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Abstract— Smart metering data are providing new 

opportunities for various energy analyses at household level. 

However traditional load analyses based on time-series 

techniques are challenged due to the irregular patterns and large 

volume from smart metering data. This paper proposes a 

promising alternative to decompose smart metering data in the 

spectral domain, where i) the irregular load profiles can be 

characterized by the underlying spectral components, and ii) 

massive amount of load data can be represented by a small 

number of coefficients extracted from spectral components.  

This paper assesses the performances of load characterization 

at different aggregated levels by two spectral analysis techniques, 

using the discrete Fourier transform (DFT) and discrete wavelet 

transform (DWT). Results show that DWT significantly 

outperforms DFT for individual smart metering data while DFT 

could be effective at a highly aggregated level.     

Index Terms—demand side response, discrete Fourier 

transform, discrete wavelet transform, load profiles, spectral 

analysis, smart grid, smart meter 

 

I. INTRODUCTION 

mart meters are the next generation of electricity meters 

and are rapidly developing across the world [1-3]. In the 

UK, the Department of Energy & Climate Change 

(DECC) aimed to install smart meters for all homes and small 

businesses by 2020 [4]. The transition will involve rolling out 

over 53 million smart meters. They can directly communicate 

the energy usage information of millions of individual 

customers to suppliers and network operators, thus improving 

the power system efficiency in the following forms: i) to 

support more efficient use of demand side response (DSR) [5]; 

ii) to inform the planning and operation of a smart grid [6, 7]; 

iii) to enhance the market settlement efficiency and accuracy 

[8].  

Traditionally, customers’ load information is characterized 

by typical load profiles (TLPs). Customers are classified based 

on similarities between load profiles in the time domain so 

that each group can be represented by a TLP. Different 

techniques such as clustering [9], classification [10] and neural 

networks [11] have been developed to classify customers. The 

essential condition for such techniques is the sufficient 

similarities in customer load profiles in the time domain. 

Therefore previous load characterization research usually 

                                                           
 

focuses on industrial load and averaged/aggregated load, 

which are smooth, stable and share more similarities in the 

time domain. 

However, smart metering data are naturally volatile and 

irregular, and thus are difficult to be characterized by TLPs. 

Figure 1 shows an example of the characteristics of smart 

metering data [1]. The data are from two real smart meters 

installed at two Irish residential households. They are depicted 

as the grey and black lines respectively, and figure 1 shows 

their daily load profiles over 10 days. Meanwhile, the 

traditional TLP used by the UK power industry is depicted by 

the single red line. As shown in the figure, traditional TLP 

cannot fully characterize the smart metering data in terms of 

the volatility and variances between days. As smart metering 

data inherit less similarities in the time domain, it is difficult 

to characterize them by time-series analysis [12]. 

Figure 1.  Comparison between traditional TLP and smart metered load 

profiles (data from Irish Smart Metering Project)  

 

A promising alternative is spectral analysis, which has been 

applied in many different fields in power systems including 

power quality [13-15], power dispatch [16], forecasting in 

power systems [17], power system measurement [18], power 

system protection [19], power system transients [20], non-

technical loss detection [21-23] and data compression [24].  

The discrete Fourier transform (DFT) and the discrete 

wavelet transform (DWT) are two powerful and widely 

acknowledged techniques used in load characterization and 

low order approximation. The latter aims to use reduced 

number of spectral coefficients to approximate the original 
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load.  

The major steps for characterizing load profiles by DFT are 

presented in [25]. The DC component of DFT can largely 

represent load factor, and selected harmonics can be used to 

describe the load shape [25-27]. The results show that average 

daily load profiles of customers can be adequately represented 

by a small set of frequency components. However, such a 

technique has only been applied on the system/aggregated 

levels. With the volatile and massive smart metering data, 

DFT is expected to suffer major limitations on load 

characterization. 

DWT has mainly been studied for short-term load 

forecasting (STLF) at system level. Reference [28] 

emphasizes the advantage of the wavelet transform over DFT 

in that wavelets are able to capture short-duration pulses (e.g. 

particular events) and non-stationary features (e.g. seasonality 

within a year). Reference [29] adopts wavelets in the pre-

processing stage to filter noise and redundant data. Reference 

[30] decomposes both load data and weather variables into 

low-frequency and high-frequency components, where low-

frequencies can be precisely predicted. Reference [31] 

attempts to predict high-frequencies by a similar-day based 

neural network.      

It can be seen most applications are limited to an aggregated 

level (i.e. grid level).  The upcoming smart metering data will 

bring new opportunities to apply spectral analysis at a granular 

level. Applications have already been seen in data privacy 

[32], load pattern clustering [33] and non-intrusive load 

monitoring [34]. To our best knowledge, no research has been 

reported to assess performance of load characterization 

between DFT and DWT for smart metering data. There is 

limited effort in deploying the spectrum analysis for low-order 

approximation to substantially reduce the volume of smart 

metering data.  

This paper proposes a novel method which simultaneously 

characterizes the irregular patterns and compresses the 

massive data from smart meters by low-order approximation. 

The DWT is adopted to effectively extract load characteristics 

in the spectral domain, at the same time substantially reducing 

the data size by using a limited number of components.  

The main contributions of this paper are: 

 development of a new low order approximation and 

load characterization method in the spectral domain 

for smart metering data;  

 informing future smart metering research of the 

choice of spectral analysis techniques through two 

assessments: i) assessment of the applicability at the 

highly aggregated and disaggregated levels; ii) 

assessment of widely used techniques, DFT and 

DWT.  

Key findings from this research are:  

 the proposed DWT method decomposes smart 

metering data into more meaningful components and 

performs more effectively on low order 

approximation compared with DFT;  

 however, the performance of DFT becomes more 

stable and superior to DWT when the load 

aggregation level is high.  

The rest of the paper is organised as follows. Section II 

presents the spectral analysis techniques for load 

characterization. Section III proposes the assessment method 

for low-order approximation. Section IV briefly introduces the 

data used in this research. Assessment results for 

disaggregated load data are demonstrated in Section V and 

results for aggregated load are compared and discussed in 

Section VI. Conclusions are drawn in Section VII.  

II. SPECTRAL ANALYSIS TECHNIQUES 

The decomposition process can be treated as a 

transformation from one function into a different set of scaled 

basis functions. The basis functions of DFT are complex 

sinusoids of various frequencies while DWT adopts 

orthonormal wavelets [35, 36]. Reconstruction is basically the 

inverse transform; however, data can be compressed and 

characterized during this process.   

Consider the daily load profile as a time series

],,[ 110  Nsss s , where N is the daily sample size 

(N=144 for 10 minutes interval and N=48 for half-hourly 

interval). In order to compare the load decomposition on 

different aggregation levels, all daily load profiles are 

normalized to ],,[ 110  Nbbb b  according to its 

maximum daily load as shown in (1), 
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A.  Discrete Fourier Transform 

Using DFT, b can be transformed from the time domain to 

the frequency domain. The spectrum of b  is shown by (2) 
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where kj
kk eB  is the frequency spectrum with 

magnitude of k and phase angle k .   

 Using the inverse discrete Fourier transform (IDFT), the 

time series load profile b  can be reconstructed by summing 

up the frequency components to r
b : 
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The complex coefficients can be merged in pairs forming 

cosine functions with different frequencies and initial phase 

angles (When N is an even number, the component of Nyquist 

frequency (k=N/2) is a triangular wave). For even N, the 

reconstruction of time series b can be expressed by (4): 
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B. Discrete Wavelet Transform 

The Fourier transform is inefficient to decompose non-
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stationary signals, whose frequency components vary over 

time and require a large number of harmonics to express 

volatile load profiles characterized as spikes or needle peaks. 

Wavelet analysis mitigates the deficiency by introducing a 

wavelet that decays in a limited time window. It enables each 

component to have different scales and shifts over time. The 

decomposition process can be illustrated by Figure 2. The load 

profile is decomposed by high-pass and low-pass filters. The 

coefficients of the filters are determined by the choice of 

mother wavelet. The down-sampling process breaks down 

original load profiles into lower resolution components. A 

higher level of decomposition process will generate lower 

resolution components. The large-scale components are called 

“approximations” (A) while small-scale components are called 

“details” (D).  
b

H

↓2

L

D1

↓2

A1

H L

↓2 ↓2

D2 A2

High pass and low pass filters

Input time series (load profile)

Downsampling by a factor 2 

Coefficients on level 1: Detail coefficient d1 
and approximation coefficient a1   

Level 2 decomposition

Coefficients on level 2: Detail coefficient d2 
and approximation coefficient a2   

       Figure. 2 Multi-resolution analysis by  DWT 

Through up-sampling and reconstruction filters, 

approximation component A1 and detail component D1 can be 

obtained. By this way, the original load profile can be 

represented by multi-resolution analysis (MRA) shown by (5): 

J

J

j

j
r ADADDAD  

1

22111 b , (5) 

where r
b  is the reconstructed load profile; Aj and Dj are the  

approximation and detail components at level j, J is the total 

levels of decomposition.  

Figure 3 gives an example of using DWT to decompose an 

individual customer’s load profile. Plots from top to bottom 

are original load profile, D1, D2, D3 and A3 respectively. It is 

expressed in (6) and (7):  
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Where 
j

nA and
j

nD are the approximation component and 

the detailed component at level j and time index n.  jka and

jkd are the scaling and mother wavelet coefficients 

corresponding to the scaling and mother wavelet functions 

jk

n and 
jk

n  at level j and coefficient number k, expressed at 

time index n. For the real scaling functions, the scaling 

coefficients could be obtained by (8) 
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Where time series
],,[ 110  Nsss s

is a daily load 

profile and N is the daily sample size and )
2

2
(

j

jkn  is the 

scaling function. Wavelet coefficients jkd can be derived in a 

similar way but with mother wavelet
jk

n .  

 

 
Figure. 3 Load profile decomposition by  DWT (basis functions multiplied by 

coefficients) 

This paper chooses Haar as the mother wavelet and a 

decomposition level of 3. We consider Haar is likely to be 

coherent with the nature of individual customer’s load profile 
as the square wave can better portray the turn on-off of 

domestic appliances. In our case, the selection is denoted as 

the scaling function in (9) and mother wavelet in (10)  
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III.  ASSESSMENT METHOD 

DFT and DWT are compared as spectral representations of 

load profiles. The assessment is focused on feature 

representation in terms of: i) load characterization and ii) low-

order approximation.  

The assessment of DFT takes the following steps: i) data 

pre-processing: un-structured data sets are firstly cleaned, 

sense-checked, and organized into the same structure; daily 
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load profiles are normalized to a certain range; ii) 

decomposition: use DFT to decompose daily load profiles into 

frequency coefficients, including magnitudes and phase angles 

of all components; iii) load characterization: evaluate the 

coefficients in terms of composition, correlation and 

consistency (variations of the daily coefficients of the same 

customer over time); iv) low-order approximation: use a 

limited number of components, from one to all, to represent 

the original load profile. 

The low-order approximation investigates the trade-off 

between profiling accuracy and data size reduction. It is noted 

that the zero-frequency component, which depicts the average 

loading level, usually dominates the magnitudes. Table I lists 

the DFT components of a sampled customer’s load profile. As 

the frequency increases, the magnitudes of components 

dramatically drop. Aggregation of the first few DFT 

components is expected to capture the original load profile 

with high accuracy while the data size can be significantly 

reduced.  

The idea is based on the assumption that the reconstruction 

is dominated by low-frequency (or large-scale) components. 

Using the first few coefficients will adequately resemble the 

original load profiles as they preserve the majority of the 

spectral energy, which is calculated as the sum squares of 

coefficients’ magnitudes defined in (11) and (12): 
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Where dft
jE is the accumulated DFT energy up to the jth 

harmonic. dwt
jE is the accumulated DWT energy up to the 

decomposition level of j.   

 
 

Table I DFT coefficients of a sampled load profile 

Relative Frequency Amplitude Phase 

0 (DC) 0.72 0 

1/48 0.173 1.82 

2/48 0.151 1.55 

3/48 0.027 -1.73 

,… …… …… 

23/48 0.003 0.24 

 

   The representativeness of reconstructed load profiles are 

evaluated by the following indices: Peak Magnitude Error 

Index (PMEI), Maximum Magnitude Error (MME), Mean 

Absolute Percentage Error (MAPE), Peak Time Error (PTE). 

All metrics are defined in (13)-(16), where b and b
r are the 

original and reconstructed load profiles; )max( bt is the time 

when peak load occurs in the profile b. This paper follows the 

same criteria for reconstruction assessment as in [25]. A 

reconstructed load profile is considered satisfactory if the 

PMEI, MME and MAPE are all below 5% and PTE is shorter 

than 2 hours.                  
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The assessment of DWT follows similar steps to those of 

DFT. However, the low order approximation method for DWT 

is modified. Besides the use of a limited number of 

components, it is noted that DWT components, especially the 

small-scale ones, have very low magnitudes through most of 

the time windows. Thus, the additional method for DWT low 

order approximation is to remove the low-demand periods of 

each scale. Coefficients below threshold will be set as zeros. 

By this way, the number of non-zero coefficients can be 

significantly reduced.  

IV. DATA DESCRIPTION  

The evaluation is implemented at different aggregated 

levels including for individual customers, averaged customers 

and low voltage (LV) substations. Two sets of data 

respectively from smart grid and smart meter projects are 

assessed in this paper. The smart grid demonstration project, 

Low Voltage Network Templates Project [37] is jointly 

commissioned by Western Power Distribution (WPD) in the 

UK and the UK’s regulator - the Office of Gas and Electricity 

Markets (Ofgem). WPD deployed monitoring equipment at 

800 HV/ LV substations and over 3,500 ends of LV feeders 

collecting network performance data. The variable data 

collection is on a 10-minute interval over the course of one 

year (2012-2013), including three-phase voltage, current and 

real power delivered at HV/LV substations.  

The smart metering data are from the Irish smart meter trial 

project [1]. There are 6369 customers with half-hourly 

demand recorded over one and a half years (2009-2011). For 

LV substations, daily load profiles will be assessed. For 

individual customers, both monthly average and daily load 

profiles will be assessed.  The data from LV substations are 

relatively smoother than smart metering data, which are 

extremely volatile. 

V. RESULTS FOR DISAGGREGATED LOAD  

A. Individual Customer 

The most unique characteristic of daily load profiles of 
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individual customers is volatility. Figure 4 shows the daily 

load profiles of customer 1002 in July 2012. The significant 

volatility of daily load profiles (grey) makes it inaccurate to 

represent them by average (red). It is also difficult to use any 

random day to represent the month unless some meaningful 

information can be extracted from these irregular load profiles.   

B. Load Characterization 

Theoretically, it is suggested that the volatile load profiles 

can be decomposed into more stable and meaningful 

components by DWT compared with DFT. The reason is that 

the DFT basis functions are periodic and stationary. It may 

require many high-frequency components to resemble the 

volatility of original load profiles. The shift of “needle peaks” 
from original load profiles may result in large variation in the 

DFT coefficients.  On the other hand, DWT is dynamic on 

both frequency and time domain, which enables it to capture 

the sudden spikes and hold the underlying trend at the same 

time. 

 
Figure. 4 Daily load profiles of customer 1002 in July 2012 

In this assessment, DFT and DWT are both used to 

decompose the daily load profiles of 6369 customers through a 

year. Figure 5 illustrates the decomposition by DFT. The 

volatile black line is the real load profile of a sample customer. 

The red line is its DC component representing the first part in 

(4). The remaining colourful lines are the AC components 

with different frequencies. Summing up these components can 

get artificial time series that resemble the original load profile.  

   

 
Figure. 5 Load profile decomposition by  DFT 

Figure 6 shows the decomposition scales from DWT. Each 

daily load profile in Figure 5 is decomposed by DWT into 4 

components: A3, D3, D2, D1, with scale from large to small. 

The observations are as follows. 

a) The approximation (A3) components describe the 

underlying trend of daily load profiles. For the same customer, 

A3 components are generally consistent through different days. 

With further classification of seasons, months and day types, 

the similarity is expected to increase. In Figure 6, Customer 

1002 shows a fundamental usage pattern of “double-peak” in 
July.  

 

 

 
Figure. 6 Decomposition scales from DWT for customer 1002 (coefficients 

multiplied by basis wavelets)  
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b) D3 and D2 components represent more random activities 

and short-interval usage (e.g. kettles). Figure 6 clearly sees the 

low-demand time from 1 a.m. to 8 a.m. (sleeping time) and 

busy time in the morning and evening. 

 
Figure. 7 Periodical sinusoidal components from DFT(basis sinusoids 

multiplied by coefficients) 

c) The D1 scale is the smallest scale. It contains random 

spikes which are possibly caused by the turn-on of some 

appliances. It is also noted that some of the D1 components 

are quite periodical, likely to represent white goods such as 

refrigerators.  

By contrast, the periodical sinusoidal components from 

DFT reveal less information as shown in Figure 7.  

It is found that DWT is better at load characterization by 

two advantages: i) DWT decomposes the load to more 

meaningful components; ii) the DWT coefficients are more 

consistent within the same customer through days.  

C. Low-order approximation 

A reduced number of the transformed coefficients can be 

used to re-construct the original load profile with errors. 

Hence, another assessment is to evaluate the trade-off between 

representativeness of the reconstructed load profile and low 

order approximation.  

The assessment has been conducted on all load profiles, 

reconstructing from low to high frequencies (large to small 

scales) by both DFT and DWT. Figure 8 shows the 

accumulated spectral energy by keeping different numbers of 

coefficients from DFT and DWT. We calculated the energy in 

the time domain, which gives the same results as (11) and (12). 

As shown in the figure, keeping all 48 coefficients, both 

methods will preserve 100% of the spectral energy in original 

load profiles while the first coefficient alone contains 20% of 

the original spectral energy. The observations are as follows.  

a) The first coefficient of both methods has around 24% 

spectral energy of the original load profile, which is 

consistently close with the load factor (average/peak) of the 

original load profile. It is expected because the DC component 

signifies the mean value of the original signal, and in our case 

(normalized load profile with peak “1”) the load factor is 

exactly the mean.  

b) The large-scale component of DWT contains more 

spectral energy, with over 99% spectral energy after first 6 

coefficients. The spectral energy is spread more evenly over 

DFT coefficients, reaching only 90% after 24 coefficients. It 

shows that with the same low order approximation, the DWT 

reconstruction will preserve more spectral energy of the 

original load profile.    

 
Figure. 8 Accumulated spectral energy by keeping different numbers of 

coefficients 

The data size of DWT can be further reduced by eliminating 

all “near-zero” coefficients within a scale. Especially the 

small-scale components of DWT, which are likely to see low-

demand for long time and only several spikes over a day, 

contains many coefficients close to zero. Eliminating those 

coefficients will hardly affect the reconstruction accuracy 

meanwhile reducing the data size considerably.   

To further compare the low order approximation ability of 

DFT and DWT, an extensive comparison is conducted 

between original load profiles and reconstructed load profiles. 

Four indices (PMEI, MME, MAPE and PTE) widely used in 

load profiling are adopted here as introduced in (13)-(16).  

6369 customers’ daily load profiles are reconstructed with 
different sizes of reduced data. The test is to find the minimum 

data size required to meet the reconstruction accuracy. In other 

words, the aim is to find the possible lowest order 

approximation while keeping the reconstruction error under 

the threshold. In this paper, as noted above the error threshold 

is set to be 5% for PMEI, MME, MAPE and 2 hours for PTE. 

It follows the previous studies [6] so that the results are 

comparable.    

 
 

Figure. 9 Percentage of customers who can be reconstructed under the 

threshold error with different data size 
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Figure 9 shows the percentage of customers who can be 

reconstructed under the threshold error with different data size. 

The abscissa axis is the data size (100%=48 coefficients) used 

to reconstruct the load profiles. For example, using half of the 

DFT coefficients, only 0.8% of the total customers’ load 
profiles (about 46 customers) can be reconstructed with an 

error below threshold. However, using half of the DWT 

coefficients, 58% of the customers’ load profiles can be 
satisfactorily reconstructed. Other main findings are as follows.    

a) The reconstruction can hardly meet the accuracy 

requirements with less than 20% of the coefficients for both 

techniques. The pass rate starts to increase when using more 

than 20% of DWT data. However, the DFT pass rate remains 

low until using more than 80% of its coefficients. For volatile 

load profiles, DFT needs relatively complete high-frequency 

component sets to resemble the sudden spikes while DWT can 

handle that with only a few small-scale coefficients.      

b) Even with all of the DFT coefficients below Nyquist 

frequency (47/48), still 2.8% (174 out of 6369) of the 

customers’ load profiles cannot be reconstructed below the 

threshold error. However, with 47 of the DWT coefficients, all 

load profiles can be successfully recovered. 

c) The largest gap between the 2 techniques occurs at 75% 

of the data size. Using 75% of DWT coefficients can recover 

96.7% of the original load profiles. However, only 4.2% of the 

original load profiles are recovered by 75% of the DFT 

coefficients. The difference is as high as 92.5%. The 

fundamental reason is probably that the natural shapes of 

smart metering load profiles are more coherent with the Haar 

wavelet than with sinusoidal waves. 

VI. RESULTS FOR AGGREGATED LOAD 

Different applications of load profiles focus on different 

aggregation levels. Some tariff design is based on aggregation 

over time while network planning pays more attention to 

aggregation over customers. We roll out similar assessments 

as in VI but on different aggregation levels. For aggregation 

over time, monthly average load profiles of 6369 smart 

metering customers are tested. For aggregation over 

customers, the daily load profiles from 800 LV substations are 

used.      

A. Monthly Averaged Load Profiles  

Figures 10 and 11 show the difference between monthly 

average and daily individual load profiles with heavily 

reduced data (80% reduction).  As shown in the figures, the 

performance of DFT is significantly compromised in low-

order approximation while the performance of DWT is much 

less affected. The black line in Figure 10 is the daily load 

profile of customer ID 1000 on 1st July 2012. The red line is 

the reconstructed load profile by the DC and first two 

harmonic components (5 coefficients). The blue line is the 

reconstructed load profile by the largest 6 DWT coefficients. 

Clearly, with similar data size, reconstruction of DWT is much 

better than that of DFT.             

 
Figure. 10 Daily individual load profile and low order reconstructions by DFT 

and DWT 

 
Figure. 11 Monthly average load profile and low order reconstructions by 

DFT and DWT 

In Figure 11, the black line is the average load profile of 

customer ID 1000 in July. It is smoother than the daily load 

profile. Using the same reduced data size to reconstruct the 

average load profile, DFT shows a much better performance 

compared with that on daily load. Although DWT still 

resembles the original load profiles better than DFT, the gap is 

substantially narrowed.  This is also illustrated by Figure 12, 

which is a comparable plot to Figure 9. It is the successful 

reconstruction rate for monthly average load profiles with 

different data sizes. The performance of DWT is very similar 

with that of daily load profiles. However, DFT shows an 

overall improvement. Using 80% of the DFT coefficients can 

recover 5.7% of the daily load profiles, but 48.5% of the 

monthly average load profiles. 

 
Figure. 12 Percentage of customers who can be reconstructed under the 

threshold error with different data size (monthly average load profiles) 

B. LV Substation Load Profiles 

The daily load profiles at LV substations are representatives 
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for aggregated load over customers. The assessment shows 

that when the load profiles are granular, DWT constantly 

performs better at low order approximation; however, DFT 

improves significantly as the aggregation level increases.  

Substations are assessed by their customer sizes. In order to 

demonstrate a continuous change of customer size, some 

individual customers load profiles are added onto the 

substation artificially. Figure 13 shows the average minimum 

data required to reconstruct load profiles of different customer 

groups. As the customer size increases, load profiles are more 

aggregated and smooth. Naturally, the data size required to 

reconstruct the load profiles decrease for both techniques. The 

interesting findings are as follows.  

 

 
Figure. 13  Average minimum data required to reconstruct load profiles from 

DFT and DWT coefficients for different customer groups ( PMEI, MME, 

MAPE< 5% and PTE<2 hours) 

a) When the customer size is small, DWT is generally 

superior to DFT. However, when the customer size increases 

over 400, DFT requires less coefficients than DWT in terms of 

reconstruction.  

b) Further, when the customer size is larger than 450, the 

DFT steadily requires only the DC and the first harmonic 

components (first 3 components, 12% of the coefficients) to 

fulfil the reconstruction. This figure further becomes constant 

when over 700 customers.   

c) In contrast, DWT on average requires 48% of the data to 

reconstruct small group of customers’ load profiles. For larger 
groups, it on average requires 17 (35%) of its coefficients with 

some fluctuations.   

VII. CONCLUSION 

This paper presents a load characterization method for 

smart metering data based on spectral analysis. Assessment of 

the low order approximation performance has been conducted 

for load profiles at aggregated and disaggregated levels. The 

two tested spectral analysis techniques, DFT and DWT can be 

viewed as two extreme cases. In DWT, Haar is chosen as a 

compact wavelet while the sinusoidal wave in DFT gives a 

global support. The key findings are as follows. 

i) At disaggregated level, DWT can characterize load 

profiles into more meaningful and consistent components 

compared with DFT. 

ii) At disaggregated level, DWT is also more effective in 

terms of low order approximation than DFT. DWT can 

reconstruct the original daily load profiles using less 

coefficients while maintaining high representativeness. 

iii) However, at more aggregated level, the performance of 

DFT is substantially improved. The performance of DFT 

becomes stable and superior to DWT when the aggregation 

level is sufficiently high.  

Based on the results, DFT could be effective for load 

profiling at high-aggregated level while DWT is more 

promising at granular level. The results of this paper will 

provide a valuable reference on the choice of techniques at 

different aggregation levels.  The case study of load 

characterization in this paper could support the following 

research:  

 Forecasting: the load at household level is extremely 

volatile and thus difficult to be forecasted. Our work 

could be used to filter out those volatilities and focus 

on the residues.  

 DSR: the design of demand side response at domestic 

homes is usually based on TLPs. The error in TLPs 

may causes inefficient operation and control for 

domestic household. Based on the results, future 

work will focus on the classification and load 

profiling of the diverse end customers. 
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