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Abstract

Consider a system of n single-server queues where tasks arrive at each server in
a distributed fashion. A graph is used to locally balance the load by dispatching
every incoming task to one of the shortest queues in the neighborhood where the
task appears. In order to globally balance the load, the neighborship relations are
constantly renewed by resampling the graph at rate µn from some fixed random
graph law. We derive the fluid limit of the occupancy process as n → ∞ and
µn →∞ when the resampling procedure is symmetric with respect to the servers.
The maximum degree of the graph may remain bounded as n grows and the total
number of arrivals between consecutive resampling times may approach infinity.
The fluid limit only depends on the random graph laws through their limiting
degree distribution and can be interpreted as a generalized power-of-(d+1) scheme
where d is random and has the limiting degree distribution. We use the fluid limit
to obtain valuable insights into the performance impact and optimal design of
sparse dynamic graphs with a bounded average degree. In particular, we establish
a phase transition in performance when the probability that a server is isolated
switches from zero to positive, and we show that performance improves as the
degree distribution becomes more concentrated.
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1 Introduction

We consider a distributed system of single-server queues where tasks arrive at each of
the servers as independent Poisson processes of the same intensity. A graph is used to
locally balance the load by dispatching every arriving task to one of the shortest queues
in the neighborhood where the task initially appeared. In order to achieve global load
balancing, the neighborship relations are constantly renewed by resampling the graph over
time from some given random graph law.

Our model is related to those studied in [9, 24], where the servers are interconnected
by a static graph. Both papers establish connectivity conditions such that the system
behaves asymptotically as if the graph was fully connected; when this happens any task
can potentially be assigned to any server and thus the best performance can be achieved.
For example, a condition in [24] implies that the fluid limit of the occupancy process is the
same as for fully connected graphs when the static graph is drawn from an Erdős-Rényi
law with an average degree that approaches infinity with the number of servers.

When the graph is dense as in [24], each server must poll a large number of neighbors
in order to dispatch a task, which entails a prohibitive communication overhead. Sparse
graphs such that this overhead remains under control are more relevant from a practical
perspective. Nonetheless, analytical results for arbitrarily sparse graphs are limited, only
stability conditions have been proved in [7, 11, 14]. Recent results in [16], for interacting
particle systems, could provide a better understanding of load balancing on static sparse
graphs, but it is not clear how design insights can be derived from these results.

Surprisingly, the sparse regime turns out to be more tractable in the dynamic setting
that we consider than in the latter static scenario. In particular, we derive a fluid limit for
the occupancy process that holds even when the maximum degree of the graph remains
bounded as the number of servers grows to infinity. The equilibrium point of the fluid
limit yields valuable insights into the performance impact and optimal design of the graph
topology, as further discussed below. Moreover, the fluid limit result implies that dynamic
graph topologies can asymptotically match the performance of the celebrated power-of-d
policy studied in [23,34]. In contrast, simulation results in [17,24,33] suggest that equally
sparse static graphs cannot match this performance benchmark, which reflects the power
of dynamic random graphs for load balancing.

1.1 Main contributions

Our main mathematical contribution is a fluid limit that characterizes the asymptotic
behavior of the system as the number of servers grows large and the degree distribution
of the dynamic graph converges weakly. Remarkably, the fluid limit depends solely on the
limiting degree distribution and not on any other structural properties of the graph. In
particular, the fluid limit is given by an infinite system of differential equations with a
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right-hand side that depends on the probability generating function of the limiting degree
distribution. The system of differential equations has a globally attractive equilibrium that
characterizes the asymptotic behavior of the system in steady state and can be used to
understand the impact of different degree distributions on performance.

1.1.1 Proof of the fluid limit

In order to prove the fluid limit, we assume that the random graph law used to sample
the graph is invariant under permutations of the nodes. Although this property implies
that the resampling procedure is symmetric with respect to the servers, it does not impose
any restrictions on the graph topology. The topology may be arbitrary since a random
graph law that is invariant under permutations of the nodes can be obtained by drawing
a graph from any given random graph law and relabeling the nodes uniformly at random.
For example, the topology can be star-shaped at all times if we define the random graph
law by relabeling the nodes of a deterministic star-shaped graph.

In the special case where the graph is resampled at every arrival time, the invariance
of the random graph law under permutations of the nodes implies that the load balancing
policy is equivalent to the following generalized power-of-(d + 1) scheme. When a task
arrives, a number d is sampled from the degree distribution and the task is dispatched
to a server with the least number of tasks among d + 1 servers selected uniformly at
random. The power-of-d policy studied in [23,34] is recovered when the degree distribution
is deterministic, thus the present paper extends the results derived in [23,34].

While these extensions involve nontrivial technical challenges, the main contribution
of the present paper is in the setting where the graph remains fixed throughout several
arrivals. Specifically, the total number of arrivals between two consecutive resampling
times may approach infinity with the number of servers. When the graph is resampled
with every arrival, the occupancy process that describes the queue length distribution is
Markovian if the service times are exponentially distributed. In particular, the impact of
every dispatching decision on the queue length distribution is conditionally independent of
the previous decisions if the queue length distribution at the time of taking the decision
is given. However, this conditional independence disappears if the graph remains fixed
throughout several consecutive arrivals. Information about the current graph and the
number of tasks at each server must be included in the state description to recover the
Markov property, which creates significant difficulties in establishing a fluid limit.

The main challenge is to show that the dependence of the dynamics of the occupancy
process on the additional state information disappears in the limit. We establish this
by expressing these dynamics through a system of stochastic equations and by using two
key insights. First, the dynamics of the occupancy process are asymptotically equivalent
if on the right-hand side of the stochastic equations we replace the current state of the
system by the state of the system at the most recent resampling time. Second, if the queue
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length distribution is given and the graph is unknown, then the dispatching decisions are
statistically determined by the queue length distribution and the random graph law of
the graph. Combining these insights, we establish that the dynamics of the occupancy
process are asymptotically determined by the queue length distribution at the resampling
times and the random graph law, rather than the specific graph in effect. We use this
fact to prove that the stochastic equations are asymptotically equivalent to those of the
generalized power-of-(d+ 1) scheme, leading to the same fluid limit.

Informally, the first of the above insights is obtained by carefully bounding the average
number of dispatching decisions that would be different if all the queue lengths remained
fixed between successive resampling times. This provides a bound for the mean of the total
number of different dispatching decisions over any finite interval of time. We prove that
this bound, normalized by the number of servers, approaches zero as the number of servers
and the resampling rate go to infinity. This implies that the limit of the occupancy process
is not affected if on the right-hand side of the stochastic equations the current state of the
system is replaced by the state of the system at the most recent resampling time.

The second insight allows to identify suitable vanishing and nonvanishing terms on
the right-hand side of the stochastic equations. In particular, the part of the equations
that counts the number of tasks that have been dispatched can be decomposed into two
terms. The first term counts dispatched tasks as if the state of the system remained fixed
between successive resampling times and the graph was resampled at each arrival time.
This term is nonvanishing and similar to a term that appears in the stochastic equations
of a generalized power-of-(d + 1) scheme. The second term accounts for the error in the
simplification of the dispatching procedure used to define the first term. By focusing on
the resampling times, we identify a discrete-time martingale embeded in this error process;
the proof of the martingale property relies on the independence of the graphs used between
different couples of consecutive resampling times. We show that this martingale vanishes
in the limit and then prove that the entire error process also approaches zero.

1.1.2 Design implications

We prove that the fluid limit has a globally attractive equilibrium point and that
the stationary occupancy state converges weakly to this equilibrium when the graph is
resampled according to a Poisson process. The equilibrium point is given by

q∗(0) = 1 and q∗(i) = λq∗(i− 1)ϕ (q∗(i− 1)) for all i ≥ 1, (1)

where q∗(i) represents the fraction of servers that have at least i tasks, ϕ is the probability
generating function of the limiting degree distribution, λ is the arrival rate of tasks at each
server and service times have unit mean. This recursive expression for the equilibrium may
be interpreted by considering the generalized power-of-(d + 1) scheme mentioned above.
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Specifically, if q(i) denotes the fraction of servers with at least i tasks, then the probability
that this scheme assigns an incoming task to a server with at least i − 1 tasks equals
q(i−1)ϕ(q(i−1)). Hence, the right-hand side of (1) may be interpreted as the asymptotic
equilibrium rate at which tasks are assigned to servers with at least i− 1 tasks. This rate
must be equal to the rate at which tasks are completed by servers with at least i tasks,
which is represented by q∗(i) in the left-hand side.

We now provide a few key insights into the performance impact and optimal design of
the graph topology, based on the equilibrium point as characterized in (1).

Uniform degrees are beneficial. For graphs with an average degree upper bounded
by d ∈ N, we prove that the asymptotic mean sojourn time of tasks is minimized when
the limiting degree distribution is deterministic and equal to d. In fact, we show that the
deterministic distribution concentrated at d minimizes the limiting stationary occupancy
state coordinatewise. In this special case the equilibrium point given by (1) coincides with
that for the classical power-of-(d+ 1) policy as derived in [23,34].

Isolated servers are detrimental. We show that the tail of the equilibrium point q∗

exhibits geometric decay if the limiting degree distribution is such that servers are isolated
with positive probability, however small. This is qualitatively similar to the decay of
the stationary occupancy state in a scenario where tasks are routed uniformly at random
without using any queue length information. In contrast, the tail of the equilibrium q∗

exhibits doubly-exponential decay if servers are isolated with probability zero.

The above-described phase transition is a manifestation of qualitatively similar resource
pooling benefits from power-of-choice and flexibility that have been observed in different
contexts. In particular, [23, 34] showed that the tail of the limiting stationary occupancy
state under a classical power-of-d policy exhibits doubly-exponential decay if d ≥ 2, while
the decay is geometric if d = 1. In addition, [32] proved an exponential reduction in mean
queue length and delay in scheduling parallel queues if even an arbitrarily small portion of
the overall capacity is pooled and flexibly allocated, rather than statically partitioned.

Interestingly, whereas just a little flexibility in allocating resources yields huge benefits
for scheduling purposes, our results indicate that assigning only a fraction of the tasks in
a fully flexible manner does not produce equally significant gains in the load balancing
setup that we consider. In the latter context, it is loss in routing freedom for even a tiny
fraction of the tasks that carries a severe penalty in tail decay, even if the vast majority
of the tasks are assigned in a fully flexible manner. Therefore, a small degree of flexibility
per task suffices to achieve significant gains, but in a large system it is critical to have
that flexibility for all the tasks. Note that this property is captured by the load balancing
model considered in the present paper but not by the power-of-d model studied in [23,34],
where the degree of flexibility is the same for all the arriving tasks.
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1.2 Related work

Immense attention has been directed to the classical load balancing model where a
centralized dispatcher assigns incoming tasks to the servers; see [5] for an extensive survey.
It was proved in [22, 30] that the Join the Shortest Queue (JSQ) policy is optimal in a
stochastic majorization sense. However, this algorithm has scalability issues which have
led to the consideration of other policies, such as the power-of-d schemes studied in [23,34]
that assign every incoming task to the shortest of d queues selected uniformly at random.
While these policies can be deployed in large systems, they do not enjoy the same optimality
properties as JSQ. It was proved in [25] though that the power-of-d scheme has the same
fluid and diffusion limit as JSQ if the parameter d approaches infinity with the number
of servers in a suitable way. The fluid optimality result is recovered in this paper and
generalized to the situation where d is possibly random.

The problem of balancing a fixed workload across the nodes of a static network was
first studied in [12], and the situation where the graph is dynamic was first considered
in [2, 13]; for a more extensive list of references see [19]. Most of this literature not only
assumes that the workload is fixed but also that the graph or the sequence of graphs that
describes the network is deterministic or adversarial. The main goal is to design algorithms
that converge to a state of uniformly balanced workload under different conditions on the
graphs, and to analyze their complexity. Load balancing on static graphs has also been
studied in the balls-and-bins context where balls arrive to the nodes of the graph and simply
accumulate; see [21, 38]. This situation is also fundamentally different from the queueing
scenario considered in the present paper. For example, in the balls-and-bins setup the total
number of balls at any given time is independent of the way in which the balls are assigned
to the bins, whereas this is not the case when the balls are replaced by tasks and the bins
by servers that execute the tasks. Also, a round-robin assignment perfectly balances the
allocation of balls to bins but is far from optimal in the queueing setup.

The first papers to study load balancing on static graphs from a queueing perspective
are [17, 33], which focus particularly on ring topologies. These papers establish that the
flexibility to forward tasks to a few neighbors substantially improves performance in terms
of the waiting time. Nevertheless, they also show via numerical results that performance
is sensitive to the graph, and that the possibility of forwarding tasks to a fixed set of
d − 1 neighbors does not match the performance of classical power-of-d schemes in the
complete graph case. The results in [24] provide connectivity conditions on the graph for
achieving asymptotic fluid and diffusion optimality when tasks can be forwarded to any
neighboring server. The situation where tasks can only be forwarded to a uniformly selected
random subset of d neighbors was studied in [9], which provides connectivity conditions
for obtaining the same fluid limit as in the complete graph scenario. In a different line
of research, [31] analyzed power-of-d algorithms that involve less randomness by using
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non-backtracking random walks on a high-girth graph to sample the servers.
When servers are connected through static and suitably dense graphs, neighboring

queues become independent as the number of servers grows large, a property known as
propagation of chaos in interacting particle systems. However, neighboring queues remain
strongly correlated when the graph is sparse, making the analysis significantly harder, as
is also reflected in conditions for refined mean-field approximations to apply; see [1, 18].
Recent advances in [16], in the more general context of interacting particle systems, may
lead to progress in the study of load balancing in static graphs; we refer to [26] for further
discussion. In particular, it was established in [16] that the limiting empirical measure of
the particles exists at any given time under certain conditions; in the load balancing setting
each particle corresponds to a server and its state to the number of tasks at the server.
While the limiting dynamics of a typical particle and its neighborhood can be described by
a certain local equation, these dynamics depend on the history of the trajectory and thus
are highly complex. Hence, it is difficult to use them for designing static graph topologies
that optimize the performance of a load balancing scheme.

Recently, several papers have considered the situation where tasks may be of different
classes and servers may only be compatible with certain classes. This situation can be
modeled by letting the underlying graph depend on the class of the incoming task, but
the predominant model has been to replace the graph interconnecting the servers by a
bipartite graph between task classes and servers, for specifying which task classes can be
executed by each server. A different but related model replaces these strong compatibility
constraints with soft affinity relations, which imply that every server can execute all tasks
but at a service rate that depends on the affinity between the server and the task; we refer
to [10,35,39,40] for this other stream of literature.

For the model with strict compatibility constraints, general stability conditions are
provided in [7, 11]. In addition, [28] assumes that every new task joins the least busy of d
compatible servers chosen uniformly at random, and provides connectivity conditions such
that the occupancy process has the same process-level and steady-state fluid limit as in the
case where the graph is complete bipartite. Similar models are considered in [29,41]. The
former of these two papers broadens the class of graph sequences for which the steady-state
fluid limit in [28] holds. For instance, [29] considers certain sequences of spatial graphs that
do not satisfy the strong connectivity conditions stated in [28]; yet the number of servers
compatible with any given task class goes to infinity. On the other hand, [41] extends the
model considered in [28] by allowing for heterogeneous service rates and proves process-level
and steady-state fluid limits in this setting. The model studied in [36, 37] also allows for
heterogeneous service rates. In these papers two load balancing policies are examined: in
one, tasks join the fastest of the least busy compatible servers, and in the other, tasks join
the fastest of the idle compatible servers. Provided that a suitable connectivity condition
holds, [36, 37] establish that both policies are asymptotically optimal with respect to the
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stationary mean response time of tasks.
A key property that allows to obtain the above results is that the dependence of the

dispatching decisions on the state of individual servers weakens as the size of the system
approaches infinity. This is a consequence of two facts. First, dispatching decisions are
determined by the queue length distribution of the neighborhood where the task appears.
Second, the number of neighbors that each server has approaches infinity as the size of the
system increases, thus the queue length distribution of a neighborhood is hardly affected
in the limit by the queue length of an individual server. The fluid limit derived in the
present paper also holds because the dependence of the dispatching decisions on detailed
state information vanishes in the limit. However, this is due to the resampling process, as
noted earlier, and not a consequence of the neighborhood sizes going to infinity; in fact,
the fluid limit holds when the degrees of the graph remain bounded.

1.3 Some basic notation

The symbols P and E are used to denote the probability of events and the expectation
of functions, respectively. The underlying probability measure to which these symbols refer
is always clear from the context or explicitly indicated.

For random variables with values on a common metric space S, we denote the weak
convergence of {Xn : n ≥ 1} to X by Xn ⇒ X. If X is deterministic, then the weak limit
holds if and only if the random variables Xn converge in probability to X. In this situation
we use the terms converges weakly and converges in probability interchangeably.

The left and right limits of a function f : [0,∞) −→ S are denoted by

f
(
x−
)

:= lim
y→x−

f(y) for all x > 0 and f
(
x+
)

:= lim
y→x+

f(y) for all x ≥ 0,

respectively. We say that f is càdlàg if the left limits exist for all x > 0 and the right limits
exist and satisfy f (x+) = f(x) for all x ≥ 0.

Finally, we define

bxc := max {n ∈ Z : n ≤ x} and dxe := min {n ∈ Z : n ≥ x} for all x ∈ R.

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we specify a load balancing
policy that uses a dynamic random graph and we introduce some notation. In Section 3
we state a fluid limit for the occupancy process. Sections 4 and 5 focus on sparse graph
topologies where the average degree is upper bounded by some given constant. In Section 4
we establish certain dynamical properties of the differential equation that characterizes the
fluid limit, including existence of a globally attractive equilibrium. In Section 5 we prove
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that the stationary distribution of the occupancy process converges to this equilibrium
point when the graph is resampled according to a Poisson process, and we characterize the
best performance that can be achieved in equilibrium. In Section 6 we prove the fluid limit.
In Appendix A we report the results of various simulations involving static and dynamic
graphs. Appendices B, C and D contain the proofs of some intermediate results.

2 Model description

Consider a system of n servers with infinite buffers. Tasks arrive locally at each of the
servers as independent Poisson processes of rate λn/n and service times are exponentially
distributed with unit mean. At time t, the number of tasks present in server u is denoted
by Xn(t, u) and the fraction of servers with at least i tasks is given by

qn(t, i) := 1
n

n∑
u=1

1{Xn(t,u)≥i}.

The stochastic process qn is called occupancy process and the infinite sequence qn(t) is
referred to as the occupancy state of the system at time t.

A simple directed graph on the set of servers Vn := {1, . . . , n} guides the exchange of
load between servers; all results apply to undirected graphs as well, as they have natural
directed counterparts. The graph is resampled over time from a given random graph law,
with every new sample being independent from all the previous samples. At time t, the
current graph is denoted by Gn(t) and Rn(t) denotes the number of times that the graph
has been resampled so far. The stochastic process Rn is called resampling process and its
jumps coincide with the times at which the graph is resampled.

The set of edges at time t is denoted by En(t) and the neighborhood of a server u at
time t consists of itself and all the servers v such that (u, v) ∈ En(t). The graph structure
is used to balance the load as follows. If a task arrives at server u at time t, then the task
is placed in the queue of an arbitrary server v(u) contained in the set

argmin
v
{Xn(t, v) : v = u or (u, v) ∈ En(t)} ,

which consists of the servers in the neighborhood of u that have the least number of tasks.
Selecting v(u) requires that u polls all the servers in its neighborhood, and the associated
communication overhead increases with the mean outdegree.

A key design condition that we impose is that the random graph law used to sample
the graph is invariant under permutations of nodes. Specifically, we assume that

P (En(t) = {(u1, v1), . . . , (um, vm)}) = P (En(t) = {(π(u1), π(v1)) , . . . , (π(um), π(vm))})
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for all sets of edges {(u1, v1), . . . , (um, vm)} and all permutations π : Vn −→ Vn, which
makes the resampling procedure symmetric with respect to the servers.

Remark 1. A random graph law satisfying the above condition can be obtained as follows.
Let H be any random graph distribution with node set Vn. If we draw a graph h from H

and a permutation π : Vn −→ Vn uniformly at random, then we can define a graph g by
permuting the labels of the nodes of h according to π. The random graph law G of the
graph g obtained in this way is invariant under permutations of the nodes. In other words,
the arbitrary random graph law H determines the graph topology and labels are attached
to the nodes uniformly at random. For example, suppose that H is the point mass at the
undirected graph h such that node u has degree n− 1 and all the other nodes have degree
one. The above-described random graph law G assigns probability 1/n! to each of the
undirected graphs that result from permuting the nodes of h. Thus, the topology of G is
star-shaped almost surely and each node has probability 1/n of having degree n− 1.

3 Fluid limit

As the number of servers goes to infinity, the asymptotic behavior of the occupancy
process can be described by a system of differential equations if certain conditions on
the outdegree distribution and the resampling process hold. The outdegree distribution
Dn of the random graph law used to sample the graph is defined through the following
experiment: a graph is drawn from the random graph law, the outdegree of a node selected
uniformly at random is observed and pn(d) := P (Dn = d) is defined as the probability that
this outdegree is d. The fluid limit is proved under the following conditions.

Assumption 1. There exist constants λ > 0 and {p(d) ∈ [0, 1] : d ∈ N} such that

lim
n→∞

λn
n

= λ and lim
n→∞

pn(d) = p(d) for all d ∈ N. (2)

In addition, the resampling processes satisfy a technical property that we define later: we
assume that they pseudo-separate events.

The pseudo-separation property mentioned above is formally stated in Section 6.3 using
notation that we introduce later. Informally, the property implies that the holding time and
the total number of arrivals and departures between any two successive resampling times
are suitably bounded. The following proposition shows that this property is rather general
and holds in many cases of interest; the proof is deferred to Section 6.3. In particular, the
resampling process can be a renewal process with a rate µn that approaches infinity at an
arbitrarily slow rate, and the number of arrivals between successive resampling times can
approach infinity with n at any sublinear rate.
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Proposition 1. Suppose that λn/n→ λ as n→∞ and there exist {κn ∈ N : n ≥ 1} and
{µn > 0 : n ≥ 1} such that the processes Rn satisfy one of the following conditions.

(a) If s < t are any two consecutive resampling times, then exactly κn + 1 tasks arrive in
the interval (s, t]. Also, Rn is independent of the departure times of tasks.

(b) The resampling processes are independent of the history of the system and the amount
of time elapsed between any two consecutive resampling times is at most 1/µn.

(c) We have Rn(t) = R(µnt) for all t ≥ 0, where R is a fixed independent renewal process
with a holding time distribution that has unit mean and finite variance.

Also, assume that there exist constants {d−n ≥ 0 : n ≥ 1} such that in the system with n

servers the indegree of the servers is at most d−n with probability one and we have:

lim
n→∞

κn
d−n + 1
n

= 0 and lim
n→∞

d−n + 1
µn

= 0. (3)

Then the resampling processes pseudo-separate events.

From a practical perspective, the most relevant resampling processes probably are the
one that is synchronized with the arrival of tasks so that the graph is always resampled
after a given number of arrivals and the one where the amount of time between successive
resampling times is deterministic. The former resampling process is covered by (a) of the
proposition and the latter is included both in (b) and (c). More generally, the latter two
conditions cover the situation where the resampling process is governed by an independent
clock. If condition (b) holds, then the distributions of the amounts of time between two
successive ticks of the clock can be arbitrary as long as they remain supported in [0, 1/µn].
In particular, these holding time distributions are not required to be identical. In contrast,
(c) implies that the holding times between successive resampling times are identically
distributed, but allows for holding time distributions with infinite support.

Remark 2. When conditions (b) or (c) of Proposition 1 hold, the mean number of tasks
that arrive between two successive resampling times is at most λn/µn. In addition, if
λn/n→ λ as n→∞, then (3) is equivalent to

lim
n→∞

κn
d−n + 1
n

= 0 and lim
n→∞

λn
µn

d−n + 1
n

= 0.

Hence, the condition on the resampling rate is essentially the same under (a), (b) and (c)
of Proposition 1. If κn = 0 for all n or λn/µn → 0 as n→∞, then (3) holds regardless of
how the maximum indegrees d−n behave asymptotically.

Remark 3. As noted earlier, the sparse regime where the maximum indegrees d−n are
uniformly bounded across n is the most relevant in practice. In this case (3) simply states
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that κn = o(n) and µn → ∞ as n → ∞. Thus, the number of arrivals between successive
resampling times can approach infinity at any sublinear rate. These conditions are tight in
the sense that they cannot be weakened without entering into the realm of fluid limits for
static graphs. For example, if µn is bounded and the resampling process is deterministic,
then there exists ε > 0 such that the initial graph remains fixed in [0, ε]. A fluid limit in
this setup would yield a fluid limit over [0, ε] for a static graph that is randomly selected at
time zero. Deriving a fluid limit for a sequence of static graphs with bounded degrees is a
difficult open problem, as noted in Section 1, even when the graphs are highly symmetric;
e.g., even when all the graphs have a ring topology.

Remark 4. The pseudo-separation property and (3) involve the maximum indegrees d−n .
While we do not believe the pseudo-separation property to be a necessary condition for the
fluid limit to hold, the numerical experiments of Appendix A suggest that the dependence
of this property on the maximum indegrees could be a manifestation of some fundamental
condition that is in fact necessary for the fluid limit, and not just an artifact of our proof
technique. Note however that the dependence of the pseudo-separation property on the
maximum indegrees is trivial in the sparse regime that is the focus of this paper, i.e., when
the maximum indegrees are uniformly bounded across n.

It follows from (2) and Fatou’s lemma that

∞∑
d=0

p(d) ≤ lim inf
n→∞

∞∑
d=0

pn(d) = 1.

If equality is attained on the left, then Dn converges weakly as n→∞ to a distribution D
that has probability mass function p. We refer to D as the limiting outdegree distribution
and we let ϕ denote its probability generating function. In general, we define

ϕ(x) :=
∞∑
d=0

xdp(d) for all x ∈ [0, 1] and p(∞) := 1−
∞∑
d=0

p(d).

We say that the limiting outdegree distribution is nondegenerate and given by D when
p(∞) = 0. Otherwise, we say that the limiting outdegree distribution is degenerate.

Let `1 be the space of all absolutely summable x ∈ RN with the norm

||x||1 :=
∞∑
i=0
|x(i)| for all x ∈ `1.

The sample paths of qn lie in the space D`1 [0,∞) of càdlàg functions from [0,∞) into `1,
which we endow with the metric of uniform convergence over compact sets. The following
fluid limit is proved in Section 6.

Theorem 1. Suppose that Assumption 1 holds and that the sequence of initial occupancy
states {qn(0) : n ≥ 1} is tight in `1. Then every subsequence of {qn : n ≥ 1} has a further

12
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subsequence that converges weakly in D`1 [0,∞). Furthermore, the limit q of any convergent
subsequence is almost surely continuous from [0,∞) into `1 and satisfies

q(t, i) = q(0, i) + λ
∫ t

0
[ai−1 (q(s))− ai (q(s))] ds−

∫ t

0
[q(s, i)− q(s, i+ 1)] ds (4)

for all i ≥ 1 and t ≥ 0 with probability one. If p(∞) = 0 or q(i) < 1, then ai(q) can be
interpreted as the asymptotic probability of a task being dispatched to a server with at least
i tasks when the occupancy state is q. These functions are defined by a0(q) := 1 and

ai(q) :=

 q(i)ϕ (q(i)) if p(∞) = 0,

q(i)ϕ (q(i))1{q(i)<1} +
[
1− 1−q(i+1)

λ

]
1{q(i)=1} if p(∞) ∈ (0, 1],

if i ≥ 1.

The fluid limit (4) depends on the limiting outdegree distribution of the random graph
law used to sample the graph through the generating function ϕ. Only this local property
affects the asymptotic behavior of the system and the impact of any other structural
properties of the random graph law disappears in the limit. In addition, (4) corresponds
to the fluid limit of power-of-(d + 1) schemes where d is random and distributed as Dn.
When a task arrives, these schemes draw d from the distribution Dn, select d + 1 servers
uniformly at random and then send the task to one of the servers with the smallest number
of tasks. The fluid limit of these schemes indeed follows from Theorem 1 by assuming that
the random graph law is resampled between any two consecutive arrivals.

Remark 5. If the graph is resampled between any two consecutive arrivals and the random
graph law is the point mass at the complete digraph, then the load balancing policy under
consideration is JSQ. As noted in Section 1.2, this policy minimizes the mean response
time of the tasks. The corresponding fluid limit arises if and only if p(∞) = 1, and this
condition can be interpreted as the limiting outdegree distribution being the point mass
at infinity. Examples of outdegree distributions that satisfy this are the point mass at dn
or the uniform distribution on {0, . . . , dn} for any constants dn that approach infinity as
n→∞. Moreover, the fluid limit can be achieved without resampling the graph between
any two consecutive arrivals as long as the conditions stated in Assumption 1 hold.

Suppose that the initial occupancy states qn(0) converge weakly to some deterministic
limit q and that (4) has a unique solution such that q(0) = q. In this case Theorem 1
says that the occupancy processes qn approach the unique solution of (4) for the initial
condition q. In Section 4 we prove that (4) has a unique solution for any given initial
condition when the limiting outdegree distribution is nondegenerate and has finite mean,
and we show that all the solutions, regardless of the initial condition, converge over time
to a unique equilibrium point. In Section 5 we assume that Rn is a Poisson process of rate
µn and we use the global attractivity result to characterize the stationary behavior of the
system as n→∞. As noted earlier, the proof of the fluid limit is provided in Section 6.

13
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4 Properties of fluid trajectories

In most of this section we assume that

p(∞) = 0 and
∞∑
d=0

dp(d) <∞, (5)

which means that the limiting outdegree distribution is nondegenerate and has finite mean.
Since p(∞) = 0, the differential form of (4) is given by

q̇(i) = λ [q(i− 1)ϕ (q(i− 1))− q(i)ϕ (q(i))]− [q(i)− q(i+ 1)] for all i ≥ 1, (6)

where the equations hold almost everywhere with respect to the Lebesgue measure. A fluid
trajectory is a function q from [0,∞) into

Q := {q ∈ `1 : 0 ≤ q(i+ 1) ≤ q(i) ≤ q(0) = 1 for all i ≥ 1}

that satisfies (6). The fact that the limiting outdegree distribution has a finite mean gives
the following lemma, which we prove in Appendix B.

Lemma 1. If (5) holds, then

lim
x→1−

ϕ(1)− ϕ(x)
1− x =

∞∑
d=0

dp(d) = lim
x→1−

ϕ′(x).

In other words, ϕ is continuously differentiable on [0, 1].

This lemma implies that the functions ϕ and x 7→ xϕ(x) are Lipschitz on [0, 1], which
makes it possible to derive certain properties of fluid trajectories.

4.1 Existence, uniqueness and monotonicity

We begin with an existence and uniqueness result, which is proved in Appendix B.

Proposition 2. Suppose that condition (5) holds. For each q ∈ Q there exists a unique
fluid trajectory q such that q(0) = q. Moreover, q is continuous from [0,∞) into `1 and
the fluid trajectories are continuous in D`1 [0,∞) with respect to the initial condition.

Remark 6. The existence part of Proposition 2 holds even if we do not assume (5), and
the proof provided in Appendix B does not require any modifications. The uniqueness part
is more delicate when (5) does not hold. This property implies that x 7→ xϕ(x) is Lipschitz
in [0, 1], which plays an important role in the proof of Proposition 2. If condition (5) is
replaced by p(∞) = 1, then this also implies uniqueness; see [3].

The following corollary is a consequence of Theorem 1 and Proposition 2.
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Corollary 1. Assume that condition (5) holds and consider a random variable q defined
on a probability space (Ω,F ,P) and with values in Q. In addition, let q be the stochastic
process such that q(ω) is the unique fluid trajectory with initial condition q(ω, 0) = q(ω).
If qn(0)⇒ q in `1 as n→∞, then qn ⇒ q in D`1 [0,∞) as n→∞.

Proof. Consider the function Φ : Q −→ D`1 [0,∞) that maps initial conditions to fluid
trajectories. By Proposition 2, this function is well-defined and continuous if (5) holds.

Theorem 1 implies that every subsequence of {qn : n ≥ 1} has a further subsequence
that converges weakly in D`1 [0,∞) to a process r such that r = Φ (r(0)) almost surely.
The projection x 7→ x(0) is continuous from D`1 [0,∞) into `1. Therefore, the continuous
mapping theorem implies that r(0) has the same distribution as q and we conclude that r

and q = Φ(q) have the same distribution as well. Thus, every subsequence of {qn : n ≥ 1}
has a further subsequence that converges weakly in D`1 [0,∞) to q.

Consider now the partial order in `1 defined by

x ≤ y if and only if x(i) ≤ y(i) for all i ≥ 1.

The following lemma says that the solutions of (6) are monotone with respect to this
ordering. The proof of the lemma is provided in Appendix B and the proof of similar
monotonicity properties can be found in [15] and [34].

Lemma 2. Suppose that assumption (5) holds. If x and y are fluid trajectories such that
x(0) ≤ y(0), then x(t) ≤ y(t) for all future times t > 0 as well.

The above monotonicity property will be important in the next section, where we will
use it to prove that (6) has a globally attractive equilibrium point.

4.2 Global attractivity

In a system with n servers, the condition λn < n means that the total arrival rate of
tasks is smaller than the combined service rate of all the servers. By (3), this stability
condition turns into λ < 1 as n→∞. In this section we assume that the latter condition
holds and we study the stability of the differential equation (6). First we derive the unique
equilibrium of the more general equation (4). Recall that this equation is equivalent to (6)
when (5) holds, but note that the following result does not require that (5) holds.

Proposition 3. If λ < 1, then the infinite sequence

q∗(i) :=


1 if i = 0,

λ if i = 1,

λq∗(i− 1)ϕ (q∗(i− 1)) if i > 1,
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is the unique equilibrium of (4) within Q.

Proof. The differential version of (4) is

q̇(i) = λ [ai−1(q)− ai(q)]− [q(i)− q(i+ 1)] for all i ≥ 1. (7)

It is clear that q∗(i) decreases with i, and q∗ is an equilibrium point since q∗(i) = λai−1 (q∗)
for all i ≥ 1. In order to show that q∗ ∈ Q, we prove that q∗(i) ≤ λi by induction; this
implies that q∗ ∈ `1. The base case i = 1 holds by definition, and the inductive step also
holds: if the property holds for i, then it also holds for i+ 1 since

q∗(i+ 1) = λq∗(i)ϕ (q∗(i)) ≤ λq∗(i) ≤ λi+1.

Suppose now that q ∈ Q is an equilibrium point and let us prove that q = q∗. For
an arbitrary ε ∈ (0, 1), the function ϕ is continuously differentiable in [0, ε]. In addition,
q(i) ≤ ε for all large enough i since q ∈ `1. Thus, there exists L ≥ 0 such that

ai(q) = q(i)ϕ (q(i)) ≤ Lq(i) for all large enough i ≥ 1.

In particular, ai(q)→ 0 as i→∞. If we replace q by q in the right-hand side of (7), then
we can set the resulting expression equal to zero because q is an equilibrium. Therefore,

λ− q(1) = λa0(q)− q(1) =
∞∑
i=1

[ai−1(q)− ai(q)]−
∞∑
i=1

[q(i)− q(i+ 1)] = 0,

so q(1) = λ. Moreover, we have

q(i+ 1) = λ [ai−1(q)− ai(q)]− q(i) for all i ≥ 1.

Since q(i) ≤ q(1) = λ < 1 for all i ≥ 1, it follows that ai(q) = q(i)ϕ (q(i)) for all i ≥ 1.
We conclude that the right-hand side of the above equation is completely determined by
q(i− 1) and q(i). But q(0) = q∗(0) and q(1) = q∗(1), so we must have q = q∗.

Below we prove that if condition (5) holds, then all fluid trajectories converge to the
unique equilibrium point q∗ over time. The proof strategy is as in [15] and [34]. First
we note that the monotonicity property established in Lemma 2 implies that any fluid
trajectory can be sandwiched between two solutions of (6) that remain below and above
the equilibrium q∗, respectively. Then we prove that both of these solutions converge to q∗

over time; we defer the proof of this proposition to Appendix B.

Proposition 4. If (5) holds and λ < 1, then every fluid trajectory q satisfies

lim
t→∞

q(t, i) = q∗(i) for all i ≥ 0.
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It follows from Corollary 1 that if the initial occupancy states qn(0) converge weakly to a
deterministic q ∈ Q, then the occupancy processes qn approach the unique fluid trajectory
with initial condition q as n → ∞. Hence, the equilibrium point q∗ provides information
about the equilibrium behavior of large systems. In the next section we formalize this idea.

5 Performance in equilibrium

In this section we assume that Rn is a Poisson process of rate µn, which implies that
the process (Xn,Gn) is a continuous-time Markov chain. We establish that this process
is ergodic provided that λn < n and we show that the sequence of stationary occupancy
states qn converges weakly to the equilibrium point q∗ when (5) holds and λ < 1. Then we
provide a lower bound for q∗ when the mean of the limiting outdegree distribution is upper
bounded by a constant and we establish when the lower bound is tight. In particular, we
give a tight lower bound for the fraction of servers with at least i tasks in equilibrium.

5.1 Convergence of stationary distributions

Suppose that Gn is sampled from a random graph law Gn with support supp(Gn). Then
the continuous-time Markov chain (Xn,Gn) takes values in Nn× supp(Gn), but we define
its state space as the set of all elements ofNn×supp(Gn) that can be reached from a state of
the form (0, g) with g ∈ supp(Gn). In this way we obtain an irreducible Markov chain. The
following proposition establishes that this Markov chain is also positive-recurrent provided
that λn < n. This natural stability condition says that the total arrival rate of tasks is
smaller than the combined service rate of all the servers.

Proposition 5. If λn < n, then (Xn,Gn) is positive-recurrent.

Proof. It suffices to establish that (0, g) is a positive-recurrent state of (Xn,Gn) for any
arbitrary g ∈ supp(Gn). For this purpose, let Y n denote the process that describes the
number of tasks across n independent single-server queues, each with exponential service
times of unit mean and Poisson arrivals of intensity ρn := λn/n < 1. We will bound the
mean recurrence time of (0, g) for (Xn,Gn) using the mean recurrence time of the empty
system for Y n, which is finite since the Markov chain Y n is ergodic.

Define the occupancy process of Y n by

rn(i) := 1
n

n∑
j=1
1{Y n(j)≥i} for all i ≥ 0.

The systems (Xn,Gn) and Y n can be constructed on a common probability space such
that the arrivals and departures are coupled as in [24, Proposition 2.1]. Specifically, at any
given time let us attach the labels {1, . . . , n} to the servers in each system, in increasing
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order of the queue lengths, with ties broken arbitrarily. The labels change over time and are
unrelated to the identities of the servers, they are just auxiliary objects used for coupling
the two systems. Both systems have the same arrival times and every task appears at a
server with the same label in both systems. Also, for each label potential departures occur
simultaneously in both systems as a Poisson process of unit rate, and a server finishes a
task if and only if a potential departure occurs for the attached label and the server has
at least one task. If Xn(0) = Y n(0), then this construction is such that

∞∑
i=j

qn(t, i) ≤
∞∑
i=j

rn(t, i) for all t ≥ 0 and j ≥ 1 (8)

with probability one. This holds because the label attached to the server to which the
task is dispatched in (Xn,Gn) is always smaller than or equal to the label attached to the
server to which the task is dispatched in Y n; we refer to [24, Appendix A] for details. Note
that the resampling times and the graphs selected at each resampling time are independent
of the history of Xn, and therefore also independent of Y n.

We adopt the above construction with (Xn(0),Gn(0)) = (0, g) and Y n(0) = 0. By (8),

n∑
u=1

Xn(t, u) = n
∞∑
i=1

qn(t, i) ≤ n
∞∑
i=1

rn(t, i) =
n∑
i=u

Y n(t, u) for all t ≥ 0.

If supp(Gn) = {g}, then the fact that Y n is positive-recurrent implies that (0, g) is a
positive-recurrent state of (Xn,Gn) because Y n = 0 implies that Xn = 0. Therefore, we
assume from now on that Gn can take more than one value, or equivalently P (Gn = g) < 1.

Denote the first recurrence time of state (0, g) of (Xn,Gn) by τ and let ζk denote the
k-th passage time of state zero of Y n. Also, consider the disjoint events

Ak := {Gn (ζj) 6= g for all 1 ≤ j < k and Gn (ζk) = g}

and let θk := P (Ak) for all k ≥ 1. Let ν := P (Z < ζ1) denote the probability that Gn

is resampled between two successive visits to state zero of the process Y n, where Z is
exponentially distributed with mean 1/µn and independent. The union of the disjoint sets
Ak has probability one because

P (Gn(ζj) 6= g for all j ≥ 1) = lim
k→∞

P (Gn(ζk) 6= g for all 1 ≤ j ≤ k)

= lim
k→∞

P (Gn (ζ1) 6= g)
k−1∏
i=1

P (Gn (ζi+1) 6= g | Gn (ζi) 6= g)

= lim
k→∞

νP (Gn 6= g) [1− ν + νP (Gn 6= g)]k−1 = 0.
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Moreover, recall that Y n = 0 implies that Xn = 0. Hence, we have

E[τ ] =
∞∑
k=1

E[τ | Ak]θk ≤
∞∑
k=1

E[ζk | Ak]θk = E[ζ1 | A1]θ1 +
∞∑
k=2

E[ζk | Ak]θk.

Note that ζk is not independent of Ak. For example, Ak implies that Gn is resampled
before ζ1 and between ζk−1 and ζk when k > 1; in this case ζ1 is larger than the first
resampling time and ζk is larger than the resampling time that follows ζk−1. But if we let

B1 := {Gn(0) = g, Gn(ζ1) 6= g} ,
B2 := {Gn(0) 6= g, Gn(ζ1) 6= g} ,
B3 := {Gn(0) 6= g, Gn(ζ1) = g} ,

then it is possible to write

E[ζk | Ak] = E

[
ζ1 +

k−2∑
i=1

(ζi+1 − ζi) + ζk − ζk−1

∣∣∣∣Ak
]

= E[ζ1 | B1] + (k − 2)E[ζ1 | B2] + E[ζ1 | B3] for all k ≥ 1.

In the last two expressions, the expectation is taken with respect to coupled processes
(Xn,Gn) and Y n with initial states such that Xn(0) = Y n(0) = 0 and Gn(0) 6= g; the
specific value of the initial graph Gn(0) does not affect the last two expressions.

The probabilities θk add up to one, thus

E[τ ] ≤ E[ζ1 | A1]θ1 + E[ζ1 | B1] + E[ζ1 | B2]
∞∑
k=2

(k − 2)θk + E[ζ1 | B3].

Since Y n is positive-recurrent, all the conditional expectations on the right-hand side are
finite, so it only remains to prove that the summation is finite as well.

Note that for each k > 1 we have

θk = P (Gn (ζ1) 6= g)
k−2∏
i=1

P (Gn (ζi+1) 6= g | Gn (ζi) 6= g)P (Gn (ζk) = g | Gn (ζk−1) 6= g).

Recall that ν = P (Z < ζ1) is the probability that the graph Gn is resampled between two
successive visits to state zero of Y n. Since Gn(0) = g, we have

θk = νP (Gn 6= g) [1− ν + νP (Gn 6= g)]k−2 νP (Gn = g)

= ν2P (Gn 6= g)P (Gn = g) [1− ν + νP (Gn 6= g)]k−2 .
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We conclude that E[τ ] <∞ because δ := 1− ν + νP (Gn 6= g) < 1 and thus

∞∑
k=2

(k − 2)θk = ν2P (Gn 6= g)P (Gn = g)
∞∑
k=1

kδk = ν2P (Gn 6= g)P (Gn = g) δ
(1− δ)2 <∞.

This completes the proof.

At any given time t, the occupancy state qn(t) is a deterministic function of Xn(t), thus
the distribution of Xn(t) determines the distribution of qn(t). If λn < n, then the above
proposition implies that the Markov chain (Xn,Gn) has a unique stationary distribution.
We define the stationary distribution of the occupancy state as the distribution of qn(t)
determined by Xn(t) when (Xn,Gn) has the stationary distribution.

Lemma 3. Suppose that λ < 1 and λn < n for all n. The sequence of stationary occupancy
states {qn : n ≥ 1} is tight in `1 and {||qn||1 : n ≥ 1} is uniformly integrable.

Proof. In order to prove that {qn : n ≥ 1} is tight in `1, it suffices to show that

lim
m→∞

lim sup
n→∞

P

(∑
i>m

qn(i) > ε

)
= 0 for all ε > 0;

this follows from [25, Lemma 2], which is also stated in Lemma 12 of Appendix D.
Consider the coupled construction introduced in the proof of Proposition 5, with any

initial state such that Xn(0) = Y n(0). By ergodicity and (8), we have

P

(∑
i>m

qn(i) > ε

)
≤ P

(∑
i>m

rn(i) > ε

)
for all m ≥ 0 and ε > 0. (9)

If Yn has the stationary distribution of Y n, then P (Yn(u) = k) = (1− ρn)ρkn and thus

P

(∑
i>m

rn(i) > ε

)
= P

(
1
n

n∑
u=1

[Yn(u)−m]+ > ε

)

≤ 1
ε
E

[
1
n

n∑
u=1

[Yn(u)−m]+
]

= 1
ε
E [Yn(1)−m]+ = 1

ε

∞∑
k=m

(k −m)(1− ρn)ρkn = ρm+1
n

ε(1− ρn) .

The first step uses Markov’s inequality and the subsequent steps use the independence of
the single-server queues and the steady-state distribution of each one such queue. Since

λ < 1 and lim
m→∞

lim
n→∞

ρm+1
n

ε(1− ρn) = lim
m→∞

λm+1

ε(1− λ) = 0,

we see that {qn : n ≥ 1} is tight in `1; recall that we had defined ρn = λn/n.
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In order to prove that the sequence {||qn||1 : n ≥ 1} is uniformly integrable, consider
Bernoulli trials with success probability ρn. The probability that Yn(u) = k is equal to the
probability that a failure occurs after k successful trials. Hence,

P

(
n∑
u=1

Yn(u) = k

)

is equal to the probability that there are k successful trials before n failures occur; i.e., the
total number of tasks is negative binomial with parameters n and ρn. By (9),

E
[
||qn||21

]
=
∞∑
k=1

P
(
||qn||21 ≥ k

)
≤
∞∑
k=1

P
(
||rn||21 ≥ k

)
= E

[
||rn||21

]
.

Moreover, the total number of tasks in the system is

n (||rn||1 − 1) = n
∞∑
i=1

rn(i) =
∞∑
i=1

ni [rn(i)− rn(i+ 1)] =
n∑
u=1

Yn(u).

Indeed, ni [rn(i)− rn(i+ 1)] is the number of tasks in servers with exactly i tasks. Thus,

E
[
||qn||21

]
≤ E

[
||rn||21

]
= E

(1 + 1
n

n∑
u=1

Yn(u)
)2


= 1 + 2
n
E

[
n∑
u=1

Yn(u)
]

+ 1
n2E

( n∑
u=1

Yn(u)
)2


= 1 + 2ρn
1− ρn

+ 1
n2

( nρn
1− ρn

)2

+ nρn
(1− ρn)2

 .
The right-hand side has a finite limit as n → ∞ and thus the left-hand side is uniformly
bounded across n, which implies that {||qn||1 : n ≥ 1} is uniformly integrable.

As noted in Section 4.2, the equilibrium point q∗ provides some information about the
behavior of a large system in steady state. The following theorem formalizes this idea in
the situation where the graph is resampled as a Poisson process. The proof relies on an
interchange of limits argument.

Theorem 2. Assume that Rn is a Poisson process of rate µn for all n and that conditions
(2), (3) and (5) hold. In addition, suppose that λ < 1 and λn < n for all n. Then the
sequence of stationary occupancy states qn converges weakly in `1 to the equilibrium q∗.

Proof. By Lemma 3, the sequence of stationary occupancy states {qn : n ≥ 1} is tight in `1.
It follows from Prohorov’s theorem that every increasing sequence of natural numbers has
a subsequence K such that {qk : k ∈ K} converges weakly in `1 to some random variable q.
Therefore, it is enough to prove that q = q∗ almost surely for each K.

21



Load balancing with sparse dynamic random graphs Goldsztajn, Borst and Van Leeuwaarden

Let K ⊂ N be an increasing sequence such that qk ⇒ q in `1 as k → ∞ for some
random variable q. In addition, let qk be a stationary occupancy process for each k ∈ K.
By Theorem 1, we may assume without loss of generality that qk ⇒ q in D`1 [0,∞) for
some stochastic process q; this may require to replace K by a further subsequence, which
still allows to characterize the limit q. Furthermore, it follows from Theorem 1 and (5)
that q solves the differential equation (6) almost surely.

By [20, Theorem 23.9], there exists T ⊂ [0,∞) such that qk(t)⇒ q(t) in `1 as k →∞
for all t ∈ T and T is dense in [0,∞). Note that qk(t) has the same distribution as qk for
all t, thus q(t) has the same distribution as q for all t ∈ T . Also, Proposition 4 yields

lim
t→∞

q(t, i) = q∗(i) for all i ≥ 0

with probability one. Hence, q(t, i) ⇒ q∗(i) in R as t → ∞. Since q(t, i) has the same
distribution as q(i) for all i ≥ 0 and t ∈ T , this implies that q(i) has the same distribution
as the point mass at q∗(i). We conclude that q(i) = q∗(i) almost surely for all i ≥ 1.

Suppose that λn < n and denote the stationary occupancy state by qn. We define

Rn := n

λn
E [||qn||1 − 1] = n

λn
E

[ ∞∑
i=1

qn(i)
]
.

Because n (||qn||1 − 1) is the total number of tasks in the system, Little’s law implies that
Rn is the mean response time of tasks in steady state. Next we compute the limit of this
quantity as the number of servers grows large; we defer the proof to Appendix B.

Corollary 2. Suppose that the conditions of Theorem 2 hold. If qn denotes the stationary
occupancy state of the system with n servers, then

R := ||q
∗||1 − 1
λ

= lim
n→∞

Rn.

5.2 Isolated servers are detrimental

By Theorem 2, the stationary occupancy state approaches the equilibrium point q∗ as
the size of the system grows large. In addition, recall that q∗ is determined by the limiting
outdegree distribution, through the probability generating function ϕ. Thus, we may reach
some conclusions about the impact of the outdegree distribution in the performance of a
large system by studying how different properties of the limiting outdegree distribution
affect q∗. For example, the next result says that outdegree distributions with mass at zero
are particularly negative for performance, no matter how small the mass at zero is; the
result holds also when condition (5) does no hold.

Proposition 6. Suppose that m := min {d ≥ 0 : p(d) > 0} <∞. For all i ≥ 2,
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Figure 1: Equilibrium point for λ = 0.9 and distinct limiting outdegree distributions with mean d = 5: for
q∗

1 the limiting outdegree distribution has mass only at 0 and 2d, for q∗
2 a uniform distribution on outdegrees

between 0 and 2d was used, a Poisson distribution was used for q∗
3 and a deterministic distribution for q∗

4 .
The tail of log q∗(i) decays almost linearly for the limiting outdegree distributions with mass at zero.

λ [λp(0)]i−1 ≤ q∗(i) ≤ λ [λ (1− p(∞))]i−1 if m = 0,

λ(m+1)i−1 [λp(m)]
(m+1)i−1−1

m ≤ q∗(i) ≤ λ(m+1)i−1 [λ (1− p(∞))]
(m+1)i−1−1

m if m > 0.

In particular, q∗ is bounded between two geometric sequences if m = 0 and q∗ is bounded
between two sequences that decay doubly exponentially if m > 0.

Proof. Note that p(m)xm ≤ ϕ(x) ≤ [1− p(∞)]xm for all x ∈ [0, 1]. Hence,

λp(m) [q∗(i− 1)]m+1 ≤ q∗(i) ≤ λ [1− p(∞)] [q∗(i− 1)]m+1 for all i ≥ 2.

It follows by induction that

[λp(m)]
∑i−2

j=0(m+1)j

λ(m+1)i−1 ≤ q∗(i) ≤ [λ (1− p(∞))]
∑i−2

j=0(m+1)j

λ(m+1)i−1 for all i ≥ 2.

The claim is a straightforward consequence of these two inequalities.

The situation where m = 0 corresponds to a random graph law such that the average
fraction of servers that cannot forward arriving tasks to other servers is positive. In this
case q∗ is bounded between two geometric sequences, regardless of how small the average
fraction of isolated servers is. However, q∗ is bounded between two sequences that decay
doubly exponentially if the mean fraction of isolated servers is zero; i.e., m > 0. Figure 1,
shows how q∗ decays nearly geometrically for several limiting outdegree distributions with
mass at zero. In addition, Table 1 illustrates the stark contrast between m = 0 and m > 0.
Differences in the mean delay are fairly minor, but q∗ decays much slower if m = 0.

The geometric lower and upper bounds may be intuitively understood as follows. First,
observe that tasks leave a server with exactly i tasks at rate q∗(i) − q∗(i + 1) and tasks
are dispatched to a server with exactly i− 1 tasks at a rate that is larger than or equal to
λp(0) [q∗(i− 1)− q∗(i)]. In steady state, the departure rate from servers with i tasks must
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k R q∗(1) q∗(2) q∗(3) q∗(4) q∗(5) q∗(6)
0 1.7778 0.9000 0.5905 0.1094 0.0001 0.0000 0.0000
1 1.7941 0.9000 0.5927 0.1214 0.0006 0.0000 0.0000
2 1.8528 0.9000 0.5993 0.1603 0.0079 0.0000 0.0000
3 2.0513 0.9000 0.6103 0.2342 0.0712 0.0214 0.0064

Table 1: R and q∗(i) for λ = 0.9 and limiting outdegree distributions that are uniform in {3−k, 3, 3+k}.

be equal to the rate at which tasks are dispatched to servers with i− 1 tasks. Thus,

q∗(i+ 1) =
∞∑

j=i+1
[q∗(j)− q∗(j + 1)]

≥
∞∑

j=i+1
λp(0) [q∗(j − 1)− q∗(j)] = λp(0)q∗(i) ≥ [λp(0)]i−1 q∗(1) = λ [λp(0)]i−1 .

The geometric upper bound may be explained using a similar heuristic argument, noting
that the rate at which tasks are dispatched to servers with exactly i − 1 tasks is at most
λ[1 − p(∞)] [q∗(i− 1)− q∗(i)]. Observe here that the probability that an arriving task is
diverted away from a busy server is at least p(∞) since m = 0 implies that in the limiting
regime there are idle servers in the system with probability one.

The geometric decay of the equilibrium occupancy state holds even when the average
fraction of isolated servers is arbitrarily small but positive. In other words, to achieve
favorable performance, it does not matter so much to have a large average outdegree, but
rather to avoid situations where some nodes have outdegree zero. For example, consider a
topology with p(2) = 1 consisting entirely of isolated couples of servers that can forward
tasks from one to the other. The decay is substantially faster in this case than in a topology
where 1% of the servers cannot forward tasks to other servers and the other 99% of the
servers are fully connected; i.e., p(0) = 0.01 and p(∞) = 0.99.

5.3 Uniform degrees are beneficial

Corollary 2 gives the limit of the steady-state mean response time of tasks as n→∞.
The value R of this limit is minimal if and only if q∗(i) = 0 for all i > 1, or equivalently
p(∞) = 1. Note that this corresponds to a dense limiting regime where the mean outdegree
approaches infinity as n → ∞. Indeed, p(∞) = 1 implies that for each k there exists m
such that pn(d) < 1/2k for all d < k and n ≥ m. This implies that

E [Dn] =
n−1∑
d=0

dpn(d) ≥
n−1∑
d=k

dpn(d) ≥ k

2 for all n ≥ m,

and since k is arbitrary, we conclude that E[Dn]→∞ as n→∞ when p(∞) = 1
While the steady-state mean response time is theoretically optimal in this dense regime,

in practice the communication overhead increases with the average outdegree; because this
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quantity determines how many neighbors a server needs to poll on average before it can
forward a task. As observed in Sections 1 and 2, from a practical perspective it is more
relevant to consider the situation where E[Dn] is bounded. Below we derive the limiting
outdegree distribution p that minimizes the steady-state mean response time R when

p(∞) = 0 and
∞∑
i=0

ip(i) ≤ d (10)

for some given d ≥ 0; i.e., the mean of the limiting outdegree distribution is at most d.

Lemma 4. Fix c ∈ (0, 1) and suppose that (10) holds. Then

ϕ(c) ≥ (bdc+ 1− d) cbdc + (d− bdc) cbdc+1 ≥ cd.

Furthermore, ϕ(c) = cd if and only if d ∈ N and p(d) = 1.

Proof. Consider the function f : R −→ R such that, for all k ∈ Z, we have f(k) = ck and
the restriction of f to [k, k + 1] is linear. Specifically,

f(x) := (bxc+ 1− x) cbxc + (x− bxc) cbxc+1 for all x ∈ R.

The convexity of x 7→ cx implies that f(x) ≥ cx for all x ∈ R. Moreover,

ϕ(c) =
∞∑
i=0

p(i)ci =
∞∑
i=0

p(i)f(i) ≥ f

( ∞∑
i=0

p(i)i
)
≥ f(d) ≥ cd,

since f is convex and decreasing.
Suppose that p(j) < 1 for some j. The strict convexity of x 7→ cx implies that

ϕ(c) =
∑
i 6=j

p(i)ci + p(j)cj ≥ [1− p(j)] c 1
1−p(j)

∑
i6=j

p(i)i + p(j)cj > c
∑∞

i=0 p(i)i ≥ cd.

Therefore, it is necessary that p is a deterministic probability measure in order to achieve
the lower bound cd, and it is straightforward to check that for a deterministic p the lower
bound is only attained if d ∈ N and p(d) = 1.

Proposition 7. Suppose that (10) holds. Then

q∗(i) ≥

λ
i if d = 0,

λ
(d+1)i−1

d if d > 0,
for all i ≥ 1.

If d ∈ N and p(d) = 1, then we have equality for all i ≥ 1, and if the latter conditions do
not hold, then the inequality is strict for all i ≥ 2.
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Proof. By Proposition 3 and Lemma 4,

q∗(i) = λq∗(i− 1)ϕ (q∗(i− 1)) ≥ λ [q∗(i− 1)]d+1 for all i ≥ 2.

Since q∗(1) = λ, it follows by induction that

q∗(i) ≥ λ
∑i−1

j=0(d+1)j

=

λ
i if d = 0,

λ
(d+1)i−1

d if d > 0,
for all i ≥ 1.

By Lemma 4, the above inequality is strict for all i ≥ 2 unless d ∈ N and p(d) = 1, which
results in equality for all i ≥ 1.

Under the sparsity constraint (10), the equilibrium q∗ is minimized coordinatewise if
and only if d ∈ N and the limiting outdegree distribution is deterministic with p(d) = 1. In
particular, the minimum value of R is only attained for this limiting outdegree distribution
and the fraction of servers with at least i tasks is minimal for each i. Also, the numerical
results in Figure 1 and Table 1 suggest that q∗ decreases coordinatewise as the limiting
outdegree distribution becomes more concentrated around d.

Remark 7. The lower bound in Proposition 7 is only tight when d ∈ N, but it is possible
to derive a lower bound that is tight also when d /∈ N. This lower bound is obtained in
a similar fashion but invoking the inequality ϕ(c) ≥ (bdc+ 1− d) cbdc + (d− bdc) cbdc+1

instead of the inequality ϕ(c) ≥ cd, which is only tight for d ∈ N. However, this more
refined lower bound is rather unwieldy.

6 Proof of the fluid limit

In this section we prove Theorem 1. As a first step, we define the processes {qn : n ≥ 1}
and {Xn : n ≥ 1} as deterministic functions of the following stochastic primitives.

(a) Driving Poisson processes: independent Poisson processes N a and
{
N d
i : i ≥ 1

}
of

unit intensity, for counting the arrivals and departures of tasks, respectively.

(b) Selection variables: independent random variables
{
umn , U

m
i,n : i,m, n ≥ 1

}
such that

umn is uniform in Vn and Um
i,n is uniform in [0, 1) for all m and n.

(c) Initial conditions: a sequence {Xn : n ≥ 1} of random vectors describing the initial
number of tasks at each server and such that the corresponding sequence of occupancy
states {qn : n ≥ 1} is tight in `1.

(d) Random graphs: independent random graphs {Gm
n : m ≥ 0, n ≥ 1} such that for each

fixed n all the graphs {Gm
n : m ≥ 0} have node set Vn and a common distribution

that satisfies Assumption 1 and is invariant under permutations of the nodes.
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(e) Resampling processes: càdlàg processes {Rn : n ≥ 1} satisfying Assumption 1.

The sample paths of qn and Xn are constructed on the completion of the product of the
probability spaces where the stochastic primitives are defined. This construction is such
that certain stochastic equations hold, as we explain in the following section.

6.1 Stochastic equations

For each fixed n, the times at which the graph is sampled are σ0
n := 0 and the jump

times {σmn : m ≥ 1} of the resampling process Rn. Specifically,

Gn(t) = G0
n if σ0

n ≤ t ≤ σ1
n and Gn(t) = Gm

n if σmn < t ≤ σm+1
n .

In addition, tasks arrive at the jump times {τmn : m ≥ 1} of the arrival process N a
n defined

by N a
n (t) := N a(λnt). At time τmn , a task appears at server umn and we let

Imn (X, i) := 1{min{X(v):v=um
n or (um

n ,v)∈En(τm−
n )}≥i} for all X ∈ Nn.

If X(v) represents the number of tasks at server v right before τmn , then Imn (X, i) = 1 if
and only if the task arriving at time τmn is dispatched to a server with at least i tasks.

The processes qn and Xn are constructed in Appendix C as deterministic functions
of the stochastic primitives within a set of probability one. Both are piecewise constant
càdlàg processes defined on [0,∞) and have jumps of size 1/n and jumps of unit size,
respectively. Moreover, the following stochastic equations hold:

qn(t, i) = qn(0, i) + 1
n

Na
n (t)∑
m=1

[
Imn

(
Xn

(
τm−n

)
, i− 1

)
− Imn

(
Xn

(
τm−n

)
, i
)]

− 1
n
N d
i

(
n
∫ t

0
[qn(s, i)− qn(s, i+ 1)] ds

) (11)

for all i ≥ 1 and t ≥ 0 with probability one. Indeed, the first term on the right is the
initial occupancy state, the second term counts the arrivals to servers with exactly i − 1
tasks and the third term counts the departures from servers with exactly i tasks.

6.2 Decomposition of the equations

Consider the function defined by

αn(d, x) :=


∏d−1
m=0

(
nx−m
n−m

)+
if d ≤ n,

0 if d > n,
for all x ∈ [0, 1]. (12)

If nx ∈ N and a subset of {1, . . . , n} consisting of d ≤ n elements is drawn uniformly at
random, then αn(d, x) is the probability that this subset is contained in {1, . . . , nx}.
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Suppose that the fraction of servers with at least i tasks is x when a task arrives. The
server u that initially receives the task is uniformly random and thus has outdegree d

with probability pn(d). Furthermore, given that the outdegree of u is d, the probability
that all the servers in the neighborhood of u have at least i tasks is αn(d + 1, x) because
the distribution of the graph is invariant under permutations of the nodes. Hence, the
probability that the task is dispatched to a server with at least i tasks is

βn(x) :=
n−1∑
d=0

αn (d+ 1, x) pn(d) for all x ∈ [0, 1]. (13)

In particular, we have

E [Imn (X, i)] = βn (q(i)) for all X ∈ Nn and q(i) := 1
n

n∑
u=1

1{X(u)≥1}. (14)

The expectation is taken with respect to the stochastic primitives, or more precisely just
with respect to the graph right before τmn and the server umn at which the task originally
appears; indeed, note that Imn (X, i) only depends on these two random variables.

Remark 8. The above arguments break down if the graph at the time of the arrival is
given. In that case the probability that a task is dispatched to a server with at least i tasks
depends on the given graph and the number of tasks at each individual server.

Consider the processes defined by

q̄n(t) :=
∞∑
m=0

qn (σmn )1{σm
n ≤t<σ

m+1
n } and X̄n(t) :=

∞∑
m=0

Xn (σmn )1{σm
n ≤t<σ

m+1
n },

which correspond to sampling the state of the system at the resampling times. Also, let

qmn := qn
(
τm−n

)
, q̄mn := q̄n

(
τm−n

)
, Xm

n := Xn

(
τm−n

)
and X̄m

n := X̄n

(
τm−n

)
.

We define processes Ln, Mn and un as follows. If at most one task arrives between any
two successive resampling times, then we say that Rn separates arrivals fully and we let

Ln(t, i) := 0,

Mn(t, i) := 1
n

Na
n (t)∑
m=1

[Imn (Xm
n , i)− βn (qmn (i))] ,

un(t, i) := 1
n

Na
n (t)∑
m=1

βn (qmn (i)) ,

(15)
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for all i ≥ 0 and t ≥ 0. If Rn does not separate arrivals fully, then we define

Ln(t, i) := 1
n

Na
n (t)∑
m=1

[
Imn (Xm

n , i)− Imn
(
X̄m
n , i

)]
,

Mn(t, i) := 1
n

Na
n (t)∑
m=1

[
Imn

(
X̄m
n , i

)
− βn (q̄mn (i))

]
,

un(t, i) := 1
n

Na
n (t)∑
m=1

βn (q̄mn (i)) .

(16)

Note that Xm
n and qmn have been replaced by X̄m

n and q̄mn in the definitions of Mn and un

provided in (16). Also, the sum of the three processes is the same under (15) and (16).

Remark 9. If the resampling process separates arrivals fully, then the graph is resampled
between any two consecutive arrival times. The definitions provided in (15) significantly
simplify the proof of the fluid limit when all the resampling processes Rn separate arrivals
fully. But this simplification is no longer possible when successive arrivals have a positive
probability of being dispatched using the same graph. In this case we must resort to (16).

The stochastic equations (11) can now be expressed as follows:

qn = qn(0) + vn + wn, (17)

where for all i ≥ 1 and t ≥ 0, the vanishing process vn is defined by

vn(t, i) := Ln(t, i− 1)−Ln(t, i) + Mn(t, i− 1)−Mn(t, i)

+
∫ t

0
[qn(s, i)− qn(s, i+ 1)] ds− 1

n
N d
i

(
n
∫ t

0
[qn(s, i)− qn(s, i+ 1)] ds

)
,

(18)

and the drift process wn is defined by

wn(t, i) := un(t, i− 1)− un(t, i)−
∫ t

0
[qn(s, i)− qn(s, i+ 1)] ds. (19)

The road map for proving Theorem 1 is as follows. In Section 6.3 we formally define the
pseudo-separation property mentioned in Assumption 1 and we prove Proposition 1. In
Section 6.4 we show that vn ⇒ 0 as n→∞ with respect to a suitable topology. Informally,
this implies that the asymptotic behavior of qn is essentially captured by (19) in the limit
as n → ∞. Then we prove in Section 6.5 that {qn : n ≥ 1} is tight in D`1 [0,∞). This
implies that every subsequence of {qn : n ≥ 1} has a further subsequence that converges
weakly in D`1 [0,∞) to some process q. Finally, (19) is used to establish that the limit q

of any convergent subsequence satisfies (4) almost surely. Essentially, the first two terms
of (19) yield the first term of (4) and the last term of (19) gives the last term of (4).
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6.3 Pseudo-separation property

Below we define the pseudo-separation property mentioned in Assumption 1. This
property applies to sequences of resampling processes Rn and concerns the asymptotic
behavior of the processes as n→∞. In contrast, the property of separating arrivals fully
applies to individual resampling processes Rn; i.e., the number of servers n is fixed.

Definition 1. The resampling process Rn is said to separate arrivals fully if at most one
task arrives between any two successive resampling times with probability one. Consider
the following random variables:

∆n(T ) := sup
{
t− σmn : m ≤ Rn(T ) and σmn ≤ t ≤ min

{
σm+1
n , T

}}
,

Σn(T ) :=
Rn(T )+1∑
m=1

1
n2

[(
d−n + 1

)
(Amn +Dm

n − 1)Amn + (Amn )2
]
,

where Amn and Dm
n are the number of arrivals and departures in (σm−1

n , σmn ], respectively.
Also, let K be the set of indexes k such that Rk does not separate arrivals fully. The
resampling processes {Rn : n ≥ 1} are said to pseudo-separate events if K is finite or K is
infinite and the following limits hold:

∆k(T )⇒ 0 as k →∞ and lim
k→∞

E [Σk(T )] = 0 for all T ≥ 0, (20)

where both limits are taken over the indexes k ∈ K.

It is possible that all the resampling processes Rn separate arrivals fully and E [Σn(T )]
does not approach zero with n for any T ≥ 0. For example, if the resampling times coincide
with the arrival times, then Amn = 1 and E [Dm

n ] is of order n (σmn − σm−1
n ). Therefore,

E [Σn(T )] ≥ E

Rn(T )+1∑
m=1

(d−n + 1)Dm
n

n2


is lower bounded by a quantity of order (d−n + 1)T/n, which does not approach zero as
n → ∞ if d−n /n 9 0. However, Theorem 1 covers sequences of resampling processes such
that Rn separates arrivals fully for infinitely many n. For this reason we require that (20)
holds only for the subsequence of processes that do not separate arrivals fully.

The next lemma gathers some useful properties of the random variables Amn and Dm
n ,

and will be used to prove Proposition 1; we prove the lemma in Appendix B.

Lemma 5. Let Amn denote the number of tasks that arrive in (σm−1
n , σmn ], let Dm

n be the
number of tasks that depart and let Hn := σ (Rn(t) : t ≥ 0) be the σ-algebra generated by
the resampling times. If the resampling process is independent of the arrival times of tasks
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or is independent of the departure times of tasks, then

E[Amn | Hn] = Var[Amn | Hn] = λn
(
σmn − σm−1

n

)
and E[Dm

n | Hn] ≤ n
(
σmn − σm−1

n

)
,

respectively. If condition (c) of Proposition 1 holds, then

lim
n→∞

µnE

Rn(t)+1∑
m=1

(
σmn − σm−1

n

)2
 = E

[(
σ1

1

)2
]
t for all t ≥ 0. (21)

We now prove Proposition 1.

Proof of Proposition 1. In order to prove that {Rn : n ≥ 1} pseudo-separates events, we
must show that the limits in (20) hold when we only consider the indexes n such that the
resampling process does not separate arrivals fully. Hence, we may assume without loss of
generality that the resampling process Rn does not separate arrivals fully for any n; i.e.,
if (a) holds, then we assume that κn ≥ 1 for all n.

Let us fix an arbitrary T ≥ 0. First we establish that ∆n(T )⇒ 0 as n→∞ when any
of the conditions stated in the proposition holds. The latter limit clearly holds when (b)
holds, which implies that ∆n(T ) ≤ 1/µn. If condition (a) holds instead, then

κn + 1 ≥ |N a
n (t)−N a

n (σmn )| ≥ λn |t− σmn | − 2 sup
u∈[0,T ]

|N a
n (u)− λnu|

for all m ≤ Rn(T ) and σmn ≤ t ≤ min {σm+1
n , T}. It follows that

∆n(T ) ≤ κn + 1
λn

+ 2
λn

sup
u∈[0,T ]

|N a
n (u)− λnu| . (22)

The right-hand side goes to zero in probability by (3) and the law of large numbers for the
Poisson process, hence ∆n(T )⇒ 0 as n→∞ also in this case. A similar argument applies
when condition (c) holds. Indeed, note that

1 ≥ |Rn(t)−Rn (σmn )| ≥ µn |t− σmn | − 2 sup
u∈[0,T ]

|Rn(u)− µnu|

for all m ≤ Rn(T ) and σmn ≤ t ≤ min {σm+1
n , T}. Arguing as above, we conclude from the

law of large numbers for the renewal process R that ∆n(T )⇒ 0 as n→∞.
We now prove that E [Σn(T )]→ 0 as n→∞. For this purpose we first note that

E [Σn(T )] = 1
n2E

Rn(T )+1∑
m=1

E
[(
d−n + 1

)
(Amn +Dm

n − 1)Amn + (Amn )2
∣∣∣ Hn

] ,
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where Hn := σ (Rn(t) : t ≥ 0) is the σ-algebra generated by the resampling times. Let

Y m
n :=

(
d−n + 1

)
(E[Amn (Amn − 1) | Hn] + E[Amn | Hn]E[Dm

n | Hn]) + E
[
(Amn )2

∣∣∣ Hn

]
denote term m in the above summation. Then we may write

E [Σn(T )] ≤ 1
n2E

Rn(T )∑
m=1

Y m
n

+ 1
n2E

[
Y Rn(T )+1
n

]
.

Next we prove that the first term on the right-hand side approaches zero as n → ∞, and
it is straightforward to check that the second term also vanishes; considering the sum of
Y m
n over m = 1, . . . ,Rn(T ) instead of m = 1, . . . ,Rn(T ) + 1 simplifies calculations.

If (a) holds, then Lemma 5 yields

Y m
n ≤

(
d−n + 1

) [
(κn + 1)κn + (κn + 1)n

(
σmn − σm−1

n

)]
+ (κn + 1)2 .

Moreover, E [Rn(T )] ≤ λnT/ (κn + 1) and thus

1
n2E

Rn(T )∑
m=1

Y m
n

 ≤ (d−n + 1) [κnλnT + (κn + 1)nT ] + (κn + 1)λnT
n2 .

If κn ≥ 1 for all n, then the right-hand side approaches zero as n→∞ by (3).
Suppose now that conditions (b) or (c) hold. Lemma 5 implies that

Y m
n ≤

(
d−n + 1

) (
λ2
n + λnn

) (
σmn − σm−1

n

)2
+ λn

(
σmn − σm−1

n

)
+ λ2

n

(
σmn − σm−1

n

)2
.

If (b) holds, then σmn − σm−1
n ≤ 1/µn and (σmn − σm−1

n )2 ≤ (σmn − σm−1
n ) /µn. Therefore,

1
n2E

Rn(T )∑
m=1

Y m
n

 ≤ (d−n + 1) (λ2
n + λnn)T + λ2

nT

µnn2 + λnT

n2 .

It follows from (3) that the right-hand side vanishes as n→∞. Finally, if (c) holds, then

1
n2E

Rn(T )∑
m=1

Y m
n

 ≤ (d−n + 1) (λ2
n + λnn) + λ2

n

n2 E

Rn(t)+1∑
m=1

(
σmn − σm−1

n

)2
+ λnT

n2 ,

and the right-hand side approaches zero as n→∞ by (3) and (21).

The next corollary says that if {Rn : n ≥ 1} pseudo-separates events, then ∆n(T )⇒ 0
as n→∞ for all T ≥ 0. In other words, this means that the limit holds without considering
only the resampling processes that do not separate arrivals fully.
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Corollary 3. If {Rn : n ≥ 1} pseudo-separates events, then

∆n(T )⇒ 0 as n→∞ for all T ≥ 0.

Proof. Note that (22) with κn = 0 holds when Rn separates arrivals fully.

6.4 Vanishing processes

Endow R
N with the metric

d(x, y) :=
∞∑
i=0

min {|x(i)− y(i)|, 1}
2i for all x, y ∈ RN,

which is compatible with the product topology. Also, let DRN [0,∞) be the space of càdlàg
functions from [0,∞) into RN with the topology of uniform convergence over compact sets.
In this section we establish that vn ⇒ 0 in DRN [0,∞) as n→∞.

For this purpose, let DR[0, T ] be the space of real càdlàg functions defined on [0, T ],
which we endow with the uniform norm, defined by

||x||T := sup
t∈[0,T ]

|x(t)| for all x ∈ DR[0, T ].

The following lemma is proved in Appendix B.

Lemma 6. Suppose that {xn : n ≥ 1} are random variables with values in DRN [0,∞). The
following properties are equivalent.

(a) xn ⇒ 0 in DRN [0,∞) as n→∞.

(b) xn(i)⇒ 0 in DR[0, T ] as n→∞ for all i ≥ 0 and T ≥ 0.

By Lemma 6, we can prove that vn ⇒ 0 in DRN [0,∞) by showing that vn(i) ⇒ 0 in
DR[0, T ] for all i ≥ 0 and T ≥ 0. We prove this by showing that the first four terms and
the difference between the last two terms on the right-hand side of (18) converge to zero in
probability. In the next two sections we show that Ln(i)⇒ 0 and Mn(i)⇒ 0 in DR[0, T ]
for all i ≥ 0 and T ≥ 0. Then we invoke the law of large numbers for the Poisson process
to prove that the difference between the last two terms of (18) also converges to zero.

6.4.1 Limit of the processes Ln

For each t ≥ 0, we define

Kn(t) :=
{
u ∈ Vn : Xn(t, v) = X̄n(t, v) if v = u or (u, v) ∈ En(t)

}
.
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Note that all the servers in the neighborhood of a server u ∈ Kn(t) have the same number
of tasks as they had at the last resampling time. Hence,

∣∣∣Imn (Xm
n , i)− Imn (X̄m

n , i)
∣∣∣ ≤ 1{um

n /∈Kn(τm−
n )} for all i ≥ 0 and m ≥ 1,

where we recall that umn is the server where a task appears at time τmn .

Remark 10. If a task appears in the complement Kc
n(t) of Kn(t), then the dispatching

decision is influenced by a server that experienced an arrival or departure between time t
and the preceding resampling time. The set Kc

n(t) is reminiscent of the influence process
introduced in the proof of [8, Proposition 7.1]; the setup considered there is a system of
parallel single-server queues where the classical power-of-d policy is used to balance the
load. The influence process of a server u describes the set of servers that influence the
queue length of u over [0, t]. This process is used in [8] to prove that a fixed and finite
set of queue lengths observed at a fixed time t become asymptotically independent and
identically distributed as the number of servers approaches infinity, provided that all the
queue lengths in the system are independent and identically distributed at time zero. The
proof relies on approximating the number of servers in the influence process of a single
server by a continuous-time branching process where each parent has d children. However,
the present paper uses the sets Kc

n(t) to show that ||Ln(i)||T converges in probability to
zero. For this purpose we provide a bound for the size of the set Kc

n(t). The bound
increases linearly with the number of arrivals since the preceding resampling time, as in a
continuous-time branching process, but depends on the number of departures as well.

Let Amn denote the number of tasks that arrive in (σm−1
n , σmn ] and let Dm

n denote the
number of tasks that depart. If σm−1

n < t ≤ σmn and k tasks arrive in (σm−1
n , t], then at

time t at most k+Dm
n servers have a number of tasks that is different from the number of

tasks that they had at time σm−1
n . Since each of these servers can be in the neighborhood

of at most d−n servers, it follows that at most (k +Dm
n ) (d−n + 1) servers are not in Kn(t).

Thus, the random variables Amn and Dm
n can be used to upper bound ||Ln(i)||T for all i ≥ 0

and T ≥ 0. This observation is used in the following proposition.

Proposition 8. We have

Ln(i)⇒ 0 in DR[0, T ] as n→∞ for all i ≥ 0 and T ≥ 0,

and in particular Ln ⇒ 0 in DRN [0,∞) as n→∞.

Proof. We must prove that

lim
n→∞

P (||Ln(i)||T ≥ ε) = 0 for all ε > 0, i ≥ 0 and T ≥ 0.
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For this purpose, let us fix ε > 0, i ≥ 0 and T ≥ 0, and note that

||Ln(i)||T ≤
1
n

Na
n (T )∑
m=1

∣∣∣Imn (Xm
n , i)− Imn

(
X̄m
n , i

)∣∣∣ ≤ 1
n

Na
n (T )∑
m=1

1{um
n /∈Kn(τm−

n )}.

By Markov’s inequality, we may focus on bounding the expectation of the right-hand side:

P (||Ln(i)||T ≥ ε) ≤ P

 1
n

Na
n (T )∑
m=1

1{um
n /∈Kn(τm−

n )} ≥ ε

 ≤ 1
nε
E

Na
n (T )∑
m=1

1{um
n /∈Kn(τm−

n )}

 .
Let Aln and Dl

n be the number of arrivals and departures in
(
σl−1
n , σln

]
, respectively, and

suppose that τmn < τm+1
n < · · · < τm+Al

n−1
n are all the arrival times in this interval. Then

∣∣∣Kc
n

(
τm+k−
n

)∣∣∣ ≤ (k +Dl
n

) (
d−n + 1

)
for all 0 ≤ k ≤ Aln − 1,

where Kc
n(t) denotes the complement of Kn(t). Recall that this holds since the number of

tasks may have changed in at most k + Dl
n servers between σl−1

n and right before τm+k
n ,

and each server can be in the neighborhood of at most d−n other servers.
Let Gn := σ (N a

n (t),Rn(t) : t ≥ 0) denote the σ-algebra generated by the arrival and
resampling times. Since umn is uniformly distributed in Vn, the above observation about
the sets Kc

n (τm−n ) implies that

1
n
E

Na
n (T )∑
m=1

1{um
n /∈Kn(τm−

n )}

 = 1
n
E

Na
n (T )∑
m=1

E
[
1{um

n /∈Kn(τm−
n )}

∣∣∣∣ Gn]


≤ 1
n
E

Rn(T )+1∑
l=1

Al
n−1∑
k=0

(
k +Dl

n

)
(d−n + 1)
n


≤ 1
n2E

Rn(T )+1∑
l=1

(
d−n + 1

) [
Aln

(
Aln − 1

)
+ AlnD

l
n

] .
The right-hand side is upper bounded by E [Σn(T )]. As a result, if there are infinitely

many indexes n such that Rn does not separate arrivals fully, then the right-hand side of
the above equation converges to zero as n → ∞ by (20). Moreover, ||Ln(i)||T = 0 if Rn

separates arrivals fully by (15). Therefore,

lim
n→∞

P (||Ln(i)||T ≥ ε) = 0,

and this completes the proof.
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6.4.2 Limit of the processes Mn

Let Fn,t := σ (Rn(s),Gn(s),Xn(s) : 0 ≤ s ≤ t) denote the σ-algebra generated by the
resampling times and the history of the system up to time t. The resampling times are
stopping times with respect to this filtration because {σmn ≤ t} = {Rn(t) ≥ m} for all
m, t ≥ 0. Therefore, the σ-algebra Fmn := Fn,σm

n
is well-defined for all m ≥ 0.

Lemma 7. Let Mm
n (i) := Mn (σmn , i) for i ≥ 0 and m ≥ 0. The process {Mm

n (i) : m ≥ 0}
is a discrete-time martingale with respect to the filtration {Fmn : m ≥ 0} for all i ≥ 0.

Proof. Suppose first that Mn is given by (16), and let Gmn := Fmn ∨σ (N a
n (t),Rn(t) : t ≥ 0)

be the smallest σ-algebra that contains Fmn and the σ-algebra generated by all the arrival
and resampling times. For each m ≥ 0, we have

E
[
Mm+1

n (i)−Mm
n (i)

∣∣∣ Fmn ] = E
[
E
[
Mm+1

n (i)−Mm
n (i)

∣∣∣ Gmn ] ∣∣∣ Fmn ]
= E

 1
n

∑
σm

n <τ
l
n≤σ

m+1
n

E
[
I ln
(
X̄ l
n, i
)
− βn

(
q̄ln(i)

) ∣∣∣ Gmn ]
∣∣∣∣∣∣∣ Fmn

.
The random variables X̄ l

n are all equal and Fmn -measurable, thus also Gmn -measurable. But
the graph Gm

n used throughout (σmn , σm+1
n ] is independent of Gmn . It follows from (14) that

each term in the above summation is zero, thus the right-hand side of the equation is zero
and this proves that {Mm

n (i) : m ≥ 0} is a martingale.
Suppose now that the resampling process separates arrivals fully and (15) applies, then

E
[
Mm+1

n (i)−Mm
n (i)

∣∣∣ Fmn ] = E

 1
n

∑
σm

n <τ
l
n≤σ

m+1
n

E
[
I ln
(
X l
n, i
)
− βn

(
qln(i)

) ∣∣∣ Gmn ]
∣∣∣∣∣∣∣ Fmn

.
Since Rn separates arrivals fully, the sum has zero terms or one term. In the latter case:

E
[
I ln
(
X l
n, i
)
− βn

(
qln(i)

) ∣∣∣ Gmn ] = E
[
E
[
I ln
(
X l
n, i
)
− βn

(
qln(i)

) ∣∣∣ X l
n,Gmn

] ∣∣∣ Gmn ] = 0,

because the graph Gm
n used in (σmn , σm+1

n ] is independent of the σ-algebra Gmn ∨ σ
(
X l
n

)
generated by Gmn and the state X l

n of the system prior to the first arrival following σmn .

Remark 11. The argument at the end of the proof of Lemma 7 only works because τ ln
is the time of the first arrival after σmn . Suppose that several tasks arrive in (σmn , σm+1

n ]
and let τ ln < τ l+1

n < · · · < τ l+kn denote the arrival times. If 0 < j ≤ k, then the difference
between the random variables X̄ l+j

n and X l+j
n depends on how the graph Gm

n was used to
dispatch the first j tasks. Since these random variables are measurable with respect to
Gmn ∨ σ

(
X l+j
n

)
, it follows that Gm

n and Gmn ∨ σ
(
X l+j
n

)
are not independent; knowing how

Xn changed over a certain number of arrivals provides information about the graph.
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The next lemma implies that we can use the discrete-time martingale {Mm
n (i) : m ≥ 0}

to prove that the continuous-time process Mn(i) converges weakly to zero.

Lemma 8. For each i ≥ 0 and T ≥ 0, we have

||Mn(i)||T ≤ max
m≤Rn(T )

|Mm
n (i)|+ λn∆n(T )

n
+ 2
n

sup
t∈[0,T ]

|N a
n (t)− λnt| , (23)

where ∆n(T ) is as in Definition 1. Furthermore, the last two terms on the right-hand side
converge in probability to zero as n→∞.

Proof. For each i ≥ 0 and T ≥ 0, we have

||Mn(i)||T ≤ max
m≤Rn(T )

|Mm
n (i)|+ sup

s,t∈[0,T ]
{|Mn(t, i)−Mn(s, i)| : |t− s| ≤ ∆n(T )} .

We conclude that (23) holds by noting that if s, t ∈ [0, T ] and |t− s| ≤ ∆n(T ), then

|Mn(t, i)−Mn(s, i)| ≤ 1
n
|N a

n (t)−N a
n (s)| ≤ λn |t− s|

n
+ 2
n

sup
u∈[0,T ]

|N a
n (u)− λnu|

≤ λn∆n(T )
n

+ 2
n

sup
u∈[0,T ]

|N a
n (u)− λnu| .

The second term on the right-hand side of (23) converges to zero in probability as n→∞
by Corollary 3. Moreover, the third term on the right-hand side of (23) also converges to
zero in probability by the law of large numbers for the Poisson process.

By the above lemma, we can prove that Mn(i) ⇒ 0 in DR[0, T ] by showing that the
first term of (23) converges in probability to zero. This is done in the following proposition.
First we note that Lemma 7 and Doob’s maximal inequality imply that it is enough to
establish that the second moment of MRn(T )

n (i) vanishes as n → ∞. Then we prove this
by noting that the summands in the definition of Mn(i) are conditionally independent if
they correspond to arrival times that are separated by a resampling time.

Proposition 9. We have

Mn(i)⇒ 0 in DR[0, T ] as n→∞ for all i ≥ 0 and T ≥ 0,

and in particular Mn ⇒ 0 in DRN [0,∞) as n→∞.

Proof. Fix i ≥ 0 and T ≥ 0. By Lemma 8, it suffices to prove that

lim
n→∞

P

(
max

m≤Rn(T )
|Mm

n (i)| ≥ ε

)
= 0 for all ε > 0.
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Using the same arguments as in the proof of Lemma 7, we may establish that

E
[
Mm+1

n (i)−Mm
n (i)

∣∣∣ Rn(T ),Fmn
]

= 0 for all m ≥ 0.

This means that {Mm
n (i) : m ≥ 0} is a martingale also when Rn(T ) is given. If we fix some

arbitrary ε > 0, then it follows from Doob’s maximal inequality that

P

(
max

m≤Rn(T )
|Mm

n (i)| ≥ ε

)
= E

[
P

(
max

m≤Rn(T )
|Mm

n (i)| ≥ ε

∣∣∣∣∣ Rn(T )
)]

≤ E

E
[∣∣∣MRn(T )

n (i)
∣∣∣2 ∣∣∣∣ Rn(T )

]
ε2

 =
E
∣∣∣MRn(T )

n (i)
∣∣∣2

ε2 .

In order to prove the proposition, it is enough to show that the right-hand side of the
above equation goes to zero as n→∞. Suppose first that the resampling process Rn does
not separate arrivals fully and thus Mn is given by (16). Also, let

Y m
n := Imn

(
X̄m
n , i

)
− βn (q̄mn (i)) and Gn := σ (N a

n (t),Rn(t) : t ≥ 0) .

In addition, define mn(T ) := max
{
m ≥ 1 : τmn ≤ σRn(T )

n

}
and note that

E
∣∣∣MRn(T )

n (i)
∣∣∣2 = 1

n2E

mn(T )∑
l,m=1

Y l
nY

m
n

 = 1
n2E

mn(T )∑
l,m=1

E
[
Y l
nY

m
n

∣∣∣ Gn]
 .

If τ ln ≤ σkn < τmn for some k ≥ 1, then

E
[
Y l
nY

m
n

∣∣∣ Gn] = E
[
E
[
Y l
nY

m
n

∣∣∣ X̄m
n ,Gn

] ∣∣∣ Gn]
= E

[
E
[
Y l
n

∣∣∣ X̄m
n ,Gn

]
E
[
Y m
n

∣∣∣ X̄m
n ,Gn

] ∣∣∣ Gn]
= E

[
E
[
Y l
n

∣∣∣ X̄m
n ,Gn

]
E
[
Y m
n

∣∣∣ X̄m
n

] ∣∣∣ Gn] = 0.

(24)

For the second equality observe that Y m
n is a function of X̄m

n and the graph at τmn . This
graph is independent of Y l

n, and also of Gn, since τ ln ≤ σkn < τmn , which yields the second
equality; the graph is resampled right after σkn, thus the graph used to dispatch the task
that arrives at time τmn is different from the one used at time τ ln, and independent of Y l

n.
The fourth identity holds because E

[
Y m
n

∣∣∣ X̄m
n

]
= 0 by (14).

Consider the sets
Lmn :=

{
l ≥ 1 : σm−1

n < τ ln ≤ σmn
}
,

and let Amn = |Lmn | denote the total number of arrivals in the interval (σm−1
n , σmn ]. Since
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|Y m
n | ≤ 1 for all m ≥ 1, it follows from (24) that

E
∣∣∣MRn(T )

n (i)
∣∣∣2 = 1

n2E

Rn(T )∑
m=1

∑
k,l∈Lm

n

E
[
Y k
n Y

l
n

∣∣∣ Gn]
 ≤ 1

n2E

Rn(T )∑
m=1

(Amn )2

 ≤ E [Σn(T )] .

If there exist infinitely many indexes n such that Rn does not separate arrivals fully, then
(20) implies that the right-hand side vanishes as n→∞ within this set of indexes.

Finally, suppose that Rn separates arrivals fully. In this case Mn is defined by (15), so
we must set Y m

n := Imn (Xm
n , i) − βn (qmn (i)). Because the graph is resampled between any

two consecutive arrivals, (24) holds for all l 6= m. Hence,

E
∣∣∣MRn(T )

n (i)
∣∣∣2 ≤ 1

n2E

mn(T )∑
m=1

(Y m
n )2

 ≤ E [mn(T )]
n2 ≤ E [N a

n (T )]
n2 = λnT

n2 .

Since the right-hand side goes to zero as n→∞, this completes the proof.

The following result is a corollary of Propositions 8 and 9.

Corollary 4. We have vn ⇒ 0 in DRN [0,∞) as n→∞.

Proof. Fix i ≥ 1 and T ≥ 0. By the law of large numbers for the Poisson process,

t 7→
∫ t

0
[qn(s, i)− qn(s, i+ 1)] ds− 1

n
N d
i

(
n
∫ t

0
[qn(s, i)− qn(s, i+ 1)] ds

)

converges in probability to zero in DR[0, T ]. It follows from Propositions 8 and 9 that
vn(i)⇒ 0 in DR[0, T ]. By Lemma 6, this completes the proof.

6.5 Drift processes

The following proposition is proved in Appendix D.

Proposition 10. If {qn(0) : n ≥ 1} is tight in `1, then each subsequence of {qn : n ≥ 1}
has a further subsequence that converges weakly in D`1 [0,∞). Furthermore, the weak limit
of every convergent subsequence is a process that is almost surely continuous.

By assumption, {qn(0) : n ≥ 1} is tight in `1, so every increasing sequence of natural
numbers has a subsequence K such that {qk : k ∈ K} converges weakly in D`1 [0,∞) to a
process q that is almost surely continuous. Let us fix the subsequence K and the limit q.
It remains to prove that q satisfies (4) with probability one.

6.5.1 Characterization of a subsequential limit

Let S`1 [0,∞) and SRN [0,∞) denote the spaces D`1 [0,∞) and DRN [0,∞), respectively,
when they are equipped with the Skorohod J1-topology instead of the uniform topology.
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By Corollary 4 and [20, Theorem 23.9],

qk ⇒ q in S`1 [0,∞) and vk ⇒ 0 in SRN [0,∞) as k →∞. (25)

Indeed, the limits hold with respect to the uniform topology and the limiting processes are
almost surely continuous. In addition, the law of large numbers for the Poisson process
and Corollary 3 imply that the stochastic processes

t 7→ N
a
k (t)
λk

− t and t 7→ ∆k(t) (26)

converge weakly to zero as k →∞ in the uniform topology, and thus also in the Skorohod
J1-topology. The next lemma will be combined with Skorohod’s representation theorem to
construct q and the processes (N a

k ,Rk, qk,vk) on a common probability space where the
above limits hold almost surely, which considerably simplifies the characterization of the
subsequential limit q. The proof of the lemma is provided in Appendix B.

Remark 12. Suppose that X1 and X2 are random variables with values in separable metric
spaces S1 and S2, respectively. Separability ensures that (X1, X2) is a measurable function
with values in the product space S1×S2, endowed with the product topology and the Borel
σ-algebra; we refer to [4, Appendix M10]. This property is implicitly used in the statement
of the following lemma, and separability is also needed to apply Skorohod’s representation
theorem. For these two reasons, we briefly switch from the uniform topologies to Skorohod
J1-topologies, which are separable. By [20, Theorem 23.9], limits with respect to these two
topologies are equivalent if the limiting process is almost surely continuous.

Lemma 9. Consider separable metric spaces S1, . . . , Sm and define Π := S1 × · · · × Sm

with the product topology. Let X1 be a random variable with values in S1 and suppose that
xj ∈ Sj is a constant for each j = 2, . . . ,m. In addition, consider random variables Xj

k

with values in Sj for each j = 1, . . . ,m and each k ∈ K. If

X1
k ⇒ X1 in S1 and Xj

k ⇒ xj in Sj for all j = 2, . . . ,m as k →∞,

then (X1
k , X

2
k , . . . , X

m
k )⇒ (X1, x2, . . . , xm) in Π as k →∞.

If Assumption 1 holds, then Lemma 9 implies that the process

t 7→
(
N a
k (t)
λk

− t,∆k(t), qk(t),vk(t)
)

(27)

converges weakly to (0, 0, q, 0) in the product topology as k →∞. Hence, it follows from
Skorohod’s representation theorem that the processes {(N a

k ,Rk, qk,vk) : k ∈ K} and q can
be defined on a common probability space (Ω,F ,P) where the limit holds with probability
one and not just in distribution. In addition, [20, Theorem 23.9] implies that Skorohod’s
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J1-topology can be replaced by the uniform topology in the limits, because the limiting
processes are almost surely continuous. Namely,

lim
k→∞

qk = q in D`1 [0,∞), (28a)

lim
k→∞

vk = 0 in DRN [0,∞), (28b)

lim
k→∞

sup
t∈[0,T ]

∣∣∣∣∣N a
k (t)
λk

− t
∣∣∣∣∣ = 0 for all T ≥ 0, (28c)

lim
k→∞

∆k(T ) = 0 for all T ≥ 0, (28d)

almost surely. Moreover, (17) and (19) imply that

qk(t, i) = qk(0, i) + uk(t, i− 1)− uk(t, i)

−
∫ t

0
[qk(s, i)− qk(s, i+ 1)] ds+ vk(t, i) for all i ≥ 1 and t ≥ 0

(29)

almost surely. Recall that uk(t, i) is defined by (15) when Rk separates arrivals fully, and
uk(t, i) is defined by (16) otherwise.

Remark 13. Suppose that {Xn : n ≥ 1} and X are random variables with values in a
common separable metric space, such that Xn ⇒ X as n→∞. Skorohod’s representation
theorem states that versions of all these random variables (i.e., with the same laws) can
be constructed on a common probability space so that the limit holds almost surely. The
right-hand side of (29) is a measurable function of (N a

k ,Rk, qk,vk); see Appendix B for
more details. This implies that the probability that (29) holds only depends on the law of
(N a

k ,Rk, qk,vk), thus (29) holds with probability one in (Ω,F ,P) by (17) and (19).

The following lemma says that the functions uk converge uniformly over compact sets.

Lemma 10. Fix ω ∈ Ω in the set of probability one where (28) and (29) hold for all k ∈ K.
There exists a function u(ω) : [0,∞) −→ R

N such that

lim
k→∞

sup
t∈[0,T ]

|uk(ω, t, i)− u(ω, t, i)| = 0 for all i ≥ 0 and T ≥ 0. (30)

Moreover, u(ω, t, 0) = λt for all t ≥ 0.

Proof. For brevity, let us omit ω from the notation. Since uk(t, 0) = N a
k (t)/k for all t ≥ 0,

it follows from (28c) that the functions uk(0) converge uniformly over compact sets to the
function u(0) defined by u(t, 0) := λt for all t ≥ 0. Note that (28a) and (28b) imply that
the functions qk(i) and vk(i) converge uniformly over compact sets for all i ≥ 0. Hence,
if (30) holds for i = j − 1, then it must also hold for i = j by (29). We have already
established that (30) holds for i = 0, so we conclude that (30) holds for all i ≥ 0.
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The lemma implies that there exists a process u on (Ω,F ,P) such that (30) holds and

q(t, i) = q(0, i) + u(t, i− 1)− u(t, i)

−
∫ t

0
[q(s, i)− q(s, i+ 1)] ds for all i ≥ 1 and t ≥ 0

(31)

with probability one. The next lemma concerns the asymptotic behavior of the functions
βn and will be used to characterize the process u; a proof is provided in Appendix B.

Lemma 11. The functions αn satisfy that

lim
n→∞

sup
x∈[0,1]

∣∣∣αn(d+ 1, x)− xd+1
∣∣∣ = 0 for all d ≥ 0. (32)

Also, the functions βn have the following limits:

lim
n→∞

sup
x∈[0,θ]

|βn(x)− xϕ(x)| = 0 for all θ ∈ [0, 1), (33)

lim
n→∞

sup
x∈[0,1]

|βn(x)− xϕ(x)| = 0 if p(∞) = 0. (34)

The following proposition characterizes the process u in a set of probability one.

Proposition 11. Fix ω ∈ Ω as in Lemma 10 and such that q(ω) is continuous. There
exists a set D(ω) ⊂ (0,∞) such that the complement of D(ω) in (0,∞) has zero Lebesgue
measure and the functions q(ω, i) and u(ω, i) are differentiable for all i ≥ 0 at every point
in D(ω). In addition, the following properties hold.

(a) If p(∞) = 0 and t0 ∈ D(ω), then

u̇(ω, t0, i) = λq(ω, t0, i)ϕ (q(ω, t0, i)) for all i ≥ 1.

(b) If p(∞) > 0 and t0 ∈ D(ω), then

u̇(ω, t0, i) =

λq(ω, t0, i)ϕ (q(ω, t0, i)) if q(ω, t0, i) < 1,

λ− 1 + q(ω, t0, i+ 1) if q(ω, t0, i) = 1,
for all i ≥ 1.

(c) u(ω, t, 0) = λt for all t ≥ 0.

Proof. For brevity, we omit ω from the notation. It follows from (2) that there exists L ≥ 0
such that λk ≤ kL for all k ∈ K. This implies that if s, t ∈ [0, T ], then

|uk(t, i)− uk(s, i)| ≤
1
k
|N a

k (t)−N a
k (s)| ≤ λk

k
|t− s|+ 2

k
sup
u∈[0,T ]

|N a
k (u)− λku|

≤ L |t− s|+ 2
k

sup
u∈[0,T ]

|N a
k (u)− λku|
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for all i ≥ 0. If x ∈ DR[0, T ] satisfies x(0) = 0 and |x(t)− x(s)| ≤ L|t − s| + ε for all
s, t ∈ [0, T ] and some ε > 0, then [6, Lemma 4.2] established that there exists a Lipschitz
function y of modulus L such that ||x− y||T ≤ 4ε. We conclude that for each i ≥ 0 and
k ∈ K there exists a Lipschitz function yk(i) of modulus L such that

||uk(i)− yk(i)||T ≤
8
k

sup
u∈[0,T ]

|N a
k (u)− λku| .

Because the set of Lipschitz functions of modulus L is closed with respect to the uniform
norm, we conclude from (28c) that the uniform limit u(i) of the functions uk(i) is Lipschitz
of modulus L on every interval [0, T ], thus on [0,∞) as well. In particular, the function
u(i) is absolutely continuous for all i ≥ 0 and it follows from (31) that q(i) has the same
property. Therefore, the set D exists.

Note that property (c) was proved in Lemma 10, so it only remains to show that
properties (a) and (b) hold. For this purpose we will assume that the processes uk are
defined as in (16). The proof is similar when these processes are defined as in (15).

Suppose that p(∞) = 0 and fix t0 ∈ D and i ≥ 1. By Abel’s theorem, ϕ is continuous
on [0, 1], and by Lemma 11, βk converges uniformly over [0, 1] to the function x 7→ xϕ(x).
Given ε > 0, these observations imply that there exist δ0 > 0 and k0 ≥ 1 such that:

|xϕ(x)− q(t0, i)ϕ (q(t0, i))| ≤
ε

2 if x ∈ [0, 1] and |x− q(t0, i)| ≤ δ0,

|βk(x)− xϕ(x)| ≤ ε

2 if x ∈ [0, 1] and k ≥ k0.
(35)

By (28a), the functions qk(i) converge uniformly over compact sets to the continuous
function q(i). Hence, there exist δ1 > 0 and k1 ≥ k0 such that

|qk(t, i)− q(t0, i)| ≤ δ0 if |t− t0| ≤ 2δ1 and k ≥ k1.

Moreover, by (28d) there exists k2 ≥ k1 such that k ≥ k2 implies that t0−2δ1 < δmk < t0−δ1

for some m ≥ 1, and therefore

|q̄k(t, i)− q(t0, i)| ≤ δ0 if |t− t0| ≤ δ1 and k ≥ k2. (36)

Indeed, the resampling times δmk partition the interval [0, t0−δ1] into subintervals of length
upper bounded by ∆k(t0 − δ1), and the latter quantity approaches zero as k →∞.

By (35) and (36), we have

|βk (q̄mk )− q(t0, i)ϕ (q(t0, i))| ≤ ε for all N a
k (t0 − δ1) < m < N a

k (t0 + δ1) if k ≥ k2.
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It follows that if t0 < t < t0 + δ1 and k ≥ k2, then

uk(t, i)− uk(t0, i) = 1
k

Na
k (t)∑

m=Na
k

(t0)+1
βk (q̄mk ) ≤ N

a
k (t)−N a

k (t0)
k

[q(t0, i)ϕ (q(t0, i)) + ε] ,

uk(t, i)− uk(t0, i) = 1
k

Na
k (t)∑

m=Na
k

(t0)+1
βk (q̄mk ) ≥ N

a
k (t)−N a

k (t0)
k

[q(t0, i)ϕ (q(t0, i))− ε] .

Therefore, (28c) implies that

λ [q(t0, i)ϕ (q(t0, i))− ε] ≤ lim
t→t+0

lim
k→∞

uk(t, i)− uk(t0, i)
t− t0

≤ λ [q(t0, i)ϕ (q(t0, i)) + ε] .

This proves (a) because ε is arbitrary and the expression in the middle equals u̇(t0, i).
Assume now that p(∞) > 0. Recall that the functions qk(i) converge uniformly over

compact sets to the continuous function q(i). Hence, q(t0, i) < 1 implies that there exists
θ ∈ [0, 1) such that qk(t, i) < θ for all t in a sufficiently small neighborhood of t0 and all
large enough k ∈ K. By Lemma 11, the functions βk converge to the function x 7→ xϕ(x)
uniformly over the interval [0, θ]. Therefore, the expression in (b) for u̇(t0, i) in the case
where q(t0, i) < 1 can be established using the same arguments as in the proof of (a).

Suppose then that q(t0, i) = 1. Then q̇(t0, i) = 0 since q(i) ≤ 1. By (31),

0 = u̇(t0, i− 1)− u̇(t0, i)− [q(t0, i)− q(t0, i+ 1)] .

In fact this holds for 1 ≤ j ≤ i because q(t0, i) = 1 implies q(t0, j) = 1 for all j ≤ i. It
follows from (c) that u̇(t0, 0) = λ, so we conclude that

u̇(t0, i) = u̇(t0, i− 1)− [q(t0, i)− q(t0, i+ 1)]

= λ−
i∑

j=1
[q(t0, j)− q(t0, j + 1)] = λ− 1 + q(t0, i+ 1).

This completes the proof of (b).

It follows from (31) and the above proposition that q satisfies (4) almost surely. We
may now complete the proof of the fluid limit.

Proof of Theorem 1. By Proposition 10, every subsequence of {qn : n ≥ 1} has a further
subsequence that converges weakly in D`1 [0,∞). By the earlier arguments in this section
and Proposition 11, every convergent subsequence converges to a process q such that

q(t, i) = q(0, i) + λ
∫ t

0
[ai−1 (q(s))− ai (q(s))] ds

−
∫ t

0
[q(s, i)− q(s, i+ 1)] ds for all i ≥ 1 and t ≥ 0
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Figure 2: From left to right: the ring, the disjoint triangles and the double-star for n = 12.

almost surely. Also, q is almost surely continuous from [0,∞) into `1 by Proposition 10.

Appendix A Simulations

Consider the three undirected graph topologies depicted in Figure 2. All the nodes in
the ring and the disjoint triangles have exactly two neighbors, and the degree distribution
of the double-star is given by pn(2) = (n− 2)/n and pn(n− 1) = 2/n. Hence, the limiting
degree distribution is the point mass at d = 2 in all three cases. Nonetheless, there are
striking structural differences between these graphs.

(a) The ring and the double-star are connected, whereas the other graph topology has
multiple connected components.

(b) The maximum degree of the double-star is n − 1, whereas the maximum degree of
the ring and the disjoint triangles is 2.

(c) The diameter of the ring is bn/2c, whereas the diameter of the double-star is 2.

Below we report the results of various numerical experiments based on the three graph
topologies of Figure 2. First we evaluate the performance of the load balancing algorithm
studied in this paper when the graph is static, and we compare this performance with the
dynamic case. Then we show that (4) accurately describes the behavior of the occupancy
process in a large system, and we observe that Theorem 1 does not seem to apply in a
regime where the pseudo-separation property does not hold.

A.1 Performance of static graphs

Figure 3a compares the performance of static graphs with that of dynamic graphs, for
the topologies depicted in Figure 2; in the dynamic case the resampling procedure is carried
out by just reassigning the servers to the nodes of a fixed graph uniformly at random. By
Theorem 2, if the graph is resampled as a Poisson process, then the steady-state queue
length distribution is asymptotically equivalent for the three topologies, and given by the
sequence q∗ defined in Proposition 3. In contrast, Figure 3a shows that the steady-state
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Figure 3: Load balancing on static graphs with the topologies depicted in Figure 2. In all the cases the
system starts empty, n = 1500 and λn = 9n/10. The plot on the left shows time averages computed over
the second half of the simulation and the equilibrium point q∗ defined in Proposition 3. The plot on the
right concerns the double-star topology. It shows the number of tasks at the two central servers and the
number of servers that have more tasks than, or as many tasks as, the central server with the fewest tasks.

queue length distribution depends on the topology of the graph in the static setting, and
that the time average of qn(i) is larger than q∗(i). This shows that performance improves
when the graph is resampled over time for any of the topologies of Figure 2.

Remarkably, the performance of the double-star is equivalent to that of n independent
single-server queues when the graph is static. This is explained by Figure 3b, which
shows the number of tasks at the two servers placed in the center of the double-star,
and the number of servers that have more tasks than, or as many tasks as, the central
server with the fewest tasks. At time zero all the servers have the same number of tasks,
but the percentage of servers with strictly less tasks than both of the central servers is
approximately 99% or larger throughout the rest of the simulation. When a task arrives
to any of these servers, the server places the task in its own queue, as if it was isolated,
because its only two neighbors are the central servers, which have longer queues.

The behavior of the double-star topology may be explained as follows. The arrival rate
of tasks to the central server with the fewest tasks is at least λn times the fraction of servers
that have strictly more tasks, whereas tasks leave from this server at unit rate. As a result,
the number of tasks at the central servers increases quickly and remains large throughout
the simulation, while the fraction of servers with strictly more tasks than the central server
with the fewest tasks remains small.

A.2 Accuracy of the fluid approximation

Figures 4a and 4b show sample paths of qn that remain close to the solution of (4) for
the ring topology and the disjoint triangles, both in the transient and stationary regimes
and for a resampling rate as low as µn = log log n. Figures 4c and 4d show sample paths
of qn when the graph topology remains double-star and the resampling rate is µn = log n.

Note that d−n + 1 = n for the double-star, thus (3) does not hold when µn = log n,
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(a) Ring with n = 1500 and µn = log logn.
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(b) Triangles with n = 1500 and µn = log logn.
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(c) Double-star with n = 1500 and µn = logn.

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8

1

t

q
n
(t

,i
)

qn(t, 1)
qn(t, 2)
qn(t, 3)
qn(t, 4)

(d) Double-star with n = 5000 and µn = logn.

Figure 4: Solution of (4) and sample paths of qn for dynamic graphs. In all the cases the system starts
empty, λn = 9n/10 and the resampling process is Poisson. The dashed lines depicted in the two plots on
the bottom correspond to time averages computed over the interval [40, 100].

and in fact the approximation provided by (4) does not seem accurate. Moreover, as the
number of servers increases from n = 1500 to n = 5000, the accuracy of the approximation
does not seem to improve since the sample path of qn does not get closer to the solution
of (4). This indicates that Theorem 1 may not apply when µn = log n and the graph
always has a double-star topology, which suggests that some condition, besides (2), on
the random graph law used to sample the graph, is necessary for the fluid limit. While
the pseudo-separation property and (3) are clearly not necessary conditions for the fluid
limit to hold, the latter observations indicate that the dependence of the pseudo-separation
property on the maximum indegrees d−n is not just an artifact of our proof technique but
possibly a manifestation of some fundamental condition required for the fluid limit to hold.

Appendix B Proofs of various results

Proof of Lemma 1. It follows from the mean value theorem that for each x ∈ (0, 1) and
d ≥ 0 there exists θ(x, d) ∈ (x, 1) such that

1− xd
1− x = d [θ(x, d)]d−1 .
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We conclude that∣∣∣∣∣1− xd1− x − d
∣∣∣∣∣ = d

∣∣∣[θ(x, d)]d−1 − 1
∣∣∣ ≤ d for all x ∈ (0, 1) and d ≥ 0.

Given ε > 0, there exists k ≥ 0 such that

∞∑
d=k+1

dp(d) ≤ ε.

Therefore, we have

lim
x→1−

∣∣∣∣∣ϕ(1)− ϕ(x)
1− x −

∞∑
d=0

dp(d)
∣∣∣∣∣ ≤ lim

x→1−

∞∑
d=0

∣∣∣∣∣1− xd1− x − d
∣∣∣∣∣ p(d)

≤ lim
x→1−

k∑
d=0

∣∣∣∣∣1− xd1− x − d
∣∣∣∣∣ p(d) +

∞∑
d=k+1

dp(d) ≤ ε.

Since ε is arbitrary, this proves the first identity in the claim of the lemma. The second
identity follows from Abel’s theorem.

Proof of Proposition 2. For the existence part, it suffices to construct occupancy processes
qn such that qn(0)⇒ q in `1. The initial states qn(0) can be obtained by letting qn(0, i) be
deterministic, equal to the number in {m/n : m = 0, . . . , n} that is closest to q(i). Processes
qn with these initial states can be constructed as in Section 6.1. It follows from Theorem 1
that a fluid trajectory q with initial condition q and continuous from [0,∞) into `1 exists.

Suppose that x and y solve (6). By Lemma 1, the derivative ϕ′ is continuous in [0, 1],
thus bounded. As a result, the function x 7→ xϕ(x) is Lipschitz in [0, 1]. It follows from
(6) that there exists a constant L ≥ 0 such that

|x(t, i)− y(t, i)| ≤ |x(0, i)− y(0, i)|+ L
∫ t

0

i+1∑
j=i−1

|x(s, j)− y(s, j)|ds

for all i ≥ 1 and t ≥ 0. We conclude that

||x(t)− y(t)||1 ≤ ||x(0)− y(0)||1 + 3L
∫ t

0
||x(s)− y(s)||1 ds for all t ≥ 0.

By Gronwall’s inequality, ||x(t)− y(t)||1 ≤ ||x(0)− y(0)||1 e3Lt for all t ≥ 0. This implies
that solutions are continuous with respect to the initial condition. Moreover, by setting
x(0) = y(0) we conclude that there exists a unique solution for each initial condition.

Proof of Lemma 2. Given x, y ∈ `1, we say that x < y if x(i) < y(i) for all i ≥ 1. We will
prove that the following strict monotonicity property holds:

x(0) < y(0) implies that x(t) < y(t) for all t ≥ 0. (37)
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First let us show that (37) implies that the lemma holds. Suppose that (37) holds
and there exist fluid trajectories x and y such that x(0) ≤ y(0) but x(t, i) > y(t, i) for
some i ≥ 1 and t > 0. Because fluid trajectories are continuous with respect to the initial
condition, there must exist fluid trajectories x̃ and ỹ such that

x̃(0) ≤ x(0), y(0) ≤ ỹ(0), x̃(0) < ỹ(0) and x̃(t, i) > ỹ(t, i).

But this would lead to a contradiction since the last two inequalities violate (37). Hence,
proving (37) is equivalent to proving the lemma.

We establish (37) by contradiction. For this purpose, suppose that there exist two fluid
trajectories x and y such that x(0) < y(0) but (37) does not hold, and thus

τ := inf {t ≥ 0 : x(t, i) ≥ y(t, i) for some i ≥ 1} <∞.

Observe that for each i ≥ 1 we have

ẋ(i)− ẏ(i) = λ [x(i− 1)ϕ (x(i− 1))− y(i− 1)ϕ (y(i− 1))]

− λ [x(i)ϕ (x(i))− y(i)ϕ (y(i))]− [x(i)− y(i)] + x(i+ 1)− y(i+ 1)

≤ λ [y(i)ϕ (y(i))− x(i)ϕ (x(i))] + [y(i)− x(i)]

almost everywhere in [0, τ ]. For the inequality note that x 7→ xϕ(x) is increasing.
By Lemma 1, ϕ′ is bounded in [0, 1], so there exists L ≥ 0 such that

y(i)ϕ (y(i))− x(i)ϕ (x(i)) = |y(i)ϕ (y(i))− x(i)ϕ (x(i))|
≤ L |y(i)− x(i)| = L [y(i)− x(i)]

in the interval [0, τ ] for all i ≥ 1. Therefore,

ẋ(i)− ẏ(i) ≤ (λL+ 1) [y(i)− x(i)] = −(λL+ 1) [x(i)− y(i)]

almost everywhere in the interval [0, τ ]. It follows that

x(t, i)− y(t, i) ≤ [x(0, i)− y(0, i)] e−(λL+1)t < 0 for all i ≥ 1 and t ∈ [0, τ ].

But this contradicts the definition of τ , thus (37) must hold.

Proof of Proposition 4. By Lemma 2, it suffices to prove the proposition in the following
two cases: q(0) ≥ q∗ and q(0) ≤ q∗. We only prove the proposition in the case q(0) ≥ q∗

because the proof is analogous in the other case.
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Suppose then that q(0) ≥ q∗. We proceed as in [15, Propostion 4.5], letting

s(t, i) :=
∞∑
j=i

q(t, j) for all i ≥ 1 and t ≥ 0,

ṡ(t, i) :=
∞∑
j=i

q̇(t, j) = λq(t, i− 1)ϕ (q(t, i− 1))− q(t, i) for all i ≥ 1 and t ≥ 0.

Since fluid trajectories take values in Q ⊂ `1, both sums converge pointwise; i.e., for each
fixed t ≥ 0. It follows from (6) that |q̇(i)| is bounded by λ + 1 for all i ≥ 1, thus q(i) is
Lipschitz of modulus λ + 1. Moreover, because ϕ′ is bounded in the interval [0, 1], there
exists M ≥ 0 such that the function x 7→ xϕ(x) is Lipschitz of modulus M . Therefore,

k∑
j=i

q̇(j) = λ [q(i− 1)ϕ (q(i− 1))− q(k)ϕ(q(k))]− [q(i)− q(k + 1)]

is Lipschitz of modulus 4 max{λ(λ + 1)M,λ + 1} for all k ≥ i. By the Arezlá-Ascoli
theorem, the above partial sums converge uniformly over compact sets to ṡ(i). Hence, it
follows from [27, Theorem 7.17] that s(i) also converges uniformly over compact sets and
ṡ(t, i) is the derivative of s(i) at t for all t > 0.

Since ϕ′ is bounded in [0, 1], there exists a constant L ≥ 0 such that ϕ is a Lipschitz
function of modulus L. From this observation we conclude that

ṡ(i) = λq(i− 1)ϕ (q(i− 1))− q(i)

= λ [q(i− 1)ϕ (q(i− 1))− q∗(i− 1)ϕ (q∗(i− 1))] + q∗(i)− q(i)

= λ [q(i− 1)− q∗(i− 1)]ϕ (q(i− 1)) + λq∗(i− 1) [ϕ (q(i− 1))− ϕ (q∗(i− 1))]

+ q∗(i)− q(i)

≤ λ(1 + L) [q(i− 1)− q∗(i− 1)]− [q(i)− q∗(i)] for all i ≥ 1.

For the inequality observe that q(t, i − 1) ≥ q∗(i − 1) by assumption and Lemma 2. In
addition, note that ϕ is an increasing function, thus ϕ (q(t, i− 1)) ≥ ϕ (q∗(i− 1)) for all
i ≥ 1 and t ≥ 0. Integrating on both sides of the inequality, we conclude that

∫ t

0
[q(s, i)− q∗(i)] ds ≤ s(0, i)− s(t, i) + λ(1 + L)

∫ t

0
[q(s, i− 1)− q∗(i− 1)] ds.

Setting i = 1, we obtain
∫ t

0
[q(s, 1)− q∗(1)] ds ≤ s(0, 1)− s(t, 1) ≤ s(0, 1),

and taking the limit as t→∞, we get
∫ ∞

0
[q(s, 1)− q∗(1)] ds ≤ s(0, 1) <∞.
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By induction in i, we conclude that
∫ ∞

0
[q(s, i)− q∗(i)] ds ≤ s(0, i) + λ(1 + L)

∫ ∞
0

[q(s, i− 1)− q∗(i− 1)] ds <∞ if i ≥ 1.

Recall that q(t, i) ≥ q∗(t, i) for all t ≥ 0, thus q(t, i)→ q∗(i) as t→∞ for all i ≥ 1.

Proof of Corollary 2. In order to compute the limit of Rn, note that

|||qn||1 − ||q∗||1| ≤ ||qn − q∗||1 for all n ≥ 1.

The limit qn ⇒ q∗ in `1 is equivalent to ||qn − q∗||1 ⇒ 0, and hence ||qn||1 ⇒ ||q∗||1. By
Lemma 3, the sequence {||qn||1 : n ≥ 1} is uniformly integrable, so the latter limit also
holds in expectation. We conclude that

lim
n→∞

Rn = lim
n→∞

n

λn
E [||qn||1 − 1] = ||q

∗||1 − 1
λ

.

This completes the proof.

Proof of Lemma 5. The process that describes the times of departures from the servers
can be described as follows. Every server experiences potential departures as a Poisson
process of unit intensity and if a server has at least one task at the time of a potential
departure, then a task departs from the server. Given σmn − σm−1

n , the number of arrivals
and potential departures in (σm−1

n , σmn ] are Poisson distributed with mean λn (σmn − σm−1
n )

and n (σmn − σm−1
n ), respectively. Thus, the first claim of the lemma holds.

Assume that condition (c) of Proposition 1 holds. In order to establish (21), define

Γn(t) :=
Rn(t)+1∑
m=1

(
σmn − σm−1

n

)2
and ϕn(t) := E [Γn(t)] for all t ≥ 0.

Applying a renewal argument we conclude that

E
[
Γn(t)

∣∣∣ σ1
n = σ

]
= σ2 + ϕn(t− σ)1{σ≤t} for all t, σ ≥ 0.

Hence, if we let Fn(σ) := P (σ1
n ≤ σ) denote the cumulative distribution function of the

holding times, then integration with respect to Fn yields

ϕn(t) =
∫ ∞

0
E
[
Γn(t)

∣∣∣ σ1
n = σ

]
dFn(σ) = E

[(
σ1
n

)2
]

+
∫ t

0
ϕn(t− σ)dFn(σ) for all t ≥ 0.

By [20, Theorem 12.24], the solution of this renewal equation is

ϕn(t) = E
[(
σ1
n

)2
]

+
∫ t

0
E
[(
σ1
n

)2
]
dRn(t) = E

[(
σ1
n

)2
]

[1 +Rn(t)] for all t ≥ 0,
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where Rn(t) = E [Rn(t)]. Also, condition (c) of Proposition 1 implies that σ1
n = σ1

1/µn,
and the elementary renewal theorem yields Rn(t)/µn → t as n→∞. Therefore,

lim
n→∞

µnϕn(t) = lim
n→∞

E
[(
σ1

1

)2
] 1 +Rn(t)

µn
= E

[(
σ1

1

)2
]
t.

This completes the proof.

Proof of Lemma 6. The topology of DRN [0,∞) is compatible with the metric

η(x,y) :=
∞∑
T=1

min
{

supt∈[0,T ] d (x(t),y(t)) , 1
}

2T for all x,y ∈ DRN [0,∞).

It is straightforward to check that (a) implies (b), thus we only prove that (b) implies (a).
For this purpose, fix ε > 0 and assume that

xn(i)⇒ 0 in DR[0, T ] as n→∞ for all i ≥ 0 and T ≥ 0.

Choose l and m such that
∞∑

T=l+1

1
2T ≤

ε

2 and
∞∑
i=m

1
2i ≤

ε

4l .

By the choice of l, we have

P (η(xn, 0) ≥ ε) ≤
l∑

T=1
P

(
sup
t∈[0,T ]

d (xn(t), 0) ≥ ε

2l

)
,

and by the choice of m,

P

(
sup
t∈[0,T ]

d (xn(t), 0) ≥ ε

2l

)
≤

m−1∑
i=0

P
(
||xn(i)||T ≥

ε

4lm

)
.

Therefore, we have

P (η(xn, 0) ≥ ε) ≤
l∑

T=1

m−1∑
i=0

P
(
||xn(i)||T ≥

ε

4lm

)
,

and the right-hand side converges to zero as n → ∞ by assumption; indeed, note that
weak convergence to zero is equivalent to convergence in probability to zero.

Proof of Lemma 9. Let ρj be the metric of Sj and endow Π with the metric defined by

% ((y1, . . . , ym) , (z1, . . . , zm)) := max
j=1,...,m

ρj (yj, zj) for all (y1, . . . , ym) , (z1, . . . , zm) ∈ Π,

which is compatible with the product topology. If f : Π −→ R is continuous and bounded,
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then y1 7→ f(y1, x2, . . . , xm) defines a continuous and bounded function on S1. Hence,

lim
k→∞

E
[
f
(
X1
k , x2, . . . , xm

)]
= E [f (X1, x2, . . . , xm)] ,

and we conclude that (X1
k , x2, . . . , xm)⇒ (X1, x2, . . . , xm) in Π as k →∞. Moreover,

P
(
%
((
X1
k , X

2
k , . . . , X

m
k

)
,
(
X1
k , x2, . . . , xm

))
≥ ε

)
≤

m∑
j=2

P
(
ρj
(
Xj
k, xj

)
≥ ε

)
,

and for every ε > 0 the right-hand side goes to zero as k → ∞ by assumption. It follows
from [4, Theorem 3.1] that (X1

k , X
2
k , . . . , X

m
k )⇒ (X1, x2, . . . , xm) in Π.

Addition to Remark 13. Let SR[0,∞) denote the space of real càdlàg functions endowed
with the Skorohod J1-topology, and let Π := SR[0,∞)×SR[0,∞)×S`1 [0,∞)×SRN [0,∞)
with the product topology and the Borel σ-algebra. The right-hand side of (29) defines a
measurable function from Π into R, thus the probability that (29) holds is equal to

P ((N a
k ,Rk, qk,vk) ∈ A)

for some set A in the Borel σ-algebra of Π. Skorohod’s representation theorem implies that
the law of (N a

k ,Rk, qk,vk) is as in Section 6.2, so the latter probability equals one.
As an example, let us establish that uk(t, i) is a measurable function of (N a

k ,Rk, qk,vk)
when (16) holds. For this purpose, consider partitions 0 = tl0 < · · · < tlJl

= t such that

lim
l→∞

max
0≤j≤Jl−1

(
tlj+1 − tlj

)
= 0.

In addition, define slm := tljl
m

for each l,m ≥ 1, where

jlm := max
{

0 ≤ j ≤ Jl : N a
k

(
tlj
)
< m and j = 0 or Rk

(
tlj
)
> Rk

(
tlj−1

)}
.

Because the finite-dimensional projections πt1,...,tl : Π −→ R
l are measurable for all

t1, . . . , tl ≥ 0, we conclude that jlm is measurable as a function from Π into R. Also,

lim
l→∞

slm = max
{
σjk : σjk < τmk

}
,

and slm ≥ max
{
σjk : σjk < τmk

}
for all large enough l. Since qk is right-continuous,

lim
l→∞

qk
(
slm, i

)
= q̄mk (i).

It follows that

uk(t, i) = lim
l→∞

1
k

l∑
m=1

Jl∑
j=1

βk
(
qk
(
tlj, i

))
1{j=jl

m}1{m≤Na
k

(t)}.
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Each of the functions inside of the limit sign is measurable from Π into R and the limit of
measurable functions is a measurable function as well. Hence, we conclude that uk(t, i) is
a measurable function of (N a

k ,Rk, qk,vk).

Proof of Lemma 11. In order to prove (32), fix an arbitrary ε > 0 and note that

sup
x∈[0,d/n)

∣∣∣αn(d+ 1, x)− xd+1
∣∣∣ = sup

x∈[0,d/n)
xd+1 ≤ ε

for all sufficiently large n. Now consider the function f : [0, 1]d+1 −→ R that assigns to
each vector the product of its entries. The bound

max
0≤k≤d

∣∣∣∣∣nx− kn− k − x
∣∣∣∣∣ = max

0≤k≤d

∣∣∣∣∣k(x− 1)
n− k

∣∣∣∣∣ ≤ d

n− d for all x ∈ [0, 1] ,

and the uniform continuity of f imply that

sup
x∈[d/n,1]

∣∣∣αn(d+ 1, x)− xd+1
∣∣∣ ≤ sup

x∈[0,1]

∣∣∣∣∣f
(
x,
nx− 1
n− 1 , . . . ,

nx− d
n− d

)
− f(x, x, . . . , x)

∣∣∣∣∣ ≤ ε

for all large enough n. Because ε is arbitrary, this proves (32).
For (33), observe that

βn(x)− xϕ(x) =
∞∑
d=0

[
αn(d+ 1, x)pn(d)− xd+1p(d)

]
for all x ∈ [0, 1] and n ≥ 1.

Fix θ ∈ [0, 1) and some k ≥ 0. If x ∈ [0, θ], then

|βn(x)− xϕ(x)| ≤
k∑
d=0

∣∣∣αn(d+ 1, x)pn(d)− xd+1p(d)
∣∣∣+ ∞∑

d=k+1
αn(d+ 1, x) +

∞∑
d=k+1

xd+1

≤
k∑
d=0

∣∣∣αn(d+ 1, x)− xd+1
∣∣∣ pn(d) +

k∑
d=0

xd+1 |pn(d)− p(d)|+ 2
∞∑

d=k+1
xd+1

≤
k∑
d=0

∣∣∣αn(d+ 1, x)− xd+1
∣∣∣+ k∑

d=0
|pn(d)− p(d)|+ 2θk+2

1− θ .

For the second inequality, note that αn(d+ 1, x) ≤ xd+1 for all d ≥ 0 and n ≥ 1. Given an
arbitrary ε > 0, we may choose k such that 2θk+2 ≤ (1− θ)ε. Then

lim
n→∞

sup
x∈[0,θ]

|βn(x)− xϕ(x)| ≤ lim
n→∞

[
k∑
d=0

sup
x∈[0,1]

∣∣∣αn(d+ 1, x)− xd+1
∣∣∣+ k∑

d=0
|pn(d)− p(d)|

]
+ ε.

Since ε is arbitrary, we conclude from (2) and (32) that (33) holds.
Suppose now that p(∞) = 0 and thus ϕ(1) = 1. It follows from Abel’s theorem that ϕ
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is continuous on [0, 1]. Hence, if ε > 0, then there exists δ ∈ (0, 1) such that

|xϕ(x)− yϕ(y)| ≤ ε

3 for all x, y ∈ [0, 1] such that |x− y| ≤ δ.

Choose θ ∈ (1− δ, 1) and note that (33) implies that there exists m such that

|βn(x)− xϕ(x)| ≤ ε

6 for all x ∈ [0, θ] and n ≥ m.

If x ∈ (θ, 1], then we have

|βn(x)− xϕ(x)| ≤ |βn(x)− βn(θ)|+ |βn(θ)− θϕ(θ)|+ |θϕ(θ)− xϕ(x)|
≤ 1− βn(θ) + |βn(θ)− θϕ(θ)|+ |θϕ(θ)− xϕ(x)|
≤ 1− θϕ(θ) + 2|βn(θ)− θϕ(θ)|+ |θϕ(θ)− xϕ(x)| ≤ ε for all n ≥ m.

For the second inequality, note that βn is nondecreasing and βn(1) = 1 because αn(d + 1)
has these properties for each d ≤ n − 1. For the last inequality, recall that ϕ(1) = 1 by
assumption, and note that |1− x| < |1− θ| < δ. Since ε is arbitrary, (34) holds.

Appendix C Construction of sample paths

The processes qn and Xn are constructed inductively. At time zero,

Xn(0) = Xn and qn(0, i) = qn(i) = 1
n

n∑
u=1

1{Xn(u)≥i} for all i ≥ 0.

We refer to time zero and the times of arrivals and departures of tasks as event times. If
both processes have already been defined up to event time τ , then they remain constant
until the next event occurs.

Let qτn denote the stopped process defined as

qτn(t) := qn(t) if 0 ≤ t ≤ τ and qτn(t) := qn(τ) if t > τ.

The next event after τ corresponds to the first jump after τ of one the processes

t 7→ N a
n (t) and t 7→ N d

i

(
n
∫ t

0
[qτn(s, i)− qτn(s, i+ 1)] ds

)
. (38)

Only finitely many of these processes have a positive intensity since the initial number of
tasks in the system is finite by assumption, hence the time of the next event is strictly
larger than τ . The intensity of process i on the right corresponds to the departure rate
from servers with exactly i tasks, a jump of this process indicates such a departure.

Once the time of the next event is determined, the processes qn and Xn are updated
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in different ways depending on the type of the new event. If the first event after τ is an
arrival that occurs at time τmn , then we set

qn (τmn , i) = qn
(
τm−n , i

)
+ 1
n

[
Imn

(
Xn

(
τm−n

)
, i− 1

)
− Imn

(
Xn

(
τm−n

)
, i
)]

for all i ≥ 1.

The difference between the last two terms equals one if the task is placed in the queue of
a server with exactly i− 1 tasks and equals zero otherwise. In addition, we let

vmn = min argmin
v

{
Xn

(
τm−n , v

)
: v = umn or (umn , v) ∈ En

(
τm−n

)}
be the server with the smallest index among the servers with the least number of tasks in
the neighborhood of umn and we set

Xn (τmn , v) = Xn

(
τm−n , v

)
+ 1{v=vm

n } for all v ∈ Vn.

In order to choose the server vmn in the neighborhood of umn that will receive the new task,
we break ties between servers with the least number of tasks by selecting the server with
the smallest index. But any other criterion could be used instead.

Suppose instead that the first event after τ is a departure from a server with exactly
i tasks, triggered by a jump of process i on the right of (38). We denote the time of this
departure by τmi,n and we set

qn
(
τmi,n, j

)
= qn

(
τm−i,n , j

)
− 1
n
1{j=i} for all j ≥ 1.

In addition, we use the random variable Um
i,n to select a server vmi,n uniformly at random

among all the servers v with exactly i tasks: Xn

(
τm−i,n , v

)
= i. Then we set

Xn

(
τmi,n, v

)
= Xn

(
τm−i,n , v

)
− 1{vm

i,n=v} for all v ∈ Vn.

The above construction determines Xn and qn on a set of probability one that excludes
certain events of probability zero, such as tasks arriving and departing simultaneously.
Both qn and Xn are piecewise constant càdlàg processes defined on [0,∞). In addition,
the jumps of qn are of size 1/n and Xn has jumps of unit size.

Appendix D Tightness of occupancy processes

The topology of D`1 [0,∞) is compatible with the metric defined by

ρ(x,y) :=
∞∑
T=1

min
{

supt∈[0,T ] ||x(t)− y(t)||1 , 1
}

2T for all x,y ∈ D`1 [0,∞).
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Hence, it follows from Prohorov’s theorem that in order to prove Proposition 10, it is
enough to show that {qn : n ≥ 1} is tight in D`1 [0,∞), which we proceed to do.

Consider a function x ∈ D`1 [0,∞). Its local moduli of continuity is defined as

wT (x, h) := sup {||x(s)− x(t)||1 : s, t ∈ [0, T ] and |s− t| ≤ h}

for all h > 0 and T ≥ 0. The modified local moduli of continuity is defined as

w̃T (x, h) := inf
I

max
I∈I

sup
s,t∈I
||x(s)− x(t)||1 .

Here the infimum extends over all partitions I of [0, T ) into subintervals I = [u, v) such
that v − u ≥ h if v < T . By [20, Theorems 23.8 and 23.9], and the fact that

w̃T (x, h) ≤ wT (x, h) for all x ∈ D`1 [0,∞), h > 0 and T ≥ 0,

the tightness of {qn : n ≥ 1} can be established by proving the following properties.

(a) {qn(t) : n ≥ 1} is tight in `1 for all t in some dense subset of [0,∞).

(b) If T > 0, then
lim
h→0

lim sup
n→∞

E [min {wT (qn, h), 1}] = 0.

The following two lemmas are used to establish property (a).

Lemma 12. Let {qn : n ≥ 1} be a sequence of random variables with values in

Q := {q ∈ `1 : 0 ≤ q(i+ 1) ≤ q(i) ≤ q(0) = 1 for all i ≥ 1} .

The sequence {qn : n ≥ 1} is tight in `1 if and only if

lim
m→∞

lim sup
n→∞

P

(∑
i>m

qn(i) > ε

)
= 0 for all ε > 0.

The previous lemma is taken from [25, Lemma 2], where the proof can be found. We
use it in the following lemma in order to establish property (a).

Lemma 13. If {qn(0) : n ≥ 1} is tight in `1, then so is {qn(t) : n ≥ 1} for all t ≥ 0.

Proof. By Lemma 12, it suffices to prove that

lim
m→∞

lim sup
n→∞

P

(∑
i>m

qn(t, i) > ε

)
= 0 for all ε, t > 0. (39)

Fix any ε, t > 0, let θ := t(e− 1) + 1 and choose constants k, δ0, δ1 > 0 such that

δ0 + δ1λθ < ε and δ1 > δ0 + λθ

k
.
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In addition, fix n0 ≥ 0 such that all n ≥ n0 satisfy:

δ0 + δ1λnθ

n
< ε, (40a)

δ1 > δ0 + λnθ

kn
. (40b)

For each m > k and n ≥ n0, consider the following events:

Am,n :=
{∑
i>m

qn(t, i) > ε

}
and Bm,n :=

 ∑
i>m−k

qn(0, i) > δ0

 .
Also, define Cn as the event that the total number of arrivals in the interval [0, t] is strictly
larger than λnθ, and let Dm,n be the event that the number of arrivals in the interval [0, t]
to servers with at least m tasks is strictly larger than δ1λnθ. In the definition of Dm,n we
refer to all the tasks that appear at servers with at least m tasks, even if these tasks are
then dispatched to a server with fewer than m tasks.

It is clear that

P (Am,n) ≤ P
(
Am,n ∩Bc

m,n ∩ Cc
n

)
+ P (Bm,n) + P (Cn).

Note that (39) holds for ε = δ0 and t = 0 since {qn(0) : n ≥ 1} is tight, so P (Bm,n) → 0
as n→∞ and then m→∞. Moreover, a Chernoff bound yields

P (Cn) ≤ eλnt(e−1)

eλnθ
= e−λn ,

hence P (Cn)→ 0 as n→∞. This takes care of the last two term on the right-hand side.
If n ≥ n0, then (40a) implies that Am,n ∩Bc

m,n ∩ Cc
n ⊂ Bc

m,n ∩ Cc
n ∩Dm,n, thus

P (Am,n) ≤ P
(
Bc
m,n ∩ Cc

n ∩Dm,n

)
+ P (Bm,n) + P (Cn)

and it only remains to deal with the first term on the right-hand side.
In Bc

m,n ∩ Cc
n there are at most λnθ arrivals in [0, t] and

qn(0, i) ≤ δ0 for all m− k + 1 ≤ i ≤ m.

It follows from (40b) that qn(s,m) < δ1 for all s ∈ [0, t] and n ≥ n0. Otherwise qn(s, i) ≥ δ1

for all m− k + 1 ≤ i ≤ m, which requires at least kn(δ1 − δ0) > λnθ arrivals.
The process qn can be constructed using Poisson processes

N n
1 (s) := N1

(
λn

∫ s

0
[1− qn(τ,m)] dτ

)
and N n

2 (s) := N2

(
λn

∫ s

0
qn(τ,m)dτ

)

for counting tasks that appear in servers with less than m tasks and at least m tasks,
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respectively, where N1 and N2 are independent Poisson processes of intensity one. Hence,

P
(
Bc
m,n ∩ Cc

n ∩Dm,n

)
= P

(
Bc
m,n ∩ Cc

n ∩ {N n
2 (t) > δ1λnθ}

)
≤ P

(
Bc
m,n ∩ Cc

n ∩ {N2 (δ1λnt) > δ1λnθ}
)

≤ P (N2 (δ1λnt) > δ1λnθ) ≤
eδ1λnt(e−1)

eδ1λnθ
= e−δ1λn ,

where the last step uses a Chernoff bound. Since the right-hand side goes to zero as n→∞,
we conclude that (39) holds.

Next we establish property (b) and we complete the proof of Proposition 10.

Proof of Proposition 10. An alternative construction of the process qn can be carried out
using a single Poisson process for counting both arrivals and potential departures, thus

E [wT (qn, h)] ≤ E

[
sup
t∈[0,T ]

Nn(t+ h)−Nn(t)
n

]
,

where Nn is a Poisson process of intensity νn := λn + n; for this note that ||qn||1 is the
total number of tasks in the system divided by n. We now have

E [wT (qn, h)] ≤ E

[
sup
t∈[0,T ]

∣∣∣∣∣Nn(t+ h)− νn(t+ h)
n

∣∣∣∣∣
]

+ E

[
sup
t∈[0,T ]

∣∣∣∣∣Nn(t)− νnt
n

∣∣∣∣∣
]

+ νnh

n
.

It follows from Jensen’s inequality and Doob’s maximal inequality that

E [wT (qn, h)] ≤ 2


√√√√√E

∣∣∣∣∣Nn(T + h)− νn(T + h)
n

∣∣∣∣∣
2
+

√√√√√E
∣∣∣∣∣Nn(T )− νnT

n

∣∣∣∣∣
2

+ νnh

n

= 2

√
νn(T + h)

n
+
√
νnT

n

+ νnh

n
.

We conclude that (b) holds since

lim
h→0

lim sup
n→∞

E [min {wT (qn, h), 1}] ≤ lim
h→0

lim sup
n→∞

E [wT (qn, h)] ≤ lim
h→0

(λ+ 1)h = 0.

The last identity and [20, Theorem 23.9] also imply that the limit in distribution of any
convergent subsequence of {qn : n ≥ 1} is an almost surely continuous process.
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