT-based field solves and
standard particle pushes. Employs only a single block, spatially decomposed in a 1-d, 2-d, or 3-d
fashion across processors. Only tested with uniform distributions of particles. Achieved good
speed-ups on up to 512 processors of the Intel Delta (predecessor to the Intel Paragon).

(3) Skeleton codes (kernels) for 3-d electrostatic PIC [4]: Uses FFT-based field solves and standard
particle pushes. Employs only a single block, spatially decomposed across processors. Load-
imbalance was not tested since particle densities only varied by 10%. Achieved good speed-ups

on several distributed memory parallel machines, including the Intel Paragon, Cray T3D, and
TMC CM-5.

(4) 3-d electromagnetic PIC code [21]: Uses a field-solve and particle-push formulation similar
to QUICKSILVER. Employs only a single block with uniform particle distribution, spatially

decomposed across processors. Achieved excellent speed-ups on up to 512 processors of the Intel
Delta.

(5) Kernel of SOS electromagnetic PIC code [20]: Uses a field-solve and particle-push formulation
similar to QUICKSILVER. Employs only a single block. Handles load-imbalance in particle
distribution by assigning particles to processors separately from field grid cells. Load balances
particles dynamically using orthogonal recursive bisectioning (ORB).

(6) 3DPIC electromagnetic PIC code [5]: Uses a field-solve and particle-push formulation similar
to QUICKSILVER. Employs multiple body-fitted blocks, each composed of a topologically
regular grid of hexahedral finite elements. Is parallelized by assigning one or more blocks with
their particles to each processor. Has the potential for load-balancing via reassigning grid blocks
and their particles to different processors, though it has not been implemented (to our knowledge).
Achieved reasonable speed-ups on 1800 processors of the Intel Paragon for problems with uniform
particle distributions.

Of these implementations, only the last one was for a true multi-block production-scale code, similar in
spirit and scope to QS. Thus the decomposition and load-balancing methods employed in efforts (1)-(5),
while educational for us, were not directly applicable to our work with QS. As will be discussed in Section 2,
we adopted a philosophy similar to that of effort (6) of parallelizing at the block level, assigning different grid
blocks with their particles to processors. For reasons that will be discussed in Section 6 the idea proposed in
effort (6) for achieving better load-balance by migrating entire blocks to new processors did not seem to be
the best option for QS; we opted instead for a novel idea whereby only particles within a “window” region
of a grid block migrate to another processor, but not the grid cells themselves. B3.' dynamically creating and
destroying multiple windows of various sizes, we are able to balance the particle push separately from the
field update. The net effect is better load balance and parallel performance, as will be illustrated in Section
7.

There has also been work at Sandia on PIC algorithms for unstructured grid geometries (and elsewhere,
see [17, 7] for example). The VOLMAX code authored by Doug Riley and David Turner encapsulated




many of the algorithms needed for performing field updates on hybrid structured/unstructured grids [13].
This code was used in an LDRD effort led by Dave Seidel to create a hybrid PIC capability that led to
the QS/VOLMAX code [16]. These projects developed single-processor and shared-memory parallel codes.
Recently, an ASCI-funded effort to create a new parallel unstructured-grid electromagnetic PIC code has been
undertaken by Joe Kotulski and others on the VOLMAX team. To date, they have successfully implemented
parallel field-solution algorithms in a new version of VOLMAX.

The remainder of this report is structured as follows. In the next section a brief overview of the com-
putational kernels and data structures used in parallel QS is given. In Section 3, our basic strategy for
parallelizing QS is outlined. Section 4 describes how to formulate problems for and run the parallel QS
code; this section may be the only one that users of the code wish to read. Section 5 is the most detailed
of this report; it provides a concise explanation of all the parallel algorithms used in the new code as well
as a summary of all the changes made in both QS and the MERCURY pre-processor to enable a parallel
implementation. This section is intended to be a reference for current and future QS developers, so that
with the section as a guide and by reading the source code and its comments, they can (hopefully!) deduce
what the parallel modifications to the code are designed to do. In section 6 we discuss the load-balancing
strategies that were implemented in parallel QS. In section 7 we highlight several benchmark calculations we
performed on the Intel Tflops and CPlant machines at Sandia to test the new code’s accuracy, performance,
and scalability. In Section 8 we offer some conclusions and plans for future work. Finally, an Appendix is
included which lists additions and changes to the set of valid QS input commands that were made for parallel

Qs.

2 QUICKSILVER Overview

In this section we highlight the computational features and basic data structures of the original serial
QUICKSILVER (QS) code that are relevant to understanding the parallelization effort described in this
report. More detailed descriptions of serial QS can be found in [15].

2.1 Geometry

QS performs its computations within a simulation geometry conceptually similar to that shown in Figure 1.
Note that although the sketches in this report are typically 2-d for simplicity; all the attributes discussed
extend in the obvious way to the 3-d QS code.

A QS geometry consists of one or more user-defined grid “blocks”, outlined with thick borders in the
figure. The blocks may be connected arbitrarily, but must be conformal in the sense that they adjoin each
other perfectly with no overlap. Each block contains a topologically regular 3-d mesh (thin lines), which
is aligned with the coordinate axes, though the grid spacings may be non-uniform in z, y, or z. (QS also
supports cylindrical and spherical coordinate systems.) Thus a grid “cell” is a small hexahedral element. An
important restriction on the grids in each block is that grid lines must be continuous across block boundaries,
as shown in the figure. For computational efficiency, regions outside the block volumes are not treated by
the QS simulation. )

Each grid cell has 6 surfaces, and each of these surfaces is of one of 3 types: it adjoins another grid
cell in the same block, a grid cell in a different block, or an external surface. All external surfaces must
have boundary conditions assigned to them. QS supports a wide variety of these conditions which impose
different effects on fields and particles: absorptive and reflective surfaces, periodic boundaries, TEM inlet
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inlet

Figure 1: An idealized 2-d cross-section of a QUICKSILVER geometry. Dielectric regions are shaded;
conductor regions are black.

planes, transmission line ports, etc. Inside a block, individual grid cells may also be assigned material
properties, such as being part of a conductor or dielectric medium.

Particles can be pre-loaded or created within the QS geometry due to boundary conditions or physical
effects such as beam injection or space-charge-limited field emission. Each particle moves in a continuous
fashion through the geometry but can always be located uniquely within a particular grid cell. Thus a particle
can move transparently across a block boundary to another block, but cannot cross an external boundary.
Particles can be deleted due to interactions with conductive surfaces or external boundary conditions.

2.2 Timestep

Logically, a QS simulation proceeds through the stages listed in Figure 2.

(1) Problem initialization and setup
(2) Loop over timesteps:
(2a) Leapfrog update of E,B fields on grid
(2b) Create new particles
(2c) Advance particle positions
(2d) Delete particles as required
(2¢) Accumulate particle charge Q and current J on grid
(2f) Output of desired diagnostics

Figure 2: Computational stages of a QUICKSILVER, simulation.
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In step (1), the problem geometry, boundary and initial conditions, and requested outputs are defined.
Step (2) is the computational heart of the code — the timestep loop.
In step (2a), Maxwell’s equations

O J
%B — _(Vx B @)

for the electric £ and magnetic B fields are solved, where p and € are the permeability and permittivity of
free space, respectively. QS uses a finite-difference time-domain (FDTD) method (explicit [22] or implicit
[6]) to advance the fields as a function of their previous-timeéstep values and the previous-timestep particle
current density J. In the explicit case each grid cell updates its field values using information from adjacent
grid cells. The implicit solver iterates several times on the same operation.

In steps (2b-2d) particles are created, pushéd, and deleted (as necessary). The particle push involves a
“gather” operation where the average E and B fields from the 8 corner points of the particle’s cell are used
to interpolate a field value at the particle’s current position. Then the particle’s position and velocity are
updated via the relativistic form of Newton’s second law where the Lorentz force F on the particle with
charge ¢ and velocity ¥ is given by

F=qE+q(#xB) (3)

Following the particle push, in step (2¢) the final particle position is used to “scatter” charge density Q
back to the 8 corner points of the particle’s cell. Similarly, the path the particle traveled from its beginning
to final position during the timestep is used to scatter current density J to surrounding grid points in one
or more cells.

Finally, in step (2f), various diagnostic quantities can be computed and output to files as desired. These
include snapshots of subsets or all of the particle and field arrays, as well as time- or spatial-averaged
quantities, such as line or surface integrals over specified field components.

2.3 Data Structures

Each grid cell in the QS simulation has a unique 7,5,k index within a block m. Several field quantities are
associated with each cell as illustrated in Figure 3. Each component of each field resides at a particular
point within the cell volume. As shown in the figure, electric-field (E) and current-density (J) components
are edge-centered quantities, while magnetic-field (5) components are face-centered. Scalar charge-density
(Q) and average-field components (Eaue and Eave) used for interpolating fields to individual particles, are
located at cell corners. Other quantities associated with the cell itself, such as its conductor or dielectric
status, apply to the entire cell volume and are treated as cell-centered quantities.

QS stores each grid-based quantity (e.g., a field component) as a collection of 3-d arrays, one per grid
block.? As shown in Figure 4, the size of a 3-d array in a single block is determined by 3 quantities:
imaz,jmaz,kmaz. These specify the number of grid points (or lines) in each dimension, including the surface
faces that bound the block. Thus the number of grid cells in a dimension is one less; there are (imaz — 1) x

2 Actually, for memory management purposes, a field component is stored as one long linear array encompassing all blocks.
But it is accessed by block index and 3-d spatial grid location as discussed here.
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(1,j+1.k+1) (+1,j+1.k)

(1.3:K)

@1,).k+1) (+1,3,k)

@G+1,j,k+1)

Figure 3: A hezahedral QUICKSILVER grid cell with its associated field quantities. Grid point values are
shown in parentheses; the dotted lines lie along half-grid spacings. All 6 field values are associated with the
ijk grid cell E field components are edge-centered within the cell; B field components are face-centered.

(jmaz — 1) x (kmaz — 1) grid cells within the block (unshaded region in the figure). For convenience in the
field update and particle push, the storage for each block also includes a layer of surrounding ghost cells.
Thus the grid points of the extended block are indexed from 0 to imaz + 1 (as shown in the figure) and the
grid cells from 0 to ¢maz.

Particle information (position, momentum, charge, ijk cell index, block number) within QS is stored
separately from the grid arrays as a one-dimensional list. For flexibility in creating and destroying particles,
this list is organized as a collection of fixed-length “caches” which can be allocated as needed. One “entry”
in a particular cache contains all the information about a single particle.

3 Parallel Strategy

The key question that must be addressed for implementation of any PIC code on a distributed-memory
parallel machine is how the field and particle data will be decomposed across processors. Before answering
this question for QUICKSILVER (QS), it is worth noting several points.

12




T

A
..X-dim... imax-1 imax

Figure 4: The indexing convention for grid points of a 2-d QUICKSILVER grid block with its surrounding
ghost cells (shaded).

First, all of the major computational stages outlined in Figure 2 of the previous section involve either
fields, particles, or interactions between them. The field update and particle push are inherently parallelizable
since each datum (grid cell or particle} can be computed independently of all others. This is an attribute
of collisionless PIC codes such as QS where particles do not interact with each other directly, but only
indirectly through particle-field ‘interactions. Similarly, the gather operation (interpolation from fields to
particles) is parallelizable over particles since the field arrays are only read from (not written to) during this
computation. The scatter operation (interpolation from particles to fields) is also parallelizable over particles
with the caveat that two (or more) particles cannot update the same grid array location simultaneously. In
QS, this caveat is not an issue, since each block has its own ghost cells that serve as duplicates of memory
locations that could otherwise be simultaneously overwritten.

Second, to run QS with high parallel efficiency, all processors must own (nearly) equal numbers of grid
cells and also own (nearly) equal numbers of particles. This is because the stages within a QS timestep are
computed sequentially, one after the other. For example, it is not possible to have some processors updating
all the fields at the same time other processors are pushing all the particles.

Third, we re-emphasize that the grid operations in QS are all block-based; for example, the field update
routine is structured as a loop over blocks, with the jk cell values within the block being updated as inner
loops. Serial QS then invokes a sequence of routines that update ghost cell field values using connection
information for block pairs that adjoin at faces, edges, and corners. The key point is that serial QS is already
structured so that it can efficiently run a simulation containing multiple blocks of field values and all the
particles inside those grid blocks.

Fourth, a QS simulation geometry can be partitioned into an arbitrary number of blocks and still represent
the same physical model. (The question of whether two simulations using different block partitionings
produce identical answers is discussed in the next section.) For example, the geometry of Figure 1 is
illustrated as a 3-block simulation, but if each block were further sub-divided, it could have been formulated

13




as a 10-block or 100-block simulation (so long as no block dimension is made smaller than 3 grid cells).

With these facts in mind, a natural strategy for parallel QS is to assign one or more blocks of grid cells
to each processor along with all the particles that reside in those blocks. If the initial problem specification
contains unequal-sized blocks or fewer blocks than processors, we can sub-divide the user blocks into smaller
blocks as a pre-processing step. If this is done in such a way that each processor can be assigned (nearly)
equal numbers of grid cells, then QS field updates will be load-balanced for the duration of the simulation,
since the grids are static. If this grid partitioning also assigns equal numbers of particles to each processor,
then the entire QS simulation is load-balanced. If not, then we still have a particle load-imbalance problem;
this issue is addressed in Section 6.

The great advantage of this strategy is that the vast majority of serial QS does not have to be modified to
work in parallel. On a single processor, the parallel QS code simulates all the grid blocks and all the particles
in those blocks, i.e. the entire problem. Running on a parallel machine, each processor is still computing
on a collection of grid blocks and the particles in those blocks, but they now comprise only a portion of the
global geometry. So long as each processor can acquire boundary-condition information for its blocks from
neighboring processors (e.g. ghost cell field values and incoming particles), then it can treat its blocks and
particles as if they comprised the entire simulation domain.

Since our target architecture for parallel QS was distributed-memory parallel machines, we programmed
in a message-passing paradigm. For portability we used the message-passing interface (MPI) standard [8].
This allows parallel QS to be run on any parallel machine which compiles standard Fortran (F77) and C
and provides an MPI library. This includes all current-generation distributed-memory parallel machines
(e-g. Intel Tflops, Cray T3E, IBM SP-2, workstation clusters) as well as shared-memory platforms (e.g. SGI
Origin and DEC 8400). We also emphasize that parallel QS runs on any number of processors, including
a single processor. Thus the parallel version of QS is also a serial code, which can be run on any Unix
workstation, in which case it operates essentially identically to the original serial QS.

Our starting point for this parallelization effort was version 3.0 of serial QS, which contains approximately
100,000 lines of mostly F77 code (including comments). The existing code required small modifications in
selected places for parallelization. For example, error checking had to be enhanced to allow for the (now)
legitimate case of applied boundary conditions having no overlap with a particular processor’s block(s). We
also added about 10,000 lines of 77 and C code to the new parallel QS. These were primarily routines that
implement new capabilities needed for parallel execution, such as the communication of ghost cell field values
to different processors or the migration of particles from one processor to another. All of these changes and
additions are detailed in Section 5. First, however we describe how to run the new parallel QS code, from a
user’s perspective.

4 TUser Instructions for Parallel QUICKSILVER

4.1 Setting up a Simulation

Instructions for creating serial QUICKSILVER (QS) input files and running serial QS are given in [3]. The
normal procedure is to first run the pre-processor MERCURY. MERCURY enables the user to setup the
problem geometry, define boundary conditions, specify outputs, etc. When MERCURY finishes it produces
a “qcks.in” and “pvlx” file, both of which are inputs to serial QS.2 The former contains a list of QS input

3More accurately, MERCURY produces a single output deck which is typically run through the splitf utility or zgcks script
to produce the two QS input files.
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commands that run the desired problem. The latter has a list of array bounds that QS uses for dynamic
memory allocation. As serial QS runs it produces a variety of output files, many of them in a portable file
format called PFF [14]. Post-processing analysis and visualization tools can then be run using the PFF files
as input.

The steps for running parallel QS are similar with a few additional options. MERCURY is still used to
create the desired problem geometry and simulation settings. There are two new MERCURY commands*
which are used to tell MERCURY how to partition the grid blocks for a parallel run:

CUSTOM PROCESSORS P [assign]
CUSTOM DECOMPOSE N M
CUSTOM DECOMPOSE N MX MY MZ

For a parallel run, the “CUSTOM PROCESSORS P [assign]” command is mandatory, where P > 1
specifies the number of processors the problem will be run on. The optional [assign] argument specifies
how the.blocks will be assigned to processors. If used it must be one of 3 values: “sorted”, “clumped”, or
“strided”. The default value is “sorted”, which will generally produce good results. For the interested user,
Section 5.1.1 provides more details about the 3 options.

When the CUSTOM PROCESSORS command is used, MERCURY will decompose the user-defined
blocks into sub-blocks, and assign them to the P processors. The decomposition procedure can be guided
by the optional “CUSTOM DECOMPOSE” commands. If used, one must be specified for each user block.
CUSTOM DECOMPOSE N M means chop user block N into M sub-blocks. CUSTOM DECOMPOSE N
MX MY MZ means chop user block N with planar cuts along each of the 3 dimensions into MX by MY by
MZ sub-blocks. If no CUSTOM DECOMPOSE commands are used, MERCURY will decompose the user
blocks as best it can into P equal-sized sub-blocks, assigning one to each processor. For example, if 3 user
blocks are decomposed for 100 processors, and one is twice as large as each of the other two, then MERCURY
will chop the large block into 50 sub-blocks and the two smaller blocks into 25 sub-blocks each. If there are
more user blocks than processors (and no CUSTOM DECOMPOSE commands are used), MERCURY will
simply assign the blocks to the processors. More details on how these operations are performed are discussed
in Section 5.1.1.

When finished, the MERCURY output in gcks.in for a parallel QS run will contain several new and
altered QS commands (UBLOCK, UGRID, PROCESSOR, BLOCK). These are discussed in Section 5.1.2,
but do not have to be understood to simply use parallel QS. MERCURY will also adjust the QS data array
bounds so as to be appropriate for running on P processors; these new values are part of the pulz output
that MERCURY creates. For arrays that are distributed across processors, the corresponding bound will be
the maximum value needed by any single processor, based on the computed decomposition.

There are also several new QS commands which can be manually added to the gcks.in file, prioxr to
running parallel QS. The ones with a “CUSTOM” prefix can be specified in MERCURY; the PARALLEL
command (if needed) must be added manually to the final gcks.in file.

CUSTOM SCREEN 10

CUSTOM EBJCHECK 20 1
CUSTOM LOADBALANCE 2.0 1.01
PARALLEL 1

4 All new and modified QS and MERCURY commands are summarized in Appendix A
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The “CUSTOM SCREEN N” command tells QS to write a few run statistics for the current timestep to
the screen every N >= 0 timesteps. N = 0 means never write which is the default. These statistics include
summations of the E, B, J, and Q field components across the entire grid, and total particle counts for
creating, pushing, and deleting particles. These values are useful in determining whether a parallel QS run
is producing the same answer as a serial QS run.

The “CUSTOM EBJCHECK N M” command invokes a consistency check for E, B, J field components
that lie on the shared surfaces between blocks. If N > 0 the check is performed only on E and B field
components. If N < 0 then J field components are included in the check. The check is performed every
abs(N) timesteps; N = 0 means never perform it (the default). If the same component exists on the surface of
two (or more) blocks, but the value is not bit-wise identical in both blocks, an error is flagged and diagnostic
information is printed to the screen. If the 2nd parameter is M = 0, just a total count of errors if printed; if
M =1 then more detailed information is printed. This check is made across all block boundaries regardless
of whether an adjacent block is owned by the same or a different processor. As discussed in more detail in
Section 5.3.3, this error often gives rise to instabilities in a serial or parallel QS run, and should not occur if
the code is functioning properly.

The “CUSTOM LOADBALANCE TOL1 TOL2” command controls how dynamic load-balancing is per-
formed during a parallel QS run. The first parameter says to trigger a re-balance operation when imbalance
is greater than TOL1 > 1.0, where perfect balance = 1.0. The 2nd parameter TOL2 > 1.0 controls what
level of load-balance the operation attempts to achieve. Again perfect balance is a value of 1.0. Good settings
to use in a typical QS simulation are TOL1 = 1.5 and TOL2 = 1.1. The effect and implementation of this
command, including a precise definition of “imbalance”, are explained in Section 6.

There are also two array limits modified by MERCURY when a CUSTOM LOADBALANCE command
is encountered, and which can be further adjusted by the user. These are wbscal = N and wbscad = M. The
first parameter extends the memory allocated for 1-d grid arrays by a factor of N; the second extends a few
of the 3-d grid arrays by a factor of M. N and M can be expressed as integer or real factors, e.g. N = 2.5.
As discussed in 6, the extra memory is used for new grid blocks created during the load-balance procedure.
For typical problems where load-balancing is used, setting wbscal = 3.0 (since it consumes little memory)
and wbscad = 2.0 is adequate; this is what MERCURY outputs by default. If QS runs out of memory when
attempting to load-balance particles on a particular timestep, it will issue a warning which means these pulz
settings should be boosted by the user.

When parallel QS is run on a single processor, it normally executes as if it were the original serial QS
code. For example, inter-block field connections are performed using the original QS routines. Optionally,
the field connections (and other operations) can use the parallel algorithms described in the next section.
This is invoked using the “PARALLEL 1” command in gcks.in. “PARALLEL 0” is the default which means
to run in serial QS mode. Using the command on a single processor can be a useful debugging exercise to
compare parallel QS output with original serial QS output. The command must be placed in qcks.in before
or immediately after the BLOCK, GRID, and PERIODIC commands. When running on multiple processors,
this command is ignored, since only the “PARALLEL 1” option makes sense.

Finally, the syntax of one QS command in gcks.in was changed for parallel QS. The PERIODIC command
now has the syntax, “PERIODIC N LO HI”. The first parameter N is the dimension I, J, or K. The LO/HI
parameters are the coordinates in that dimension that are the periodic boundaries of the simulation domain.
For example, “PERIODIC J 0.0 10.0” means the zz plane at y = 0.0 is conceptually the same as the plane
at y = 10.0, and all grid cells in the simulation are assumed to lie between y = 0.0 to y = 10.0.
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Note that all PERIODIC commands should be included in the same section of the gcks.in file where the
BLOCK and GRID commands are listed. The old serial QS syntax for the PERIODIC command should no
longer be used. The motivation for this change to PERIODIC is discussed Section 5.2.

4.2 Running Parallel QUICKSILVER

The only change needed when running parallel QS as compared to serial QS is when using POISSON
boundary conditions. As discussed in the next section, parallel QS does not have the ability to generate
Poisson solutions on-the-fly for block surface inlet conditions.

Instead the user should generate the gsp2d.pff file which contains the solution by running parallel QS on
one processor on the original user-block description of the problem geometry for a timestep or two. This file
is created automatically by parallel QS (when running on one processor) if it does not already exist. Parallel
QS (on multiple processors) can then be run using gsp2d.pff as an additional input file.

4.3 Output

When parallel QS runs, it produces many of the same PFF and text files as serial QS. These files can be
post-processed and visualized in the usual way. It also produces new files in a PDS (parallel data set) format
[19] that can be converted into PFF files. This is discussed in more detail in Section 5.5.

At the end of a parallel QS run, various performance statistics will be printed to the screen. These include
a breakdown of CPU timings for different portions of the timestep, particle counts, and load-balance infor-
mation. The numbers include averages of various quantities across all processors, as well as histogramming
by processor. For example, each processor keeps track of the CPU time it spends in particle pushing. For a
run on P processors, the average, minimum, and maximum of this collection of P times is printed out, along
with a histogram where the range (from minimum to maximum time) is divided into 10 bins and the time
for each of the P processors is tallied into one of the bins. The histogram data can be useful in determining
if load-imbalance occurred during the run.

4.4 Accuracy of Parallel Results

We now address the question of whether the user should expect parallel QS to produce the same answers
(bit-wise identical) as serial QS. There are several questions to consider:

Is serial QS deterministic?

Is parallel QS deterministic?

Does serial QS give the same answer on different machines?

Does serial QS give the same answer no matter how many blocks are used?

Does parallel QS give the same answer no matter how many processors are used?

The answers are one “yes” and four “no’s”, but since this isn’t a quiz, we should explain further!

First, serial QS is deterministic. Running the same input files on the same machine will produce bit-wise
identical answers (despite the use of random numbers, see Section 5.6). However, serial QS will not give
identical answers when run on'two different machines. This is due to round-off differences in computed
quantities which can propagate onward to the next timestep, causing the two sets of results to diverge over
time. In QS this effect may not only produce slightly different field values, but can alter whether a particular
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particle is created or destroyed. This will cause future timesteps to be fundamentally different. Clearly, such
round-off problems are to be expected when running on two machines which treat floating-point operations
differently. Less obviously, they can also occur if a problem is decomposed into blocks in two different ways.
For example, if the geometry of Figure 1 were formulated as a 6-block simulation instead of 3-block, serial QS
would sum J field values in different orders near block surfaces, which could produce round-off differences,
and thus (eventually) lead to two different results.

Parallel QS suffers from these same limitations. Running the same physical problem on 100 versus 200
processors will typically be done with different numbers of blocks. Thus the simulation results will not agree
precisely with each other or with a serial QS run. Even if the same number of blocks are used (running
2 blocks/proc on 100 procs versus 1 block/proc on 200 procs), there is an additional source of round-off
differences when comparing two parallel QS runs. As will be discussed in Section 5.3, communication of J
field values for grid locations shared between three (or more) blocks that reside on different processors is
done asynchronously. Because the messages can arrive in random orders, the data are summed in different
orders, and two runs on differing numbers of processors may not agree. This same effect can cause a repeat
run on the same number of processors to disagree as well. Hence parallel QS is not deterministic, though in
practice it may often turn out to be.

Notwithstanding these caveats, it is important to note that any two QS simulations of the same problem
geometry should still produce answers that agree in a “statistical” sense, i.e. the two simulations should
compute the same physical effects to within some statistical error bar, just as if a Monte Carlo simulation
were run twice with a different initial random number seed. Parallel QS adheres to this looser standard; a
parallel QS run should produce the same statistical answer as a serial QS run, independent of how many
blocks and how many processors it is run on.

5 Implementation Details

In this section, we describe the changes and additions made to Version 3.0 of serial QUICKSILVER (QS)
to create parallel QS. The modifications can be broken into several categories, based on what portion of the
code they affect. We discuss each of these in turn: MERCURY (pre-processor), QS input and setup, QS
fields, QS particles, and QS output. At the end of the section we discuss unsupported features in the current
version of parallel QS.

For QS developers, this section (along with 6) serves as a detailed overview of the changes made for
parallel QS. When references are made to specific QS routines, there are typically comments included in the
code, prefixed by “c SJP”, that will correspond to the overview given here. New files were also added to
parallel QS; the majority are ¥77, C, and header files with the prefix parallel. Most of the routines in those
files are also discussed in this section. Much of the new code has additional useful documentation (variable
definitions, routine overviews, etc) included in those files.

5.1 MERCURY
5.1.1 Decomposition Algorithms

As discussed in the previous section, a user can specify “CUSTOM DECOMPOSE” commands to tell
MERCURY how to decompose each user block into sub-blocks. This operation takes place in MERCURY’s
decompose routine which performs two operations. It sub-divides user blocks into smaller blocks and it
assigns the new blocks to individual processors.
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The procedure for chopping a block into MX by MY by MZ pieces is straightforward. The procedure for
chopping a block into an arbitrary number of sub-blocks, where each sub-block is roughly the same size and
as cubic in shape as possible, is more involved. The latter goal is desirable to minimize the surface area of
the sub-block, since the surface area represents field values that must be communicated to other processors.
This procedure is invoked when a CUSTOM DECOMPOSE N M command is used or when no CUSTOM
DECOMPOSE commands are specified. In the latter case, MERCURY performs the following heuristic,
where P is the number of processors being decomposed for:

(1) Compute NTOT = the total number of grid cells in all blocks
(2) For each block n: ‘
(2a) FRAC(n) = cells in block » / NTOT
(2b) TARGET = FRAC(n) * P
(2¢c) Chop block n into TARGET sub-blocks (same as CUSTOM DECOMPOSE n TARGET)

The operation of step (2c) is performed in a recursive fashion. Consider the task of chopping a 10x13x15
block of cells into 5 (roughly) equal-sized pieces. First, the routine finds the longest dimension, in this case
the z=15 direction. It then chooses to make an zy-planar cut (perpendicular to this dimension) at the
2-location that comes the closest to leaving 2/5 of the grid cells on one side of the cut and 3/5 of the cells on
the other side of the cut (2 + 3 = 5). In this case the cut would create one block of size 10x13x6 and one of
size 10x13x9. We have now broken the original problem into two self-similar new problems: chop a 10x13x6
block into 2 pieces, and a 10x13x9 block into 3 pieces. The routine recurses on this sequence of steps until
each sub-block is a single piece. A 2-d example of a recursive decomposition is shown in Figure 5. Note that
the nature of the algorithm often creates sub-blocks which border neighboring blocks in an irregular fashion.

Once all the user blocks have been sub-divided, the decompose routine assigns one or more sub-blocks
to each processor. For load-balance purposes the goal is to give each processor .as equal a number of grid
cells as possible. This is done in one of 3 ways depending on the whether the optional “assign” argument in
CUSTOM PROCESSORS is “sorted”, “clumped”, or “strided”. Consider a list of M sub-blocks, each with
a (possibly) different number of grid cells, to be assigned to P processors.

The “clumped” option assigns the 1st few sub-blocks in the list (a clump of blocks) to processor 0, the
next few to processor 1, and so forth. How many sub-blocks are given to each processor depends on the
block sizes; the clump size is adjusted so as to give each processor an equal number of grid cells. This option
will tend to put sub-blocks that are geometrically close to each other on the samé processor, since sub-blocks
from the same original user block are grouped together in the list of M sub-blocks.

The “strided” option simply assigns every Pth block in the list to the same processor. For example, for
10 blocks assigned to 3 processors: processor 0 gets blocks 1,4,7,10; processor 1 gets blocks 2,5,8; processor
2 gets blocks 3,6,9. This method is a poor choice for load-balancing since it doesn’t take into account block
sizes, but is useful for debugging purposes.

The “sorted” option (the default) does the best job at load-balancing, but does not keep nearby blocks
on the same processor. First the list of M sub-blocks is sorted by size, largest to smallest. The largest block
is assigned to the processor with the least cells (initially all processors have 0 cells). Then the next largest
block is assigned to whatever new processor has the least cells, and so forth until all blocks are assigned to
processors. This is an implementation of the well-known bin-packing algorithm.

When the decompose routine finishes these two operations MERCURY prints a summary of the results
to the screen. This data can be examined to see if a reasonable decomposition was created.
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Figure 5: A 2-d schematic of one grid block chopped into 11 sub-blocks by MERCURY’s recursive decom-
position option. The original grid is shown with dotted lines; the sub-block boundaries are solid lines. The
letters represent cuts at various levels of the recursive algorithm. Initially a single cut A is made, then two
B cuts, etc.

5.1.2 Output

The pulz file produced by MERCURY contains array bounds which every processor will use to allocate its
local memory. These bounds are set to the maximum value any processor needs for the portion of the global
problem (blocks, grids, boundary conditions, etc.) that it is assigned. If parallel QS generates a memory-
overflow error when reading the gcks.in file due to insufficient pulz settings, this is a bug, which should be
reported to the QS developers.

The gcks.in file will contain several commands new to serial QS users, for example

UBLOCK 0.0-8.0-8.0 100.0 8.0 8.0

UGRID 110.0 100 1.0 0.0 0.0

PROCESSOR 3

BLOCK 53.0-8.0-8.069.08.00.01541170179

The UBLOCK and UGRID commands list the block bounds and grid spacings for the original user blocks
which were specified for the simulation using the standard BLOCK and GRID commands in serial QS. Every
processor stores a copy of these settings which it will use to create its local grids. The PROCESSOR N
command indicates that the next set of BLOCK commands are only relevant to processor N. This is in
effect until the next PROCESSOR command is read. In other words, all processors except N ignore these
commands. The BLOCK commands have additional appended arguments which specify the location of this
(smaller) block within the original (larger) user block it was derived from.
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5.1.3 Decomposition Strategies

QS users may be wondering how to best use the new MERCURY options so as to decompose a problem
to run the fastest on a given number of processors. While the CUSTOM DECOMPOSE commands give
considerable flexibility in this choice, a safe strategy is the following. The best decomposition for field
updates is one block/processor, with all blocks being the same (roughly cubical) size. This balances the field
computation, while minimizing inter-processor communication. If the CUSTOM DECOMPOSE command
is not used, MERCURY will attempt to do this by default.

For some problem geometries, chopping into P blocks may not be a good choice. For example if there
are more blocks than processors to begin with, or the blocks are of radically different size, then significant
load-imbalance may result. In these cases, the CUSTOM DECOMPOSE command should be used with the
goal of “over-decomposing” the problem into 2*P or 3*P blocks of as equal size as possible. Note that it
is better to assign one (or a few) processors significantly less work (grid cells) than the average, than it is
to assign one (or a few) processors significantly more. This is because during the field-update operation all
processors will have to wait for the slowest one (most work) to finish.

When particle effects on load-balance are included, the question of a “best® decomposition strategy is
more difficult. This issue is discussed further in Section 6 of the report.

5.2 Input and Setup

The majority of commands that parallel QS reads from the gcks.in input script are not changed from serial
QS, either in syntax or meaning. To read this file in parallel, the opread routine in the QS Zopack library was
modified so that only processor 0 reads a line from the file, then broadcasts it to all the other processors.

Typically the first section of gcks.in contains global settings (e.g. timestep count and size). These set
global variables in the code which every processor stores a copy of. This is a natural location for the user
to add new parallel QS commands such as “CUSTOM SCREEN”, “CUSTOM EBJCHECK”, “CUSTOM
LOADBALANCE”, and “PARALLEL” which were discussed in Section 4.

5.2.1 Blocks and Grids

The next section of the file defines the problem geometry via BLOCK and GRID commands. In the previous
section we described how new PROCESSOR commands are interspersed with the BLOCK commands to
cause each one to be interpreted by only a single processor. During this process each block is assigned a
unique global ID from 1 to nblk_total (the total number of blocks on all processors). The subset of blocks
stored locally by a particular processor are numbered in the usual QS fashion from 0 to nblk by the processor
itself. Each processor stores the global IDs for its blocks in an auxiliary blocktag array (see parallel.inc).

After BLOCK and GRID commands are read, QS calls its mkgrd routine to create the 1-d grid arrays that
store the grid coordinates for each dimension of each block. Special care must be taken to insure that the
end points (at the surface and ghost cells) of each blocks’s 1-d arrays match up exactly with the opposite end
points in adjoining blocks, including periodic blocks. This is to insure that the field-differencing equations
which rely on grid spacings are consistent across block boundaries.

In serial QS end-point matching is relatively straightforward since the code knows about all blocks. In
parallel QS it is more troublesome, since blocks are distributed across processors. Initially we built grids for
each block, then communicated the grid arrays to other processors to match end point information. This
can cause small inaccuracies when one user-specified grid region (linear or quadratic) is chopped into pieces
for each of several sub-blocks. Instead, we now use the UBLOCK and UGRID commands to generate the
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entire set of global grids (still only 1-d arrays) in duplicate on each processor for the original user-block
description of the problem geometry. End-point matching for the user blocks is done by each processor in
the usual serial way using these global grid arrays. Then, each processor can extract the subset of values it
needs for the 1-d grid arrays in its local blocks. The end points of these arrays will now be guaranteed to
match since all processors extract identical values from copies of the same global arrays. All of this logic is
encoded in the mkgrd routine and the grdbuf and zoner routines it calls.

5.2.2 Parallel Initialization

At the end of the mkgrd routine a new parallel function is called, parallel_setup. Parallel_setup initializes
several variables which are stored in duplicate on every processor. These are documented in parallel.inc.
They include block2proc which stores what processor owns every block in the simulation, and global2local
which stores the local block index (from 0 to nblk on its owning processor) of every block in the simulation.
The routine also initializes the new bgcell array. This is a 3-d integer array for all the cells (interior and
ghost) of a processor’s blocks. It stores the global ID number of the block that owns the cell. Thus for cells
interior to a block it is set to the ID of the block itself. For ghost regions, the cell either corresponds to an
external boundary or is an image of a real cell in the interior of another block. In the former case, bgcell for
the ghost cell is set to 0; in the latter case it is set to the global ID of the other block. Additionally, the
sign of the bgcell value is set negative if the ghost cell lies across a periodic boundary in any of the three
dimensions (see discussion of periodicity below). Setting ghost-cell values in bgcell requires inter-processor
communication. The details of this operation are discussed in 5.3.

5.2.3 Boundary Conditions

The next section of the gcks.in file typically defines various external boundary conditions (e.g. PEC, PMC,
INLET, POISSON, OUTLET, BEAM_EMIT, CUSTOM TLINE) and internal material properties (e.g.
CONDUCTOR, DIELECTRIC, FIELD_EMIT) for the QS simulation. PERIODIC boundaries are also
allowed; though the syntax of this command and its placement in the gcks.in file have changed as discussed
below.

After each command is read, the region (e.g. a 2-d surface) over which it is applied is checked against the
block extents. In serial QS it is an error if the applied condition does not coincide with any block surface.
This was changed in parallel QS to allow for the possibility that a particular processor’s blocks will not have
any overlap with a prescribed region. It is still an error if no processor’s blocks have any overlap. This
necessitated many (usually minor) changes in the error-checking logic for several commands in dtread.F and
the lower-level routines it calls.

Poisson Inlets The setup code for a few boundary conditions had to be modified more extensively. One
was the POISSON command. This option allows a 2-d solution to Poisson’s equation for E fields to be
applied at a surface as a time-dependent initiator of field flux entering one or more blocks. In serial QS, the
user can either solve the 2-d Poisson’s equation at start-up or read in a previously computed solution from
a gsp2d.pff file. For parallel QS, we limit the choice to reading in a solution from s file.

The reason for this is that parallelizing the 2-d Poisson solve across a limited set of processors that
own blocks adjoining the Poisson surface patch would be difficult. Since the solve itself is a one-time 2-d
calculation and thus not costly, it made more sense to require the user to create the Poisson input file before
running parallel QS. This is a portable PFF file which can be created via a serial QS run (one or more
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timesteps with Poisson output enabled) on a workstation using the original user-block geometry. Eventually,
the QS developers will enhance MERCURY to produce the gsp2d.pff file if needed, so that the user of parallel
QS will not be required to perform this extra run.

A parallel_poisson routine was added to parallel QS to enable reading of the PFF file and distribution of
the solution data to multiple processors. A single processor reads the surface solutions, one user block at
a time from the file, and broadcasts them to every processor. Each processor determines if any of its block
surfaces overlap with the Poisson solution surface, and extracts the appropriate subset of the solution data.

Applied B-Fields Another input command that needed similarI/O modification was APPLIED-B READ.
This QS option is used to define an external B field that is added to the average B fields used to push par-
ticles. A PFF file defining a (typically) 2-d azimuthally symmetric B field is read-in by QS and the B field
is interpolated to all grid points in the simulation geometry.

For parallel QS, we modified arzbrd.fto read this file on a single processor and broadcast the data to all
others. Each processor can then independently perform the interpolation to create field values appropriate
for only its blocks and grid cells.

Transmission Lines Transmission line models are typically used in QS to model source/load impedance
mismatches. For example, a series of transmission lines may be used to represent the pulsed power section
(generators, pulse forming lines, impedance transitions, etc.) of an accelerator. One-dimensional transmis-
sion lines connect to the 3-d simulation geometry at a plane on the external boundary of a simulation. Serial
QS has a restriction that a transmission line must only connect to a single block. Currently, this requirement
still exists in parallel QS, where it is now more restrictive since an original user block is typically decom-
posed into numerous smaller sub-blocks. This means the user must insure that MERCURY performs its
decomposition in such a way that the transmission line surface connection is not bisected by a new sub-block
boundary. This should not be overly restrictive since transmission line cross-sections tend to be small, but
it does require user attention.

The bulk of the coding changes for transmission lines in parallel QS occur in init.F and tline.inc. User
definitions of transmission lines and generators are stored on all processors. Processors with block(s) that
contain transmission line ports build an index tlmap that maps from their local list to the global data
structures. The ebc and fldslv routines that apply the transmission line model were modified to use this
mapping.

Periodic Boundaries Another boundary condition that was modified for parallel QS was the PERIODIC
command. Serial QS allows the specification of multiple periodic surface “patches” in any dimension, that
effectively serve as conduits for particles and fields from some portion of the simulation geometry to another.
This capability can be used (or mis-used!) to create simple or arbitrarily complex connections. For simplicity,
we decided not to support this full generality in parallel QS. Rather we implemented the usual style of global
periodic boundaries. These are specified in parallel QS using a new form of the command, “PERIODIC N
LO HI” where n is a dimension index (I, J, or K), and LO/HI are the coordinates in that dimension that are
connected. An additional change is that these PERIODIC specifications must now be included in the first
section of the gcks.in file with the UBLOCK and UGRID commands

An example of this command’s usage was given in Section 4. Parallel QS treats periodic boundaries as
transparent to particle motion and as simply another kind of block connection for field updates (see the next
section 5.3).
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5.2.4 Output Commands

The final section of a typical gcks.in file contains HISTORY and SNAPSHOT commands for specifying
simulation diagnostics. The syntax does not change for parallel QS, except for a few additional optional
arguments. These arguments and the parallel implementation of the output commands are discussed in
Section 5.5.

5.2.5 Final Setup

After the gcks.in file is processed, QS performs additional setup in gsinit.F before beginning the main timestep
loop. In parallel QS, some new and modified tasks are performed:

(1) The parallel_field_setup routine is called to create the block connection “plans” used to com-
municate E and B fields between blocks on different processors (see Section 5.3 for a discussion
of plans).

(2) If particles are to be used in the simulation, the parallel particle_setup routine is called.
Similar to (1), a separate plan is formed for communicating J and Q fields, as well as J fields
that lie on block surfaces. Neighbor lists of which processors will be exchanging particles are also
constructed — see Section 5.4. A new 3-d array, bgijk, is also constructed. This array stores in
compact form (a single integer) the ijk indices of each cell in a processor’s blocks. Similar to
what was done with the bgcell array, inter-processor communication is performed using the bgijk
array. This sets the ghost-cell values of the array to the Zjk indices of the corresponding interior
cell in another block. The bgijk array is used when a particle migrates to a new block on another
processor to update the particle’s ¢k indices — see Section 5.4.

It is worth noting that taken together, the bgcell and bgijk arrays give a processor all the infor-
mation it needs regarding how its blocks connect to all other blocks in the simulation. In serial
QS this information was stored in the bgcim arrays (block ID number) and bcm arrays (offsets for
how each block adjoined to every other). With a parallel simulation using potentially 1000s of
blocks, the bgcim array could no longer store large-enough ID numbers. And as will be discussed
in the next section, the all-to-all connectivity of the 2-d bem arrays was not a scalable memory
option for storing inter-block connectivity information.

(8) The 3-d bgcim arrays store various cell-wise flags which describe each cell’s material and
boundary properties. In serial QS, each block set CIM values for its interior cells, then did
inter-block connections to initialize ghost-cell CIM values. In parallel QS, this would require
communication. Instead, the CIM initialization code was modified so that each processor applies
the various material and boundary condition commands to entire blocks, including ghost cells.
Ghost-cell values are thus initialized explicitly without the need for inter-block information.

(4) When the bgcim array is initialized, each processor sets flags for each of its cells that are
indices into tables of various properties (e.g. dielectric, conductor, boundary conditions). Since
bgcim values will sometimes be exchanged between processors (see Section 6 on load-balancing),
it is important that each processor construct its tables and CIM indices with identical orderings.
Thus the code for processing the DIELECTRIC (and other) commands which affect the CIM
indices was modified to insure identical results on all processors, even if a particular processor’s
blocks did not overlap with a given DIELECTRIC region. This occurs in infinl and related
routines. Similar care is taken with the masks used to pack/unpack particle indices to insure
that all processors construct identical masks; this occurs in the mskdef routine.
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5.3 Fields

Field “connections” between adjoining blocks take place at two points during a QS timestep. The first is
after E and B fields have been updated in the fidslv routine. The second is in the jgdnsy routine after J
and () fields have been created by scattering particle current and charge. In both cases, fields have been
computed within individual blocks. Before the timestep can proceed field values at or near block boundaries
must be exchanged between blocks. In the case of E and B fields, this exchange serves to update ghost-cell
values. In the case of J and Q fields, the exchange sums values near block surfaces that have only been
partially computed in individual blocks. Serial QS accomplishes these tasks via a series of surface- and
edge-based operations (blkcnn, fledge, jgsurf, jgedge routines) using the pre-computed bem arrays that store
information on how every possible pair of blocks are connected. These routines and data structures were not
designed for parallel operation or to be scalable to problems with 1000s of blocks, so we opted for a different
approach in parallel QS.

In a generic sense, a one-way “connection” between two blocks involves the mapping of one set of field
values in a “source” block to another set of values in a “destination” block. The connection itself may be
thought of as “sending” the set from the source block, followed by “receiving” the set into the destination
block. The destination block may sum the received values with pre-existing ones, or simply overwrite them.
Regardless of which field quantity is being treated, the “overlap set” of mapped values is a sub-section of
the 3-d array of field values in each block. Depending on the extent of the overlap between the two blocks, a
sub-section may be a 2-d plane (or several planes) of values, a 1-d line, or even a single point, but can always
be represented as a set of 3-d array indices for the block, i.e. field(ilo:ihi,jlo:jhi klo:khi) in array syntax.

This paradigm for block-connection has two nice features. First, on-processor and off-processor connec-
tions can be treated essentially the same. If both blocks reside on the same processor, the “send/receive”
operation is simply an in-memory copy. If the blocks are on different processors, the “send/receive” op-
eration requires a message be sent by one processor and received by the other. Second, one routine can
handle multiple kinds of field connections (E, B,J, 0, and others), so long as it knows the “mapping rules”
appropriate to each kind of field. :

In parallel QS, this block connection operation is implemented in two parts: (1) a setup routine that
computes the overlaps for all pairs of blocks, and (2) a communication routine that actually connects the
blocks via sends and receives. The former operation is called only once since the grids in QS are static; the
latter operation is called every timestep. The latter operation takes the place of the original serial block
connection code in fldslv and jgdnsy. We describe both the setup and connection routines in some detail as
they are a key kernel of parallel QS. )

5.3.1 Setup

Grid connections are initialized using the parallel_connect_create routine. Called by each processor, its inputs
include the list of blocks owned by that processor and the 1-d grid arrays for each of those blocks. The local
starting address of each component of each 3-d field array is also passed in as is information about periodicities
defined for the global simulation geometry. The function of this routine is to create a data structure that will
represent all of the block overlaps a processor needs to exchange (send and receive) with other processors.
The routine is written in C to enable easy creation of this fairly complex data structure (see the cplan struct
in parallel.h). The routine returns a pointer to this data structure, called a “plan”, to the F77 calling routine.
The sequence of operations used to create a plan within parallel_connect_create is listed in Figure 6.

The first step is to acquire the 1-d grid arrays for all blocks from all processors; they will be used
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(1) Acquire 1-d grid arrays for all blocks.

(2) Count overlap sets for sends from my blocks to all others.

(3) Allocate memory for storing the overlap info.

(4) Generate overlap info for sends from my blocks to all others.

(5) Count overlap sets for receives into my blocks from all others.
(6) Allocate memory for storing the overlap info.

(7) Generate overlap info for receives into my blocks from all others.
(8) Allocate memory for all send and receive messages.

Figure 6: Stages of creating a “plan” for field connections between all blocks.

numerous times in the remainder of the routine. Since they do not require much storage, a one-time
global communication (MPI_Allgatherv calls in parallel_grid_combine) is done to acquire a local copy on
each processor of the entire concatenated set of 1-d grid arrays.

The next step (2) is a double loop: for each of my blocks check for an overlap with every other block in
the global simulation. This is a local computation which is performed by calling the poverlap routine with
two sets of 1-d grids, one for my block as a “sender” and one for the other block as a “receiver”. Because
periodic boundary conditions can affect how two blocks overlap (or even enable a block to overlap with
itself), the poverlap routine checks if the sending block adjoins a periodic boundary on any of its 6 faces. If it
does, a periodic image of the 1-d grid array in a particular dimension is generated by adding or subtracting
the appropriate periodic length to each grid coordinate. The poverlap routine then loops over all possible
periodic images and calls the lower-level overlap routine with a particular instance of a send block image
grid and the original receive block grid.

The overlap routine does a quick check to see if the corner points of the two blocks overlap in each
dimension. If they do not (the predominant case), there can be no overlap and the routine exits. If this
test is passed, then a detailed check for overlap ensues. This check is specific to the field component being
communicated; we will list the overlap mapping rules for each field in 2 moment. In a geometric sense, the
task of finding an overlap can be viewed as in Figure 7.

As discussed in Section 2, within a grid cell a particular field component exists at a point in 3-d space.
In Figure 7, we consider the x-component of the E field. The “sending” block has E, values defined at a 2-d
array of points represented by circles (a 3-d array of points in 3-d QS). Note that E, values are on half-grid
spacings in = and full-grid spacings in y. As will be discussed below, the extent of the 2-d array for the
sender includes only F, values inside and on the surface of the block. The “receiving” block only needs E.
values that are a half-grid spacing outside the block, in its ghost cells whose extent is bordered by dashed
lines in the figure. These E, values are represented by the square points in the figure.

The overlap routine superimposes (see the superpose routine) these two sets of points (circles and squares).
If the two blocks adjoin, then the two sets have a subset of points in common. This subset of overlapping
points, shown as triangles in the figure, is the “overlap set”, stored in a set struct defined in parallel.h.
As indicated in the figure, depending on how the send and receive blocks adjoin, the overlap set can be a
contiguous set of triangles (Overlap 1) or be disjoint (Overlap 2). In the former case, the overlap set can be
represented by a set of 6 indices which bound the sub-array of triangular points. In the latter case, which
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Figure 7: A 2-d diagram of edge-centered E, field components in two blocks. If the two blocks adjoin, then
a few circular points in the “send” block overlap with some square points in the ghost cells of the “receive”
block. The triangular points represent the overlap “set”. Two kinds of possible overlap are shown. In the
first, the overlap set is contiguous; in the second, it is disjoint.

will be discussed below, the disjoint set is broken into multiple contiguous sets before being stored.

The low-level test for superposition of two points is handled carefully in parallel QS; the two points
are declared “identical” if they are within a small distance “epsilon” of each other. This is because the
computation of (periodically shifted) grid arrays for different blocks can result in small round-off differences
in the grid values themselves. When the superposition test is performed, a conservative epsilon is computed
as a function of the grid spacing (in each dimension) of the grid arrays for each block; see the eps routine in
parallel_connect_create.c.

At the end of step (2) in Figure 6 the total number of overlap sets that this processor has with all blocks
in the simulation has been tallied. In step (3) memory is allocated in the plan data structure for storing
detailed information about these overlap sets. This information is organized so that the processor can send
a single message to each partner processor. The message will contain all the overlap sets needed by the
partner, which may result from several of the. sending processor’s blocks overlapping with several of the
receiver’s blocks.
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Step (4) is similar to step (2) except that this time the results of the overlap tests are stored in the
plan data structure in an array of pplan data structs (defined in parallel.h). This includes the extent of
each 3-d overlap set, i.e., the bounds of the array of triangles in Figure 7. When the message is sent,
the sending processor will first extract the field values for the overlap set from a particular field array and
pack them into a contiguous message buffer. This packing operation is a triply nested loop that strides
thru memory to extract the appropriate field values. The looping bounds and offset for this operation are
what is stored in the plan as a pplan struct (see parallel.h), along with the starting address for where the
overlap set begins in memory. The computation of this address uses the F77 field array addresses passed
into parallel_connect._create.

Steps (5)-(7) are identical to (2)-(4) except that each processor now computes what information it will
recetve from all other processor’s blocks. Since the send/receive operation is asymmetric as can be inferred
from Figure 7, we compute the receive information explicitly from the receiver’s perspective. Instead of a
pack operation, now an unpacking of each received message will be performed to scatter the values from the
message buffer into their appropriate field array locations. The loop bounds and offsets appropriate for this
unpacking are again stored in a pplan struct along with a flag that indicates whether the unpacked values
should be summed to their destination locations or overwrite them.

Finally, in step (8) the total volume of field data that will be sent and received as part of this block
connection operation is now known. Each processor allocates a receive buffer, large enough to hold all its
incoming messages. It also allocates a send buffer with enough memory to hold the largest message it will
send to any other single processor. These buffers will be used in the actual message exchanges described in
the next section 5.3.2.

To this point, all of the block-connection discussion has been independent of what field component is
actually being exchanged. We now explain the specific overlap mapping rules that are applied to each kind
of exchange. First, we state the goal that the exchange is designed to accomplish. We then specify the
portions of the send block grid and receive block grid that are passed to the overlap routine to achieve this
goal. This is typically done once for each field component (e.g. E., Ey, and E.) since each component
resides on different points in 3-d space. However, as shown in Figure 7, in some cases the overlap set is
not a contiguous 3-d array of points (see Overlap 2). Representing the triangular points as a 3-d sub-array
would include intermediate points which are not part of the overlap set. We solve this problem by breaking
the receive grid into smaller pieces (e.g. each vertical column of square points in Figure 7) and calling the
overlap routine multiple times for one field component exchange.

The parallel_connect_create routine is called with a “which” flag that specifies which field (or fields) is to
be exchanged. All of the logic we will describe for overlap calculations with different types of field exchanges
is encoded (with comments) inside the overlap routine in parallel_connect_create.c. We describe each option
in turn from the perspective of an individual processor.

(1) Cell-wise quantities (bgcell, bgijk, bgcim arrays): The goal is to acquire only the ghost-cell
values of my blocks. The send grid is all my interior cells. The receive grid is all my interior and
ghost cells. Since no send grid contains a point that corresponds to any interior cell of a receive
block, the overlap routine will only compute overlaps that include receiver ghost cells and I will
thus receive only ghost-cell values.

(2) E fields (bgei, bgej, bgek arrays): The goal is to acquire only the ghost-cell values that are a
half-grid spacing outside my blocks. The send grid is all points inside and on the surface of my
blocks. The receive grid is only points a half-grid spacing outside my blocks, but NOT on the
surface. For each F field component there are 2 possible connections between a send and receive
block which requires two calls to the overlap routine. Connections where one or both of the blocks
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is a PML (perfectly matched layer [1]) are handled as a special case, since this requires two field
values be exchanged instead of one. This is done by generating two overlap sets (identical except
for their starting addresses in memory) for a single grid overlap.

(3) B fields (bgb, bgbj, bgbk arrays): The goal and send and receive grids are exactly the same
as for E field connections. However, because B field components are face-centered quantities the
receive grid must be broken into 4 contiguous sub-arrays and the overlap routine called 4 times
for each component.

(4) J fields (bgji, bgjj, bgjk arrays): Because the movement of a particle can deposit current
density a full grid spacing outside my block (see Section 5.4), the goal is to obtain fully-summed
grid values up to a full-grid spacing inside my blocks and up to a half-grid spacing outside my
blocks. The send grid is thus all points inside and on the surface of my blocks as well as ghost
points a half-grid and full-grid outside my blocks. The receive grid is all points inside and on
the surface of my blocks as well as ghost points a half-grid outside my blocks (but not a full-grid
outside). Note that this overlap rule implies that a single point in one of my blocks may overlap
with multiple images in other blocks. This is correct since it must receive values from each of
those blocks to form a fully-summed J component for all particles that may have contributed
to it. We note that our field-connection paradigm handles this potentially complex overlap logic
straightforwardly even for arbitrary block connections.

(5) Q fields (bgg array): The goal is the same as for J fields except that Q fields are corner-
centered quantities. Thus fully-summed grid values are only needed for points a full-grid spacing
inside and on the surface of my blocks. The corresponding send grid is all points on the inside,
surface, and full-grid spacing outside my blocks. The receive grid is all points inside and on the
surface of my blocks. The charge density in QS is stored by charge groups for different species
of particles. This is essentially a 4th storage dimension over charge groups in the bgg array. This
is treated similarly to PML blocks for E fields; one overlap set is created for each charge group,
each with a different starting address in memory.

(6) Average E and B fields (bgeai, bgeaj, bgeak, bgbai, bgbaj, bgbak arrays): Spatially-averaged E
and B fields are needed by QS to perform sub-cycling of particle motion within a single timestep.
These are corner-centered field quantities that are computed from the edge- and face-centered
E and B field components within each block. The connection goal is to acquire only ghost cell
values a full-grid spacing outside my blocks. The send grid is all points inside and on the surface
of my blocks. The receive grid is only points a full-grid spacing outside my blocks, but NOT on
the surface. This means the receive grid must be broken into 6 contiguous pieces (planes of ghost
cell values) and the overlap routine is thus called 6 times.

For options (1), (2), (3), and (6), the received values overwrite existing ghost cell values (except for
option (2) with PML blocks where summing of received values can also take place). For the J and Q fields
of options (4) and (5), the received values are summed to existing field values in the receiving block.

Finally, the E and B fields are communicated at the same time in a parallel QS timestep (in the fldslv
routine). Thus there is one plan, created at setup time, which stores both E and B field inter-block connection
information. Similarly, there is one plan created for both J and Q field connections which is used within the
Jgdnsy routine.

5.3.2 Connection

The actual communication of field values is straightforward once block connections have been pre-computed
and stored in a plan. The operation is performed by the parallel_connect routine. Given parallel QS’s

29




block-decomposition strategies and arbitrary assignment of blocks to processors, these connections can (in
general) require any processor to send/receive a message to/from any other processor. On a distributed
memory parallel machine, such message passing is most efficiently done in an asynchronous fashion. The
plan data structure is designed so as to enable this irregular pattern of message passing to be performed as
quickly as possible each timestep.

First, each processor posts receives (MPI_Irecv) for all the messages it expects to receive. This is to avoid
unnecessary message copying by the underlying MPI library. The processor then sends all of its outgoing
messages. For each processor it is sending to, a message buffer is packed using the overlap information stored
in the plan, and the message is sent (MPI.Send). The processor then performs all block connections for cases
where it owns both the “sending” and “receiving” block. The overlap sets for these connections are stored
in the plan identically to how they are stored for off-processor connections, but in-memory copies can be
performed rather than message sending/receiving. These strided memory copies are accomplished by first
packing into a buffer, then unpacking from the buffer, the same as if a message were actually sent.

This strategy of treating on-processor connections the same as off-processor connections has two advan-
tages. First, it means that parallel QS will run as-is on a single processor. All block connections will simply
be handled by this on-processor portion of the parallel_connect routine. Second, on a parallel machine, a
processor can potentially do useful work while waiting for incoming messages to arrive.

Once the on-processor connections (if any) have been completed; each processor waits for incoming field
data. The MPI_Waitany routine will return when any of its incoming messages have arrived, at which point
the processor immediately unpacks the field data in that message. When all messages have been received
and unpacked, the block connection operation is complete.

5.3.3 Block Surface Instabilities

Implicit in the asynchronous nature of the block connection algorithm described in the previous section,
is the fact that incoming messages from other processors may arrive in random order. The order may be
different from one machine to the next, when a simulation is repeated on the same machine, or even from
one timestep to the next. In the case of J field communication, this means that field values may be summed
in different orders, producing slight differences (round-off in the last digit) in the results. Normally this
is not an issue; it only produces small statistical differences between two QS runs, as discussed in Section
4. However, in the case of J field values that lie on the surface between two blocks it can cause a subtle
instability.

J fields are used in the next timestep by each block to update new E fields. If the same surface J field
value is different in two blocks, then so will the corresponding E field value be different. Because E field
values at block surfaces are never shared between blocks, this small difference can propagate to the next
timestep. The signature of this instability is that over the course of 100s or 1000s of timesteps, there is a
growing difference in the same surface E and B component as stored by two blocks that share the common
surface.

Our solution to this problem was to force the J values at block surfaces to be bit-wise identical across
all blocks that own images of the same physical edge-centered point. Since the normal J and Q field
communication involves significantly more data than just surface J field values, we implemented this with
a second communication step, called from jgdnsy. As with the other block connections we first setup a plan
via a call to parallel connect_create. The overlap mapping rule for this style of block connection is a new
seventh option, different from the six rules listed in the previous section:

(7) Block surface J fields (bgi, bgjj, bgsk arrays): The goal is to overwrite only the surface values
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of my blocks. The send grid is all points inside and on the surface of my blocks. The receive grid
is also all points inside and on the surface of my blocks. Since no send grid contains a point inside
a receive block, the overlap routine will only compute overlaps that involve my surface values.

These overlap sets are stored in the plan in the usual way with one significant change. If a particular J
field value has images on the surface of several blocks, we want exactly one of those image values to overwrite
all the others. Consider all the blocks in the simulation to be numbered globally from 1 to N. If a surface
point has images in several blocks, we want the value in the lowest-numbered block to overwrite the value
in all higher-numbered blocks. We force this to occur by only storing an overlap set in the plan if it involves
a send from a lower-numbered block to a higher-numbered block. In other words, half of the overlap sets
generated by rule (7) above are discarded.

This modified plan will insure a processor only overwrites its surface J field components with values from
lower-numbered blocks. However, high-numbered blocks may still receive two (or more) of such values, so the
value from the lowest-numbered block must be used in the last overwrite. This is enforced by changing the
MPI_Waitany call used in parallel_connect to an MPI_Wait for a specific message. The loop over expected
messages is ordered so that values from the lowest-numbered block overwrite all previously overwritten
values. This altered logic is encoded in a separate parallel_connect_ordered routine which is the one called
from jgdnsy for the J field surface communication.

It is worth noting that this instability is not a parallel issue, but a result of the new block-connection
algorithm itself. Once we knew what to look for, we were able to trigger the instability when running on
one processor. This is because the round-off differences in J can also occur at the surface of two blocks
owned by the same processor, since the same surface field value is stored by both blocks and the two values
are computed by summing contributions in different orders. The original serial QS code did not suffer from
this instability (to our knowledge) because it used a different (non-parallelizable) block connection scheme.
The old algorithm which mapped one block’s faces/edges to another block’s, actually copied more field data
than was needed to satisfy the mapping rules outlined in the previous section. An unexpected benefit of the
over-copying was that block surface & and B values were overwritten, forcing them to be the same on both
blocks.

In the process of finding and fixing this instability problem, we added an option to the block connection
routines that will flag an error whenever field components on shared block surfaces are not bit-wise identical.
This test is invoked by specifying a CUSTOM EBJCHECK command in gcks.in; see Section 4 for instructions
on using this command. Though it involves extra communication it is a useful check to perform whenever a
user suspects that parallel QS may be producing incorrect answers.

It is implemented as (yet) another option for a new style of block connection. E and B fields on the
shared surfaces between blocks are communicated and tested for equality. If desired (see Section 4), J fields
can also be included in the test. The setup of such a communication plan requires a new eighth overlap rule
in parallel_connect_create:

(8) Block surface E, B, and J fields (bgei, bgej, bgek, bgbi, bgbj, bgbk, bgji, bgjj, bgjk arrays): The
goal is to communicate only the surface values of my blocks. The send grid is all points inside
and on the surface of my blocks. The receive grid is also all points inside and on the surface of
my blocks. As in rule (7), since no send grid contains a point inside a receive block, the overlap
routine will only compute overlaps that include surface values.

The check itself is performed from gcks.F via a call to parallel_connect. When messages are unpacked,
the received field values do not overwrite existing ones, rather they are compared to existing field values and
an error count is incremented (stored inside the plan) if they are not bit-wise identical. A subsequent call
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from qcks.F to parallel_query_errors will print diagnostic information to the screen if any such errors were
found by any processors.

5.4 Particles
5.4.1 Serial vs Parallel

Before highlighting the changes/additions made for parallel QS, we first explain how particles are pushed in
serial QS. As discussed at the end of Section 2, each particle stores 4 indices corresponding to its location
within cell ijk in block m in addition to its position, momentum, and charge. The timestep size in QS is
bounded so that a particle can move at most one grid cell in a single timestep. After the move is computed,
the particle’s initial and final coordinates and initial and final ¢jk indices are known. If the particle ends up
in a cell inside the same block this stage of the push is done (though it could have been killed by entering an
internal conductor cell). If it ends up in a ghost cell of block m, then the status of the ghost cell is checked
in the bgcim array. There are several possibilities. Either the particle is killed (e.g. it is a conductor, outlet,
inlet), or put back into the block (e.g. reflection boundary), or it passes into another block. In the latter
case, the particle’s ijk and block m indices are immediately updated to reflect its new block location.

Thus in serial QS there are three possible outcomes of a particle move: the particle stays in the same
block, moves to a new block, or is killed. The final stage of the particle push is to scatter its charge @
and current density J to the appropriate field arrays. Since each particle already has valid final ijk and m
indices, the field arrays associated with the particle’s final block are the ones that are updated.

For parallel QS, we alter this sequence of steps, so that charge and current density are scattered to
the field arrays associated with the particle’s initial block. The reason is that there is now a 4th possible
outcome of a particle move: the particle moves to a new block owned by another processor. We call this
particle “migration”. Migrating particles have to be communicated to their new processors every timestep
as part of the particle push. If we waited to scatter @ and J until after a particle arrived at its final block,
two complications arise. First, we would need to send extra information with the particle regarding its
initial location at the beginning of the move. This is so J could be scattered along the particle’s entire
path. Second, the code for performing the scatter would have to be invoked twice, once in the usual way for
particles staying on a processor, and once after new particles arrived from other processors.

5.4.2 Modifications for Parallel QUICKSILVER

With this change in mind, these are the modifications made to particle handling for parallel QS:

(1) In the QS setup phase, several variables and lists are pre-computed by each processor for later
use in particle migration. The variables themselves are listed in parallel.inc; they are initialized in paral-
lel_particle_setup.F by a call to neighbor_init. The most important of these are nneighsend and nneighrecv.
These are the number of “neighbor” processors that this processor will potentially send particles to and
receive particles from. A neighbor processor is one who owns one or more grid cells adjacent to a processor’s
blocks, i.e. that overlap with any of the processor’s ghost cells. A processor can quickly generate its list
of neighbor processors by looping over all its ghost cells and checking their bgcell values. The utility of the
neighbor list is that it identifies the only other processors that a processor need communicate with when
migrating particles.

(2) New migrate caches (see caches.INC) were added in addition to the survive caches already used.
Recall that “caches” are the QS data structure used to store lists of particles while allowing their number
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to grow and shrink from timestep to timestep. The new caches store particles tagged for migration during
the push; the particles will later be sent to other processors.

(3) A new parallel_partbe.f routine was added (to replace serial partbe.f), which is called after particles
have moved to their new positions, to check the outcome of the move. The new routine determines which
of four possible outcomes has occurred and places the particles in appropriate caches. The outcome options
for each particle are (a) killed, (b) stay in same block, (c) move to another block owned by this processor,
or (d) migrate to a new block on another processor. Parallel_partbc uses the bgcell value for the particle’s
final cell to determine which outcome has occurred. Recall that bgcell was initialized with the global block
number that is the owner of each of a block’s interior and ghost cells.

(4) Scattering of particle charge @ and current density J is done in each particle’s initial block, even if it
moves to another block on the same or a different processor. This operation occurs in the jandro and jandril
routines. To enable initial-block scattering, the updating of the block index m and grid indices ijk for each
particle to reflect its final position is delayed until after the calls to these routines. The change from final to
initial block scattering also means particle charge now accumulates in ghost cells of the @ field arrays. This
effect is accounted for in the inter-block field connection rules for @ described in Section 5.3.

(6) The vechdr routine was modified to pack and otherwise manipulate the new migrate caches. For
particles that have moved to a new block owned by the same processor, vechdr also now updates the particles
ijk and block m indices appropriately for the new block. (Recall that this operation was removed from partbc
so that particle charge and current could be scattered based on the particle’s initial block.)

(6) At the end of the particle push, a new parallel_migrate routine is called (from parhdr.F). Its purpose
is to have each processor send old particles that have left its blocks and receive new particles whose final
coordinates now reside inside its blocks. The first task is for each processor to count how many particles
need to be sent to each of its neighbors. A linear pointer (integer) list is allocated and the migrate cache is
scanned. For each particle, the new processor which will be sent that particle is determined and a counter
(neighsendcount) for that processor is incremented. The ijk and block m indices for the particle are set to
new values appropriate for the receiving processor using information in the bgijk array. As the scan proceeds,
the linear pointer list is used to store the sub-list of particles that will be sent to each neighbor processor.

The next step of parallel_migrate is for each processor to tell its neighbors how many particles to expect.
Each processor sends and receives these counts, even if the count is zero. It can then check its memory to
insure it has sufficient space for the incoming particles and allocate the needed message buffers.

Similar to the communication algorithm for field connections between blocks, each processor now posts
a receive (MPI Trecv) for each incoming message it expects. It then packs up and sends (MPI_Send) a list of
particles to each of its neighbors. The sub-list mentioned above is used to efficiently extract the appropriate
particles from the migrate cache during this operation. The processor then waits for its incoming messages
to arrive and adds the received particles to its caches.

We note that the asynchronous nature of this communication procedure allows for particle exchanges
between any pair of neighboring processors. Typically for a QS run on large numbers of processors, each
processor will have only a few neighbors. Due to the irregular nature of MERCURY’s block decompositions
and assignment of blocks to processors, these neighbors could be any other random processor. This scheme
allows each processor to communicate with only its neighbors. It is also efficient since, other than the
handshaking exchange of particle counts, -all particles migrating between a pair of processors are sent/received
in a single message.

(7) The parhdr routine was modified to log new statistics on particle movement and migration, both for
individual processors and across processors. The parcnt.INC file contains the new data structures. Some of
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these statistics can be printed to the screen via the CUSTOM SCREEN command and are also summarized
in the run’s final output. They can be useful for debugging purposes as well as analyzing the performance
and load-balance characteristics of a simulation.

(8) Finally, we note that QS has several commands that govern how particles are created including
BEAM_EMIT, FIELD_EMIT, and CUSTOM PRELOAD . These options work the same in parallel QS as
they did in serial QS, with each processor creating the appropriate particles in its own blocks each timestep.
For beam emission this required correct computation of weighting factors for emission regions spread across
multiple processors; this takes place in creini.f and crebmi.f. For field emission, there is a subtle difference
between serial and parallel QS, which is discussed in Section 5.6.

5.5 Out:,put

Simulation-output from QS is specified via “HISTORY”, “SNAPSHOT”, “CUSTOM KPSAVE”, and “CUS-
TOM KPWRITE” commands. There are no syntax changes in these commands, except for an additional
optional argument for the ones that control particle snapshots: SNAPSHOT PARTICLE, SNAPSHOT
MAX_PARTICLE, and CUSTOM KPWRITE. In serial QS these commands take an (optional) argument
for the maximum number of particles to include in a single snapshot. In parallel QS this argument refers to
a global count of particles across all processors. An additional local maximum can be specified which will
be used to limit the number of particles any single processor will output.

The following sections outline how the operation of the output routines has been modified in some cases
for parallel QS and describe a new output file format used for snapshot quantities.

5.5.1 HISTORY Commands

HISTORY commands are used for integrating field strength or energy over lines/planes/volumes and for
summing particle and performance statistics, all as a function of time in the simulation. They typically
create a relatively small volume of output, which in parallel QS is still written into a file in the native QS
PFF format.

When the dtread routine reads a HISTORY FIELD command from gcks.in, its geometric extent is checked
against the simulation geometry for possible errors. In parallel QS we must now consider cases where none of
a processor’s blocks overlap with the HISTORY geometry or where two or more processors share an overlap.
In the former case, we simply allow this to not be an error, unless no processors have any overlap. In the
latter case, special care must be taken to insure each processor computes a valid fraction of the HISTORY
quantity. This is so that when the contributions are summed across processors, an accurate total will result.
Consider the case where a line integral is to be performed (E . dl-j along a series of geometry segments
defined in a HISTORY FIELD command. In serial QS, this would be computed by stepping along the line
segments one grid cell at a time, assigning the segment to one unique block when it bordered two or more
blocks. In parallel QS, portions of these segments may run along the surfaces or edges of blocks owned by
different processors. The key question is how to coordinate all processor’s efforts to correctly compute the
contribution of each cell to the overall integral.

Our solution to this problem was to insure that only one processor computes each cell-wise contribution
to the HISTORY quantity. First, in a pre-processing operation, the addseg routine was modified to break
up each HISTORY segment into sub-segments, where each sub-segment has the same set of “neighbors”.
In this context, a set of neighbors are the blocks that own grid cells that border the line segment. Each
one-cell-length portion of the line segment will have 4 grid cells that border it (or less if it lies along a global
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external boundary).

The break-up operation is performed by the line2many routine in parallel_seg.f. It first checks the global
block owners (via the bgcell array) of the 4 cells that surround the initial portion of the line segment. It
then “walks” along the segment, one cell-length at a time, checking each set of 4 neighbors. Whenever the
set-of-4 changes, the segment is truncated and a new segment is begun. The routine returns a new list of
shorter segments that comprise the original segment. Conceptually, each processor now has an expanded list
of segments that describe the overlap of its blocks with the global HISTORY geometry. The addseg routine
then decides for each new segment, whether this processor will compute it or not. The decision is made by
the seg-decide routine (also in parallel_seg.f) which checks the 4 neighbor blocks and masks out all but the
lowest-numbered one. Processors which own the other 3 blocks discard this segment from their HISTORY
list. Thus the contribution from each HISTORY segment will be computed by exactly one processor.

The same logic is applied to HISTORY FIELD commands for planar geometries (e.g. surface integra-
tions). In this case, the planeZmany routine chops a planar patch in two dimensions into sub-patches where
every cell face in the sub-patch has the same two neighbor blocks on either side. Exactly one processor
keeps each sub-patch in its HISTORY list. HISTORY FIELD commands for volume geometries (e.g. energy
summation) do not require any special pre-processing. This is because the volume naturally breaks up into
sub-volumes within blocks that are already uniquely owned by a particular processor.

The above description implies that a processor may only contribute to a subset of the total number of
HISTORY outputs. The mapping of local histories to global ones is done with new variables defined in
chist.inc. At each timestep, a processor computes the values for its local histories. In the psthis.F routine
these contributions are summed across processors (via MPI_Allreduce) and written by processor 0 into the
gshis.pff file. There is special logic in this routine to insure that every history quantity is accurately computed
when summed across all processors. For some quantities this means that only one processor should contribute
to the sum since the quantity is already stored in duplicate on multiple processors.

One final note about HISTORY command output is in order. At the end of a run, QS performs one final
data manipulation (essentially a transposition of the 2-d data set) on all history quantities before writing
out the gshis.pff file in its final form. The field arrays are used as temporary memory to hold all the history
quantities. In parallel QS this operation is done by a single processor. If a small-geometry problem with
many histories is run on a large number of processors, it is possible that the field arrays on a single processor
will be too small to perform the data manipulation. Parallel QS will issue an error message if that occurs.

5.5.2 SNAPSHOT and KPWRITE/KPSAVE Commands

Particle and field snapshots generated by SNAPSHOT and CUSTOM KPWRITE/KPSAVE commands can
produce large volumes of output. In parallel this would be a problem if we throttled all output through a
single processor. Instead, these commands take advantage of the PDS (parallel data set) 1/O library recently
developed at Sandia [19, 18]. Similar to the QS PFF library, PDS creates portable binary files that can be
moved transparently from one machine to another. The files can contain multiple kinds of scalar, array, and
time-dependent data. On machines with parallel disk systems (e.g. the Intel Tflops), PDS performs two
important tasks that maximize I/O throughput. First, it multiplexes a parallel code’s reads and writes (from
every compute processor) through the system’s multiple I/O nodes. Second, it buffers small I/O operations
so that the actual file reads and writes are done in large blocks.

Both of these tasks are performed invisibly by the library, so there is no special coding needed in the
application code to make I/O work in parallel. However, for parallel QS, we did have to make numerous
modifications to output routines such as pstsnp that now call the PDS library in order to conform to the
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library’s API.

Similar to the HISTORY commands, the SNAPSHOT and KPWRITE/KPSAVE geometries specified in
gcks.in are intersected with each processor’s blocks during parallel QS’s setup phase. On a timestep when
a snapshot is computed, each processor extracts the relevant information from its blocks and does a PDS
“write” simultaneously with all other processors. The PDS library routines aggregate this information into
one parallel output file. For field snapshots, this file also contains mappings from each processor’s local
blocks to the original user blocks. This map information is computed and written into the PDS file in the
pstsnp routine. This enables post-processing tools such as pdsZpff to re-map the parallel field values back to
the original user-block geometry. As its name implies, pds2pff is used to convert PDS files into QS PFF files
suitable for further analysis. The syntax for use of this command is listed in the Appendix.

Finally, we note that when running parallel QS on one processor, the user can choose whether to use
the old snapshot file format (PFF) or the new default format (PDS). This is specified using the “CUSTOM
USE_PDS” command described in the Appendix.

5.6 Unsupported Features

There are a few capabilities of serial QS that have not yet been fully implemented in parallel QS. We discuss
each in turn.

(1) Random numbers (RNs) are used within QS in several ways. First, they can be used to create a
particle at a randomized location within a grid cell. A new particle is then assigned a random number which
it uses throughout its simulation lifetime. This particle RN is used to select particles for diagnostic output.
RN’s are also used when a particle moves to a new cell. Technically, it should deposit current density in all
the cells it crosses. This can involve an expensive trajectory computation if the particle moves diagonally,
cutting across the corners of one or more cells. To avoid this, QS uses a RN to choose a random path that
deposits current density along a subset of the possible cell crossings. Averaged over many particles, the
results should be statistically the same as if exact trajectories were computed.

The problem for parallel QS is how to have each processor compute RNs independently. This could be
done rigorously using parallel RN generation techniques, but was deemed not important enough to pursue.
Instead we let every processor use the same RN generator and initial seed. Since each processor uses its
stream of RNs in a different way for different particles, this should not affect the statistical quality of the
results. We note that the use of RNs in this way is an additional source of statistical discrepancy between
parallel QS runs on different numbers of processors, as discussed in Section 4.4. This would still be the case
even if parallel RN generators were used. To avoid this problem (e.g. for debugging purposes) the RNs used
in parallel QS can be set to a specific value (e.g., 0.5) using the “CUSTOM FIXEDRANF value” command.
This effectively turns off RNs for everything except the selection of diagnostic particle output.

(2) Restart files are used in serial QS to checkpoint a lengthy calculation so it can be resumed in a new
run from precisely the point in simulation time that the restart file was written. The restart file contains all
the particle and field data, as well as all other state information needed to restart the simulation. This file
write is performed by the rstart routine. Rstart.F is the single largest file (over 4000 lines) in QS because of
all the detailed output that must be done. In principle, parallel QS could write a similar file from multiple
processors, using the PDS library described in the previous section, but this is not yet fully implemented.
Instead, parallel restarts are done by having each processor write a separate file in the original serial QS
format. This is not as scalable an operation as the PDS method would be, nor does it allow parallel QS to
be restarted on any number of processors.

(3) Field emission of particles from conductor surfaces can occur slightly differently in a serial versus
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parallel QS run. Normally, emission occurs when the electric field normal to an emission surface exceeds
a breakdown threshold. The breakdown event causes a CIM value in bgeim to be set to insure the normal
electric field is zeroed. In parallel QS, if that grid cell and emission surface is at a block boundary between two
processors, the CIM setting is not communicated to the adjacent processor (see code comment in crefeg.f).
This means that particles in the other processor’s adjacent grid cell will experience a slightly different force
from the electric field than they should. However, unless there is a corner in the emission surface right at the
block boundary, this condition will self-correct within a few timesteps. In any case, such differences have a
negligible effect on the simulation dynamics. Thus we have not written specialized communication routines
to adjust the CIM setting on the adjacent processor.

6 Load Balancing

As discussed in Section 3, load imbalance often occurs in parallel PIC simulations. This is because the field
update and particle push are separate expensive computations which are difficult to independently spread
uniformly across all processors. There are also computations needed to gather/scatter information between
the field grids and the particle positions. This imposes the additional constraint that a processor should own
grid cells and particles in the same geometric region.

In parallel QS, as was discussed in Section 4, it is straightforward (via MERCURY) to decompose the
field grids evenly across processors. However, because particle densities in the simulation domain can vary
by orders of magnitude both spatially and temporally, this by itself can lead to huge particle imbalances
for some problems. Conversely, we could attempt to bias the MERCURY decomposition so processors in
regions of high particle density own less grid cells. Even if the density variations were static in time (which
they aren’t for most problems) and this scheme was able to balance the particle load perfectly, we could
still have significant imbalance in the field update computation. Although particles often account for 90% or
more of the total computational time in QS, the field imbalance would have a dramatic effect on the overall
scalability of parallel QS running on 100s or 1000s of processors.

6.1 Other Ideas

As we thought about this problem for parallel QS, several strategies were considered. One idea for large
problems was to statically over-décompose (via MERCURY) the grid into more blocks than processors. Thus
each processor would be assigned several blocks. The block-to-processor assignment could be made randomly
so that the blocks on one processor would be scattered throughout the simulation domain. Then even if there
were large particle density variations, one processor should own some blocks with few particles and others
with many. This scattered over-decomposition would hopefully produce a rough overall load-balancing of
the particle load.

This option requires no additional coding in QS, as it can be experimented with by proper MERCURY
usage. The drawbacks are that the inter-block communication cost for fields is increased due to using more
and smaller blocks, i.e. increasing the surface-to-volume ratio of individual blocks. Another drawback is
that there is no guarantee the random assignment of blocks to processors will not result in some processors
doing considerably more work for a particular simulation.

Another option that was considered was to dynamically load balance by moving entire grid blocks with
their interior particles to other processors. The same kind of initial over-decomposition would be used as
described above. At some point during the simulation, if load-imbalance was detected, a heavily loaded
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processor would send one or more of its blocks to lightly loaded processors. As the particle densities varied
in time, blocks could shift back and forth between processors to keep the load balanced. This is similar to
the idea that was proposed in [5] for their parallel PIC code, though to our knowledge it was never actually
implemented.

One disadvantage of this approach is that it would be difficult to implement in QS, without considerable
reworking of the code and data structures. There is no single data structure containing a block and its
particles that could be bundled up and sent to another processor. The boundary conditions and diagnostic
(output) requests apply to multiple blocks and are stored in separate lists which would have to be recomputed
and restructured if blocks moved between processors. Also, all the arrays which hold 1-d grid and 3-d cell
values are densely packed block-by-block, due to the F77 usage of allocated memory. Deleting and inserting
new blocks in this packed structure would require considerable data copying. An additional drawback of
this approach is that the load-balancing is coarse-grained. Unless the field grids are chopped into hundreds
of blocks/processor (which would be very costly for inter-block communication), the smallest “unit” of work
which can be passed to another processor is an entire block of grid cells and particles. Thus in practice it
might not be effective at insuring load balance.

Another idea that was considered was to dynamically adjust block sizes. For example, if a block with too
many particles adjoined one with few particles, the boundary between them could be shifted to make the
first block smaller and the second block larger. This is similar to the approach used in [20] where density
variations in particles trigger a complete repartitioning of the (single block) grid into new varying-sized
sub-blocks. In QS it would be difficult to completely re-partition a general (many block) geometry on-the-fly
into a new set of balanced sub-blocks. It would incur the same data structure and code complexity issues
discussed above. Even incrementally adjusting a few block boundaries so as to “grow” underworked blocks
at the expense of overworked ones, would be a coding challenge. If MERCURY’s recursive option were used
to partition a block, then irregularly joined sub-blocks result. It would thus be difficult to grow some blocks
while shrinking others. If MERCURY were used to chop a block into a regular 3-d array of sub-blocks, then
block growth would require entire planes (boundaries for several blocks) to shift so that an entire row of
blocks grew at the expense of the next row. This many-block effect could adversely impact the hoped-for
load-balancing benefits.

6.2 Our Solution

The approach we finally decided to implement was based on an idea originally proposed by Gary Montry,
a contractor working with the Sandia QS group. Under the LDRD, Gary experimented with various par-
allelization strategies in a version of parallel QS he and Mike Pasik developed. This version was restricted
to one initial user block. The new load-balancing strategy worked well in their code, so we adopted and
modified the ideas for use in the full multi-block parallel QS described in this report. So far as we know,
the idea is a novel one in parallel PIC code development; a journal article emphasizing the load-balancing
aspects of this work has been submitted for publication [12].

Gary’s idea was to continue to use a static (balanced) decomposition of the field grids, but to dynamically
migrate particles from overworked processors to underworked ones via “windows” within a processor’s blocks.
A “window” is a contiguous sub-region of grid cells within a heavily-loaded block that is mapped to a new
block on a lightly-loaded processor, as illustrated in Figure 8.

Particles within the window migrate from the “parent” block (on the heavily-loaded processor) to a new
“child” block (on the lightly-loaded processor). The child processor pushes those particles so long as they
remain inside the window region. Particles that enter/exit the window migrate between the parent and
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Figure 8: A three-processor decomposition with one block assigned to each processor (left side). Shaded
regions of processor 1’s heavily-loaded block are designated as “windows” and assigned to processors 0 and 2
(right side). Processors 0 and 2 push particles in the shaded regions to achieve better load-balance.

child processors. For example, on the left side of the figure, each of 3 processors initially owns one block.
If processor 1’s block (the parent) has too many particles, two (shaded) window regions (the child blocks)
are created, one each for processors 0 and 2. Thus processor 1 will only push particles in the remaining
(unshaded) region of its block. Processors 0 and 2 will each push particles in two blocks, the original block
they owned and a new child block.

Note that within the window regions, the child processor will only push particles; the parent processor
will continue to compute E and B field updates in these regions. This is to maintain load balance in the
field computations. Since the child’s new particles actually reside (in a geometric sense) in the parent block,
this will require communication of additional field information between the parent and child processors. The
hope is that the extra overhead of this particle and field communication will be more than compensated for
by achieving load-balance in both the particle push and field update. As we shall see, parallel QS attempts
to maintain this balance by dynamically adjusting the number of windows and their sizes.

6.3 Details of Initiation

The load-balancing option in parallel QS is enabled by use of the “CUSTOM LOADBALANCE TOL1
TOL2” command in gcks.in, where TOL1,TOL2 > 1.0 are real numbers explained below. This invokes
a one-time call to the parallel_balance_setup routine from gsinit.F and a call to the parallel_balance routine
every timestep from gcks.F. The setup routine pre-computes various static quantities that will be useful in
the balancing procedure. These include copies of the global 1-d grid arrays for all user blocks which are used
to create grid arrays for the child blocks. The setup routine also allocates memory for various arrays used
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by the balancer to store particle counts and block sizes; these are documented in parallel.inc.

The parallel_balance routine creates window-block connections between parent/child pairs of processors
if it detects imbalance in the current timestep. It does this by computing the average particle count across
all processors and the maximum particle count on any processor. The ratio of max/ave is a measure of
load-imbalance in the particle push operation, where a value of 1.0 represents perfect balance. If this ratio
is smaller than TOL1, the first parameter in the CUSTOM LOADBALANCE command, then balance is
adequate and the routine simply exits. When it decides to turn load balancing ON, the routine proceeds
with the operations listed in Figure 9.

(1) Count particles in planes of all blocks.

(2) Perform serial balancing to determine parent/child pairings.

(3) Build 1-d grids for child blocks.

(4) Set 3-d bgcell and bgijk arrays for parent/child connections.

(5) Communicate 3-d CIM array from parent to child blocks.

(6) Update particle migration neighbor lists.

(7) Create E/B and J/Q field connections between parent/child blocks.

Figure 9: Steps to initialize particle load-balancing in a parallel QUICKSILVER stmulation.

In principle, window regions within a block could be of any size and shape. For simplicity, however, we
restrict their shape by only making 1-d partitions perpendicular to the longest dimension of a parent block.
For example, if a particular block is 10220215 grid cells, then all window regions within that block will be
10z Nz15 in size, where N is some number of zz planes. Choosing the longest dimension (independently in
each block) allows for the finest granularity in this style of partitioning. To determine the optimal value(s)
of N, we first must count the number of particles in each plane of every block. This is done in step (1). Each
processor loops over all its particles, extracts a current ijk cell index, and increments a counter associated
with the appropriate plane. This list of counts is then concatenated across processors (via MPI_Allgatherv)
so that every processor knows the entire set of counts for all block planes. Each processor also stores a count
of the total number of particles on each processor (accumulated via MPI_Allgather).

These two lists are used in step (2) by the balance_serial routine, along with static information (pre-
computed in parallel_balance_setup) that describes the number and sizes of blocks on all processors. Bal-
ance_serial computes the optimal sizes of window regions for each parent block and assigns corresponding
child blocks to specific processors. It is a serial routine in the sense that every processor performs the entire
balance operation without communication; each processor receives the same global inputs and computes the
entire list of parent/child pairings for all processors. This means this portion of the load-balance creation
is not scalable in a parallel sense, but in practice it is a quick operation to produce these pairings (even for
1000s of windows on 1000s of processors), and it would also be difficult to achieve as near-optimal a result
if each processor did not have global information about the state of imbalance.

The serial balancer works via an iterative process to reduce imbalance. Each time through its main loop,
one window region is created in a block on a parent processor and a corresponding block is assigned to a
child processor. This operation reduces the global imbalance before the next iteration of the loop. The loop
continues until the imbalance is less than TOL2, the 2nd parameter in the CUSTOM LOADBALANCE

40



command, or until no further progress can be made.

At any iteration, the processor with the most particles is chosen as the parent and the processor with the
least as the child. The optimal number of particles to migrate from one to the other (the itarget variable in
the code) is set equal to the smaller of either processor’s particle count variation from perfect balance. The
routine then checks all possible partition placements (or “cuts”) for each of the parent’s blocks. Starting from
each end of the block, the cut position is incremented one plane at a time. The total number of particles in
the proposed window region is tallied (by summing over plane counts) and compared to the desired itarget.
The “optimal” cut is the one which will create a window block that migrates a number of particles closest
to itarget without exceeding it. This may be an entire parent block or a fraction thereof. In either case,
the window planes are masked out in the parent block so they will not be considered again as a window
candidate. The parent and child processor IDs are stored along with the extent of the window region in the
parent (see outputs of the balance_serial routine). The particle counts of the parent and child processors are
then adjusted to reflect the one-way migration, and the routine proceeds to the next iteration.

In step (3) of Figure 9, each processor uses the lists of child blocks returned by balance_serial to update its
copy of the blockZ2proc and globalZlocal vectors. As discussed in Section 5.2, these store a global mapping of
blocks to processors (see parallel.inc). Each processor also scans the output to determine if it is participating
in the load-balance operation and if so, whether it is a parent or child and which of its blocks are affected. If
it owns new child blocks, each processor augments its 1-d block arrays (e.g. imaz, jmaz, kmaz, locb, lenblk)
to reflect the new sizes. It also initializes 1-d grid arrays for these blocks using the global grid information
stored for the original user block definitions. Six 1-d arrays are needed to push particles in the new child
blocks; these are the full grid and reciprocal grid values in bgzif, bgzjf, bgzkf, bgrdif, bgrdjf, bgrdkf.

During this operation, the child processors also check that they have sufficient memory for storing the
extended 1-d arrays and the new 3-d field arrays that will be associated with their new blocks. When the
CUSTOM LOADBALANCE command is used in gcks.in, the memalloc routine allocates extra space at the
end of the appropriate 1-d and 3-d arrays in anticipation of child-block creation. As discussed in Section 4,
the amount of extra memory is governed by use of two new parameters that must be specified in the pulzfile.
If the extra memory is insufficient on any processor for the newly defined parent/child blocks, then a warning
message is printed and the routine exits without turning the load balancer on. If this occurs frequently in a
particular run, the user should boost the settings for the wbscal and wbsca8 parameters in the pviz file.

In step (4), the 3-d bgcell and bgijk arrays are modified as needed in parent blocks and are initialized in
child blocks. Recall that these arrays are used in the particle push to determine when a particle needs to
migrate to which processor and what new cell it will reside in on the receiving processor. Within a parent’s
window region, bgcell and bgijk are set to point to the new child block. The usual inter-block communication
operation is then performed without including child blocks. This is the same communication discussed in
Sections 5.2 and 5.3 for the initial setup of the bgcell and bgijk arrays. This operation updates all ghost
cells (except in child blocks) so that they point at any newly created blocks. A second communication is
then performed directly from parent processors to their partner child processors. Each parent sends bgcell
and bgijk values for the window region and the cells that immediately surround it. The child processors use
these values to initialize the interior and ghost cells of each child block. Note that the child processor has
no knowledge of the blocks that border its corresponding window region in the parent block. This window
region could be adjacent to other windows or to other parent ‘blocks (which could also contain windows).
This 2-step communication operation (parent<+parent followed by parent—child) allows the child processor
to receive that information indirectly from its parent processor without having to communicate with the
(unknown) owners of the other blocks. '
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In step (5), cell-wise CIM values are sent from each parent block to the corresponding child block. This
operation sets the interior and ghost cell values for the 3-d bgcim array on the child processor in its new
block(s). This array stores conductor and dielectric information and is the final 3-d array needed by the
child processor to enable it to accurately push its new particles.

The creation of window' blocks means that a processor may now need to exchange particles with new
neighbor processors. Parent processors will be sending particles to child processors (and vice versa) who may
not previously have been an exchange partner. Two window regions within a parent block may border each
other (as in Figure 8) which will require child processors to communicate with each other. Parent and child
processors associated with a window region in one block may also have new exchange partners due to window
regions in a second block that borders the first. In step (6), the particle migration neighbor lists (discussed
in Section 5.4) are recomputed to reflect these new partners. This is done via a call to neighbor_init which
scans the modified bgcell values computed in step (4) for both parent and child blocks.

Finally, in step (7), new connection plans are formed for parent and child blocks which need to exchange
field data. Child processors need average E and B field values to push particles. These corner-centered
average quantities are computed by parent blocks after the normal E and B field update. Each child
processor needs values at all points inside and on the surface of its child block(s). These correspond to
points in the interior and on the surface of the window region in the parent block. Also, after the child
processor pushes its particles, it will accumulate J and Q field values in its 3-d arrays. These need to be sent
back to the parent processor from éach child. Similar to the discussion in Section 5.3, this encompasses all J
and @ values inside and on the surface of the child block as well as those a half-grid and full-grid cell outside.
These will be summed by the parent processor to cells in its window region and immediately surrounding it,
including ghost cells of the parent block if necessary.

The plans for storing these one-sided communication patterns (parent-to-child, or child-to-parent) are the
same data structures used for other kinds of inter-block connections (see Section 5.3 and parallel.h). However,
because the overlap of parent/child grids is defined explicitly by the window region, it is not necessary to
use all the logic of the overlap calculation in parallel_connect_create to create the new plans. Instead we call
a simpler routine, parallel_connect_window_create, which constructs each processor’s local plan directly from
the global list of window-block connections computed by balance_serial. The same routine is used to create
plans for communicating cell-centered 3-d arrays (bgcell, bgisk, and bgcim) from parent blocks to children.
These plans were used in the load-balancing initiation phase in steps (4) and (5).

6.4 Details of Operation

We now describe how load balancing is performed within the context of a normal parallel QS timestep.
Figure 10 outlines the extra operations that occur each timestep when the CUSTOM LOADBALANCE
command is used.

Steps (1,2,5,7) are the normal parallel QS operations that occur every timestep; see Figure 2 for a
comparison. Steps (3,4,6) are new balancing operations, which may occur depending on whether load
balancing is turned ON or OFF in the current timestep.

The point in the QS timestep at which load-balancing is turned ON is at step (4a), after E and B
fields have been updated and communicated, but before the particle push. The number of particles on each
processor is tallied and the imbalance criterion described in the previous section is applied. If balancing is
currently OFF and there is sufficient imbalance, then balancing is turned ON and window block sizes and
connections are computed and initialized as described in detail in the previous section.

The particle push then proceeds in step (5) and each parent processor will migrate a fraction of its
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(1) Leapfrog update of E,B fields on grid

(2)  Communicate E, B fields between blocks

(3*) If BALANCE ON, communicate E, B fields in windows

(4e*) If imbalanced and BALANCE OFF, create windows and turn BALANCE ON
(46*) If imbalanced and BALANCE ON, turn BALANCE OFF

()  Create, advance, delete, and migrate particles

(6*) I BALANCE ON, communicate f, Q fields in windows

(7)  Communicate J, Q fields between blocks

Figure 10: QUICKSILVER timestep with load-balancing enabled. Starred steps are the additional load-
balancing operations.

particles to its partner child processor(s). Note that during this first timestep with the balancer ON, the
parent processors still perform the (imbalanced) push operation. This includes the accumulation of J and
@ fields in the parent blocks (steps 5 and 7), so actually there is no need to send them in step (6) from child
to parent at the end of the first timestep.

At the beginning of the next timestep, E and B fields are updated. Child blocks do not participate
in this operation, so it remains load-balanced across the original (static) block decomposition. After the
usual ghost-cell exchange of these field quantities in step (2) between parent processors, an additional call
is made in step (3) to parallel_connect with the new plan (plan_eb_window) that sends average £ and B
fields in a one-way fashion from parent blocks to child blocks. Since child blocks are now populated with
particles and fields, the ensuing particle push is now balanced. Child processors accumulate J and @ field
values in the usual way in the child block’s 3-d arrays. At the end of the timestep, a call is made in step (6)
to parallel_connect with the other new plan (plan_jg-window) that sends J and Q fields directly from child
blocks to parent blocks. This is done prior to the usual J and @ exchanges between parent blocks in step
(7), so that parent processors will have fully-summed field values in their blocks (interior and ghost cells)
before participating in that operation.

QS continues calling parallel_balance in step (4b) every timestep until the routine detects that particles
are again imbalanced (greater than TOL1). When this occurs, load-balancing is turned OFF. This is ac-
complished by setting all the 3-d bgeell and bgijk values in the parent and child blocks to point only to
parent blocks. This will insure that all particles in any child block migrate back to a parent block on this
timestep. The timestep ends with one final communication of J and Q fields from child blocks to parent
blocks in step (6). On the next timestep the load balancer cleans up after itself by destroying all the plan
data structures used for load-balance communication and restoring the particle neighbor lists to their original
pre-load-balancing values.

Performance results for parallel QS runs using this load-balancing technique are presented in Section 7.
We conclude this section with several observations about the method and its implementation.

(1) A key advantage of this algorithm as implemented in parallel QS is that it required only minor
modifications to existing code. In particular, the particle push and field update coding did not change at
all. Additional communication calls were added (in fldslv and jgdnsy) for E/E and J, /Q field exchanges
between parent and child blocks, but the algorithm for inter-processor particle migration also did not need

43




to be changed.

(2) As outlined above, because of the way that load-balancing is turned ON and OFF, there is a one-
timestep delay between when imbalance is initially detected and when the particles are actually pushed by
the new child processors. Also, when load balancing is turned off, particles are always returned to their
parent processors before a re-balancing can be performed {e.g. on the next timestep). This means that if
load-balancing is switching ON and OFF rapidly every N steps due to fast-varying particle densities, then
even in the best-case scenario, there is always one step out of N where particles are wholly imbalanced
(pushed only by parent processors).

(3) There is an overhead cost associated with turning load balancing ON and OFF. This is to initialize
the various arrays and perform the serial operations that compute window block pairings. In practice this
is a small expense compared to the per-timestep cost of actually pushing all the particles. So long as load
balancing stays ON for several steps or more, this cost is also amortized over the duration of the balancing.
This will certainly be the case if particle densities vary only slowly in time (relative to a timestep), which is
the case for many problems.

(4) The per-timestep cost of load-balancing is the extra field communication and particle migration that
must be done between parent and child blocks. Note that after the initial migration from parent to child,
only particles crossing the boundary of the child block will need to migrate on subsequent timesteps. Also,
in contrast to the more general and irregular inter-block communication between parent blocks, the extra
field communication for load-balancing is of a one-to-one nature: one parent block sends (or receives) field
quantities to (or from) one child block. There is also an additional memory overhead incurred by load
balancing. This is the additional 1-d and 3-d array storage that must be set aside by the memalloc routine
to allow for new child block creation.

(5) The relative costs/benefits of using the CUSTOM LOADBALANCE option can be analyzed by
examining the balance statistics printed by parallel QS at the end of a run. The “actual” particle imbalance
(max/ave averaged over all timesteps) will be printed whether load balancing is used or not. This can be
compared between runs with load-balancing enabled versus disabled, as can the change in particle-push and
field-communication timings. The “ideal” imbalance that is printed is a measure of the best load-balance
QS could hope to achieve given the 1-d granularity of the window-block partitioning. It is computed from
the final imbalance remaining after the balance.serial routine has created all the windows it can. Additional
statistics are also printed for the average duration that the load-balancer is on and the number and aggregate
sizes of window blocks.

7 Benchmark Calculations

In the course of developing parallel QS, we performed a variety of small test runs to debug various changes
and features we were adding to the code and to see if everything worked on varying numbers of blocks and
processors. In this section we describe a series of full-scale benchmark runs we ran with the finished code to
test its overall performance and parallel scalability, as well as its load-balancing capabilities.

The tests were performed on two parallel machines at Sandia. The first is the Intel Tflops machine,
which is a conventional massively parallel machine built by Intel for Sandia’s ASCI program. It consists of
333 MHz Intel Pentium processors interconnected by an Intel-proprietary backplane and network interface
chips. Some of the tests were also run on Sandia’s new Computational Plant (CPlant) machine which is
a Beowulf-style [11] cluster of workstations built in-house by Sandia. It consists of 500 MHz DEC Alpha
workstations connected by Myrinet.



We first discuss the code’s performance on large-scale problems with a uniform spatial distribution of
work. In the final two subsections, problems that require static and dynamic load-balancing are benchmarked.

7.1 Performance and Scalability

The first benchmark problem is a fields-only calculation (no particles) on a single 80x100x96 grid block
of 768,000 grid cells run for 2000 timesteps with an explicit time integration scheme. A Poisson inlet
boundary condition is applied to one face of the block, with perfect electric conductor (PEQ), perfect
magnetic conductor (PMC), and outlet conditions applied to the other faces. The block interior contains
three conducting strips. Several HISTORY FIELD commands are defined in the input script for diagnostic
purposes.

The CPU time for running this test problem on various numbers of processors of both the Tflops and
CPlant machines is shown in Table I. The resulting parallel efficiency is computed by dividing the one-
processor time by the quantity P times the P-processor run-time, where P is the number of processors.
Parallel speed-up is simply P times the parallel efficiency. Thus, the 1024-processor Tflops benchmark
would run optimally (100% efficient) in 2754.2/1024 = 2.69 seconds. Since it actually ran in 9.08 seconds, it
is 2.69/9.08 = 29.6% efficient, which is 0.296%*1024 = 303 times faster than it ran on a single processor.

Tflops CPlant
Procs || CPU time | Parallel Eff || CPU time | Parallel Eff
1 2754 100.0 1113 100.0
2 1337 103.0 604.5 92.0
4 643.9 106.9 309.2 90.0
8 326.4 105.4 161.0 86.4
16 172.5 99.8 88.7 784
32 90.8 94.8 57.2 60.8
64 44.7 96.3 42.2 41.2
128 26.8 80.3 34.1 25.5
256 17.9 60.1
512 124 434
1024 9.08 29.6

Table I CPU time (seconds) and parallel efficiency for a fields-only simulation of fized-size Tun on varying
numbers of processors on the Intel Tflops and Alpha-based CPlant machines. The problem had 768,000 grid
cells and was run for 2000 timesteps.

This problem was designed to be a large calculation that an analyst might reasonably perform on a single-
processor workstation. It illustrates the speed-up offered by the parallel version of QS even when the number
of grid cells per processor becomes small (a few hundred for 1024 processors). The reduced efficiencies are
due to the increased cost of field communication versus computation as the surface-to-volume ratio of each
processor’s block increases. When the blocks are too small, the communication cost of exchanging field
information with neighboring processors dominates.

The super-linear performance (efficiencies greater than 100%) on a few processors of Tflops is due (we
believe) to cache effects. When the problem size per processor is reduced enough that significant portions
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of the field arrays fit in cache, the field update computations actually speed-up. The CPlant machine has
slower message-passing software and communication hardware than Tflops; hence the parallel efficiencies for
CPlant fall off much more quickly than for Tflops. However, the one-processor timing on the DEC Alpha
processor is about 2.5 times faster than on the Intel Pentiums. Thus the code’s raw speed on CPlant is still
competitive with Tflops out to 128 processors.

The second benchmark problem is also a fields-only calculation, but the number of grid cells is scaled
with the number of processors used. This benchmark illustrates the very large size of fields-only problems
that can be run on a large parallel machine. One large user block is specified for each run, so that when
partitioned for P processors, each processor owns a 30x30x30 block of 27,000 grid cells. As before, explicit
timestepping is used, a mixture of Poisson, PEC, PMC, and outlet boundary conditions were applied to
the user block, and several HISTORY diagnostics were specified. This time the problem was run for 10,000
timesteps to allow the waveform incident at the Poisson inlet to travel throughout the simulation domain.

The CPU time for running the second test problem on Tflops and CPlant is shown in Table I1. The total
number of grid cells is also listed, from 27,000 on one processor to 86.4 million on 3200 processors. Because
this is a scaled-size problem, the parallel efficiencies are much better than in the previous fixed-size case. On
Tflops there is still some degradation in performance on very large numbers of processors, presumably due
to message contention effects with each processor exchanging field data for its block with 26 surrounding
blocks (processors).

Tfops CPlant
Procs | Grid Cells || CPU time | Parallel Eff || CPU time | Parallel Eff
1 27000 412.0 100.0 129.6 100.0
2 54000 414.8 99.3 147.3 88.0
4 108000 419.6 98.2 169.0 76.7
8 216000 4164 98.9 1944 66.7
16 432000 417.8 98.6 214.3 60.5
32 864000 425.2 96.9 247.0 52.5
64 1,728,000 430.0 95.8 283.1 45.8
128 3,456,000 433.8 95.0 293.7 44.1
256 6,912,000 4424 93.1
512 | 13,824,000 452.1 91.1
1024 | 27,648,000 480.4 85.8
2048 | 55,296,000 558.8 3.7
3200 | 86,400,000 610.0 67.5,

Table II: CPU time (seconds) and parallel efficiency for a fields-only simulation of scaled-size run on varying
numbers of processors on the Tflops and CPlant machines. The problem size is 27,000 grid cells per processor
and was run for 10,000 timesteps.

We also ran one much larger billion-grid-cell fields-only calculation on 3200 processors of the Intel Tflops
with similar boundary conditions and diagnostic settings. A run of 1000 timesteps required 545.8 seconds.
We estimated its parallel efficiency at 87.3% using the one-processor timings in Table IT as a reference point.
It is interesting to note that each grid cell in a fields-only calculation uses 25 single-precision words or 100
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bytes of memory. Thus the billion-cell calculation required about 100 Gbytes of storage. However, each of
the 3200 processors on Tflops has 256 Mbytes of memory for an aggregate memory of 800 Gbytes. Thus this
very large problem required less than 15% of the Tflops memory to run.

The one-processor timing data in Table II can also be used to compute a “grind” time for fields-only
calculations with parallel QS. On Tflops the explicit timestepping integrator requires 1.5 microseconds per
grid-cell per timestep. On CPlant it is approximately 0.5 microseconds per grid-cell per timestep. An explicit
update in a single grid cell requires about 60 floating-point operations (flop). Hence a Tflops processor is
running this benchmark at about 40 Mflops (million flop/sec) and a CPlant processor at about 120 Mflops.
The billion-cell benchmark on 3200 Tflops processors runs at about 110 Gflops (billion flop/sec).

The third benchmark problem is a fixed-size particle calculation. A one-block grid of 64x64x64 = 262,144
grid cells is populated with 3.15 million particles. This particle/cell count of 12 is typical of many QS
problems. Each grid cell is pre-loaded with 6 electrons and 6 positrons, each of which is given an initial
velocity in a different coordinate direction (+z,+y,+z) so that they moved approximately 1/2 grid cell
per timestep. PMC (mirror) boundaries were applied to all 6 faces of the user block. Because the number
density associated with the particles is set to a small value and pairs of oppositely charged particles move
in the same direction (no net current), the particles in this problem are essentially non-interacting. Over
time they stream back and forth within the user block, reflecting off the mirror boundaries. The simulation
was run for 256 timesteps with a 3-stage implicit integration scheme for the field solver. This means that
an individual particle traverses the simulation domain twice to return (roughly) to its initial position. As
in the fields-only problems, various HISTORY FIELD and PARTICLE settings were specified in the input
script so as to generate a variety of diagnostic outputs.

The timing results for running this problem on various numbers of Intel Tflops processors are shown in
Table III.5 These results exhibit better scalability than their fields-only counterparts in Table III, because
there is more computational work required to push particles on a per-grid-cell basis. On one processor the
code is spending 92% of its time in the particle push routines, and 7% in the field update. Even with
high-velocity particles (1/2 grid cell per timestep) causing a relatively large fraction of particles to migrate
to new blocks (and processors) each timestep, the particle migration time remains only a small fraction of
the overall run time even for very large processor counts.

As before, this benchmark was designed to be at the high end of the problem size an analyst might run
on a fast desktop workstation. The timings indicate that the Tflops machine is able to run this problem in
a highly scalable fashion out to many hundreds of processors.

A fourth benchmark problem is a scaled-size particle simulation with each processor owning a 30x30x30
block of 27,000 grid cells. As in the previous particle problem, each grid cell is populated with 12 particles
of two species, moving in all 6 coordinate directions. This problem was run for 200 timesteps with the same
3-stage implicit field solver as before.

Timing results for this problem are shown in Table IV. Total grid cell counts ranged from 27,000 on one
processor, to 86.4 million on 3200 processors. Similarly, total particle counts ranged from 324,000 on one
processor to over one billion on all 3200 processors. With particle push costs dominating the run time, the
code exhibits excellent scalability of over 90% parallel efficiency for all numbers of processors.

The memory requirements of this benchmark were 9 words (36 bytes) per particle and 100 bytes per grid
cell. Thus the largest problem required about 46 Gbytes or roughly 6% of the memory available on 3200
Tflops processors.

5We were unable to run our particle benchmarks successfully on CPlant (as of December 1999) due to software bugs in the
CPlant system software. Hence no CPlant timings are included in the particle benchmark tables.
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Intel Tflops

Procs || CPU time | Parallel Eff
1 7486 100.0
2 3783 98.9
4 1890 99.0
8 972.8 96.2
16 483.7 96.7
32 240.8 97.2
64 124.5 94.0
128 64.1 91.2
256 345 84.8
512 19.1 76.6
1024 11.8 62.0

Table III: CPU time (seconds) and parallel efficiency for a particle simulation’ of fized-size run on varying
numbers of processors on the Intel Tflops. The problem had 262,144 grid cells and 8.15 million particles and
was run for 256 timesteps.

As before, the “grind” times for particle pushing can be computed from the one-processor timings in
Table IV. Since particle pushing consumes 92% of the time, it is requiring 8.6 microseconds to push one
particle per timestep. Similarly, the 3-stage implicit field solve requires 7.8 microseconds per grid cell per
timestep. A particle push requires approximately 355 floating-point operations; the implicit field update
takes 280 flops. Thus a Tflops processor is pushing particles at a rate of 44 Mflops and doing implicit field
updates at a rate of 36 Mflops. The billion-particle problem is running at an aggregate speed of 118 Gflops
on 3200 processors.

Finally, for comparison purposes, we combine the parallel efficiency data from the previous four tables
in one plot, shown in Figure 11. All one-processor timings are shown as 100% efficient. Hence the figure
disguises the raw performance difference between the Tflops Pentium and DEC Alpha CPlant processors.
As expected, the figure shows that scaled-size problems outperform fixed-size ones on both machines as
processor counts increase. This is true for both fields-only and particle problems. The faster computational
and slower communication rates on CPlant (relative to Tflops) degrade its parallel efficiency much more
quickly than occurs on THops.

7.2 Static Load-Balancing

In this section, benchmark results are presented for fixed- and scaled-size problems that require static load-
balancing. By “static”, we mean that the particle load is spatially inhomogeneous, but does not vary in
time.

The first benchmark problem is similar to the fixed-size particle benchmark of the previous section. A
one-block domain of 64x64x64 = 262,144 grid cells with mirror boundaries is populated with 3.15 million
particles. Recall that in the previous uniform-load problem, each cell in the simulation was pre-loaded with
12 particles (6 sets of 2 each). Each set was given a velocity in a different coordinate direction (+z,ty, +z)
so that they moved approximately 1/2 grid cell per timestep. Because each set filled the entire domain, as
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Intel Tflops

Procs | Grid Cells Particles CPU time | Parallel Eff
1 27000 324,000 604.6 100.0
2 54000 648,000 608.8 99.3
4 108000 1,296,000 612.7 98.7
8 216000 2,592,000 635.4 95.2
16 432000 5,184,000 637.0 94.9
32 864000 10,368,000 639.0 94.6
64 1,728,000 20,736,000 646.8 93.4
128 | 3,456,000 41,472,000 649.0 93.2
256 | 6,912,000 82,944,000 650.3 93.0
512 | 13,824,000 | 165,888,000 655.3 | 923
1024 | 27,648,000 | 331,776,000 655.7 92.2
2048 | 55,296,000 | 663,552,000 656.2 92.1
3200 | 86,400,000 | 1,036,800,000 662.8 91.2

Table IV: CPU time (seconds) and parallel efficiency for a particle simulation of scaled-size Tun on varying
numbers of processors on the Intel Tflops. The problem had 27,000 grid cells and 824,000 particles per
processor and was Tun for 200 timesteps.

the simulation progressed, particle density sta:yed essentially constant throughout the simulation box.

In this benchmark, each of the 6 sets of particles is only loaded in 1/4 of the simulation domain (at a 4
times higher density). For example, the set of particles that moves in the 4z direction fills a 64x16x64 slab
(thin in the y dimension) of grid cells with 8 particles/cell. Similarly, the sets that move in the +y or %z
dimensions fill 64x64x16 and 16x64x64 slabs respectively.

The net effect of this strategy is three-fold. First, the total number of particles in the problem (3.15
million) is the same as in the uniform case. Second, the initial distribution of particles is very inhomogeneous.
Approximately 42% (27/64) of the cells in the simulation have no particles; another 27/64 of the cells have
16 particles/cell; another 9/64 have 32 particles/cell; and 1/64 of the cells have 48 particles/cell. Finally,
because the particles fill the entire box dimension in the direction they move, the particle count in each cell
stays essentially constant for the duration of the simulation.

The benchmark timings listed in Table V are for a simulation run on the Intel Tfiops of 256 timesteps
with a 3-stage implicit integration scheme for the field solves. As before, this means that an individual
particle traverses the simulation domain twice to return (roughly) to its initial position.

The first three columns of data are for runs with load-balancing disabled. As expected, the relatively poor
parallel efficiencies are due to particle imbalance across processors. As discussed in Section 6, “imbalance”
is defined as the ratio of the mazimum particle count on any processor to the average particle count across
all processors. The maximum imbalance in this problem is 4.0 which occurs on 64 or more processors when
one processor owns a region where all cells have 48 particles (versus the global average of 12).

The second set of 3 columns are results for runs with load-balancing enabled. Because the particle
distribution is essentially static, on the first timestep the balancer computes an initial set of window blocks
that cause an equal redistribution of particles. This re-balanced state persists until the end of the simulation.
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Figure 11: Parallel efficiencies for the data in Tables I-1V. Solid lines are runs on the Intel Tflops; dotted
lines are for CPlant. Data for 4 benchmarks are shown: fized-size fields-only (circles), scaled-size fields-only
(squares), fized-size particles (diamonds), and scaled-size particles (triangles).

As the efficiency results indicate, this rebalancing is quite good until there are so many processors that each
one owns only a very small (e.g. 8x8x8) sub-domain of grid cells. The imbalance figures with load-balancing
ON indicate the window-block redistribution is quite effective at equalizing particle counts across processors.

The last 3 columns are results from Table III for the same size problem (262,144 grid cells, 3.15 million
particles) where all cells have 12 particles — a uniform load. These timings represent the “best” result that
the load-balancer could hope to achieve if it were 100% successful at balancing the particle load and incurred
no overhead in its re-distribution operations. The small speed-up for this problem on one processor on the
non-uniform problems (7210 versus 7486 seconds) is due (we believe) to cache effects in gathering/scattering
data from the particles to the grid. When particles only interact with a small fraction of the grid arrays,
more of the grid arrays can remain in fast-access cache memory, resulting in a small net speed-up. We note
that the efficiencies listed in the table for load-balancing ON are computed using the one-processor timing
for balancing OFF as a baseline, not from the slower one-processor uniform timing.

The next benchmark calculation is for a scaled-size problem requiring static load-balancing. Similar to
the scaled-size particle benchmark of the previous section, each processor owns a 30x30x30 block of grid
cells. The global domain is pre-loaded with 6 sets of particles. As in the fixed-size static load-balancing
benchmark, each set fills only a fraction of the global domain, but at a higher density. For this problem
a compression factor of 10x was used instead of 4x. Thus on 8 processors, the global simulation box is
60x60x60 and each set of particles is a 6x60x60 slab of particles. As before each of the 6 slabs is oriented
differently within the box and its particles are given initial velocities in different coordinate directions. In
these runs, about 73% (92/103) of the global box is devoid of particles, 1/1000 of the grid cells have 120
particles/cell (10x the average), and the particle density again stays roughly constant for the duration of the
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Balance OFF Balance ON Uniform Problem
Procs || CPU | Eff | Imbal [ CPU | Eff | Imbal || CPU | Eff | Imbal

1 7210 { 100.0 | 1.0 7281 {99.0] 1.0 7486 | 100.0 | 1.0

2 4723 | 76.3 | 1.33 || 3668 | 98.3 | 1.006 || 3783 | 98.9 1.0

4 2916 | 61.8 | 1.67 | 1882 | 95.8 | 1.003 )| 1890 | 99.0 1.0

8 1784 | 50.5 2.0 949.6 | 94.9 | 1.004 || 972.8 | 96.2 1.0

16 1169 | 38.5 | 2.67 || 494.8 | 91.1 | 1.048 || 483.7 | 96.7 1.0

32 726 1 31.0 | 3.33 | 247.0 | 91.2 | 1.009 || 240.8 | 97.2 1.0

64 434.4 | 25.9 4.0 1275 | 88.4 | 1.012 || 124.5 | 94.0 1.0

128. || 218.6 | 25.8 4.0 66.9 | 84.1 | 1.012 || 64.1 | 91.2 1.0

256 || 1124 | 25.1 4.0 |.38.1 | 73.9] 1.012 }| 34.5 | 84.8 1.0

512 57.6 | 244 4.0 20.5 | 68.7 | 1.012 || 19.1 | 76.6 1.0

1024 || 329 | 214 4.0 16.0 | 44.0 | 1.012 || 11.8 | 62.0 1.0

Table V: Performance (CPU-time, parallel-efficiency, load-imbalance) for a fized-size particle simulation with
a static imbalance in particle load on the Intel Tflops. Results with the load-balancer turned OFF and ON
are shown as well as for a problem of the same size with uniform particle load.

simulation.

Results for running this benchmark problem for 200 timesteps are given in Table VI for varying numbers
of processors on the Intel Tflops. The biggest simulation was on 1024 processors which had about 27.6
million grid cells and 332 million particles. As in the previous table, results for load-balancing disabled
versus enabled are shown, as well as results for runs of the same-size uniform-load problems from Table IV.

As before, the parallel efficiency for runs without load-balancing quickly degrade as particle imbalances
near a peak of 10x. The runs with load-balancing ON are much more efficient though there is some extra
overhead when compared to the uniform-load runs. Certain processor configurations (e.g. 32 procs) also
do less well. This is pi'obably due to the limited set of possible window-block sizes that the load balancer
has to choose from for a given grid and processor configuration. This effect is likely exacerbated for this
problem which contains some cells with 120 particles and others with none. Overall however, the timing
results in this and the previous table are evidence that our load-balancing technique of reassigning particles
to lightly-loaded processors (via window blocks) is very beneficial for simulations with static variations in
particle densities.

7.3 Dynamic Load-Balancing

We now benchmark problems that require dynamic load-balancing. By “dynamic” we mean that particle
densities vary not only spatially but also in time. ‘

The first benchmark is similar to the previous fixed-size particle benchmarks. It has 64x64x64 = 262,144
grid cells and 3.15 million particles. The particles are pre-loaded in 3 sets (not 6 as before), each of which
is a slab that fills 1/4 of the global domain. The first set is a 16x64x64 grid-cell slab (thin in z) with 16
particles/cell and each particle is given a velocity in the 4z direction. Similarly, the other 2 slabs are thin
in y and z and their particles move in the y and z directions respectively.

This particle assignment strategy gives the same initial particle distribution as in the static load-balancing
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Balance OFF Balance ON Uniform Problem
Procs | CPU | Eff | Imbal || CPU | Eff | Imbal | CPU | Eff | Imbal

1 582.5 | 100.0 | 1.0 578.1 | 100.1 1.0 604.6 | 100.0 1.0

2 758.9 | 76.8 | 1.33 |/ 593.0 ] 98.2 | 1.002 )] 608.8 | 99.3 1.0

4 934.6 | 62.3 | 1.67 |[ 599.1 | 97.2 | 1.003 || 612.7 [ 98.7 1.0

8 1135 | 51.3 2.0 613.1 | 95.0 | 1.03 || 635.4 | 95.2 1.0

16 1491 | 39.1 | 2.67 ([ 654.3 | 83.0 | 1.10 | 637.0 [ 949 1.0

32 1860 1 31.3 | 3.33 || 737.8 | 79.0 | 1.25 || 639.0 | 94.6 1.0

64 2226 | 26.2 4.0 672.0 y 86.7 | 1.10 1} 646.8 | 93.4 1.0

128 2035 | 198 | 5.33 | 675.5 | 86.2 | 1.09 || 649.0 | 93.2 1.0

256 3669 | 15.9 | 6.67 | 754.7 | 77.2 | 1.23 | 650.3 | 93.0 1.0

512 4388 | 13.2 8.0 7105 | 82.0 { 1.10 || 655.3 | 92.3 1.0

1024 {} 4724 | 12.3 | 8.67 |[{ 755.0 | 77.2 | 1.19 |} 655.7 | 92.2 1.0

Table VI: Performance (CPU-time, parallel-efficiency, load-imbalance) for scaled-size particle simulations
with a static imbalance in particle load. Results with the load-balancer turned OFF and ON are shown and
for problems of the same size with uniform particle load.

benchmark. The 16x16x16 grid-cell region of highest density (48 particles/cell) is in the lower-left front corner
of the global simulation box. As time advances, this region of high density migrates diagonally toward the
upper-right back corner of the box. All particles are given velocities such that they require about 2 timesteps
to traverse a grid cell. Thus in a 256-timestep simulation, the region of highest density moves from the lower-
left corner of the box to the upper-right and back to the lower-left. This is a quite rapid fluctuation in particle
density throughout the simulation domain for which the load-balancer must attempt to compensate.

In Table VII we show timing results for this fixed-size dynamic problem running on varying numbers of
Intel THlops processors. As before, results with the load-balancer turned off show significant degradation
in parallel efficiency. With the load-balance turned ON, the fast-moving particles trigger the balancer to
re-balance the particle load every few timesteps. The net result is an improved efficiency though not as
dramatic an improvement as in the static case.

As more and more processors are used, a processor’s sub-domain becomes smaller and the fast-moving
regions of high particle density cause the relative imbalances between processors to fluctuate more rapidly.
For example, on 32 processors this 256-timestep run re-balanced 21 times; on 512 processors re-balancing
was performed 66 times. This contributes to a degradation in parallel efficiency in two ways. First, there is
the overhead cost of setting up a new window-block decomposition each time re-balancing is done. Second,
as described in Section 6, between re-balancings all the particles migrate back to their original processors
and are pushed in an unbalanced fashion for one timestep. This effect is reflected in the imbalance column
(for load balancing ON) in the table, since it is an average over the imbalance present at every timestep.
Thus on 512 processors, the 26% of the timesteps (66 out of 256) where particles are wholly imbalanced are
a significant slow-down factor for the overall simulation.

However, even with these caveats, the overall effect of load-balancing for this fixed-size problem is a
speed-up factor (versus no load-balancing) of roughly 2x on moderate numbers (16-256) of processors. It
is worth noting that this is a problem with very fast-moving particles (velocities of 4 to 8 timesteps per
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Balance OFF Balance ON Uniform Problem
Procs || CPU | Eff | Imbal || CPU | Eff | Imbal || CPU | Eff | Imbal

1 7128 | 100.0{ 1.0 7211 | 988} 1.0 7486 | 100.0 | 1.0

2 4545 | 784 | 1.29 3962 | 90.0 | 1.10 | 3783 | 98.9 1.0

4 2757 | 64.6 | 1.58 2056 | 86.7 | 1.13 || 1830 | 99.0 1.0

8 1651 | 54.0 | 1.88 1176 | 75.8 | 1.28 || 972.8 | 96.2 1.0

16 1023 | 43.5 | 2.33 | 626.5 | 71.1 | 1.34 || 483.7 [ 96.7 1.0

32 603.5 | 36.9 | 2.79 |[ 337.6 | 66.0 | 1.42 || 240.8 | 97.2 1.0

64 353.4 | 31.5 | 3.25 || 186.3 | 59.8 | 1.51 || 124.5 | 94.0 1.0

128 |} 202.0 { 27.6 | 3.67 |l 110.3 | 50.5 | 1.71 64.1 | 91.2 1.0

256 || 112.7 | 24.7 | 4.08 63.7 | 43.7] 1.84 345 | 84.8 1.0

512 66.6 | 20.9 | 4.50 443 | 314 2.35 19.1 | 76.6 1.0

1024 || 344 | 20.2 | 4.58 32.0 {218 | 2.55 11.8 | 62.0 1.0

Table VII: Performance (CPU-time, parallel-efficiency, load-imbalance) for a fized-size particle simulation
with a dynamic imbalance in particle load on the Intel Tflops. Results with the load-balancer turned OFF
and ON are shown as is a problem of the same size with uniform particle load.

cell-crossing are more typical of QS problems); slower dynamic variation in the particle loads would cause
the load-balancer to be triggered less often and result in better parallel efficiencies.

Finally, we benchmark a scaled-size problem requiring dynamic load-balancing. As before, each processor
owns a 30x30x30 block of grid cells. The global domain is pre-loaded with 3 sets of particles, each of which
is a slab that fills 1/10 the domain at a 10x higher density than in the case of the uniform-load problems.
As in the fixed-size dynamic problem, particles in the 3 sets are given initial velocities so that they move
in the direction of the thin dimension of the slab. For example, on 512 processors the global domain is a
240x240x240 grid and the first set of particles (density of 40 particles/cell) fills a 24x240x240 slab and moves
in the +z direction (thin dimension of the slab). This means that 1/1000 of the domain is a high-density
region of particles (120/cell) that moves over time from the lower-left front corner to the upper-right back
corner of the box. As before, this occurs quickly as all particles cross a cell width in two timesteps.

Timing results for a 200-timestep run of this problem are shown in Table VIII. As in the previous table,
the results with the load-balancer turned ON show a speed-up of roughly 2x on 16 or more processors versus
the non-load-balanced runs. In the 128-processor simulation, the balancer was invoked 26 times so that
the average lifetime of a set of created window blocks was only 7 timesteps. As previously discussed, the
fast-varying particle load in this test problem limits the effective parallel efficiency due to the relatively high
fraction of timesteps (1 out of 8 in this case) that the code spends in an unbalanced state. The largest
problem in the table was a run with 27 million grid cells and 324 million particles. Despite the highly
dynamic nature of the load variation, an overall speed-up of 373 (out of 1024) was still obtained.

Finally, in Figure 12, the parallel efficiency results from the load-balancing timings in Tables V-VIII are
plotted. The upper plot shows the results for the fixed-size problems; the lower plot is for the scaled-size
simulations. In both plots, square data points are results for running with the load-balancer turned OFF;
triangular data points are with the balancer ON. Similarly, the shaded symbols (squares or triangles) are
for problems with static spatial imbalance in particle load; open symbols are for simulations where the “hot
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Balance OFF Balance ON Uniform Problem
Procs || CPU | Eff | Imbal | CPU | Eff | Imbal || CPU | Eff | Imbal

1 576.7 | 100.0 ] 1.0 573.1 1100.2 ] 1.0 604.6 } 100.0 | 1.0

2 7446 | 774 | 1.31 |[ 625.6 | 92.2 | 1.07 j 608.8 [ 99.3 1.0

4 9114 | 63.3 | 1.63 || 7256.6 | 79.5 | 1.256 || 612.7 | 98.7 1.0

8 1089 | 52.9 | 1.94 |l 7567.1 ] 76.2 | 1.27 || 635.4 | 95.2 1.0

16 1390 | 415 | 2.51 )| 873.8 | 66.0 | 1.43 || 637.0 | 94.9 1.0

32 1696 | 34.0 | 3.07 | 957.3} 60.2 | 1.54 | 639.0 { 94.6 1.0

64 2008 | 28.7 | 3.64 1004 | 574 | 1.58 || 646.8 | 93.4 1.0

128 2530 | 22.8 | 4.61 1115 | 51.7 | 1.74 | 649.0 | 93.2 1.0

256 3045 | 18.9 | 5.57 1281 | 45.0 | 1.96 }f 650.3 | 93.0 1.0

512 3572 | 16.1 | 6.54 1412 | 40.8 | 2.12 || 655.3 | 92.3 1.0

1024 |} 4089 | 14.1 | 7.53 1584 | 36.4 | 2.34 || 655.7 | 92.2 1.0

Table VIII: Performance (CPU-time, parallel-efficiency, load-imbalance) for scaled-size particle simulations
with a dynamic imbalance in particle load. Results with the load-balancer turned OFF and ON are shown
along with results for same-size simulations with uniform particle load.

spots” of imbalance moved rapidly across the simulation domain.

In both plots, the circular data points (dotted lines) are efficiencies for perfectly-balanced (uniform load)
problems with the same total number of grid cell and particle counts. These circular data are effectively
the highest efficiency that could be achieved on these problems, if the balancer were working perfectly.
As the plots indicate, for statically-imbalanced problems, the balancer comes close to achieving maximum
performance. For problems requiring dynamic load-balancing, the balancer is not as effective, but still
typically offers a marked improvement over running with no re-balancing of particle load.

8 Conclusions

In this report we have described the algorithms and performance of a new parallel version of the QUICK-
SILVER (QS) electromagnetic PIC code. The new code retains most of the original features that have
made serial QS an attractive and powerful simulation tool for the electromagnetics and plasma physics
group here at Sandia. Parallel QS uses the same multi-block grid description as serial QS, which enables
considerable flexibility in modeling general geometries. This strategy also leads to efficient and scalable
parallel algorithms for inter-block field connections and particle migration. Parallel QS also includes a novel
load-balancing capability that allows field and particle data to be independently distributed evenly across
processors. As highlighted in the previous section, the result is a code that can effectively run very large
PIC simulations on thousands of processors with a billion or more grid cells and particles.

As discussed at the end of Section 5 there is still some work that needs to be done on parallel QS. The
specification of transmission lines needs to be made more flexible. A robust restart-file capability needs
to be added, which is a challenge for very large simulations because of the size of the data sets involved.
There are also load-balancing enhancements that could be considered. One drawback of the current scheme
is that when load balancing is turned ON, particles are pushed for one timestep in an unbalanced state, as
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Figure 12: The upper plot is parallel efficiencies for the fized-size problems simulated in Tables V and
VII. The lower plot is for the scaled-size problems of Tables VI and VIII. The lower curves (squares) are
for load-balancing turned OFF; the intermediate results (triangles) are for load-balancing turned ON. Shaded
symbols are for problems with static imbalance in particle load; open symbols are for simulations with dynamic
imbalance. The dotted lines (circles) are the efficiencies of the corresponding uniform-load problems.
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they migrate to new processors. For simulations with rapidly changing particle densities, this means that as
load-balancing is turned ON and OFF at high frequency, there will be lost efficiency due to the fraction of
timesteps where particle pushing is (possibly severely) imbalanced. We have discussed ideas for migrating
particles “instantly” to new processors to avoid this one-step delay, but it involves other trade-offs whose
effects are hard to predict.

Finally, the electromagnetics and plasma physics group at Sandia is actively investigating what the next
steps are in the evolution of plasma simulation capability. The “holy grail” of PIC techniques for Sandia
(and others) would be to have a unified code that allows for hybrid structured/unstructured grids, is easily
maintainable and extensible, and has the potential to run in tandem with other simulation modules (e.g.
radiation transport) to model multi-physics effects. And, of course, this must all run in parallel on large-scale
machines, as well as on high-end workstations, and have a variety of user-friendly pre- and post-processing
tools. It remains to be seen whether such an ambitious goal will lead to a re-writing of (structured grid) QS
and (unstructured grid) VOLMAX in an object-oriented style, or an encoding of their basic algorithmsin a
high-level framework such as SIERRA or ALEGRA, or some other ultimate solution.

56



References
(1] J. P. Berenson. J. Comp. Phys., 114:185, 1994.

[2] C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation. Adam Hilger, Bristol,
Philadelphia, 1991.

[3] R. S. Coats, M. L. Kiefer, T. D. Pointon, and D. B. Seidel. QuickSilver user’s guide. Available from
authors, May, 1997.

[4] V. Decyk. Skeleton PIC codes for parallel computers. Comp. Phys. Comm., 87:87-94, 1995.

[5] J. W. Eastwood, W. Arter, N. J. Brealey, and R. W. Hockney. Body-fitted electromagnetic PIC software
for use on parallel computers. Comp. Phys. Comm., 87:155-178, 1995.

[6] B.B. Godfrey. Time-based field solver for electromagnetic PIC codes, 1980. presented at 9th Conference
on Numerical Simulation of Plasmas, Evanston, IL.

[7] F. Kazeminezhad, S. Zalesak, and D. Spicer. A particle model on an unstructured mesh. Comp. Phys.
Comm., 90:267-292, 1995.

[8] Argonne National Laboratories. http://www-unix.mcs.anl.gov/mpi/index.html.

[9] P. C. Liewer and V. K. Decyk. A general concurrent algorithm for plasma particle-in-cell simulation
codes. J. Comp. Phys., 85:302-322, 1989.

[10] P. M. Lyster, P. C. Liewer, V. K. Decyk, and R. D. Ferraro. Implementation and characterization of
three-dimensional particle-in-cell codes on multiple-instuction-multiple-data massively parallel super-
computers. Computers in Physics, 9:420-432, 1995.

[11] NASA. http://www.beowulf.org.

[12] S. J. Plimpton, D. B. Seidel, M. F. Pasik, and G. R. Montry. Load-balancing a parallel electromagnetic
PIC code. to be submitted to Comp. Phys. Comm., 2000.

[13] D. J. Riley and C. D. Turner. VOLMAX: A solid-model-based, transient volumetric maxwell solver
using hybrid grids. IEEE Antennas and Propagation Mag., 39:20-33, 1997.

[14] D. B. Seidel, R. S. Coats, M. L. Kiefer, T. D. Pointon, and L. P. Mix. PFF - a compact machine-
independent file format for simulation data, 1990. presented at 9th Biennial Cube Symposium, Santa
Fe, NM.

[15] D. B. Seidel, M. L. Kiefer, R. S. Coats, T. D. Pointon, J. P. Quintenz, and W. A. Johnson. Load-
balancing a parallel electromagnetic PIC code. In Computational Physics, page 475. World Scientific,
1991. edited by A. Tenner.

[16] D. B. Seidel, M. F. Pasik, M. L. Kiefer, D. J. Riley, and C. D. Turner. Advanced 3D electromagnetic
and particle-in-cell modeling on structured /unstructured hybrid grids. Technical Report SAND97-3190,
Sandia National Laboratories, Albuquerque, NM, January, 1998.

[17] E. Sonnendrucker, J. J. Ambrosiano, and S. T. Brandon. A finite-element formulation of the darwin
PIC model for use on unstructured grids. J. Comp. Phys., 110:310-319, 1994.

{18] J. Sturtevant. http://sasg829.sandia.gov/pds/index.htm.
[19] J. Sturtevant, M. Christon, P. Heerman, and P. Chen. PDS/PIO: Lightweight libraries for collective
parallel I/0. In Proc. SC98. IEEE Computer Society Press, 1998.

57




[20] D. W. Walker. The parallel implementation of a large-scale particle-in-cell plasma simulation code.
Concurrency, 2:257-288, 1990.

[21] J. Wang, P. Liewer, and V. Decyk. 3D electromagnetic plasma particle simulations on a MIMD parallel
computer. Comp. Phys. Comm., 87:35-53, 1995.

[22] K. S. Yee. IEEE Transactions on Antennae Propagation, 14:2155-2163, 1966.

58



A Appendix

This appendix provides a concise listing of all new and modified QUICKSILVER input commands supported
by the new parallel version of QS and the MERCURY pre-processor. They are listed in a format similar to
the QS Users Guide [3], so that these pages can be simply be added to the existing Users Guide if desired.

A.1 Modified QUICKSILVER Commands
The following QUICKSILVER (QS) commands have been modified:

PERIODIC

Define a periodic boundary condition. Boundary orientation is specified by its normal direction. The
locations of the two periodic planes are specified by their normal coordinate values.

format:
PERIODIC ijk z1 22
where:
1jk - coordinate direction of periodic plane normals: I, J, or K
zl z2 - normal coordinate ordinate value for the two periodic planes

SNAPSHOT

Save field or particle spatial data at specific times for postprocessing.

MAX_PARTICLE
Specify the default maximum number of particles to write for particle snapshots. If the number of pro-
cessors equals one and both parameters are provided, each is set to the maximum of the two provided values.

format:
SNAPSHOT MAX _PARTICLE [maz maz_global]

where:
maz - default number of particles for local particle snapshot storage (default is 3000)
maz_global - default maximum number of particles in particle snapshots (default is maz)

PARTICLE

Enter parameters to write particle spatial, momentum, and charge data for postprocessing. The SNAP-
SHOT MAX_PARTICLE command controls the default maximum number of particles to save. The particle
fraction is adjusted if the specified fraction exceeds the maximum number of particles. If no volume is
entered, the simulation limits are used. If the number of processors equals one and both maz and maz_global
are provided, each is set to the maximum of the two provided values. ’

format:

SNAPSHOT PARTICLE ‘title’ ktbeg ktend ktinc species[-data_type] fraction [maz [maz.global]] &
[zibeg zjbeg xkbeg ziend zjend zkend]
where:

’title’ - title for particle snapshot (up to 32 characters)

ktbeg - beginning timestep number for particle snapshot

ktend - ending timestep number for particle snapshot

ktinc - timestep increment for particle snapshot

species - name of species to be saved in snapshot (ALL for all)
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data_type - flag that particle momentum, charge, or both are to be saved in addition to location; valid
types are p, q, and pq (default is location only)

fraction - fraction of species particles to be saved in snapshot

maz - number of particles for local particle snapshot storage (default given by SNAPSHOT MAX_PARTICLE)

maz._global - maximum number of particles in particle snapshots (default is maz)

zibeg zjbeg zkbeg - beginning (ij,k) ordinate of volume

ziend zjend zkend - ending (i,j,k) ordinate of volume

CUSTOM KPWRITE

Write saved killed particles out to the particle PFF file. (See CUSTOM KPSAVE command). If the
number of processors equals one and both pbufsize and lbufsize are provided, each is set to the maximum of
the two provided values.

format:
CUSTOM KPWRITE spe/.tagname] pbufsize [lbufsize] pffibl

where:
spe[.tagname] - Species/Tagname label (see CUSTOM KPSTAG command)
pbufsize - maximum number of particles in a KPS dataset
Ibufsize - number of particles for local KPWRITE storage (default is pbufsize)
pffibl - label for KPS dataset

A.2 New QUICKSILVER Commands
The following new QUICKSILVER (QS) commands have been added:

CUSTOM PROCESSORS

Direct MERCURY to prepare a QS input deck for use with multiple processors.

format:
CUSTOM PROCESSORS P [assign]
where:
P - number of processors to be used
assign - specifies how the blocks are to be assigned to processors: sorted (default), clumped, or strided

CUSTOM DECOMPOSE

Optional commands to guide MERCURY in subdividing the blocks of the problem domain into new
blocks.

format:
CUSTOM DECOMPOSE n mor
CUSTOM DECOMPOSE n mz my mz
where:
n - user-block number
m - subdivide block n into m sub-blocks

mz my mz - subdivide block n with planar cuts along each of the 3 dimensions into mz by my by mz
sub-blocks

PARALLEL
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When parallel QS is running on just one processor, tell it whether to run in original serial mode or use
its new parallel algorithms.

format:
PARALLEL n
where:
n - 0 for serial (the default) or 1 for parallel

CUSTOM SCREEN

Instructs QS to display run statistics for parallel performance to stdout.

format:
CUSTOM SCREEN n
where:
n - display statistics every n timesteps (default is 0, indicating never)

CUSTOM EBJCHECK

This command invokes a consistency check for E, 5, and J field components that lie on the shared
surfaces between blocks.

format:

CUSTOM EBJCHECK nm
where: .

n-if n > 0, the check is performed only on E and B components, if n < 0, the J components are also
included. The check is performed every |n| timesteps. (default is 0, indicating never)

m - m = 0: only a total count of errors is printed; m = 1:-more detailed information is also displayed

CUSTOM LOADBALANCE

This command controls how dynamic load-balancing is performed during a parallel QS run.

format:
CUSTOM LOADBALANCE tol! tol2

where:
toll - value (>= 1.0) of imbalance required to trigger a re-balance operation (perfect balance = 1.0)
tol2 - value (>= 1.0) of imbalance that the balancing algorithm attempts to achieve (perfect balance =

1.0)
CUSTOM USE_PDS

Force QS to write field and particle (including KPWRITE) snapshot data in PDS format when there is
only a single processor. By default, PFF format will be used if there is only one processor.

CUSTOM FIXEDRANF

Force QS to use a fixed value for all random numbers involved in particle creation and advancement
algorithms. Note that this does not modify the use of random numbers for limiting particle fractions in
snapshot diagnostics.
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format:
CUSTOM FIXEDRANTF value
where:
value - value (between 0.0 and 1.0) to be used for random number calls

A.3 MERCURY-Generated QUICKSILVER Commands

The following new and modified QUICKSILVER. (QS) commands are automatically generated by MER-
CURY.

UBLOCK

Provides a description of the original block for the problem description provided to MERCURY. WARN-
ING: this command should be modified only by experienced users who understand what they are doing!

format:
UBLOCK zibeg zjbeg zkbeg ziend zjend zkend
where:
zibeg zjbeg zkbeg - beginning (i,j,k) ordinate
ziend zjend zkend - ending (i,j,k) ordinate

UGRID

Provides a description of the original grid for the problem description provided to MERCURY. The block
number refers to the blocks provided via the UBLOCK command. WARNING: this command should be
modified only by experienced users who understand what they are doing!

format:
UGRID m ik 20 nc a [b [c]]
where:
m ~ block number where mesh region is located
1jk - coordinate direction of region: I, J, or K
z0 - beginning ordinate of mesh region
nc - number of cells in mesh region
a b c - linear, quadratic and cubic coefficient in mesh-generating function (b and c default to 0.0)

PROCESSOR

Toggles the processor number that is currently taking ownership of BLOCK commands.
format:

PROCESSOR n

where:
n - processor number (0 to nprocs-1)

BLOCK

Modified form of the block command for parallel runs. It provides additional information to locate the
block on the original block structure (supplied via the UBLOCK command).

format:
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BLOCK zibeg zjbeg zkbeg ziend zjend zkend lcl2ublk b jb kb ie je ke
where: .

zibeg zjbeg zkbeg - beginning (i,j,k) ordinate

ziend zjend zkend - ending (i,j,k) ordinate

lcl2ublk ~ user block which contains this block

ib jb kb - grid index in user block describing beginning position of this block
ie je ke - grid index in user block describing ending position of this block

A.4 PDS2PFF File Conversion Utility

QUICKSILVER. now writes its field and particle snapshot data to PDS-formatted files when running in par-
allel. The pds2pff utility has been developed to allow the user to convert these PDS files to PFF-formatted
files. The utility automatically senses the type of data in the input file (field or particle) and converts the
data to the corresponding PFF dataset types.

format:

pds2pff file
where:

file - file name (without extension) of PDS file to be converted; pds2pff will convert the data in file.pds
to PFF format and write the resulting data to the file file.pff.
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