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LOAD FLOW CONVERGENCE IN THE VICINITY OF A VOLTAGE STABILITY LIMIT

*S. Abe N. Hamada

A, Isono K. Okuda

Hitachi Research Lab., Hitachi, Ltd
Hitachi, Ibaraki, Japan

ABSTRACT

Because load flow problems are expressed as sets
of nonlinear simultaneous equations, they have no
unique solutions. In this paper a region where a set
of initial values converges to a stable load flow solu-
tion under specified conditions, is investigated theo-
retically when the Newton-Raphsdn method is applied to
a set of nodal power equations expressed in either po-
lar or rectangular coordinates. The results are tested
in load flow calculations on a 28-node power system and
the convergence characteristics for the two types of
coordinates are compared.

INTRODUCTION

Because of the increasing difficulty of obtaining
power plant sites in the vicinity of power consumers,
electrical power is now often transported through large
capacity lines over long distances from power plants to
consumers. Under these circumstances, in order to
insure the stable operation of power systems, it is

necessary to study the voltage  stability of power
systems, as well as the steady state and transiigg
stabilities. Several papers on voltage stability

have been presented recehtly.

In load flow calculations, loads are usually rep-
resented by constant real and reactive powers, which
have voltage characteristics severer than actual loads
have from a standpoint of voltage stability.
Therefore the voltage magnitudes at the voltage stabi-
lity limit are higher than those under actual operat-
ing conditions, and the values obtained for a stable
dolution approach those obtained for unstable one.
Therefore, a careless selection of initial values may
cause load flow calculations to diverge or even to
converge to an unstable solution.

Several attemptss_7 have been made to clarify load
flow convergence. In [5], a modified Newton-Raphson
algorithm, which suppresses excessive voltage correc-~
tions by using the Hessian matrix, is proposed to im-
‘prove load flow convergence. In [7], a region where a
‘set of initial values converges to a stable solution
under specified conditions, when the Newton-Raphson
‘method is applied to a set of nodal power equations
“expressed in polar coordinates, is investigated theo-
retically.

F 78 007-7, A paper recammended and approved by
‘the TEEE Power System Engineering Committee of the
IEEE Power Engineering Society for presentation at the
‘IEEE PES Winter Meeting, New York, NY, January 29 -
February 3, 1978, Manuscript submitted July 22, 19773
made available for printing November 1, 1977,

In this paper the results obtained in [7] are
first summarized. Then a convergence region for
rectangular coordinates is discussed and compared with
one for polar coordinates. The results are further
exemplified and compared in load flow calculations on
a 28-node power network by varying the set of initial
values.

CONVERGENCE REGION OF LOAD FLOW CALCULATIONS

For an (N+M)-node power system, let nodes 1 to N
be nodes where real and reactive powers are specified,
nodes N+1 to N+M-1 be nodes where real powers and volt—
age magnitudes are specified, and node N+M be the slack
node. Then a set of equations for a load flow ~ problem
is given by (I3), (I4) and (I7), in Appendix I, ' where
k., = 0and c, = 0 in (I7). Under light load conditions,

ere is a,sOlution whose reduced Jacobian matrix
F1 - AlA F2 is' an M-matrix as can be seen from Appen~
dix I. gy 1Gading-gradually, a solution whose Jacobian
vanishes may be obtained, and a load condition heaviex
than that under which the Jacobian vanishes may give
no load flow solution. But so long as solutions exist,
there is a unique solution  whose reduced  Jacobian
matrix is nearly equal to an M-matrix, because among
the conditions which specify an M-matrix, the one that

states that the reduced Jacobian be positive  is the
severest possible condition, and because the sign of
the reduced Jacobian coincides with that of the Jaco-
bian when a phase difference across any line is less

than /2. (See Appendices I and II.)

From a voltage stability standpoint, the load flow
solution that is wanted is the solution whose reduced
Jacobian matrix is nearly equal to an M-matrix. A so-
lution which satisfies this restriction under specified
conditions is called a stable solution, - and solutions
which do not satisfy it are called unstable solutions
hereafter.

Applying the Newton-Raphson method to the set of
equations (I3), (I4) and (I7), where ki= 0 and ci= 0
gives

V(\H-l?: V(nl + Av(nl _______________________________ w
0(n+l3:0‘nl + 0(n) _________________________________ @
. Ay Y ! Fi A, tnre py ()
FT =
N Fa: A2 N
©Ntn?
fq "
it I B @)
fp

where n denotes the n-th iteration of the calculations.
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In [7], a region where a set of voltage magnitudes
converges to a stable solution is theoretically studied
when initial phase angles are set to zero and the
Newton-Raphson method is applied to the following equa-~
tions, instead of (I3), (I4) and (I7).

g8Q = 0 oo e @
gp = 0 cromommmmseseecoesees ®
where g =(g e B )T, e =(¢g )T
Q Qsl »Eq N/ 2 Ep P,y o, 8p ,NeMat
and 8q,; =fa,i Vi, gp,; =fp,; Vi
The results show that a stable solution is obtained

when a set of initial voltage magnitudes is selected so
that the reduc?g)Jacobian matrix is nearly equal to an
M-matrix for © = 0. (See Appendix I.) The process of

converging to a stable solution is as follows: At the
first iteration all voltage magnitudes are corrected
higher than those characteristic of a stable solution.

They then decrease monotonously and converge to those
characteristic of a stable solution. The monotonous
convergence of phase angles cannot always be guaran=-
teed.

These results were strictly proved for the case
given in (4), under the condition P .= 0(i=l,...,N+M-1).
The analysis was then extended to the general case
given in (4) and (5), under the assumption that “the
effect of small changes in g_ on AV is very small com-
pared with that of small changes in g_. Ioad flow cal-
culations carried out with (I3), (I4)Qand (I7), on a
28-node power network showed that the selection of Ilow
voltages made load flow calculations diverge even when
the reduced Jacobian matrix was set nearly equal to an
M-matrix. An examination of the calculation process
revealed that this divergence was caused by large phase
angle corrections at the first iteration. When the
phase angles w?ﬁ? not correct?f)at ?B? first iteration,
namely when AS8 = 0 (hence 6 =8 = 0), a stable
solution was obtained, so long as the reduced Jacobian
matrix was set nearly equal to an M-matrix. As the
selection of high voltages causes the reduced Jacobian
matrix to become an M-matrix, this selection is suffi-
cient to provide for the stable convergence of a load
flow problem.

CONVERGENCE REGION OF LOAD FLOW CALCULATIONS
EXPRESSED IN RECTANGULAR COORDINATES

For an (N+M)-node power system, let nodes 1 to N
be P-Q specified nodes, and nodes N+l to N+M~1 be P-V
sbecified nodes and node N+M be the slack node, as in

the previous chapter. A set of equations for a load
flow problem is
fq = 0-- e ®
fy = 0 -mrmmmemroemmeeoomeo oo m oo omesmossommom oo ]
fp = 0==-m—mmmmmmmeeee S ®

where fv=1{(fv, , s ty,m_1)T

and fv,lz %(E;’+Nz+ Eil“-NB)-Ll+N

] + S s
Ei+N JE 14N complex voltage at node i+N
V4 2Ly ° specified voltage magnitude at node i+N

Applying the Newton-Raphson method to (6), (7) and

(8), where E! and EY} are independent variables, yields
r i

{(n+1) (n? {n)
E'"T =g’ + ap’

E”(n+|):E,,(nl+ AE”(“' - -0
8fq/0E’ 8tq/0Er ) '®
AR Y
0tv/9E’ dfy/9E"
AEY
fp/OE’ 2fp/OE"
fq tn)
e I I e R a
. tp

where E’/=(E/, o+, Eneym_s )"

B =( Ev/y oty ENeM-1 ) T

In order to clarify the correspondence between (3)
and (11), (11) is expressed in polar coordinates.

Let EyY =Vj cos 6
i =1, 00, NM-1mmmmmmmmmm oo )
Ei?=V; sin 8;
or ‘
Vi=+ Ef{? + E;”?
T NPT | (o (R ——— @
tanf; = E* /E;'
then )
aVv; E;’
'aEil Vi
84, Ey”
_— = 0082 8§ oo 44
6Ei' Eilz
6V71 E;”
AE "V,
56, 1
— = cos? B,
9E” E;’
In view of (14), (11l) becomes
(otq 8fq 9tgY'™’
v av’ g
H He '™ AR R
ofv
0 0
av
Hs Hs AaE?
9fp dfp 9fp
ov ov’ 90
~ P
fq tn)
= - fv | e e 19



where vy

(Vi ey vn )T
V= (Vg1 , o Vaeme1 )T
and Hl,...,H4 are the diagonal matrices ang, .
Hi=diag(E1’/ Vi, o, E'NeMo v/ VNe M- 1)
He=diag(El// Vi, ,EfiMma1 ./ VNiM=1)
Hy=diag{ ~E1/cos®f; /E/?2,

ZE'Nem- 1)

cor,~EfNgm-t1 cosP iy pmon

Hi=diag(cos?h/Er/, s, cos? Onup_1/E NppMar)

Defining
av
H: H: AR’
av/ e N T B i)
Hs H, AEY
af
..Then, (15) becomes
r N tn?
9 1fq d1tq d91q (AV\(H'
v av’ o0
0fy
0 0 av’
av’
8 fp dfp 9fp
- af
L av oV o0 P " P
fg (n}
=) iy - - )
fp
which is equivalent to
(n)
3fv n
= Svr AV'( ) = fv(n) _________ )
F] Al (n) AV tn? fQ tn)
Fa A of fp
{n)
ot
__Q_ AV
av’
- - ---- - 49
ofp ' .
av!’
v
When there are no P-V specified nodes, (19) coin-
cides with (3). But this does not mean that the con-

vergence processes for rectangular and polar coordi-
nates are the same. Because the initial voltage magni-
tudes selected for P-V specified nod?ﬁ)are the same as
the spec%g}ed voltage magnitudes, £ = 0, and there-
fore AV' = 0. Therefore for the first convergence
iteration( n = 0 ), (19) coincides with (3).

1985

The set of equations (9), (10) and (11) can be
solved for according to the procedure shown in Fig. 1,
which is explained as follows:

(n) (n)
1) T sform E!

(-)JEralSl by (13).
2) Solve (17) for AV

3) Solve (16) for E'
(n+l)’ and E"

and E" into v®, v ®  anq

, AV (n)

and E"
(n+1)

(n)
(n}

and Aén).
(n) .

4) Obtain E' from (9) and (10).

T A
E" v
nN<n+l 1

: Eq.(6)

© .
Eq.(17)

: }

AEl (n) AV' (n)

Gunnen | AV
Eq.(16) 40)

En {(n+1)

" G
E AE
Eqs.(9),010)

Load Flow Calculations
in Rectangular Coordinates

Fig. 1

If the changes in voltage magnitudes and phase
angles that occur at each iteration were small, a con-
vergence process that uses rectangular coordinates
would be almost the same as one that uses polar coordi-
nates, but because the changes that occur during the
first few iterations are usually large, a convergence

process that uses rectangular coordinates is not the
same as one that uses polar coordinates, And (1) and
{(2) do not generally hold for this procedure, but the

following equations do hold for voltage magnitudes. (See
Appendix III. )

V(n+ll > v(n) + Av(n'
v,(n«i-l'2 V,(n) +AV'(n) _______________________ ®
The following equations hold for the first iteration
for the phase angle at node i, (See Appendix III.)
)
(n 1 aby
04 - @, AR, (01 TTTTET T @
1+ T
i
As o, >1, for AE§0)> 0
i i
18, ™1 < 1480, 1 ®
As (19) coincides with (3) for.the first itera~-
tion, so the voltage magnitudes given by (9), (10) and
(11) are higher than those given by (1), (2) and (3)

for the first iteration under the conditions:

B (0]= 0(0)20
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and o y'o
E' =
E
And if AE!(O) > 0, the corresponding absolute values

for phaselangles given by (9), (10) and (ll) are small-
er than those given by (1), (2) and (3). This general-
ly enables the load flow calculations expressed in rec-
tangular coordinates t? convergellso)}syg as the re-
a d Ja ian matrix (F. - A A F evaluated
V?S?, Y6?8? and 6%6}, wh%ch a%eztragsformed from E’(B¥
and E" is set equal to an M-matrix. In the case
where the reduced Jacobian matrix is set equal to an
M-matrix, which causes the corrected voltage magnitudes
to be higher than the magnitudes in a stab%s) solution,
and where a low voltage is selected, AE! > 0 and,
therefpre, large phase angle corrections are sup-
pressed. As the voltage magnitudes obtained with rec-
tangular coordinates are always higher than those ob~-
tained with polar coordinates, from (20), the reduced
Jacobian matrix will not deviate from an M-matrix af?sf
the second iteration. So iYO}S concluded that if E"

is set equal to zero and E' is set so that the c?BT
respo?g}ng redu?8§ Jacobian matrix evaluated by Vv
(= E' } and 6 (=0 ) is nearly equal to an M-
matrix, the load flow calculations in rectangular coor~
dinates will converge to a stable solution under the
specified conditions. But a monotonous voltage de~
crease after the second iteration is not always guaran-
teed, as is the case with polar coordinates, although
the corresponding changes in voltage_magnitudes may be
negative after the second iteration.

EXAMPLE

Figure 2 is the 28-node sample system used in [7].
Load flow calculations were carried out for the same
set of initial values with both polar and rectangular

coordinates in order to clarify the differences in ‘the

convergence processes characteristic:of the two types.
In Fig. 2 node 28 was selected as the slack node and
the voltage magnitudes at nodes 23 to 28 were set at
1.05 p.u.. Table I shows line impedences and Table II
shows specified generation, loads and shunt capaci-
tance. Table ITII shows two solutions obtained under
the conditions given by Tables I and II. The reduced

Jacobian matrix evaluated by SOL 1 was an M-matrix,
byt the one evaluated by SOL 2 was not. So SOL 1 and
SOL 2 correspond to stable and unstable solutions,

respectively.

A convergence test was made with

tn)

1AEY 1<1.0X1078

1aE; " ™I<1.0%107
for rectangular coordinates, and with

(m

laVv; "1 <1.0x107%

146, ™1 < 10x10"8

for polar coordinates. A tolerence of 1.0 X 10-5 was
selected for a monotonous voltage convergence test.
Table IV shows the n er of(oyonvergence itefai
tio?s)for 5 cases where 0 ( E" ) = 0 and Vi
(B' ) = 1.0 Y8)0'58 ?0?" As can be seen from the
table, when A8 (AE" ) X 0, the phase angles (the
imaginary parts of voltages)(B?re cois?cted from the
first iteration, and when A6 (AE" ) = 0, they were
fixed to zero for the first iteration. The reduced
Jacobian matrices for the first four cases were M-
matrices, but the matrix for the last was not. The
theoretical investigation in the previous chapter
indicates that whether the load flow calculations are
expressed in polar or in rectangular coordinates, they
will converge for cases 1 to 4, but not for case 5.
However in actual calculations, while this was true for
rectangular coordinates, it was no?ofrue for polar co-~
ordinates in cases 3 and 4 when A8 % 0. Although the
corrected voltage magnitudes were higher than the mag-
nitudes in a stable solution, large phase angle correc-
tions occured, and therefore, the calculations di-
verged. This means that if the phase angl?ﬁ) are not
corrected at the first iteration(namely A8 = 0), the
calculations will converge. Table IV shows this did
indeed happen. The calculations expressed in rectangu-
lar coordinates for cases 3 and 4 converged even when

Fig. 2 Model Power System
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Table I Line Impedences Table II Spe01€1ed Generatlpn, Loads and Shunt
Capacitance (in p.u.)
Node Node Susceptance of Generation Load
i-3 Impedence i-1 Impedence . Node Shunt Capacitance P ir_____é
1-22 0.0140 + j0.07 13-21 0.0296 + j0.148 1 1.2069 1.45 0.5
2-21 0.0078 + j0.039 13-22 0.0242 + j0,121 2 1.0252 2.65 -0.22
3-20 0,0058 + j0.029 13-26 0.0070 + j0.035 3 2,0804 3.81 0.26
4-19 0.0054 + j0.027 13-28 0.02 + jO.1 4 1.6665 3.84 -0.02
5~ 6 0.0070 + j0.035 14-15 0.0068 + j0,034 5 1.5422 3.74 0.34
6-16 0.0062 + jO0.031 14~20 0.0038 + 3j0,019 6 1.29 0.03
6-17 0,0010 + j0.005 14-27 0,0112 + j0,056 7 1.0042 1.35 0.58
7-17 0.0196 + j0.098 15-16 0,022 + j0.11 . 8 0.2080 0.608 0.07
8~18 0.028 + jO.14 16-17 0,0054 + 3j0.027 9 0.4476 1.18 -0.18
9-15 0.0118 + j0.059 16~23 0,0070 + j0.035 10 0.7768 0.75 0.44
10-15 0.0294 + j0.147 16-28 0.0054 + j0.027 11 0.5868 1.39 0.52
11~-12 0.028 + j0.14 17-18 0.0072 + j0.036 23 1.91
11-25 0.0258 + j0,129 18-24 0.0104 + j0.052 24 4.40
12-14 0.022 + jO.11 19-20 0.0038 + j0,019 25 0.49
12-16 0.0062 + j0,031 20-21 0.0076 + j0.038 26 3.90
13-14 0.006 + 3j0.03 20~22 0.0128 + jO.064 27 1.52
Table III Load Flow Solutions
Voltage Magnitudes Phase Angles Voltage Magnitudes Phase Angles
Node (in p.u.) . (in degrees) Node (in p.u.) {(in degrees)
SoL 1 SOL 2 SOL 1 SOL 2 “SOL 1 SOL 2 SOL 1 SQL 2
1 1.0000 0.7409 -47.99 -62,55 15 0.9799. 0.8499 -31.53 ~37.42
2 1.0000 0.7626 -51.77 -68.50 16 1.0038 0.9730 -11.52 -12.64
3 1,0000 0.7578 -50.45 -66.15 17 0.9949 0.9654 -13.57 -14,85
4 1.0000 0.7311 -54.68 -73.86 18 1.0017 0.9838 -5.99 -7.05
5 1.0000 0.9655 ~22,68 -24.52 19 0.9817 0.7426 -48.08 -62,36
6 0.9940 0.9637 -14,60 -15.94 20 0.9768 0.7666 ~43.33 -54.64
7 1.0000 0.9628 -21.70 -23.47 21 0.9787 0.7617 -45.14 -57.61
8 1,0000 0.92809 ~11.08 -12.32 22 0.9772 0.7659 -41.45 -51.71
9 1,0000 0.8644 -36.04 -43.34 23 (1.05) (1.05) ~-8.28 -9.66
10 1.0000 0.8290 -38.58 -46.65 24 (1.05) (1.05) 6.25 5.21
11 1.0000 0.9697 -25.56 -28.71 25 (1.05) (1.05) ~22.56 ~-25.97
12 0.9864 0.9312 ~17.58 -19.62 26 (1.05) (1.05) -19.23 -24.80
13 0.9850 0.8864 -26.27 -31.37 27 (1.05) (1.05) -29.36 ~37.52
14 0.9792 0.8424 ~33.44 -40.42 28 (1.05) © (1.05) (0.0) (0.0)
( ): specified Values.
Table IV Numbér of Iterations with Polar and Rectangular Coordinates
0 0) (0)
case v, 00 det ¥, (0 get 79 Is 80 o A6 =0
Number(E.%?), E"%P)) 1 M-matrix pRectangular Polar Rectangular Polar
i i Coor. Coor. Coor. Coor.
1 (1,00,0,.0) 6.78 X 1031 1.29 X 1070 YES 12 7 10 8
2 (0.80,0.0) 1.70 X 1029 7.98 X lO62 YES 10 2 8 9
3 (0,70,0.0) 2,93 x 1027 2,55 X 1058 YES 15 Diverged 10
4 {(0.60,0.0) -7.20 X 1023 1.07 X lO52 YES 16 Diverged 15 14
5 (0.58,0.0) -3.74 X 1024 -3.06 X 1051 NO Diverged Diverged Diverged Diverged




1988

o

»

N

o

VOLTAGE MAGNITUDES IN PU.

O 1 2 3 4 5 6

NUMBER OF ITERATIONS

PHASE ANGLES IN DEGREES

o 1

2 3 4 5 6.
NUMBER OF ITERATIONS

x--- POLAR COORDINATES
o--- RECTANGULAR COORDINATES

Fig. 3

A6(0)¥0. This was due to the suppression of large phase
angle corrections described above. When polar coordi-
nates were used, the number of iterations increased
monotonously in inverse proportion to the magnitudes of
the initial voltages that wereselected. However, when
rectangular coordinates were used, the increase ': was
monotonous and in inverse proportion to the magnitudes
of the initial voltagesonly for cases 2,3 and 4, This
suggests that although a convergence region obtained
with rectangular coordinates may be wider than one ob-~
tained with polar coordinates, the convergence with
rectangular coordinates is less stable than that with
polar coordinates. This is closely related to the fact
that voltage magnitudes decrease monotonously with po-
lar coordinates but not with rectangular coordinates.
In the case of polar coordinates, all voltage magni-
tudes converged mo?8¥onously from the second iteration,
foio?ase 1 when A9 % 0, and for cases 1 to 4 when
A® = 0. But in the case of the rectangular coordi-
nates, some voltage magnitudes of some iterations did
not converge monotonously.

Figure 3 shows the convergence processes at node 3
for case 1. Voltage magnitudes with both types of coor-
dinates converged monotonously from the second itera-
tion. For the first iteration the voltage magnitude
for rectangular coordinates was higher than that for
polar coordinates, and the absolute value for the
phase angle was smaller, which exemplified the first
investigation.

DISCUSSION OF RESULTS

Theoretical investigations and load flow calcula-
tions show that a region where a set of initiiﬁ) va}B?s
converges(s? a sYa?le solution is given by © (E” )
= 0 and V (E' ), which is chosen so that the re-
duced- Jacobian matrix is nearly equal to an  M-matrix.
Because setting the reduced Jacobian matrix nearly
equal to an M-matrix requires the selection of high
voltages, it is enough to select high initial voltage

Voltage Magnitudes and Phase Angles at Node 3 From the Newton-Raphson Solutions for Case 1 (A6

0
© 0

magnitudes, without carrying out matrix calculations.

The above method guarantees a stable solution
under specified conditions and corresponds to an actual .
stable operating point when the P~V  specified nodes
correspond to generator nodes and the P-Q specified
nodes to load nodes, since there will be no loads that
have severer voltage characteristics than constant
power characteristics. If there are some P-V specified
nodes which correspond to load nodes, a stable solution
will not necessayily coincide with an actual stable
operating point,

CONCLUSIONS

The Newton-Raphson method was applied to a set of
nodal power equations and the region where a set of
initial values converges to a stable load flow solution
under specified conditions, was studied and clarified.
The results indicate that the selection of high  volt-
ages, under the condition that the phase angles {or the
imaginary parts of voltages) are set to zero, guaran-
tees convergence to a stable solution, if one exists.

Theoretical investigations and load flow calcula-
tions showed that the stability of the convergence
processes obtained with polar coordiantes is superior
to that obtained with rectangular coordinates, although
the size of the convergence region may be smaller.
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APPENDIX [

Power System Voltage Stability

For an (N+M)-node power system with M power
sources and N nonlinear loads, voltagf §t25ility crite-
ria have been given by the following:~’~¢

dV;

i for almost all the combinations of (i,3j),
dE; where i = 1,,..,M, j =1,...,N (I1)
dv; for almost all the combinations of (i,j),
db; where i,j = 1,...,N (I2)

where node numbers for loads are assigned from 1, to N,
and those for sources from N+1 to N+M,
and V, : voltage maénitude at node j

j
Ei = VN+i: Source voltage magnitude at node N+i and
is assumed to be constant

b, :

i susceptance of shunt capacitance at node i.

Stability criteria (I1) and (I2) have be§n4further
sophisticated by using M-matrix properties,™’ For
nodes i = 1,...,N, the following 2N nodal power equa-
tions hold:

fa,i =Q; + i+ 2 Q == Qe e I3

Qsi Q; Qb LGSQi'£ . ( )

fp,i =P; + Py P;4 =0
LESi

where Si : set of node numbers with lines connected to
node i

P : real power consumed at node i

i
Qi : reactive power consumed at node i
Qbi : reactive power fed from susceptance bi at
node i '
P'k : real power flow from node i to node k at
* node i
Q., : reactive power flow from node i to node k

at node i

and they are given, respectively, by

P; =P, v; ™!

Qi =Q,; vy

Qbi=-b; V;?

Qix =-Bikx Vi®* + By Vi Vi cos(8; ~8y)
~Gijx ViVksin(8; -8, )

Pix=-Bix Vi Vg sin(f; ~f; )+Gi {V;®-V; Vg
cos(f; -0y )}

i,k =1, ,N+M

1989

where §, ; voltage phase angle at node i in reference
to node N+M
Gik + jBik ; complex admittance of line from node

i to node k

Let the incremental generated outputs for the in-

crease of the total transmission loss and of the total
power consumed by loads be given by,
dfp ,N+i =d (Pyyi + 2 Py ,4)
L8N, 1
N+M
~k; d{ Pross + X Pj )=0
i =1
P=1, cee M=l mmemmemmmo oo (I6)

where ki are incremental factors of the generated out-
puts at node N+i and satisfy

M

Y k;i=1 and ki =0

i=1
and P is the total transmission loss and is given

LOSS
by
N+M
PrLoss = Piy =2 (Pij+ Pyy)

iaj=1 (i:j)
i i

=X G {Vi2+V32-2VyVy cos(0;-6;)}
(3 ,5)

where (i,j) are all combinations of node numbers corre-
sponding to both ends of lines.

Let ki be constant and integrate (I6)

. N+M
fp N+i =PNss + 2 Pn+i,£ -k; (Progs +2 Pj)
LESN. 5 jer
+c; =0
i=1 ,¢ ,M-1 -=-rmemmmoo (17)
where Ci are integral constants and
M
2 ey =0
i=t
Let, fq=0(fq,1,*", fo N )T
fp = ( fp,, ’fP’J)T
V= (Vi, -, Vn )T
6= (0,,,0;)"
E=(Ei, « ,By-1)"
= ( bl b .-.,bN )T
J=N+M-1
Then taking small increments in (I3) and (14), and
combining them with (I6) yield
diq/ 0V 8fq /00 dV/dE
afp /6V 0fp 080 d0/4dE
0fq/0FE
=1 e (I8)

0fp/0F
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0fq /0V 0fq/00 dv/db @fq/8b
9fp /0V  d8tp /00 df/db dfp /8b
Vi ? 0
e T £ I (19)
. -
Letting
.- Fi oAy 0fq 8V 0fq /86
F2 A dfp S0V ofp /040
Cs 0fq /OE D dfg b
Cs ofp /BE |, | o 8fp /9b

and eliminating 40/dE and d6/db in (I8) and (I%) give,
respectively, to
GdV/dE=Ci -~ A1 A2 "1 Cp --m-mmmmmmmmmmoooeoes ([10)
G +dV/db =Dy ------mmmmmmmmmmmmommomoooooeees (I11)

where G = F_-A_A _1F and G is called the reduced Jaco-
. .1 712 2
bian matrix,

From (I10) and (Ill), it is clear that the sta-
bility criteria (Il) and (I2) are equivalent .t the
conditions that almost all the elements of G and
Cl— AlA C., are positive. _Ynder light load condi-
tions; 8 = E and C_ - A_A C, = C. hold. Becausa the
elements of % are non—negatiYe, %he load voltage is

stable, if thé elements of G are all non-negative.

This is equivalent to the condition that G is an M-

matrix, because the off-diagonal elements of G are ' all
non-negative. (See Appendix II,)

Under heavy load conditions, there can be some

the term

posigive off-diagonal elements in G due to
A A_ "F_. Therfore, G cannot be an M-matrix in a
s%rgct Sense. But so long as the absolute values of
positive off-diagonal elements are small compared with
those of negative off-diagonal elements, elements of
G ~ can be non-negative from the continuity of matrix
inversion. Hence the stability analysis is made by the
following two steps:

(i) o©Off-diagonal elements of G corresponding to the

non-zero, off-diagonal elements of Fl agi all
non-positive, and elements of C_- A."A 02 cor~
responding to non-zero elements of “C_ "are all

K 1
non-negative,

(ii) All principal minors of G are positive.

The matrix G which satisfies the above conditions is
called to be "nearly equal to an M-matrix".

Now assume that A, is an irreducible matrix and so
is G. This is an apprOpriate assumption because if A
is reducible, the power system studied can be divideé
into two or more subsystems and voltage stability can
be analyzed independently in each subsystem where

corresponding matrix Al is irreducible.

Among the conditions that the principal minors of
G are positive, the one that the determinant of G is
positive is the severest, from Theorem 3 in  Appendix
1T, Therefore, the following stability criterion can
be used under the normal operating conditions:

L e (I12)
When a phase difference across any line 1is less
than w/2, which holds for the normal operating condi~
tions, matrix A_ is an M-matrix from Theorem 4, there-
fore, det Az > 0. And as
det F —=det G-det A
stability criterion (I12) is equivalent to
det F > 0--m=-mmmmmommomee e --- (I13)
which coincides with one proposed by Venikov in [5},
when k, = 0, i =1,...,M~1 and k_ = 1 are assumed in
M
(I6).
M—matrixs'9
Theorem 1 For a square matrix A = (a,.) with non-
positive off-diagonal elements, the foliawing two con-~
ditions are equivalent:
1) All principal minors of A are positive.
2) Matrix A is non-singular and elements of A-l are

all non-negative.

Definition 1 A matrix which satisfies either of the
above conditions is said to be an M-matrix,

Definition 2 An n X n matrix g said to be reduc-
ible if there exists an n X n permutation matrix P such
that

Ain Ap
PAPT = | L ()
0 Ags
where All: r X rmatrix and 1 < r < n
A22: (n-r) X (n-r) matrix

A matrix A is irreducible if no such permutation matrix
exists.

Theorem 2 Let A be an M-matrix. Then elements of A_l
are all positive if and only if A is irreducible.

If for €
matrix,

Theorem 3 Let A be an irreducible matrix.
> 0, A+ €E is an M-matrix where E is a unit
then proper principal minors are all positive.

Definition 3 An n X n matrix A = (ai.) is said to be
diagonally dominant if J

L3

lagj 1 > 2

is1

ixi
holds for all 1 < i < n, An irreducible matrix A is
said to be irreducibly diagonally dominant if for at
least one i, the strict inequality holds,

Theorem 4 Let an irreducibly diagonally dominant ma-
trix A have non~positive off-diagonal elements and



pgiitive diagonal elements, then A is an M-matrix and
A > 0.

APPENDIX IIT

Proof of (20)

From (16),

(Ei'(n)A.Eil(n)+E;”(nlAEi” (n))

:Also from Fig.l and (IIIl),

(vi ‘U =(Ey M +aEy M) 4 (B M+
VAR AT
AEj )

¢

=(vy e v Mav Y 4 (aE; ' )

¥

+ (AEi ntn )2

Hence

(Vi(n+ll)2_ (Vi (n)_l_ Avi(n))2=(AEi’(n,)2

+ (aB My o (av; M)

1 .
:_(“;/""(—,,)_)2 {UE: )2+ (B )2 )((aRy )
i .

+(AEi”(n’ )27 - (Eil‘n,AEi"n’+Ei”(n,AEi”(n,)2}

1 (n) (n) ytnd) ., tn}
= v ETURN )2‘ (Ey” ARy’ -E;’ "aEir V)20
iv

Thus (20) holds.

Proof of (21)
(0) (0)

As ei = 0, and E; = 0,
10}
¢ AF; 7
tanf “-tanﬂi = tant; V= B, 4 , ()
i AE;
AE{I/(O) 1
o © . P T2 L — (m2)
14+ —
Ei/0)
By Taylor's formula,
(ay__ (n
tanfly =248, + (4 + tan? '9il(”)(ﬂi ‘”)a
= {1+ (F+tan26,” V) (6, )2y,
AN (28}
B — (ms )

where o<1 6, i< y0, 'V
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From(13),
)
AR/
to) i
aby M= g (1m4)
By
Hence from (III2), (ITI3) and (III4),
1 ~f, (0)
8. =
i o AF; )
1+ (o)
i
As o, > 1,
i
16,1 < 126, "4
holds for AE{(O) > 0.
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Discussion

G. K. Rao (Institute of Technology, Banaras Hindu University,
Varanasi, India): The authors are to be complimented for yet another
valuable addition to the literature on analysis of load flow convergence.
They derived necessary conditions underwhich the Newton-Raphson
(N-R) ioad flow solution converges to a stable solution space under cer-
tain operating conditions. Also investigated is the effect of the coor-
dinate system (polar or rectangular) on convergence.

Venikov et al [5} examined a similar problem through a modified
N-R method where, as the authors rightly pointed out, the over correc-
tions to the state vector are avoided by multiplying the state vector cor-
rections by a parameter A. This parameter is computed through the Hes-
sian matrix at the current iteration of the load flow equations. The Hes-
sian matrix makes the procedure tedious although it ensures con-
vergence where the usual N-R method does not converge because of the
possibility of the Jacobian becoming singular during solution.

A similar parameter—corrected N-R method was suggested
elsewhere [10] in Russian literature which to the discusser’s knowledge
did not appear in English.

The linearised recurrence equations of the N~R solution are written
as

x]40 =[x}V — AT} [Af]. (D1)
For 2 = 1, (D1) reduces to the usual N-R procedure. The parameter 2 is
computed as follows:
Let x® be the initial approximate solut:on
1. Compute F @ = X, Af? (x')
2. With A = 1, Compute Ax‘® and update x
X(l) — X(U) + Ax(ﬂ)
3. Compute F™V = %, Aff (xV)
4. If F¥ < F, then x‘¥ is in solution and go to (2). If F* 2 F(®
make A = Y2 and update x‘* by
x(l) = X(O) + 1/2 AX(OJ

Compute F" at this point and verify if F©" < F®_ If yes, go to (2)

else reduce A further by half until F** < F® by
x4 = x4 (14" Ax" before going to (2).

As the authors of [10]} showed, the method always works provided
the Jacobian does not change sign during the solution. The procedure
converged for systems for which the usual N-R method did not. For
systems where the Jacobian changes sign the procedure suggested in [5]
or the favorable starting solutions as suggested in this paper could be ef-
fectively used.

Would the authors please comment if they tested their method in
polar coordinates with ail nodes (except slack) as P-Q nodes. The
discusser thanks the authors for making available a copy of their paper.
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Kavuru A. Ramarao (Cleveland Electric Illuminating Co., Cleveland,
OH): We congratulate the authors for their interesting theoretical
analysis on the load flow convergence.

It is interesting to note that the authors have success with load flow
cases which have large phase angle corrections but not corrected in the
first iteration.

The load flow problems, though expressed as a set of non-linear
equations, do in general converge to a unique solution with a flat
voltage start 1 + jO. The solutions could be non-unique in cases where
the generator voltages are regulated by the control of MVARS within
limits.

The results shown in Table IV indicate the cases of degradation of
load flow convergence with voltage start from 1 + jO down to .58 + jO.
It is not clear as to why anybody would choose a low voltage start like
0.58 + jO to perform load flow analysis.

It would be more interesting if the authors show an example of
load flow which does not converge with the usual flat voltage start and a
higher voltage start causes convergence to a stable solution.

In the ‘““Discussion of Results’’, the authors indicate that it is
enough to select high initial voltage magnitudes without carrying out
matrix calculations. How do we choose this start for a system?

There is a minor correction in Appendix I on page 8 in the last line
of the paragraph following eg (I11) to read as ‘‘Non-positive (see Ap-
pendix II)”’ instead of ‘“Non-negative (see Appendix II)”’.

We appreciate the authors’ comments.

Manuscript received February 27, 1978.

S. Abe, N. Hamada, A, Isono, and K. Okuda: The authors thank the
discussors for their valuable contributions. The points raised by Mr.
Rao will be discussed first. If the method proposed in [10] always works
provided the Jacobian does not change sign during the solution, it
would be enough to apply this method only to the first convergence
iteration, because the load flow calculations will converge to a stable
solution when a set of initial values is chosen so that the corresponding
reduced Jacobian matrix is set equal to an M-matrix (In most cases it
will correspond to the Jacobian being positive under the conditions that
the directions of power flows are chosen as in I3 and 14.), and when the
corrections for the first convergence iteration are suppressed.

In order to improve load flow convergence, it is useful to change
specified conditions for nodes as follows:
(1) To specify real and reactive powers, by adding reactive power fed

from a shunt capacitor at the node, to the specified value.
(2) to specify real power and a voltage magnitude.
The effect caused by item (2) is large, whereas that by item (1) is small.
Therefore, if all generator nodes whose voltage magnitudes are usually
regulated to be constant, are chosen to be P-Q specified nodes, con-
vergence characteristics are affected significantly, and in extreme cases
load flow calculations may give no solution, although there exists a
stable solution in the case where generator nodes are P-V specified
nodes.

As Mr. Ramarao pointed out, there would be no convergence
problems under a present network configuration with present load con-
ditions. However, for power system planning, load flow analysis is
widely used and under future network conditions there will be no
reason to believe that a stable solution is obtained by a flat voltage start.
Therefore, the authors believe that it is useful to have clarified load
flow convergence characteristics.

Although the authors were fully aware that it would have been



more striking to show such an example as Mr. Ramarao indicated, what
they wanted to show in Table IV was the validity of the theoretical con-
vergence region. A low voltage start like 0.58 + j0.0 is, of course,
meaningless in practical load flow analysis. What should be noted is
that any voltage selection higher than 0.6 + jO.0 causes convergence to
a'stable solution. This fact indicates the method of an initial value selec-
tion. If the power system studied is under heavy load conditions, has
long distance transmission lines, or has P-Q specified, generator nodes,
avoltage selection higher than 1.0 + j0.0, e.g. 2.0 + j0.0 is more likely
to cause load flow calculations to converge to a stable solution. Or if the
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calculations fail to converge with a flat voltage start, the best way to
judge whether there exists a stable solution under specified conditions is
to retry the calculations with the initial voltages much larger than 1.0 +
j0.0.
The authors wish to thank Mr. Ramarao for pointing out a correc-
tion. There is also a correction as shown below:
Fig. 1 on page 3 Eq. (6) — Eq. (11)

Manuscript received April 27, 1978.



