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Abstract: The growing success of smart grids (SGs) is driving increased interest in load forecasting
(LF) as accurate predictions of energy demand are crucial for ensuring the reliability, stability, and
efficiency of SGs. LF techniques aid SGs in making decisions related to power operation and planning
upgrades, and can help provide efficient and reliable power services at fair prices. Advances in
artificial intelligence (AI), specifically in machine learning (ML) and deep learning (DL), have also
played a significant role in improving the precision of demand forecasting. It is important to evaluate
different LF techniques to identify the most accurate and appropriate one for use in SGs. This
paper conducts a systematic review of state-of-the-art forecasting techniques, including traditional
techniques, clustering-based techniques, AI-based techniques, and time series-based techniques, and
provides an analysis of their performance and results. The aim of this paper is to determine which LF
technique is most suitable for specific applications in SGs. The findings indicate that AI-based LF
techniques, using ML and neural network (NN) models, have shown the best forecast performance
compared to other methods, achieving higher overall root mean squared (RMS) and mean absolute
percentage error (MAPE) values.

Keywords: load forecasting; smart grids; machine learning; deep learning; artificial intelligence

1. Introduction

The considerable increase in the global number of people and economy, besides the
rush raise in civilization, has great chances to accelerate the demand for the consumed
power in the near future [1]. Additionally, the progress and extensive increase in the
population raises the demand for electricity, which automatically affects the demand for
higher electricity generation. Power production, transmission, and distribution are the
most vital problems included in energy management [2,3]. The ordinary electrical grid
is defined as an interconnected network that links the users to the power producers and
transfers the electricity from the source to the users.

Recently, smart grid (SGs) has attracted extreme concern in several technological fields
such as academia and industry. It is considered the smart alternative for aging power
grids [4,5]. It has great capability to provide smart services since it combines diversified
technologies for instance cloud computing (CC), big data (BD), internet of things (IoT),
etc. [6]. SGs is defined as a novel digital electric power grid that provides bidirectional
communication to provide better security, efficiency, resiliency, and reliability of the electric
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power systems for higher electrical power production through the most recent communi-
cation technologies [7,8]. It is a bidirectional energy delivery and transportation system,
which authorizes the users to take actions relevant to energy consumption to reduce the
electricity cost [9–11]. SGs improves the security measures taken during the consequences
of natural disasters and other human attacks [12]. On the other hand, it decreases risks
resulting in damage to human lives and other physical infrastructure relevant to ordinary
grid-related activities. Regarding the set-up aspects, SGs integrates electric vehicles (EVs)
and renews the transport section. In the area of global warming issues and the need for op-
timal energy utilization, SGs minimizes wasted energy and environmental contamination
caused by the emission from the greenhouses.

SGs offers several smart solutions to the whole activities related to electricity. It offers
real-time surveillance of power consumption, dynamic pricing, faster and more effective
restoration of electricity after a power outage, in-house electrical displays, altering the elec-
tricity usage during daytime based on the pricing signals and consumption rates, making
the consumer work as a power producer, online monitoring of the power consumption
through the use of smart apps such as mobile apps and web pages [13–16]. Various com-
ponents in SGs are integrated with sensor nodes and communication links to provide
interoperability in business, manufacturing, and residential applications. The goal is to
limit power disturbance that can occur due to element failures, natural catastrophes, and
capacity limits by introducing real-time smart power surveillance and control systems. SGs
provides state-of-the-art smart services with automated monitoring, and self-regenerative
capabilities. SGs supports demand management by predicting energy usage.

Load forecasting (LF) has attracted considerable interest which is commonly needed
for different applications to consolidate the performance of SGs. These applications include
electricity theft detection, smart meters (SMs) false reading detection, energy cost opti-
mization, power management, micro-grids, etc. [17,18]. Additionally, LF is a remarkable
research topic in SGs, particularly the grid-interactive and efficient building energy process.
LF is an essential element in sophisticated management and operation planning to provide
efficient building energy. It is a fundamental element in the cost control operation of
model predictive control (MPC) for building energy management [19]. LF is substantial in
constructing grid combinations such as demand response and load management [20]. It is
the prime actor to improve the connection between the demand part and SGs, which is im-
portant to coordinate the charging of energy systems, reliability of the power systems, and
economical energy deployment and distribution [21]. Finally, LF contributes significantly
in the primary phase to build the energy parameters and evaluate the performance in SGs.
Meanwhile, it is a regression-based problem, so several machine learning (ML) models
have been excessively used in this area [22].

LF is defined as the technique used by SGs to predict the energy needed to meet
the consumers’ requirements [23]. Precise electric LF is significant in terms of economic,
stability, and reliable operation of the power systems. It helps the SGs to make important
decisions including decisions on purchasing and generating electric power, load switching,
infrastructure management and on how to plan energy upgrades since they can understand
the future consumption and load demand, it also helps to avoid under or over-power
generation [24]. As illustrated in Figure 1 LF, the methods can be divided into four types
based on the forecasting horizon [25]:

• Very short-term load forecasting (VSTLF): The forecasting process is performed a few
minutes before, and the forecasted values are sent to the operator to be used in almost
real time. It is eligible to be utilized in high-speed applications to interact with the
very fast variation in electricity demands [26]

• Short-term load forecasting (STLF): It aims to predict the load for the following thirty
minutes till the next fifteen days. The reliability and operation costing of the energy
system are affected by the precision of this method. The improper method could cause
a deficiency of reserved capacity which will be distributed costly or waste resources
by reservation of not needed capacity [27,28].
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• Medium-term load forecasting (MTLF): It aims to estimate the load that covers a time
span of a month up to a year and depends on growth factors. This forecasting method
suits outage and maintenance planning in addition to load-switching operations [29].

• Long-term load forecasting (LTLF): It aims to estimate the load that covers forecast-
ing of a year up to ten years and sometimes up to several decades. This method is
important for energy utilities and planners in terms of smart grid expansion planning,
future investments, and distribution planning [30,31].

Figure 1. Types of load forecasting based on forecasting horizon.

The LF based on different time horizons is very important for various operations within
energy utility [32]. These models provide proper planning of the power systems, financing,
and electric sales. In addition to these four types depending on the horizon, LF can further
be categorized into demand forecasting and energy forecasting. Demand forecasting is
utilized to define the number of resources including the production, transmission, and
distribution system [33]. It is the process of making future estimations related to the
customers’ demands over a given time period and it gives the estimated rate of increase in
load. Energy forecasting is utilized to define the type of needed facilities, such as future
fuel requirements [23].

LF plays an essential role in the charging coordination schemes [34] and the manage-
ment of the energy system, as it can help SGs to manage their capacity and operations to
supply reliably all consumers with the required energy. Although this can be very beneficial
for SGs, there are several factors to be considered for providing precise data and predictions
and for quantifying uncertainties in the future as shown in Figure 2. These factors that can
affect the LF model are listed as follows:

• Weather: It includes the most significant parameters that affect the STLF such as
temperature degree, wind speed, humidity condition, and cloudiness status [35].

• Calendar: The prediction process could vary extremely throughout the week. Typically,
electricity usage is high during weekdays as most users are at working buildings or
educational buildings, and usage is usually low during the weekend as users are at
home and some businesses are closed [36].
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• Rooftop Solar: The solar panels and other types of electricity generators installed can
reduce the amount of electricity a user draws from the grid. Rooftop installations can
be hard to gauge as the addition and removal of these panels are hard to pinpoint at a
given time [37].

• Economic Conditions: The amount of electricity required by commercial and indus-
trial consumers is an important factor in the total demand. In a strong economy,
manufacturers with power-intensive machines are likely to use more energy than in a
weak economy [38].

• Consumer Behavior: It includes the quantity and quality of electrical instruments that
customers utilize in their units or intend to install including heating, ventilation, and
air conditioning (HVAC) systems [39].

• Plug-In EVs: Charging EVs requires a significant amount of electricity. With increasing
numbers of EVs, the impact they have on the grid increases proportionally [40].

Figure 2. The factors that can affect the LF model.

There are several other factors that can be taken into consideration, but these are
among the crucial ones that require immediate attention [41]. Acknowledging their impact
on LF can significantly help SGs to take accurate decisions such as decisions of purchasing
or generating power, load switching, and infrastructure development. In this paper, we
offer a comprehensive survey on the LF techniques in SGs including the existing literature
review and the most recent proposed LF techniques.

The remainder of this paper is organized as follows. The preliminaries and necessary
background information are provided in Section 2. Section 3, presents the related works.
Section 4, highlights the most recently existing LF techniques in SGs. Section 5 introduces
the recommendations. Finally, the conclusions are given in Section 6.

2. Preliminaries

In this section, we introduce the necessary background that shall be used in this paper,
including temperature scenario generation methods, multiple linear regression models,
K-means clustering, and neural network.
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2.1. Temperature Scenario Generation Methods

An overview of three commonly used methods for generating weather scenarios in
order to create a probabilistic load forecast (PLF). One popular approach is to use a point
LF model with simulated weather scenarios, which is known for its simplicity and ease of
understanding. These methods are widely used in the industry [42]. These methods can
be divided into three groups organized from easy to difficult in terms of implementation
as follows:

• Fixed-date: It selects the climate history of a previous period (maybe year) and deter-
mines the range of temperatures chronically to the next years to obtain the complete
prediction scenario [43]. The probabilistic forecast (PF) comes from n scenarios with
balanced probability, where n is the accumulation of a specific period of the climate
profile (range of temperatures) [44].

• Shifted date: It selects the temperature profile exactly like the previous method,
then moves it forward and backward with a specific window (could be one day or
more), then determines each shifted profile chronically to the next years to get the
complete prediction scenario. PF is calculated by (2d + 1)n scenarios with balanced
probability, where d is the number of days and the basic temperature profile is being
shifted around [45,46]. Figure 3 explains the shifting process of a temperature series
by moving one day forward and backward to make two extra temperature scenarios.
The first row represents the basic temperature series. The following rows represent the
shifted series by one day forward and backward. This method keeps the correlation
of the temperature series while making extra scenarios to improve the efficiency of
the PLF.

• Bootstrap: the climate profile of every original year is segmented into blocks with
similar lengths, then the blocks are at random picked with surrogates from any of the
original years to create a novel temperature profile [47]. Figure 4 explains the method
as follows: in the first scenario, the first block could be obtained from the first block of
the year 2001, the second block could be obtained from the second block of the year
1973, and so on [48].

Figure 3. Shifted dates method to generate extra temperature scenarios.

Figure 4. Bootstrapping method to generate extra temperature scenarios.
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These three methods can be used either individually or together to address weather-
related research challenges. Studies show that the quantile score of each method offers
a small enhancement as the length of the available original temperature increases. The
shifted-date method enhances the quantile score with a small value as the number of shifted
days increases. The bootstrap method provides the ability to produce more global scenarios
without enhancing the quantile score of the fixed-date method. Among the three, the easiest
implementation is the fixed-date method, the lowest quantile score can be obtained using
the shifted-date method, and the generation of a very large number of scenarios can be
achieved using the bootstrap method [49].

2.2. Multiple Linear Regression Models

In addition to methods used in temperature scenario generation, multiple linear
regression (MLR) models have been utilized in a large scale for LF. MLR models are
used to seek statistical insight into the correlation between dependent and independent
parameters. These models are highly valuable in LF as there are transparent, interpretable,
and popular [50]. These models are listed as follows:

• T-Cube Model: includes gross state product (GSP) and third-order polynomials of the
current hour temperatures.

• Vanilla Model: includes schedule parameters, such as a month, day, and hour, and
their interaction with the polynomials of current hour temperatures [51].

• Hong-2014 Model: includes several effects such as recency, weekend, and the holiday
effect. The recency effect denotes the reality that the required amount of energy is
influenced by the temperatures of the previous hours [52]. The weekend effect denotes
the fact that weekend load characteristics have a low level of load and are sensitive
to meteorological conditions. The holiday effect denotes the fact that holidays affect
electricity load widely, causing inaccurate forecasts.

The models described above are combined to create a probabilistic forecast which will
be evaluated using quantile scores to determine which temperature scenario method is the
most effective.

2.3. K-Means Clustering

K-means is a tool that can help to organize a dataset into groups with similar charac-
teristics. The main purpose of using K-means is to simplify the large dataset to be easier for
analysis. This is because instead of analyzing each SM as a single data point which could
lead to thousands of data points, it uses only a handful of groups as the data points. The
calculations involved with neural networks will be faster and easier [2].

To group a dataset using K-means, first, the number of groups needs to be determined,
this will be the “K” value in K-means. Then, K random data points need to be generated,
these will be the K values. Next, every single data point in the dataset needs to be assigned
to one of the groups based on the nearest K value [53]. After all the data points are assigned,
the K values need to be updated to become the average value of all the data points which
are in the group. Finally, some of the data points will move from one group to another if
a different K value is closer than the currently assigned K value. This will happen on a
loop until no more data points change groups, which means that an equilibrium has been
found [54]. Figure 5 explains the working of the K-means clustering algorithm.



Energies 2023, 16, 1480 7 of 33

Figure 5. K-means clustering.

2.4. Neural Network

Neural networks (NN) are just trying to figure out what function was used to get from
an input number to the output number. The inputs do not necessarily have to be just one
number, but they can also be a matrix of numbers. In NN with multilayer perceptrons,
there are multiple layers between the input and output layers, known as hidden layers,
with a different function between each layer [55]. Figure 6 provides an example of a neural
network with three hidden layers. Additionally, between each layer, there are weights,
which are what the input is multiplied by, and biases, which are what is added to inputs
multiplied by weights to get the output. The goal of training a NN is to find out what are
the weights and biases to get an accurate model of some real-life system. This is achieved
by randomly generating starting weights. Then, the error generated due to the produced
output by the NN and the expected output is calculated. The error is used to slightly adjust
the weights and this repeats until the error does not decrease anymore or the accuracy of
the system is satisfactory [56].

Figure 6. An example of a neural network with three hidden layers.

The shape of the NN is very important for balancing the speed and accuracy of the
model being developed. Choosing the right shape can help to reach a better convergence
point faster. The convergence point is when the system no longer produces a better output
after changing the weights and the error no longer decreases [57]. A small network can be
trained quickly, but with a less accurate convergence point, whereas a large network takes
a long time to train, but with a much more accurate convergence point.

During the training of the NN, it is not ideal to use the entire dataset just for finding
the weights. The dataset is usually broken up into two groups with no overlap, the training
data, and the testing data. The training data are used to generate the weights during the
training process. The testing data are used to evaluate the effectiveness of the NN [58]. If the
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same data are used for the training and testing of the NN, there is a chance that overfitting
may occur. This is when the network does not learn the model but rather memorizes the
training data. This can lead to very high results in simulated environments, but very low
results with actual data. This makes the generalization process very difficult for the NN. To
prevent overfitting, the regularization technique is applied which changes the way the NN
reads the data and makes it very difficult to just memorize the data, and instead forces the
NN to learn the patterns of the mode [59].

3. Related Work

In this section, we will demonstrate the different ways in which survey papers have
approached the subject of LF models. We have classified these survey papers into two
main categories. The first category covers papers that examine LF models from artificial
intelligence (AI) perspective, particularly those that focus on ML and deep learning (DL)
models. The second category includes a variety of papers that offer a broader view of the
LF problem, approaching it from a variety of different angles. Table 1 summarizes the
review paper.

The AI, especially ML and DL models, have successfully achieved great results in SGs
applications to achieve improved accuracy, reliability, stability, and efficiency, particularly
in the LF field. There exists an extreme need to analyze and evaluate the various ML and
DL models, thereby identifying the most appropriate one to be applied to LF techniques
in SGs. In this category, we demonstrate several survey papers that reviewed ML- and
DL-based LF techniques.

In [15], a comparative study including the most recent ML algorithms that work in
LF techniques of SGs was introduced. This study concluded that the decision tree model
surpassed other ML techniques, including the support vector machine (SVM), K-nearest
neighbors algorithm (KNN), neural network (NN), logistic regression and Naive Bayes,
are some examples of the algorithms used in the field. The decision tree achieved a perfect
precision rate, recall rate of almost 100%, a F1 score of 100%, and an accuracy rate of 99.96%.

Yildiz et al. [60] reviewed different regression models based LF techniques. They dis-
cussed their usage, commonly employed regression variables, and methods for enhancing
the performance and accuracy of various algorithms. They compared LF techniques for
predicting hourly electricity usage for the next day using real applications. They found that
the artificial neural network (ANN) with Bayesian regularization back-propagation yielded
the best results in terms of root mean squared (RMS) and mean absolute percentage error
(MAPE) performance.

In [61], the current LF techniques were reviewed to identify which technique is best
proper for a specific case or scenario. The applied criteria to compare these various
techniques were time frame, inputs, outputs, scale, data sample size, error type, and value.
The regression and multiple regression were the most common techniques used in LTLF.
For STLF and VSTLF applications, ML-based techniques, in particular, ANN, SVM, and
time series analysis involving auto-regressive integrated moving average (ARIMA) and the
auto-regressive moving average (ARMA) were used.

Furthermore, Deb et al. [62] introduced a survey on the current ML techniques for
predicting time series energy consumption. They investigated the most common nine
ML based prediction techniques. They discussed hybrid models that merge two or more
prediction techniques, and they summarized that hybrid models are the most efficient
prediction models in time series energy for the building.

A different literature survey was introduced by Zhang et al. [20]. They reviewed the
application of ML algorithms in building LF that carry out task T using P to evaluate and
analyze the performance and depend on learning from the accepted expertise E. Task T
showed the application of ML algorithms, performance measure P determined how well the
task was executed, and experience E was obtained from different sources, pre-processing,
and feature extraction.
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Runge et al. [63] reviewed the proposed works which have used ANN for predicting
building energy demand. Furthermore, Amasyali et al. [64] reviewed the developed data-
driven building energy LF techniques. Both surveys discussed their applications, dataset,
predicting models, and performance evaluating metrics.

In [65], another survey on the building electrical energy consumption prediction
techniques that include both the conventional and AI models. This survey aimed to study
each model individually and discussed the possibility of integrating the two models. The
integration of SVM and swarm intelligence (SI) provided excellent results.

Gerwig et al. [66] introduced an overview of the methods used for STLF for residential
buildings, and identifies which methods are most effective for different purposes. A struc-
tured literature review was conducted, analyzing 375 papers and categorizing them using
a concept matrix. The study revealed that using ANN, autoregressive techniques, and
their combination (hybrid methods) are effective in LF demands in small scale households
(1–1000) and individual users. Furthermore, linear regression appears to be effective in LF
for single users, while SVR is suitable for LF demands in groups of more than 32 house-
holds. Combining clustering techniques with ANN or autoregressive methods may further
improve the accuracy of the predictions. The paper suggests that further research is needed
in this area and suggests the use of publicly available datasets for benchmarking and
comparison of methods.

In the second category, we demonstrate several survey papers that reviewed LF models
from various points of view. Khan et al. [67] provided a survey on LF techniques based
on dynamic pricing schemes in SGs. They investigated some pricing schemes such as
real-time pricing (RTP), time of use (ToU), and critical peak pricing (CPP). They assorted
LF techniques into mathematical and AI based computational models.

Furthermore, Nowotarski et al. [68] introduced a comprehensive survey of electricity
price forecasting (EPF) as well as the necessary guidelines for the precise use of methods,
measures, and tests. It is considered as an extension and update of [69]. All the reviewed
topics can be used for probabilistic energy forecasting, as VSTLF for SM applications or
wind and solar power forecasting.

Lazos et al. [70] discussed the various aspects and significance of prediction and energy
optimization models for energy systems in commercial buildings, particularly in regard
to weather-related input parameters, as well as their usage in energy management. They
concluded that weather factors play an important role in the assessment of building energy
systems and can reduce uncertainty in forecasting by 15–30% compared to a deterministic
and non-weather-based scheme. For energy management in small buildings, a simple
statistical model with stored data can be used. However, in larger and more dynamic
buildings, the existence of accurate weather forecasts is very essential.

A comparative study of prediction techniques of power consumption and their rele-
vant applications was presented in [71]. This study concluded that power consumption
prediction architecture for metering, communication, supervisory control, and data ac-
quisition (SCADA) monitoring, and a database storing that is used for different smart
applications such as the mining industry, smart grid, smart cities, and industry 4.0.

A tutorial survey of probabilistic electric LF, involving the most prominent methods
and assessment techniques, was introduced in [72]. This study provided some insights and
new knowledge for researchers and practitioners to develop and improve the field of LF.

Moreover, a survey of the most significant energy forecasting techniques was intro-
duced in [73]. It included short summary of hot topics research, an investigation of the
significant open data sources, giving recommendations about publishing effective articles,
and finally, a discussion of the future of energy forecasting.

Nespoli et al. [74] introduced a comparison of various PLF strategies for projecting
the load demand of secondary substations and cabinets in a distributed low-voltage grid.
Standard KPIs for deterministic and probabilistic predictions were used to analyze the
techniques. They also evaluated the effectiveness of several hierarchical approaches to
improve the performance of bottom-level predictors.
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Table 1. Survey papers of load forecasting techniques.

Ref. Summarized Highlights

[15]

• A comparative study covered the most recent ML algorithms applied in LF techniques
of SGs;

• It was found that the decision tree model surpassed other ML algorithms;
• The decision tree achieved 100% precision, 99.9% recall, 100% F1 score, and 99.96%

accuracy.

[60]

• This paper reviewed various regression models for LF techniques;
• The authors discussed the usage, commonly used regression variables and methods

for enhancing the performance and accuracy of different algorithms;
• They compared LF techniques for predicting next-day hourly electricity consumption

using real applications;
• They found that ANN with Bayesian regulation back-propagation indicated the best

results in terms of RMS and MAPE performance.

[61]

• The applied criteria to compare these various techniques were time frame, inputs,
outputs, scale, data sample size, error type, and value;

• The regression and multiple regression were the most common techniques used
in LTLF;

• Regarding to VSTLF and STLF applications, ML based techniques in particular ANN,
SVM, and time series analysis involving ARIMA and ARMA were used.

[62]
• This paper introduced a survey on the current ML techniques for predicting time

series energy consumption;
• The authors discussed hybrid models that merge two or more prediction techniques,

and they summarized that hybrid models are the most efficient prediction models in
time series energy for the building.

[20]

• This work reviewed the application of ML algorithms in building LF that carry out
task T using P to evaluate and analyze the performance and depend on learning from
the accepted expertise E;

• Task T showed the application of ML algorithms, P evaluate the performance, and ex-
perience E was obtained from different sources, pre-processing, and feature extraction.

[63]

• They reviewed the proposed works which have used ANN for predicting building
energy demand;

• They discussed the applications, dataset, predicting models, and performance evalu-
ating metrics.

[64]
• This paper reviewed the developed data-driven building energy LF techniques;
• It discussed the applications, dataset, predicting models, and performance evaluating

metrics.

[65]
• This paper studied each model individually and discussed the possibility of integrat-

ing the two models.
• The integration of SVM and swarm intelligence (SI) provided excellent results.

[66]

• This paper introduced a survey on the applied LF techniques and denoted identical
results.

• An overview was executed with an analysis of more than three hundred research
papers that were classified via a concept matrix.

• They indicated the best purpose of each technique based on its results and which
available and suitable datasets can be utilized for the assessment process.
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Table 1. Cont.

Ref. Summarized Highlights

[67]
• This paper reviewed LF techniques based on dynamic pricing schemes in SGs.
• They investigated some pricing schemes such as (RTP), (ToU), and (CPP).
• They assorted LF techniques into mathematical and AI-based computational models.

[68]
• This paper introduced a comprehensive survey of EPF, as well as the necessary

guidelines for the precise use of methods, measures, and tests;
• All the reviewed topics can be used for PLF, as VSTLF for SM applications or wind

and solar power forecasting.

[70]

• This paper discussed the various aspects and significance of prediction and energy
optimization models for energy systems in commercial buildings, specifically in
regard to weather-related input parameters and their usage in energy management;

• They concluded that weather factors have a significant impact on evaluating building
energy systems;

• For energy management in small buildings, a simple statistical model with stored
data can be used, while larger and more dynamic buildings require accurate weather
forecasts to be effectively managed.

[71]
• This paper discussed power consumption prediction architecture for metering, com-

munication, SCADA monitoring, and a database storing that is used for different
smart applications such as the mining industry, smart grid, smart cities, and indus-
try 4.0.

[72]
• This paper introduced a tutorial survey of probabilistic electric LF, involving the most

prominent methods and assessment techniques;
• It provided some insights and new knowledge for researchers and practitioners to

develop and improve the field of LF.

[73]
• This paper provided a survey of the most significant energy forecasting techniques;
• It included short summary of hot topics research, an investigation of the significant

open data sources, giving recommendations about publishing effective articles and a
discussion of the future of energy forecasting.

[74]

• This paper introduced a comparison of various PLF strategies for projecting the load
demand of secondary substations and cabinets in a distributed low-voltage grid;

• They used standard KPIs for deterministic and probabilistic predictions to analyze
the techniques;

• They evaluated the effectiveness of several hierarchical approaches to improve the
performance of bottom-level predictors.

4. Existing Applied Load Forecasting Techniques

In this section, we provide a comprehensive overview of the existing LF techniques
and their usage in SGs context. This section is broken down into five main parts. In the
first part, Section 4.1, we provide a brief summary of traditional LF techniques. The second
part, Section 4.2, discusses clustering-based LF techniques. The third part, Section 4.3,
focuses on AI-based LF techniques including ML and DL algorithms, as well as related
approaches to enhance performance and accuracy. The fourth part, Section 4.4, delves
into time series LF techniques specifically. Finally, the fifth part, Section 4.5, presents an
overview of meta-heuristic-based LF techniques.

4.1. Traditional Load Forecasting Techniques

Traditional LF techniques refer to a set of methods and algorithms used to predict
future electricity demand. These techniques have been used for decades by electric utilities
and power system operators to plan and manage their power generation and distribution
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systems. In this part, we demonstrate several traditional LF techniques that have been
applied in SGs.

Alberg et al. [75] presented five sliding window-based forecasting algorithms for pre-
dicting electricity load in SMs, which use a combination of non-seasonal and seasonal time
series models and an incremental learning methodology called online information network
(OLIN). These algorithms differed in how they take seasonality into account and how they
construct their models. The researchers used SMs technology to collect data, which was
preprocessed before use. The study found that the SWDP2A algorithm performed better
than the other algorithms, and that accurate hourly predictions of electricity load could be
made by using daily consumption data and aggregated hourly coefficients of daily profiles
during the model induction phase.

Massana et al. [76] proposed a (STLF) technique for non-inhabitant buildings. The pro-
posed model forecasts the hourly consumption for several months ahead and is dependent
solely on occupancy. Other methods, in contrast, depend on auto-regression or additional
parameters that are not readily available, and as a result, require weather forecasts or
additional data to perform forecasting, making long-term hourly prediction very hard.
The study also explores different methods of generating occupancy indexes. The authors
compared different occupancy features, in order to determine the most effective techniques
and data sources for forecasting purposes.

In [77] a new predictive control model for electricity forecasting using system iden-
tification schemes based on system features was proposed to enhance the efficiency and
resiliency of the building’s electricity. The results showed that the proposed model can
predict with accuracy reaching up to 90% with only 60 s of calculation time.

Kaneriya et al. [78] utilized a weather-based LF model to determine the power demand
using a time-based data-driven scheme. The results indicate that the applied LF model
precisely predicted the power demand for residential and commercial applications.

Zhang et al. [43] proposed a novel hybrid model that combines three models: im-
proved empirical mode decomposition (IEMD), (ARIMA), and wavelet neural network
(WNN) that was optimized by fruit fly optimization algorithm (FOA). They exploited the
advantages of each model to create a new robust and efficient hybrid model suitable for
electricity LF. The experimental results proved its high accuracy and stability.

Xie et al. [79] investigated three techniques for generating temperature scenarios,
namely, fixed-date, shift-date, and bootstrap, and focused on the PLF using the quantitative
probabilistic forecast error that measures quantile score. Their research and data analysis
found that the bootstrap technique provided the ability to generate more complete scenarios
without enhancing the quantile score. Additionally, they found that the shifted-date
technique dominates the fixed-date technique if the number of shifted date is within a range.
Finally, they introduced an empirical formula that helps in selecting and appropriately using
parameters when implementing the temperature scenario generation techniques. Table 2
offers a comprehensive summary of the traditional LF techniques previously mentioned.

Table 2. Traditional load forecasting techniques.

Ref. Used Models Summarized Highlights Pros Cons

[75]
SWDP2A
(S)ARIMA
OLIN

• This paper proposed five sliding window-based
forecasting algorithms for predicting electricity
load in SMs;

• The researchers used SMs technology to collect
data which were preprocessed before use;

• The study found that the SWDP2A algorithm per-
formed better than the other algorithms.

It provides accurate
hourly predictions
of electricity load.

It requires
preprocessing of
data collected using
SMs technology
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Table 2. Cont.

Ref. Used Models Summarized Highlights Pros Cons

[76]
It is dependent
solely on
occupancy

• This paper proposed an (STLF) technique for non-
inhabitant buildings;

• They authors also investigated the generation tech-
niques of the occupancy indexes. Every occupancy
feature was estimated to find out the technique
and data source which achieve the best outcomes
regarding forecasting.

It explores different
methods of
generating
occupancy indexes,
which can be useful
for predicting
hourly consumption
in non-inhabitant
buildings

It is limited to
non-inhabitant
buildings

[77]

system
identification
schemes based on
system features

• This paper proposed a new predictive control
model for electricity forecasting using system iden-
tification schemes based on system features to en-
hance the efficiency and resiliency of the building’s
electricity.

• The results showed that the proposed model can
predict with accuracy reached to 90% with only 60
s of calculation time.

The calculation time
is relatively short
(60 s)

The proposed model
may not be able to
predict extreme
events or rare
situations

[78]
Time-based
data-driven
scheme

• This paper utilized a weather-based LF model to
determine the power demand using a time-based
data-driven scheme.

• The results indicate that the applied LF model pre-
cisely predicted the power demand for residential
and commercial applications.

It improves the
accuracy of the
power demand
prediction

The data-driven
scheme used in the
study may require
large amounts of data
to achieve high
accuracy

[43]

IEMD
ARIMA
WNN
FOA

• They Proposed a novel hybrid model consisting
of three models: (IEMD), (ARIMA), and (WNN)
optimized by (FOA);

• They exploited the advantages of each model to
create a new robust and efficient hybrid model
suitable for electricity LF. The experimental results
proved its high accuracy and stability.

It is highly
accurate and
stable

The proposed
hybrid model is a
complex model that
may be difficult to
implement in
practice

[79] PLF

• They investigated three techniques focusing on the
PLF using the quantitative probabilistic forecast
error that measures quantile score.

• They found that the bootstrap technique provides
the ability to generate more complete scenarios
without enhancing the quantile score.

It uses a quantitative
probabilistic forecast
error that measures
quantile score,
which provides a
more accurate
measurement of
performance

It is not applicable
to other types of
forecasting scenarios

4.2. Clustering Based Load Forecasting Techniques

Clustering-based LF techniques refer to a class of methods that utilize clustering
techniques to group similar load patterns, and then use these patterns to forecast future
demand. These techniques are built on the assumption that similar historical load patterns
tend to repeat themselves in the future, making clustering a powerful approach to modeling
and forecasting electricity demand. The clustering algorithm is applied to the historical
load data to identify homogeneous groups of data points, which are then used to model
and forecast future demand. Clustering-based methods have been found to be particularly
useful in dealing with non-linear and complex patterns, and have been shown to improve
the accuracy and robustness of LF. In this part, we offer clustering-based LF techniques that
have been applied in SGs.

Quilumba et al. [80] explained the utilization of clustering as a means of grouping
customers based on their load consumption similarities, which can be used to enhance the
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system level of LF. They clarified how data from SMs from individual households could
be employed to enhance the LF of the whole system by aggregating predictions from each
group. The effectiveness of the proposed model was demonstrated by using two different
sets of real residential SM data. This was first achieved by classifying time periods with
similar load patterns based on previous data, known as a longitudinal grouping. Secondly,
by matching up SMs with similar usage patterns, which are known as a cross-sectional
grouping. A majority of the article focused on cross-sectional grouping. They attempted to
improve intraday LF by clustering groups of customers with similar load patterns from SM
data before doing any LF calculations.

Jiao et al. [81] proposed a method for predicting short-term non-inhabitant clients’
power consumption using a combination of K-means clustering, spearman correlation
coefficient (SCC), and an LSTM-based framework. By analyzing the clients’ power con-
sumption patterns using k-means clustering, and measuring the correlation for sequence
data with the SCC, the authors were able to identify relevant time series features to include
in the framework. In some cases, if the correlation coefficient was high and the hypothesis
H1 was accepted, these features were appended to the framework to enhance the prediction
process. The results of this study demonstrated that the proposed technique achieved the
best prediction outcomes when tested on a actual dataset.

Cugliari et al. [82] proposed clustering tools used for electricity LF. This tool divided
the overall signal in which the sum of divided predictions enhances the prediction of the
whole global signal. This technique started with defining super-consumers by curves
clustering, then set up a hierarchy of partitions within which the best one is finally selected
in terms of the standard of dividing prediction.

Chaouch et al. [83] proposed two LF techniques for households using SM data through
functional time series. These two techniques were functional wavelet-kernel (FWK) and
clustering-based FWK. They found that the load curve is most directly affected by consumer
usage patterns, which are not consistent since the variability in household power usage can
vary dramatically based on the day and specific circumstances. The clustering-based FWK
technique proved to be much more accurate than standard FWK.

In [84], a novel approach called data-driven linear clustering (DLC) was introduced to
address the problem of LTLF in some developed cities. The method involves using a large
dataset of substation loads with annual intervals, preprocessing it using the DLC method,
and creating optimal ARIMA models for each cluster to forecast future loads. The system
LF results were obtained by summing up the forecasts from all the ARIMA models. The
results of the analysis and application showed that the proposed DLC method effectively
reduced random LF errors while preserving modeling precision, resulting in a more stable
and accurate system LF.

Hamed [85] presented a new technique for STLF that combined various models and
utilizes clustering methods to improve system performance and accuracy. The proposed
models include a combination of Kalman filtering (KF), WNN, and ANN schemes. Six
various methods were suggested based on clustering techniques. The simulation results
showed improved performance for the addressed methods. The research was conducted
using data which was scaled for the study. The proposed technique was verified using
various datasets for various locations in Egypt and Canada.

Zhang et al. [86] introduced a new closed-loop clustering (CLC) algorithm that
combined the hierarchical structure and the forecasting model. The algorithm connected
the objectives of forecasting and clustering by using a feedback mechanism that returns
the goodness-of-fit as the criterion for clustering. The suggested technique was compared
to existing hierarchical LF methods and found to perform better. Table 3 summarizes the
aforementioned clustering-based LF techniques.
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Table 3. Clustering-based load forecasting techniques.

Ref. Used Models Summarized Highlights Pros Cons

[80]

Longitudinal
grouping
Cross-
sectional
grouping

• This paper explained the application of clustering
to group clients through load consumption simi-
larity as a tool to improve the system level of LF.

• They attempted to improve intraday LF by cluster-
ing groups of customers with similar load patterns
from SM data before doing any LF calculations.

Improve intraday
LF by clustering
groups of customers
with similar load
patterns from SM
data before doing
any LF calculations

It is not clear how
well the method
would perform in
other types of
datasets or in a
large-scale
real-world setting

[81]
SCC
LSTM
K-means

• They used the k-means clustering technique to
analyze the clients’ power consumption patterns,
while the measurement of correlation for sequence
data was given by SCC;

• The results demonstrated that the proposed tech-
nique achieved the best prediction outcomes in a
real dataset.

It achieved the
best prediction
outcomes when
tested on actual
dataset

It is not clear how
well the method
would perform in a
large-scale
real-world setting

[82]

defining super-
consumers
setupahierarchy
of partitions

• This paper proposed clustering tools used for elec-
tricity LF.

• This tool divided the overall signal in which the
sum of divided predictions enhances the predic-
tion of the whole global signal.

Enhancing the
prediction of the
whole global signal

It does not specify
the evaluation
metric used to select
the best partition

[83] Clustering
based FWK

• This paper proposed two LF techniques for house-
holds using SM data through functional time
series. These two techniques were FWK and
clustering-based FWK.

Clustering-based
FWK technique
much more accurate
than standard FWK.

It does not specify the
specific clustering
algorithm used, which
makes it difficult to
replicate the results of
the study

[84] DLC
ARIMA

• DLC method is proposed to address the LTLF
problem caused by fluctuations in some devel-
oped cities.

• An optimal ARIMA models were constructed for
the sum of each cluster to forecast the future load.

It addresses the
problem of LTLF
in developed
cities

The study does not
specify any details
about the
preprocessing step

[85]
KF
WNN
ANN

• This paper proposed a novel technique for STLF
based on hybrid models and clustering techniques.

• Six different models are proposed based on clus-
tering techniques.

The simulation
results showed
improved
performance for the
addressed methods

The method does
not specify how the
data were scaled for
the study

[86] CLC

• This paper proposed CLC algorithm that com-
bined the hierarchical structure and the forecasting
model. It connected the objectives of forecasting
and clustering by using a feedback mechanism.

The proposed model
outperformed the
existing hierarchical
LF methods

It does not provide
any information
about the dataset
used to evaluate the
algorithm

4.3. AI-Based Load Forecasting Techniques

AI-based methods, such as ANN and support vector regression SVR, are also in-
creasingly being used for LF. These methods can be trained to model complex, non-linear
relationships between input variables and the output variable, electricity demand, which
may not be easily captured by traditional statistical or econometric methods. In this part, we
offer several existent techniques that proposed the state-of-the-art of AI models, especially
ML and DL models that have been deployed for LF applications.
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In [87], a decision tree method for building an energy model was proposed. The
experimental results have shown that using the C4.5 model can classify and forecast
building energy demands with accurate levels of 93% for training data and 92% for testing
data. The process of identifying and classifying the important parameters of building
energy automatically uses intensity levels and provides the combination of important
parameters as well as the threshold values that participate in the forecasting of high
building energy performance.

In [88], different data mining techniques, including (SVR), ANN, classification and
regression tree, chi-squared automatic interaction detector (CHAID), general linear regres-
sion, and merged inference model were proposed to estimate the energy performance of
buildings. Comparing the results showed that the merged approach (SVR, ANN) and
SVR were the best models for forecasting cooling load and heating load, respectively, with
MAPE below 4%. Compared to previous works, the merged model and SVR model further
obtained at least 39.0% to 65.9% lower RMSE, respectively, for forecasting cooling load and
heating load, respectively.

Furthermore, Sha et al. [89] proposed a simplified LF technique for engineering
applications based only on three features considered as model input. They converted the
average daily dry-bulb temperature to degree-day and used it as a model input feature,
and it provided better performance. They also proposed a method to obtain the balance
point temperature based on the building usage characteristics represented by day-type and
month-type. They used three ML models—multi-variable linear regression (MLR), (SVR),
and ANN as forecasting models. The results presented that the SVR and ANN models
outperformed the MLR model. The large contradiction between the cooling and heating
forecasting performance referred to the importance of the training dataset size as a factor
for forecasting model performance. All three techniques provided indigent performance in
heating forecasting.

For the purpose of cooling control architecture for buildings, Peng et al. [90] proposed
two types of ML techniques. These two models are supervised and unsupervised models
which were utilized to figure out occupants’ attitudes. The learned information is utilized
by a set of rules to estimate the real-time building set points to manage the cooling system.
This scheme minimized the need for human intervention to manage the cooling system in
the buildings. This technique is not only restricted to managing cooling operations but also
can be used to manage heat and ventilation using the same technique to infer humidity
and CO2 concentration set-points. It aims to reduce useless electricity demands of HVAC
systems related to occupants’ attitudes.

Fan et al. [91] proposed an improved prediction model named (DEMD–SVR–AR)
that surpasses the original SVR model to predict electricity consumption, particularly
with unbalanced data and sophisticated systems. They used the training model not only
to learn a precise representation of the training set itself, but also to define a statistical
model that generalizes better prediction parameters for the new inputs. The proposed
model performed better than the other algorithms in terms of its prediction capability,
interpretability, prediction accuracy, and generalization ability.

Additionally, Fan et al. [92] discussed the possibility of utilizing DL in building cooling
LF from two points of view, extracting meaningful features and developing prediction
models. The results demonstrated that nonlinear prediction techniques outperform linear
prediction techniques. The extreme gradient boosting (XGB) technique outperformed other
techniques. The adaptation of XGB models using features extracted by unsupervised DL
models such as deep auto-encoders provides the best forecasting results.

In [93], the stability of SGs was predicted using a new multi-directional long short-term
memory MLSTM model. The proposed model outperformed the traditional ML models
such as LSTM, gated recurrent unit GRU, RNN in terms of accuracy (3% higher), precision,
loss, and ROC curve metrics.

Marinescu et al. [94] investigated the analyzed data from a small load, approximately
equivalent to a single transformer. They used six different techniques to analyze the data
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from ANN, fuzzy logic, auto-regression, auto-regressive moving average, auto-regressive
integrated moving average, and WNN. They found that the different techniques were
approximately equivalent and provided similar results.

Badr et al. [23] proposed an encrypted energy forecasting technique to preserve
the privacy of net-metering systems based on federated learning (FL). They designed
a hybrid DL-based energy forecasting model; alongside it, they developed an efficient
data aggregation scheme to preserve the consumers’ privacy by ciphering their models’
parameters during the FL training using functional encryption (FE). The results indicated
that their technique achieved high accuracy, and the data aggregation scheme preserved
privacy with high efficiency.

Ibrahem et al. [95] proposed an ML based scheme that allows the electricity utility
to discover electricity stealing, compute bills, and observe the energy using FE to keep
the privacy of the users. The encrypted readings were aggregated, and this aggregated
value was released to the electricity utility for purpose of billing and load surveillance. The
evaluations inferred that the scheme was efficient in terms of users’ privacy preservation
and the accuracy of electricity theft detection.

In [96], a method was proposed for predicting energy consumption/generation in
net-metering systems while preserving customers’ privacy. The proposed method is based
on federated learning FL, and uses a multi-data-source hybrid deep learning approach,
as well as an efficient inner-product functional encryption (IPFE) scheme to encrypt the
models’ parameters during training. To improve communication efficiency, the proposed
method uses a change and transmit approach, only sending updates for parameters that
have changed significantly. The results from experiments showed that this method provides
accurate predictions while protecting the privacy and reducing communication costs. The
above-mentioned AI Based LF techniques are summarized in Table 4.

Table 4. AI-based load forecasting techniques.

Ref. Used Models Summarized Highlights Pros Cons

[87] Decision tree

• This paper proposed a decision tree method for
building an energy model;

• The experimental results showed that using the
C4.5 model can classify and forecast building en-
ergy demands with accurate levels of 93% for train-
ing data and 92% for testing data.

High accuracy
levels

The method is
limited to only the
C4.5 model

[88]

SVR
ANN
CHAID
General linear
regression
Merged
inference
model

• This paper proposed different data mining tech-
niques, including SVR, ANN, classification and
regression tree, CHAID, general linear regression,
and merged inference model to estimate the en-
ergy performance of buildings;

• Comparing the results showed that the merged ap-
proach (SVR, ANN) and SVR were the best models
for forecasting cooling load and heating load.

The use of a
merged approach
and SVR model
resulted in the
best forecasting
for cooling and
heating load

The study may not
be generalizable to
other datasets

[89]

MLR
SVR
ANN

• This paper proposed a simplified LF technique
for engineering applications based only on three
features considered as model input;

• They also proposed a method to obtain the bal-
ance point temperature based on the building us-
age characteristics represented by day-type and
month-type.

A simplified LF
technique was
proposed

The results revealed
a large contradiction
between the cooling
and heating
forecasting
performance
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Table 4. Cont.

Ref. Used Models Summarized Highlights Pros Cons

[90] RNN

• This paper proposed two types of ML techniques
for purpose of cooling control architecture for
buildings;

• These two models are supervised and unsuper-
vised models were utilized to figure out occupants’
attitudes.

Not limited to
managing cooling
operations

The technique may
not take into
account other
factors that could
affect building
energy performance

[91]
LSTM-RNN-
based
univariate

• This paper proposed an improved prediction
model named (DEMD–SVR–AR) that surpasses
the original SVR model to predict electricity con-
sumption, particularly with unbalanced data and
sophisticated systems.

It surpasses the
original SVR
model

The study only
focused on the
unbalanced data
and sophisticated
systems

[92] LSTM-RNN

• This paper discussed the possibility of utilizing DL
in building cooling LF from two points of view, ex-
tracting meaningful features and developing pre-
diction models;

• The results demonstrated that nonlinear pre-
diction techniques outperform linear prediction
techniques.

Results showed that
nonlinear prediction
techniques
outperform linear
prediction
techniques

It is not
generalizable to
other types of LF,
such as heating or
electricity
consumption

[93] new MLSTM

• This paper proposed a new MLSTM model to pre-
dict the stability of SGs;

• The proposed model outperformed the traditional
ML models such as LSTM, GRU, RNN in terms
of accuracy (3% higher), precision, loss, and ROC
curve metrics.

The proposed model
outperformed
traditional ML
models

It is not suitable for
all types of systems
or stability
prediction scenarios

[94]

ANN, fuzzy logic,
auto-regression,
auto-regressive
moving average,
auto-regressive
integrated
moving average,
and WNN

• This paper investigated the analyzed data from a
small load, approximately equivalent to a single
transformer;

• They used six different techniques to analyze the
data from ANN, fuzzy logic, auto-regression, auto-
regressive moving average, auto-regressive inte-
grated moving average, and WNN;

• They found that the different techniques were
approximately equivalent and provided similar
results.

Investigated data
from a small load,
equivalent to a
single transformer,
using six different
techniques

It does not provide a
clear advantage for
one technique over
the others for the
analyzed data.

[23]
FL
DL
FE

• This paper proposed an encrypted energy fore-
casting technique to preserve the privacy of net-
metering systems based on FL.

• The results indicated that their technique achieved
high accuracy, and the data aggregation scheme
preserved privacy with high efficiency.

It provides privacy
preservation with
high efficiency

It is limited to
energy forecasting
for net-metering
systems

[95]
ML
FE

• This paper proposed an ML-based scheme that
allows the electricity utility to discover electricity
stealing, compute bills, and observe the energy
using FE to maintain the privacy of the users;

• The evaluations inferred that the scheme was effi-
cient in terms of users’ privacy preservation and
accuracy of electricity theft detection.

High Accuracy

The study may not
take into account
other factors that
could affect the
system being
analyzed.
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Table 4. Cont.

Ref. Used Models Summarized Highlights Pros Cons

[96]
FL
IPFE
CAT

• This paper proposed predicting energy consump-
tion/generation in net-metering systems;

• An efficient IPFE scheme was used to preserve
customers’ privacy by encrypting their models’
parameters during FL training;

• Results from experiments show that the proposed
approach accurately predicts future readings.

It provides accurate
predictions while
protecting privacy
and reducing
communication
costs

Limited
applications

4.4. Time Series Load Forecasting Techniques

Time series LF entails utilizing historical usage data over a defined period to anticipate
future energy needs. The utilization of data, gathered at consistent intervals such as daily
or hourly, allows for the identification of patterns and trends in energy consumption. These
patterns and trends are subsequently employed to create predictions about future demand.
The objective of time series LF is to offer precise predictions of energy demand for energy
providers to plan adequately for generation and transmission capacity, and to reduce the
likelihood of supply interruptions or power outages. In this section, we present various LF
techniques that have been proposed using time series models.

Two recently developed time-series forecasting models for power consumption, the
conditional restricted Boltzmann machine (CRBM) and the factored conditionally restricted
Boltzmann machine (FCRBM), were discussed in [97]. The study found that the FCRBM
surpassed (ANN), (SVM), recurrent neural networks (RNN), and CRBM.

Mocanu et al. [98] discussed two reinforcement learning algorithms to perform the
building energy consumption. The deep belief network (DBN) and the automated feature
extraction were combined to process a short-term building energy model. Experimental re-
sults showed that the energy forecasting accuracy in terms of RMSE was enhanced in 91.42%
of the scenarios after using a DBN for automatically extracting high-level features from the
unlabeled data, compared to the equivalent techniques without the DBN preprocessing.

Khan et al. [99] proposed a model that uses predictive analytics to forecast short-term
power consumption in multi-family residential buildings, using a time-series dataset. They
combined DL model with a statistical model to make the predictions. To evaluate the
performance of the forecasting model, they employed four metrics: MAE, RMSE, MAPE,
R-squared (R2) scores.

Sala et al. [100] proposed a new hybrid approach for forecasting the short-term thermal
energy demand of HVAC systems in smart buildings, which is based on a data-driven
method. The approach uses an RNN to learn the dynamics of an activity indicator, then
an adaptive neuro-fuzzy inference system is employed to correlate the activity predictions
obtained in this way with outdoor temperature and bus return temperature, in order to
model the thermal energy demand of the building’s HVAC system.

Bouktif et al. [101] proposed an optimized LSTM-RNN based univariate model for
demand side LF, which worked over both STLF and MTLF. The proposed model was
compared with seven ML based LF techniques, and it outperformed all of them, particularly
in LF error rate.

Agrawal et al. [31] proposed a LSTM-RNN model for LTLF with the hourly resolution.
The proposed model outperformed the other LTLF models by providing high accuracy
with MAPE of 6.54 and a confidence interval of 2.25%. Although it has been implemented
on a real dataset, the computation time was 30 min which is considered not appropriate for
online applications.

Ahmad et al. [102] aim to figure out an efficient ML-based LF technique working
for medium-term and long-term time horizons. They utilized ANN, multivariate linear
regression model, and adaptive boosting model. The results of the study showed that the
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proposed models had superior performance when applied to LF in the SGs at different
intervals, including monthly, seasonal, and annual.

Massaoudi et al. [103] proposed a new hybrid computing approach for STLF that
accounts for the stochastic variations in load demand using a stacked generalization
method. This approach involves combining three algorithms, namely, light gradient
boosting machine (LGBM), XGB, and multi-layer perceptron (MLP), into a single model.
The inner workings of the stacked XGB-LGBM-MLP technique involve creating meta-data
from the XGB and LGBM models, which is then used to make final forecasts using the MLP
network. The proposed technique was evaluated using several case studies to compare its
performance to existing benchmark techniques and other hybrid models.

Wang et al. [104] proposed a technique for individual consumer PLF that deals with the
variability and unpredictability of future load profiles. It uses both NN and LSTM to handle
both LTLF and STLF. Rather than using MSE as the training loss, it employs a pinball loss
function. The results showed that the proposed method outperforms traditional techniques.

In [105], a three-step method was proposed for forecasting electricity consumption
at various household group levels. The method involves creating initial forecasts using
generalized additive models, finding the optimal linear combination of these forecasts
using the ML-Poly aggregation algorithm, and adjusting the forecasts to meet hierarchical
constraints. This approach was found to improve the accuracy of the forecasts and was
tested using household electricity consumption data.

Dan et al. [46] presented a method for forecasting hourly load time series that utilizes
an improved temporal fusion transformer (ITFT) model in order to achieve more accurate
and comprehensive results. The method involves reconstructing raw hourly load data into
multiple day-to-day load time series at different hour points, which helps to balance the
need for long-term temporal dependence with reducing model complexity. The ITFT model
builds on the original temporal fusion transformer (TFT) model by using a GRU instead of
an LSTM to more efficiently learn long-term dependencies and includes quantile constraints
and prediction interval (PI) penalty terms in the quantile loss function to prevent quantile
crossover and generate more compact prediction intervals. Results from two real examples
showed that the proposed method is effective and significantly improves the reliability and
compactness of the forecasting results compared to other commonly used methods.

Mancuso et al. [106] described a ML approach for forecasting time series with a
hierarchical structure. It aimed to not only produce accurate forecasts, but also to select an
appropriate method for reconciling these forecasts. The process of forecast reconciliation
involved adjusting forecasts to make them consistent across different levels of the hierarchy.
Traditional methods for enforcing coherence often involved post-processing techniques on
base forecasts generated by other time series forecasting methods. This proposal suggested
using a DNN to directly produce accurate and reconciled forecasts. The NN was able to
extract information that captures the structure of the hierarchy and the reconciliation was
enforced during the training process by minimizing a custom loss function. Additionally,
many hierarchical time series data also included explanatory variables that can be used to
improve forecasting accuracy. This approach incorporated these variables by linking them
to the time series features at different levels of the hierarchy within an end-to-end NN.
This approach was tested on three real datasets and outperformed other state-of-the-art
methods for hierarchical forecasting.

In [107], a new forecasting model was presented for predicting the high-resolution
plug-in EV load, taking into account various factors that affect the charging load. The pro-
posed model utilized an enhanced attention-based LSTM approach and a feature upscaling
and downscaling algorithm for processing hierarchical high-resolution data. The model
was tested on real-world data from a charging station in Shenzhen, and results showed
that the model structure and algorithm performed well in STLF and VSTLF hierarchical
high-resolution plug-in EV charging load.

Additionally, in [108], a hierarchical time series approach was proposed to predict the
load demand of a primary substation one hour ahead, using different forecasting models.
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The performance of the forecasting models was evaluated using the MAPE indicator. The
bottom-up approach was used to forecast at the top level. The results showed that the
proposed hierarchical structure provides better performance with the employed forecasting
models. The techniques for LF based on the time series discussed previously are outlined
in Table 5.

Table 5. Summary of time series load forecasting techniques.

Ref. Used Models Summarized Highlights Pros Cons

[97] CRBM
FCRBM

• This paper proposed two newly short-term for
time-series prediction models of power consump-
tion, namely, CRBM and FCRBM.

FCRBM surpassed
ANN, SVM, RNN,
and CRBM

The proposed
models may not be
generalizable to
other applications

[98]
DBN
AFE

• This paper discussed two reinforcement learning
algorithms to perform the building energy con-
sumption;

• It combined (DBN) and the automated feature ex-
traction to process a building energy algorithm
for STLF.

The results showed
that the energy
forecasting accuracy
in terms of RMSE
was enhanced

The proposed
models may be
complex and
difficult to
implement

[99]
DL
statistical
model

• This paper proposed a predictive and data analytic
model to predict short-term power consumption
based on a time-series dataset acquired from mul-
tifamily inhabitant buildings;

• They combined DL model with a statistical model
to predict short-term power consumption.

Using MAE, RMSE,
MAPE, and R2
scores to evaluate
the performance.

It needs to be
compared to other
models

[100] RNN

• This paper proposed a new hybrid method for
STLF of HVAC thermal energy demand in smart
buildings that depends on a data-driven approach;

• This proposed method used dedicated RNN to
learn the dynamics present in the activity indicator
developed for this approach.

High accuracy and
performance level

It may not be
suitable for all
applications

[101]
LSTM-RNN-
based
univariate

• This paper proposed an optimized LSTM-RNN
based univariate model for demand side LF which
worked over both STLF and MTLF;

• The proposed model was compared with seven
ML based LF techniques, and it outperformed all
of them particularly in LF error rate.

It outperforms
seven ML-based LF
techniques, and
works over both
STLF and MTLF

The results may be
affected by the
specific dataset used
in the study

[31] LSTM-RNN

• This paper proposed a LSTM-RNN model for
LTLF with hourly resolution;

• The proposed model outperformed the other LTLF
models by providing high accuracy with MAPE of
6.54 and a confidence interval of 2.25%.

More accurate
forecasts

Not
appropriate for
online
applications

[102]

ANN
MLR
adaptive
boosting

• This paper utilized ANN, multivariate linear re-
gression model, and adaptive boosting model;

• The results proved the superiority of these models
in the SGs in terms of LF intervals that are classi-
fied into monthly, seasonal, and annual.

Superior Accuracy Limited applications
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Table 5. Cont.

Ref. Used Models Summarized Highlights Pros Cons

[103]
LGBM
XGB
MLP

• They proposed a novel hybrid computing tech-
nique for STLF.

• They merged three algorithms, namely, LGBM,
XGB, and MLP.

Several case studies
were applied High overhead

[104]
PLF
NN
LSTM

• This paper proposed a PLF technique for individ-
ual consumers to handle the variability and uncer-
tainty of future load profiles;

• They used the pinball loss method, instead of MSE,
to lead the training process.

It outperforms the
traditional
techniques.

It needs to be
compared to other
AI models

[46]
PLF, ITFT,
LSTM, GRU,
and TFT

• This paper introduced PLF technique for time se-
ries using ITFT model;

• The ITFT substituted LSTM together with GRU us-
ing the main TFT model to effectively learn LTLF.

Efficient learning of
long-term
dependencies using
a GRU

Limited
Applications

[105]
Hierarchical
limitations global
consuming

• This paper presented a three-step method for fore-
casting time series of energy usage at various lev-
els of home aggregation;

• These series were related by hierarchical limita-
tions global consuming equaled the total local con-
sumption.

It enhanced RMSE
values

Limited to
household electricity
consumption data,
may not generalize
well to other types
of data or contexts

[106] DNN

• This paper proposed ML-based forecasting hierar-
chical time series;

• They used DNN to generate precise and consis-
tent predictions and to retrieve information while
capturing the hierarchy’s structure.

Improved accuracy
of the forecasts

It may not work
well for other type
of data or
hierarchies

[107]
An enhanced
attention-based
LSTM

• A new forecasting model was presented for pre-
dicting high-resolution plug-in EV load;

• The model utilized an enhanced attention-based
LSTM approach and a feature upscaling and
downscaling algorithm for processing hierarchical
high-resolution data.

Good results
with real data

Working only
for EV

[108]
Hierarchical
time series
approach

• This article presents a hierarchical time series ap-
proach to predict the load demand of a primary
substation one hour ahead;

• The performance of the forecasting models was
evaluated using the MAPE indicator.

The ability to
forecast at different
levels of granularity,
using the bottom-up
approach

Complexity of the
hierarchical
structure, which
may make it difficult
to implement and
interpret

4.5. Meta-Heuristic-Based Load Forecasting Techniques

LF is a crucial aspect of power systems management, as it allows for the efficient
planning and operation of power generation and transmission. Meta-heuristic techniques
are a class of optimization algorithms that have been increasingly utilized in LF due to
their ability to effectively handle the complexity and uncertainty inherent in this task.
These techniques include genetic algorithms, particle swarm optimization, and simulated
annealing, among others. In this section, we will explore various meta-heuristic-based LF
techniques and their applications in the power systems industry.
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Noradin et al. [109] presented a hybrid forecasting approach that incorporated a new
feature selection method and a two-stage forecast engine using Ridgelet and Elman NN.
The load signal was preprocessed through feature selection before being input into the
forecast engine, which utilized a novel intelligent algorithm to optimize its performance.
The method was evaluated on various electricity market datasets and compared to existing
algorithms, and the results demonstrated the superior accuracy of the proposed method, as
measured by various error metrics such as:

MAPE(%) =
1

NH
ΣNH

t=1
|Lact(t)− L f or(t)|

Lact(t)
× 100 (1)

MAE =
1

NH
ΣNH

t=1 |Lact(t)− L f or(t)| (2)

Sun et al. [110] proposed a technique for electric STLF that employed LSTM networks
and a modified sine–cosine algorithm called MetaREC. First, it used LSTM networks as a
specific type of RNN that can retain and transmit both short and long-term information.
Four crucial parameters are determined using the sine–cosine algorithm, which relies on a
logistic chaos operator and multilevel modulation factor, to overcome the inaccuracies of
LSTM network predictions caused by manual parameter selection as follows:

X(t+1)(i, j) =

{
Xt(i, j) + r∗1(t) sin r2|r3 × Pt(i, j)− Xt(i, j)|, r4 < 0.5
Xt(i, j) + r∗1(t) cos r2|r3 × Pt(i, j)− Xt(i, j)|, r4 ≥ 0.5

(3)

Additionally, the MetaREC method demonstrated superior performance in accuracy
and speed on various test functions when compared to others. Finally, the study extends
the analysis to evaluate the MetaREC LSTM with back propagation NN, LSTM networks
with default parameters, LSTM networks with the conventional sine–cosine algorithm,
and LSTM networks with whale optimization for power LF on a real electric load dataset.
The results of the simulation showed that multiple forecasts with MetaREC LSTM can
effectively improve the accuracy and stability of power STLF.

Roushangar et al. [111] assessed the effectiveness of the generalized wavelet kernel
extreme learning machine (WKELM) approach for predicting bed load transport rate (BLTR)
in gravel-bed rivers. To enhance performance, this technique was combined with the
particle swarm optimization (PSO) algorithm to identify optimal parameters for WKELM
models. Various input combinations were created based on three scenarios, and results
showed that scenario 2 was the most effective in measuring BLTR. The model incorporating
parameters Fr, V/U*, and T had the highest level of R (0.934), NSE (0.870) and lowest value
of RMSE (0.025) for the test series and demonstrated more accurate and reliable prediction
ability when compared to SVM. This proposed input combination was used to predict
bed load transport in different intervals of median particle size, with the results showing
that the intervals of 1 to 1.4 mm produced the best predictive ability with NSE = 0.982.
The study found that the V/U* parameter played a crucial role in predicting BLTR. It
also compared the capabilities of traditional approaches for predicting sediment load and
found that these formulas had poor results due to limitations in input–output parameters
and complex conditions that govern sediment transport in natural gravel-bed rivers. The
results from sensitivity analysis showed that the ratio of average velocity to shear velocity
is the most influential parameter in predicting bed load. However, it should be noted that
the PSO-KELM approach is data-sensitive, so more studies with a greater field data are
recommended to confirm the validity of the proposed models.
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Ahmad et al. [112] proposed a novel DL method for electricity LF, using a three-step
approach. The first step is feature selection using a combination of XGB and decision tree
according to the following formula.

f (s) =

{
reserve, ⇐⇒ IXG[ f ] + IDT[ f ] ≥ t,
drop, ⇐⇒ IXG[ f ] + IDT[ f ] < t.

(4)

where f indicates the feature, IXG [f] represents the important feature calculated by XGB,
and IDT[f] by the decision tree. t indicates the threshold for features selection. The
second step is redundancy removal using Recursive Feature Elimination. The final step
is classification and forecasting using improved versions of SVM and Extreme Learning
Machine (ELM). The hyperparameters of ELM were optimized using a Genetic Algorithm,
while the hyperparameters of SVM were optimized using a Grid Search Algorithm. The
results showed that this improved method outperforms the most recent techniques in terms
of accuracy and performance, with forecasting accuracy of 96.3% for ELM-GA and 93.25%
for SVM-GC, which are 10% and 7% higher, respectively, than other techniques.

Huafeng et al. [113] introduced a framework, called multi-space collaboration (MSC),
aimed at optimizing model selection. It utilized a space separation strategy to perform
model selection on subspaces, increasing the likelihood of selecting the optimal model.
Additionally, their framework incorporated a subspace elimination strategy that gradually
eliminated subspaces with low potential as iterations progress, thus focusing more on the
better parameter domains. They performed simulation and real case studies to demonstrate
the effectiveness of the MSC framework. Results from test functions with known opti-
mal solutions showed that the MSC framework outperformed traditional meta-heuristic
algorithms and had strong robustness.

A quantum computing was utilized to enhance the searching capabilities of the dragon-
fly algorithm, referred to as QDA, by quantifying dragonfly behaviors in [114]. Additionally,
the use of complete ensemble empirical mode decomposition adaptive noise (CEEMDAN)
for data preprocessing improved forecasting accuracy. As a result, a new electric LF model,
called the CEEMDAN-SVRQDA model, was proposed. This model combines CEEMDAN
and hybridizes QDA with a SVR model to provide more accurate forecasts as in Equation (5).
The proposed model was tested using two real data from Japan and United Kingdom, and
it was found to perform better than other models.

|ψ〉 = β1|0〉+ β2|1〉 (5)

Ribeiro et al. [115] proposed a hybrid learning model for electric STLF based on a
dual decomposition approach. This scheme combines ML-based signal decomposition tech-
niques with metaheuristic-based hyperparameter optimization. The first decomposition
approach, seasonal and trend decomposition based on locally weighted regression STLF,
decomposed the time series into seasonal, trend, and residual components. The second
decomposition approach, variational mode decomposition (VMD), further decomposes
the STLF residual into different frequencies. The scheme was evaluated using measures
such as MEA, sMAPE, overall weighted average, and the Diebold–Mariano statistical test
as follows.

Diebold−Mariano =
∑n

i=1[L(ε
p
i )−L(εc

i )]
n√
S2

n

S2 (6)

The techniques for LF that have been discussed previously and are based on meta-
heuristic methods can be found in the accompanying Table 6.
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Table 6. Summary of meta-heuristic based load forecasting techniques.

Ref. Used Models Summarized Highlights Pros Cons

[109]
Ridgelet-NN
Elman-NN

• This paper presented a hybrid forecasting ap-
proach that incorporated a new feature selection
method;

• Two-stage forecast engine using Ridgelet and El-
man NN.

• Results demonstrated superior accuracy as mea-
sured by various error metrics.

Superior accuracy of
the proposed
method as measured
by various error
metrics

It requires more
computational
resources than other
forecasting
algorithms

[110]
LSTM
MetaREC
RNN

• This paper proposed a technique for electric STLF
that employed LSTM networks and a modified
sine-cosine algorithm called MetaREC;

• Results showed that multiple forecasts with
MetaREC LSTM can effectively improve the ac-
curacy and stability of power STLF.

MetaREC LSTM
improves the
accuracy and
stability of power
STLF

The proposed
technique may not
be generalizable to
other applications

[111]
WKELM
BLTR
PSO

• This paper Assessed the effectiveness of the gener-
alized WKELM approach for predicting BLTR in
gravel-bed rivers;

• This technique was combined with PSO algorithm
to enhance performance.

Accurate and
reliable prediction
compared to SVM

It was not compared
to other models

[112]

XGB
Decision Tree
RFE Improved-
SVM
ELM-GA

• This paper proposed a novel DL method for elec-
tricity LF using a three-step approach;

• The results showed that this improved method
outperforms the most recent techniques in terms
of accuracy and performance.

The improved
method
outperforms the
most recent
techniques in terms
of accuracy and
performance

It may require more
computational
resources than other
forecasting
algorithms

[113] MSC

• This paper introduced a framework called MSC
aimed to optimize model selection;

• The results showed that the MSC framework out-
performed traditional meta-heuristic algorithms.

MSC framework
outperformed
traditional
meta-heuristic
algorithms

The proposed
framework may be
complex and
difficult to
implement

[114]
QDA
CEEMDAN
SVR

• This paper utilized quantum computing to en-
hance the searching capabilities of QDA algo-
rithm;

• The proposed model was tested using two real
data from Japan and United Kingdom, and it was
found to perform better than other models.

It was found to
perform better than
other models

It is data-sensitive,
allowing for more
studies with more
field data

[115]
WKELM
BLTR
PSO

• This paper used a hybrid learning model based on
dual decomposition approach in electric STLF;

• The results were compared with single decom-
posed models, dual decomposed models, non-
decomposed models, and the most recent models.

Accurate and
reliable prediction
compared to SVM

It needs to be
compared to other
models

5. Recommendations

This paper aims to provide a comprehensive survey of the major techniques used
in LF and their applications in SGs. Despite the numerous survey papers and reviews
that have already examined LF techniques from various perspectives, our paper aims
to offer a more in-depth and up-to-date overview of the field. We begin by reviewing
existing reviews and survey papers on the topic in a section dedicated to related work,
providing readers with a broad understanding of the existing literature and the most recent



Energies 2023, 16, 1480 26 of 33

techniques. Additionally, we present an overview of the current state-of-the-art techniques,
including traditional techniques, clustering-based techniques, AI-based techniques, LF
techniques based on time series, and meta-heuristic-based techniques. Additionally, Table 7
provides a detailed comparison of advantages and disadvantages for all LF techniques for
a thorough understanding.

Based on the review of existing literature on LF techniques and their applications for
SGs, it is recommended that future research focus on the following areas:

• Development of more advanced forecasting models that can handle high levels of
volatility and uncertainty in load data;

• Implementation of ensemble methods, which have been shown to improve the accu-
racy of forecasting models;

• Investigation increasing the use of NNs, which have shown promising results in LF in
recent studies;

• Exploration of the use of big data and ML techniques for LF in SGs;
• Examination of the potential benefits of integrating LF with demand response pro-

grams in SGs;
• Study of the impact of renewable energy sources on LF in smart grids and the devel-

opment of models that can accurately forecast the impact of these sources on the grid;
• Development of forecasting models that can take into account the specific characteris-

tics of different types of loads, such as residential, commercial, and industrial loads;
• Consideration of the role of distributed energy resources and their impact on LF

in SGs.

Overall, it is important for future research to continue to focus on developing more
accurate and reliable LF techniques for SGs, as these are crucial for the efficient and effective
operation of the grid.

Table 7. Summary of advantages and disadvantages for all LF techniques.

Techniques Advantages Disadvantages

Traditional Load
Forecasting
Techniques

• These techniques are well-established and
widely used in the industry;

• They are relatively simple to implement and
understand;

• They do not require a large amount of data.

• These techniques may not be as accurate as
more advanced methods;

• They may not be able to handle complex or
non-linear relationships in the data;

• They may not be able to handle missing data
or extreme events.

Clustering-Based
Load Forecasting
Techniques

• These techniques can identify patterns and
relationships in the data that traditional meth-
ods may not detect;

• They can be used to identify and forecast pat-
terns in specific. subsets or groups of the data;

• They can handle missing data or ex-
treme events.

• These techniques may require a large amount
of data to achieve high accuracy;

• They may be computationally intensive to
run;

• They may be difficult to interpret and under-
stand.

AI-based Load
Forecasting
Techniques

• These techniques can handle complex or non-
linear relationships in the data;

• They can be used to identify and forecast pat-
terns in specific subsets or groups of the data;

• They can handle missing data or ex-
treme events.

• These techniques may require a large amount
of data to achieve high accuracy;

• They may be computationally intensive to
run;

• They may be difficult to interpret and under-
stand;

• These techniques may not be generalizable to
other types of data.
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Table 7. Cont.

Techniques Advantages Disadvantages

Time Series Load
Forecasting
Techniques

• These techniques are well-established and
widely used in the industry;

• They are relatively simple to implement and
understand;

• They can handle missing data or ex-
treme events.

• This paper presented a hybrid forecasting ap-
proach that incorporated a new feature selec-
tion method;

• These techniques may not be as accurate as
more advanced methods;

• They may not be able to handle complex or
non-linear relationships in the data;

• They may require a large amount of data to
achieve high accuracy.

Meta-Heuristic
Based Load
Forecasting
Techniques

• These techniques can handle complex or non-
linear relationships in the data;

• They can be used to identify and forecast pat-
terns in specific subsets or groups of the data;

• They can handle missing data or extreme
events;

• They are global optimization methods which
can find optimal or near-optimal solutions.

• These techniques may require a large amount
of data to achieve high accuracy;

• They may be computationally intensive to
run;

• They may be difficult to interpret and under-
stand;

• These techniques may not be generalizable to
other types of data;

• They require a good initialization to find
global optimal or near-optimal solutions.

6. Conclusions

LF techniques are essential for maintaining the reliability, stability, and efficiency of the
smart grid SGs as they are able to predict energy demands of consumers. With the growing
various of ML and DL algorithms, the challenge is to find the most suitable algorithm for
forecasting electricity demands. To address this, a comprehensive survey of state-of-the-art
LF techniques was conducted to showcase the various LF techniques and their applications
in SGs. We included a related work section that reviewed existing reviews and survey papers
on the topic. We presented an overview of the existing literature and most recent techniques,
including traditional LF techniques, clustering-based techniques, AI-based techniques, LF
techniques based on time series data, and meta-heuristic-based LF techniques.

We believe that the increasing advancements in AI technology, specifically ML and DL
algorithms, have greatly improved the precision of demand forecasting in LF. However,
there is still a need for further research to analyze and evaluate different LF techniques
to identify the most accurate and appropriate techniques for use in SGs. Our findings
suggest that AI-based LF techniques, including ML and NN models, have yielded the best
forecast performance among the techniques studied. These techniques also achieved a
higher overall (RMS) and (MAPE) compared to other applied LF techniques.

One potential suggestion for future advancements in LF for SGs applications could
be the integration of ML models to enhance the accuracy and efficiency of forecasting
techniques. Additionally, integration of ML models with statistical models could also
improve the precision and effectiveness of forecasting techniques. Utilizing real-time
data and implementing advanced sensor technology could also enhance the ability to
accurately predict and respond to changes in load demand. Furthermore, incorporating
distributed energy resources and considering the integration of renewable energy sources
into forecasting models can also provide a more holistic and sustainable approach to LF in
SGs systems.
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200219.
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Abbreviations
The following abbreviations are used in this manuscript:

RTP Real-Time Pricing
SG Smart Grid
LF Load Forecasting
AI Artificial Intelligence
MLP Multi-Layer Perceptron
PSO Particle Swarm Optimization
FCRBM Factored Conditional Restricted Boltzmann Machine
ARMA Auto-Regressive Moving Average
MPC Model Predictive Control
VSTLF Very Short-Term Load Forecasting
EV Electric Vehicle
GSP Gross State Product
MLR Multiple Linear Regression
SM Smart Meter
ELM Extreme Learning Machine
SVM Support Vector Machine
MSC Multi-Space Collaboration
RMS Root Mean Squared
ARIMA Auto-Regressive Integrated Moving Average
STLF Short-Term Load Forecasting
WKELM Wavelet Kernel Extreme Learning Machine
ANN Artificial Neural Network
SI Swarm Intelligence
LSTM Long Short-Term Memory
KNN K-Nearest Neighbors Algorithm
ToU Time of Use
MAPE Mean Absolute Percentage Error
RNN Recurrent Neural Networks
SCADA Supervisory Control And Data Acquisition
OLIN Online Information Network
IEMD Improved Empirical Mode Decomposition
ML Machine Learning
MTLF Medium-Term Load Forecasting
WNN Wavelet Neural Network
NN Neural Network
FOA Fruit Fly Optimization Algorithm
PLF Probabilistic Load Forecast
DL Deep Learning
SCC Spearman Correlation Coefficient
FWK Functional Wavelet-Kernel
CHAID Chi-squared Automatic Interaction Detector
HVAC Heating, Ventilation, and Air Conditioning
XGB Extreme Gradient Boosting
MLR Multi-variable Linear Regression
SVR Support Vector Regression
CRBM Conditional Restricted Boltzmann Machine
LTLF Long-Term Load Forecasting
DBN Deep Belief Network
FL Federated Learning
VMD Variational Mode Decomposition
IoT Internet of Things
LGBM Light Gradient Boosting Machine
GRU Gated Recurrent Units
CPP Critical Peak Pricing
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QDA Quantifying Dragonfly Algorithm
KF Kalman Filtering
BLTR Bed Load Transport Rate
CLC Closed-Loop Clustering
HLF Hierarchical Load Forecasting
CEEMDAN Complete Ensemble Empirical Mode Decomposition Adaptive Noise
IPFE Inner-Product Functional Encryption
CAT Change And Transmit
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