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Abstract. Carroll has shown three qualitatively different cases of behavior in the
load-expansion relation for the inflation of hollow incompressible isotropic elastic spheres.
Each of these cases was related to material response in uniaxial compression (or equal
biaxial extension). For "type A" materials, load increases monotonically with expansion;
for "type B" materials, load increases monotonically and then decreases; for "type C"
materials, load increases monotonically, decreases, and again increases. The present
work discusses the monotonicity properties of the load-expansion relation when rubbery
materials undergo microstructural change or damage. The analysis is carried out using
a constitutive equation for materials undergoing continuous scission and reformation of
macromolecular junctions. Results are presented for the case when this leads to softening
of response. For "type A", sufficient softening can cause loss of monotonicity; for "type
B", the softening leads to loss of monotonicity at smaller levels of inflation and lower
loads.

1. Introduction. The general form of the constitutive equation for nonlinear elastic
solids is based on assumptions which imply that stress arises from a single unchanging
material micromechanism at all stages of deformation. Rajagopal and Wineman [1992]
have recently presented a constitutive theory which can be used to model the mechanical
response of rubber-like materials that exhibit changes in micromechanism. In their model,
the stress is determined by one micromechanism within some regime of deformation;
as deformation increases, a new micromechanism arises which affects the mechanical
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response. They considered the particular example in which the material acts as a rubbery
solid if the deformations are relatively small. When deformations become sufficiently
large, network junctions in the original material break and then reform to produce a new
network with a new unstressed local configuration. Their work allowed for continuous
conversion of the original material to new networks as deformation proceeds. It was
shown that the material can undergo substantial softening and that there is permanent
set when the applied load is removed. It is emphasized that the term "network" is used in
this paper for convenience in presenting modeling concepts. It is used broadly to denote a
material's microstructure; it is not intended to imply any specific microstructural process.

There have been several applications of this constitutive theory to problems involving
nonhomogeneous deformations. The examples all assume that the material is incompress-
ible and that new networks are generated at sufficiently large deformations. Wineman
and Rajagopal [1990] studied the finite extension and torsion of a circular cylinder. Hunt-
ley [1992] considered the circumferential shear of a hollow concentric cylinder whose inner
surface is fixed and whose outer surface is rotated about the centerline. Huntley [1992]
also analyzed the radial expansion of thick-walled hollow spheres under either internal
pressure or external radial tension. Wineman and Huntley [1994] studied a circular rub-
ber membrane that is fixed at its boundary and subjected to a uniform pressure over one
of its surfaces. In each of these studies, when the deformation is sufficiently large, there
is a region of original material separated from a region of multi-network material by an
interface whose location varies with the size of the deformation.

The constitutive theory not only has an important influence on the local material
behavior, but also affects the global load-expansion response. The present work considers
a specific case of the latter for the problem of the radial expansion of a thick-walled hollow
sphere. Of particular interest is the relation between the current inner radius and either
the internal pressure or the external radial tension. Carroll [1987] presented a thorough
discussion of the load-expansion relation for incompressible isotropic nonlinear elastic
materials. He provided general results that, relate the loss of monotonicity in the load-
expansion response of a material to the properties of its equal biaxial plane stress-stretch
relationship. In the present work, Carroll's analysis is modified so as to account for the
influence of microstructural change on the loss of monotonicity in the load-expansion
relation.

The constitutive equation is presented in Sec. 2 and the equations governing the radial
expansion of a hollow thick-walled sphere are presented in Sec. 3. Section 4 contains a
discussion of the conditions for monotonicity of response of the load-expansion relation.
First, Carroll's analysis for elastic materials is reviewed. It is then extended to account for
elastic materials undergoing microstructural change. The numerical method of solution
is outlined in Sec. 5. Results for numerical examples are discussed in Sec. 6. Conclusions
are presented in Sec. 7.

2. Constitutive equation. Consider a sample of material undergoing a homoge-
neous deformation described by x = x(X. i), where x is the current position of a particle
located at X in the undeformed reference configuration, when t = 0. The deformation
gradient associated with this mapping is F = dx/dX and the left Cauchy-Green tensor
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is given by B = FFT. Assume that there is a range of deformation on which the material
behaves as an isotropic, incompressible, nonlinear Green elastic solid. It is well known
(e.g., Spencer [1980]) that the Cauchy stress T for this material takes the form

T = -pi + 2[W^1)B - W^B-1], (1)

where —pi is an indeterminate hydrostatic stress state. It will be convenient to denote
the extra stress by T = T + pi. W= W(1\li,/2) is the strain energy per unit
volume, where 1i = tr(B) and I2 = tr(B_1) are the first two invariants of B. Also,

W[^ = d\VW/dh and W2(1) = dW^/dh-
An activation criterion determines when the original material network begins to un-

dergo microstructural change and form new networks. This criterion is taken to be ex-
pressed as a function of the deformation gradient F which vanishes when microstructural
change begins. Material frame indifference, isotropy and incompressibility imply that
the activation criterion can be expressed in terms of the invariants of B: A{I\,l2) = 0.

Transformation of the original microstructural network is assumed to be continuous
with increasing deformation. Introduce a scalar deformation state parameter s whose
value is determined by the extent of deformation. It can be expressed in terms of the
stretch invariants: s = s(h,l2)- The value of s increases as deformation increases.
No unique definition of the term "increasing deformation" is proposed. Instead, as in
the previous applications of this constitutive equation (Wineman and Rajagopal [1990];
Huntley [1992]; Wineman and Huntley [1994]), an appropriate form of s is selected for
the deformation process under consideration. Recasting the activation criterion in terms
of the state parameter gives A(Ii,l2) — s{I\,l2) — sa. Microstructural conversion is
initiated when the state parameter s first reaches the conversion-activation value sa.

For s < sa, no conversion has yet occurred; thus all material is original and the total
stress is given by (1). At the current deformation state s, with s > sa, stress in the
remaining original material is also a function of the current deformation gradient F.

Introduce the scalar-valued conversion rate function a(s). As increasing deformation
causes the state parameter to increase beyond s = s0, the conversion rate function
determines the amount of network transformation induced by additional deformation.
The conversion rate function may have any form respecting the constraints a(s) = 0,
s < sa and a(s) > 0, s > sa. a(s) must remain nonnegative in order that an increase in
deformation always be associated with additional microstructural change. It is assumed
that a is a continuous function of s.

Consider a value of the deformation state parameter s > sa. It is assumed that
a network is formed at this value of the deformation state parameter. Its reference
configuration is the configuration of the original material at state s. It is assumed to be an
unstressed configuration for the newly formed network. Stress in such a material network
is a function of the subsequent deformation of the network relative to this unstressed
configuration. Define the deformation gradient for the material formed at state s as
F = cbc/<9x, where x is the position of the particle in the configuration corresponding to
deformation state s. Referred to as the relative deformation gradient, F compares the
neighborhood of a particle in the configuration at state s with the configuration of the
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new network when it was formed at state s. The associated relative left Cauchy-Green
tensor is given by B = FFT.

Let it be assumed that the material network formed at state s is elastic, isotropic, and
incompressible. The extra Cauchy stress at state s in a network formed at deformation
state s then becomes

T(2) = 2[Wtf)B - W2(2)B~1]. (2)

Here W'2) = (I\, I2) is the strain energy density of the material formed at state s
and subsequently deformed to state s. I\ and I2 are the appropriate invariants of B.
The strain energy density functions Wand W^ may be of any form. It is assumed
that the single function H^'2' governs the strain energy density in each newly formed
network. The material defined by (2) is not a simple material in the sense of Noll (see
Rajagopal [1995]).

Total current stress in the material is taken as the superposition of the contribution
from the remaining material of the original network and the contributions from all net-
works formed at deformation states s € [sOJ s]. During a process of increasing deformation
the total current stress is given by

T = -pi + b(s)T(1) + f a{s)T(2)ds. (3)
J sa

The function b(s) is the volume fraction of the original network material remaining at
state s, with b(s) = 1, s < sa, and b(s) G [0,1], s > sa. The volume fraction b(s)
decreases as s increases. T(1\ found from (1), is the current stress in the remaining
original material. The quantity a(s)ds may be interpreted as the volume fraction of
material that ruptures and reforms as the deformation state increases from s to s + ds.
T^2\ given by (2), is the stress in that portion of newly formed material. With (1) and
(2), (3) can be written in the form

/*S

T = -pI + 26(s)[W1(1)B- W^B-^ + 2 J a(5)[W\(2)B - W2(2)B"1]ds. (4)

Equations (3) and (4) are constitutive equations for incompressible materials and respect
the requirements of frame indifference and isotropy.

Much of the notation to be used in this article has already been introduced. However,
before proceeding to study the application of the constitutive equation, it is important
that the notational scheme and the functional dependences that it implies be clearly
understood. An overview of the principal elements of the notational system is presented
here.

Unhatted kinematic quantities, such as F,B,/i, and I2, are referred to as "current"
and compare configuration at the current deformation state s with the initial reference
configuration. Kinematic quantities bearing the hat notation (~), such as F.B,/!, and
I2, are called "relative" quantities. They represent comparison of the configuration at
the current state s with the configuration at state s.

The superscript ( appearing in stress quantities such as T^ indicates that the
stress is in material of the original microstructural network. Such stresses are functions of
the current left Cauchy-Green tensor B. The superscript ( )(2) appearing, for example, in



LOAD MAXIMUM BEHAVIOR IN INFLATION OF HOLLOW SPHERES 197

T® indicates stress in a material network formed at deformation state s. These stresses
are functions of the relative left Cauchy-Green tensor B. Unsuperscripted stresses, such
as T, are total stresses following the superposition given by (3) of stresses in original
and newly formed networks. They are thus functions of the current tensor B and of
the relative tensors B relating the current configuration to each state s £ [sa, s] for
increasing deformation. For a process of increasing deformation, unsuperscripted stresses
also depend explicitly on the current value of the deformation state parameter s, which
appears as the upper limit of integration and as the argument of b(s).

The function denotes the Helmholtz strain energy density in material of the
original network; it is a function of the current stretch invariants 7i and I2■ W^ is the
strain energy density in the material of a subsequently formed network and is a function
of the relative invariants I\ and 12-

Non-dimensionalized quantities bear the tilde notation (~), as T.
For purposes of notational simplicity, none of the functional dependences mentioned

above is indicated explicitly when kinematic or stress quantities are written.

3. Formulation.
3.1. Kinematics of deformation. Consider a sphere of initial outer radius Ra contain-

ing a central spherical cavity of radius Rj. In spherical coordinates, the undeformed
sphere occupies the domain

D = {(R, $, 0): R € [Rz, R0}-, $ € [0, tt]; 0 € [0, 2tt)}. (5)

No restriction is placed on the thickness of the sphere: all values of Ri and Ra, with
Ra > Ri, are admissible. The sphere is considered to be composed of material that is
initially homogeneous, incompressible, elastic, and isotropic.

Let Ta be a radial force per unit current surface area. A uniform radial tensile traction
of magnitude T0 is applied at the outer surface. The surface of the inner cavity is traction-
free. The resulting deformation is assumed to be spherically symmetric. With (r, <j>, 9)
denoting the current coordinates of the particle initially located at (R, <i>, ©), the mapping
has the form

r — r(R),

<t> = ®, (6)
0 = 0.

The radial deformation function r(R) is to be found. For the mapping (6) the general
deformation gradient in spherical coordinates (e.g., Spencer [1980]) is found to simplify
to

™ —(m)- m
The statement of incompressibility, det(F) = 1, may be written from (7) as

r \ 2 dr
r) Tr = L <8>
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Introduce the notation A = r/R. The incompressibility condition (8) becomes

A2S = 1' (9>
which gives dr/d.R = 1/A2. Thus the current deformation gradient (7) with respect to
the initial coordinates may be written as

F = diag A, aV (10)

It can be seen from the deformation gradient (10) that each particle R of the sphere
may be regarded as undergoing locally homogeneous equal biaxial extension. The r-,
4>- and ^-directions are the principal directions of stretch. There is no variation in defor-
mation with the 0- and ^-coordinates; the state of equal biaxial extension is a function
of the radial coordinate R.

The current left Cauchy-Green tensor and its inverse are found from (10) to be

^ _ A,/r _ Ain„ ( 1 \2 \2

and

B = FF = diag ( A , A J (11)

B 1=diag(A4,^,^). (12)

The invariants of B are given by

/i - 2A2 + I"2 ~ 2+A4- (13)

Note that (8) can be integrated to give the relation

A = A (R) = l + (A?-l)(f
R,s 3 1/3

(14)

where A,; denotes the equal biaxial stretch ratio A(Ri) at the inner surface of the sphere.
Once the value of A; is specified, (14) gives the stretch ratio distribution A(R) for the
entire sphere. A,' is thus considered a global deformation control parameter in the remain-
der of this article. It can be seen from (14) that, for a fixed particle label R, A increases
monotonically with A j. A process of increasing A; thus assures a process of increasing A
for all R 6 [Ri: Rc)\.

Recall the requirement that the deformation state parameter s(I\,l2) increase with
some measure of the stretch invariants. For A > 1, both I\ and I2 as given by (13)
increase monotonically in A. Thus s can be expressed as s(A), a monotonically increasing
function of A. The parameter s also increases monotonically with A i at fixed R. Equation
(14) also reveals that, for a fixed stretch A^,A and hence s decrease monotonically as R
increases.

Consider now the material of a particle R that undergoes conversion at some value
of the deformation state parameter s > sa. let A be the equal biaxial stretch ratio
corresponding to deformation state s. It follows from (10) that

H=di»g(p,u). (15)
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Deformation then increases beyond state s. Note that

dxx 1F = FU> <16>

implies that the relative deformation gradient is

F = diag
a\2 A A
a) 'I'l

The relative left Cauchy-Green tensor and its inverse are formed from (17) as

B = FFt = diag
4 2 / , \ 2A \ f X\ (X

J
and

2 / - \ 2'i / w ■* i \ \
B = diag A\4 I A \ / A

A J ' V A

(17)

(18)

(19)

The relative invariants are found from (18) to be

Ji=2(tV + (t! J ^2 = 2(t) +Ct) • (20)
4 / - \ 2

-A J \XJ \XJ \X
3.2. Stress-stretch relations. Consider a process in which A; increases monotonically.

As discussed above, the stretch ratio A and hence the deformation state parameter s
increase monotonically for all R € [Ri, Ra].

For any particle R that has not undergone microstructural transformation, where
s < sa, the nonzero current Cauchy stresses are given by (1), (11), and (12) as

Trr — — p + 2

Tgg = —p + 2 w»h> - ^Az

(21)

with p an indeterminate scalar. Also, = Tgg. Note that, since the stretch tensors
are diagonal, all shear stress components are identically zero. From (21) it is clear that
the extra stress components are functions of A. As discussed above, however, A(R) is
given by (14) at any level of deformation of the sphere, once the deformation control
parameter A; is prescribed. Thus the extra stresses may also be considered functions of
the reference coordinate R.

The normal stress difference, T — T(R) = Tgg(R) - Trr(R), is of primary interest.
From (21), the normal stress difference when s < sa is seen to be

rfi rri(l) OE^l") ( \ 2 ^T = T ' = 2E(1) ̂ A2 - — J , (22)

where E^ is the deformation-dependent modulus of the original material given by

E& = E{1\X{R)) = W!(1) + A 2W2(1). (23)
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As Ai increases, particles at some R may stretch to such an extent that s(X(R)) > sa-
For particles with s > sa, the nonzero current Cauchy stresses are formed from (4), (11),
(12), (18), and (19) as

Trr = — p + 2 b(s)

Tee = ~P + 26 (s)

W^-W^X4 +2 J\(s)

+ 2 f a(s)
■> Sn

ds,

uf2! ( - ) - w2(2)
\) \A

ds.

(24)

Again, = Tee■ The normal stress difference for s > sa is found from (24) to be

T = £ *)#<>> (*) ds ^ , (25)

with the deformation-dependent modulus of the newly formed material given by

2
E(2) = Em = w(2) + 0^ W:(2)

2 * (26)

Since s = s(A) and A = A(R) by (14), each value of A,; determines a variation of s with
R. The state parameter s decreases monotonically with R for all A,. Figure 1 shows the
general form of the s-R distribution for the sphere at several levels of deformation A,. At
a low value of A^ = Xsm, s < sa for all R 6 [i?i, Ra], as seen in Fig. 1. No microstructural
change has occurred; the entire sphere is composed of the original material. Due to the
one-to-one correspondence between s and A, there exists a specific value of A, denoted by
Ai = Xa, with Aa > Asm, which corresponds to s(Aj) = sa. Conversion is just initiated at
R — Ri\ s < sa for all R E (Ri,R0]• When A, = A;5, where Aig > Xa, there is an activation
radius Ra defined by s(X(Ra)) = sa, where X(Ra) = Xa. s > sa for R E [R,,Ra), while
s < sa for R G (Ra,R0], Thus there is an inner spherical region where conversion is
taking place and both original material and newly formed networks are present and an
outer spherical region composed purely of original material.

The activation value of the stretch ratio Aa and the activation radius Ra are related
by (14). With the substitutions X = Xa and R = Ra, (14) can be rearranged to give

A? — 1 1/3
• (27)

When Xa is specified, it is clear from (27) that Ra moves outward as Ai increases during
a process of increasing deformation.

The Cauchy stresses for the inner region undergoing microstructural change, R ®J
[Ri, i?a], are given by (24). Stresses in the outer region of original material, R E [Ra, Ro\,
are given by (21). Note that R = Ra belongs to both of the two closed intervals on R.
This holds because the results given by the two stress models (21) and (24) are identical
at R',= Ra.
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R

FIG. 1. Typical forms of deformation state parameter vs. radius for
various inner surface stretch ratios; activation radius is indicated for

= ^lq •

3.3. Equilibrium. It. should be noted that the spherical deformation described by (6)
is a controllable deformation (Carroll [1967]). For any incompressible isotropic solid, a
scalar field p can be found that satisfies the equilibrium equations. Furthermore, it can
be shown that p = p{r).

It has been shown that the shear components of the Cauchy stress are identically zero
and that the extra stresses Trr and 7^ = Tgg are independent of the coordinates <fi and 6.
When body forces are neglected, and use is made of = Tgg, the equilibrium equations
in spherical coordinates (e.g., Spencer [1980]) are reduced to

dXrr + 2rrr - Toe = o (28)
dr r
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It may be observed from (14) that the mapping from R to r is one-to-one. Therefore,
the statement of equilibrium (28) can be expressed in terms of the reference coordinate
R as

^+2"=0' <29>
where A = r/R and (9) have been used. Written in terms of the normal stress difference,
(29) becomes

= <30>

Since the deformation is controllable, the equilibrium condition (30) is satisfied at every
point R £ [Ri,R0] and at every value of the deformation control parameter Aj.

The radial normal stress Trr must be continuous and have a continuous first derivative
dTrr/dR on In particular, these quantities must be continuous at the interface
R = Ra between the inner region of converting material and the outer region composed
entirely of original material. Comparison of the expressions (21) and (24) confirms that
the extra stresses Trr and Tgg are continuous at R = Ra for any form of a(s). It can
be shown from (14), (21), (24), and (30) that a(sa) = 0 and db/ds — 0 at s — sa are
sufficient conditions for continuity of dTrr/dR at R = Ra- These conditions will be
enforced through appropriate selection of a(s) and b(s).

3.4. Load-expansion relation. Let (30) be integrated from Ri to Ra. Imposing the
boundary conditions that the surface of the inner cavity be traction-free and the uniform
radial tensile traction at the outer surface be Ta gives the result

k-'Ctb?**- (31)
When \i < \a, s < sa for R 6 [Ri,R0] and T0 is found from (31), with T = T(1) given
by (22). If Ai > Aa, microstructural transformation has been activated and s > sa on
the inner region of the sphere R £ [Ri, Ra\. The external traction is then

rR-a rp rRo
T0 = 2 Lw^L T dR (32)

T is the current stress difference in material undergoing conversion and is given by
(25). Note from (22) and (25) that T is determined at each particle R by the current
value of A(R) and the history of A(R). During a process of monotonically increasing
deformation, this history is identical for any particles sharing a specified current value
of A. Furthermore, the distribution A(R) is determined by A; and i?, in (14). Thus, with
Ra specified, it follows from (31) that Ta = T0(A;), a relation between the traction at the
outer surface and the equal biaxial stretch ratio at the inner surface of the sphere.

4. Monotonicity of response. The influence of microstructural change on the
monotonicity of the T0-\i relation is now investigated. It may be noted that it is be-
cause of the possibility of non-monotonic T0-Aj behavior that the deformation-control
process of increasing Aj has not been identified with a process of increasing T0: the term
"loading" has not been used.
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The analysis presented in this section follows the approach developed by Carroll [1987]
in his study of pressure maxima in the inflation of hollow spheres of a homogeneous,
isotropic, incompressible nonlinear elastic material. The method presented by Carroll for
uniaxial extension is borrowed, while all details of the analysis are formulated specifically
for equal biaxial extension. It is easy to show that the two treatments based on uniaxial
compression or equal biaxial extension are equivalent.

It is useful first to outline Carroll's analysis to set the stage for its application to
materials undergoing network conversion. Since an analysis along these lines involves the
visualization and comparison of several interdependent quantities, it is first presented in
a simple form, with the assumption that the sphere is composed of a single material
that remains elastic at all ranges of deformation. Modifications due to the occurrence of
microstructural transformation and the resulting spatial variation of material properties
are most easily introduced after the entire approach has been explained.

4.1. Elastic materials. The relation between Ta and A * for an elastic sphere is pre-
sented in (31), with T = T 1' given by (22). To determine whether this relation is
monotonic or non-monotonic, consider the derivative dT0/d\i. Note that the stress dif-
ference T in (22) can be written as T(X(R)). When A * is specified, A is monotonic in R
by (14) and it is possible to change the variable of integration and write (31) as

To = 2 [X° (33)RX3 dX
Here a prescribed value of R = Ra has been substituted into (14) to give

A0 — X(Ra) 1 + (A? - 1)
Ri
R0

1/3

(34)

Since Ri/R0 is fixed, A0 can be considered a function of Aj, or A0 = A0(A,). The function
R(A) can be found from the one-to-one relation (14), by which dR/dX is formed as

dR R4A2
dX (A?-l )Rl

With (34) and (35), (33) becomes

(35)

T"<36)

The advantage of this form is that dependence on A * has been eliminated from the
integrand. Differentiation of (36) with respect to Aj gives

^ = 2
dXi

T(Xi) T(A0) dX0
Ai(Af-l) A0(Aj* - 1) dXi _ (37)

(38)

Prom (34), it can be seen that

dXQ R*A?

dXi ~ RlXl'
Equation (34) also provides the identity

R30(Xl-l) = R*(X3i-l). (39)
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Substitution of (38) and (39) into (37) then gives

dT0 2A?
d\i A3 - 1

T{\j) T( Ap)
A? A? (40)

Introducing the notation g = g{A) = T /A, (40) is further simplified to

HT 2 A2
df; = w^i[g{K) ~ 9{x°)]- (41)

When the sphere is composed of material that remains elastic in all deformation regimes,
a single function g holds for all A.

From (41), it can be seen that the slope of the T0-Aj curve vanishes and a loss of mono-
tonicity arises when g(Xi) = g{A0). Information about the second derivative d2T0/dXf
at these critical points is also useful to the study of monotonicity. When the second
derivative is evaluated with g(X{) = g(A0), it takes the form

d2Tn 2A? \dg(Xt) dg( A0)
dX2 A? - 1 d\j dXi (42)

Since it is solely the function g that determines monotonicity, it is important to un-
derstand its properties. As is evident from its definition, g(A) represents an interaction
of the normal stress difference T = T{A) and the kinematic quantity A3. For elastic ma-
terials, the expression of the stress difference as a function of A is given by (22). T may
be monotonic or nonmonotonic in A. It is seen from (34) that A3 < A3, since Ri/R0 < 1.
Furthermore, the difference between A3 and A? is determined by the geometric factor
Ri/R0. Thus the condition g(Xi) = g(A0) depends in general not only on the model
chosen to represent the normal stress difference T(A), but also on the relative size of the
cavity contained within the sphere.

The general shape of g(A) is first considered. Values of the stretch ratio in equal
biaxial extension fall in the range A > 1. As can readily be seen from (22), T = 0 gives
g = 0 at A = 1. As A increases from A = 1, g increases. The behavior of g at larger
A depends on whether T increases as rapidly as 1/A3 decreases. Carroll identified three
qualitative types of material behavior which correspond to g-X curves of three different
general shapes. Examples of the general forms of such curves are presented in Fig. 2.
In "type A" materials, the stress difference T increases more rapidly than A3 for all
A > 1, so that g increases monotonically with A. In "type B" materials, T increases more
rapidly than A3 for small A, but g reaches a local maximum and then decreases as 1/A3
dominates at larger A. In "type C" materials, T is dominant as g increases for small A;
1/A3 dominates to cause g to decrease on some intermediate range of values of A; then
T reasserts the increasing trend at large A. Thus the g-X curve for "type C" materials
has a local maximum followed by a local minimum.

To investigate the possibility that the non-monotonicity condition g{Xi) = g(Xa) be
satisfied, two curves may be plotted on the same set of axes for each material type. The
first is g(Xi). For each value of Aa corresponding value A0(A,) is given by (34). g is
evaluated at A0(A,) to obtain g(Xa), which is plotted at A, to form the second curve. From
(34), it is found that A0 = 1 when A» = 1; so both curves share the point (1,0). g(Xa)
takes the same basic shape as g(Xi), but it is "stretched" by the change of arguments
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Fig. 2. Typical forms of g vs. stretch ratio for "type A", "type B",
and "type C" materials

from Ai to A0(Ai). Since A0 < Aj always holds, this "stretch" of g(A0) is always to the
right when g{A0) is plotted at Aj. The severity of the "stretch" is determined in (34) by
the geometric parameter Ri/Ra. The values of g{Xa) at any relative maxima or minima
are the same as those of g(Xi).

Figure 3 shows a typical pair of plots for a "type A" material. For all values of the
deformation control parameter Aj > 1, the g-XQ curve lies below the g-Xi curve. There
is no value of Aj for which g(Xi) = g(Xa). Thus the T0-Aj relation is monotonic for a
homogeneous sphere composed of any "type A" material, regardless of the value of the
geometric ratio Ri/R0.

Figure 4 shows qualitative plots for a material of "type B". As the control parameter
increases from Aj = 1, g(Xi) > g(Xa) holds. From (41), this is seen to correspond to
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Fig. 3. Typical forms of g evaluated at inner and outer surfaces of
sphere vs. inner surface stretch ratio for "type A" material

dT0/d\i >0. At a critical value of \ = Xthe two curves intersect. Let X" = A0(A").
With g(X") = g(A"), (41) gives dT0/dXi = 0 at A^ = A". g(Xi) < g{X0) then holds for
Ai > X", which (41) identifies with dT0/dXi < 0. Thus there is a single local maximum in
the Ta-Xi curve at A; = A". This observation is supported by consideration of the second
derivative d2T0/dX\ at Aj = A". As can be seen from (41), the factor 2A?/(A? — 1) > 0
for all Ai > 1. Inspection of Fig. 4 reveals that the slope dg{Xi)/dXl < 0 at Aj = A",
while dg(Xa)/dXi > 0. Thus (42) gives d2T0/dX\ < 0, confirming that there is a local
maximum in the T0-Aj curve at A, = A". It should be noted that the value of X" can
be made lesser or greater by adjusting the ratio Ri/Ra. However, there always exists a
point of intersection of the two curves and hence a local maximum arises in the Ta-Xi
relation for spheres composed of "type B" material.
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Fig. 4. Typical forms of g evaluated at inner and outer surfaces of
sphere vs. inner surface stretch ratio for "type B" material

Figure 5 shows plots of g{Xi) and g(\0) for materials of "type C". It can be seen that
the existence of points of intersection is not guaranteed for all spheres composed of "type
C" materials. For sufficiently thick-walled spheres, Ri/R0 1. From (34), A0 <C Ai
and the "stretch" of g(A0) relative to g(Xi) can be so great that g{\0) lies everywhere
below g(Xi), with no intersection. Then there is no value of A; at which dT0/d\i = 0
and the T0-\ curve is monotonic. For sufficiently thin-walled spheres, Ri/R0 is closer
to unity, which indicates a small shift from Aj to A0. As can be seen in Fig. 5, it is then
possible that g(\i) and g(A0) intersect. In fact, intersection can occur at two points.
From Fig. 5 and the expressions (41) and (42) for the first and second derivatives it is
seen that d2T0/d\f < 0 at A^ = AJrl and d2T0/d\\ > 0 at Aj = A"2. Thus T0 has a
local maximum at A"1 and a local minimum at AJr2. For spheres of "type C" material,
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^(A.) ( ) g (A()( A.)) thick (■ ■

g (A()( A .)) thin (-----)

Fig. 5. Typical forms of g evaluated at inner and outer surfaces of
sphere vs. inner surface stretch ratio for "type C" material

the ratio of radii Ri/R0 determines whether the Ta-\i curve is monotonic or has a local
maximum followed by a local minimum.

4.2. Materials undergoing microstructural change. Now that a framework for the anal-
ysis of the T0-\i behavior of homogeneous spheres has been constructed, the variation
introduced by the constitutive equation for materials undergoing microstructural change
can be addressed. Attention is focused on values of the control parameter A?; for which
there exists an Ra € (Ri,Ra): material of the inner portion of the sphere, R G [i?j,i?a],
has undergone microstructural conversion, but the outer region, R G [Ra,R0], is com-
posed entirely of original-network material. While Carroll's analysis assumes that a
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single function g applies for all A > 1, different expressions are now in general required
at A = Ai and A = A0.

The expression for Ta when network transformation is occurring in the inner portion

of the sphere is given by (32). As discussed in Sec. 4.1, T''*' in (22) is regarded as a
function of A. Since s = s(A), T in (25) can also be regarded as a function of A. For each
fixed value of A;, it is again possible to change the independent variable of integration
from R to A. When this change of variable is introduced, (32) may be written as

-(i)

Tn = -2 - dX ~t~ /  dX
A(A3 - 1) JXa A(A3 - 1)

(43)

where T^\ given by (22), is the stress difference in the purely elastic material of the
region R G [i?a, R0] and T, given by (25), is the stress difference in the conversion region
R G [Ri,Ra]- It can be seen from Sec. 3.2 that T is continuous at Aa. The derivative
dTa/dXi is formed from (43) as

dTa 2Xf
dXj A3 — 1

T( AO T(1)( A0)
A3 A3 (44)

with Ac given by (34). Introduce the notation g^(A) = T^\A)/A3, the form of g
appropriate to elastic material that has not undergone conversion. The condition that
implies dTa/dXi = 0 and hence a loss of monotonicity becomes g(A,) = (/^(Aq).

A new set of figures analogous to those discussed above can be constructed in order to
investigate whether the T0-A, relation is monotonic or otherwise when network conversion
occurs. Before doing so, the restriction is made that the case of network conversion is
considered to imply material softening. Thus

T(A)H> A<A" (45)
\< T( (A), A>A„.

It should be understood that plots can be constructed for cases of either conversion-
softening or conversion-hardening. The above restriction is imposed in the interest of
brevity.

Figure 6 shows g{Xi) vs. Ai and g(1'(^o) vs. Aj for material of "type B". The g^(Xi)
vs. A,; curve is also plotted to aid in the construction of g^(X0) and for comparison
with g{Xi). Note that gW(A) is not the appropriate function for use at A = Aj, within
the region of the sphere where network conversion is under way. The function (^^(Aq)
is formed from g(1'(A;) as above and plotted as a function of Aj. Again the "stretching"
of g(1)(Ai) to the right to form <?^(A0) is due to the geometric shift from A, to A0. A
point of intersection of gi-l\Ac) with g(1\Xt) is seen at Aj = Xf . This is the value of
the control parameter at which dT0/dXi — 0 would hold if the sphere were homogeneous,
composed entirely of non-converting elastic material.

As required by (45) and as can be seen in Fig. 6, g(Xi) lies below g(1^(Aj) for Aj > Xa.
In general, then, these two curves intersect g(1'(A0) at different values of Ai- In the
case of the conversion softening of a "type B" material, it appears from Fig. 6 that
X" < X" . Thus the Tc-Aj relation may be seen to lose monotonicity at a lower value of
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Fig. 6. Typical forms of g evaluated at inner and outer surfaces of
sphere vs. inner surface stretch ratio for "type B" and conversion-
softening materials

Ai when conversion-softening is assumed to occur than would be the case for a sphere of
homogeneous "type B" material.

Figure 7 shows g(Xi) vs. Aj, g(1'(A0) vs. A; and g^(Xi) vs. At for a typical "type A"
material when microstructural conversion is assumed to induce softening of response.
Although does not appear in the monotonicity condition when the material of
the sphere undergoes network conversion, it is shown for purposes of comparison. The
function g^(Xa) is plotted as the result of the geometric shift from A * to X0 and lies
everywhere below g^(Xi). The only restriction on g(Xi) is that it lie below ^'(Aj) for
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FIG. 7. Typical forms of g evaluated at inner and outer surfaces
of sphere vs. inner surface stretch ratio for "type A" and "mild"
conversion-softening materials

Ai > Xa• In Fig. 7, conversion-softening has been "mild", so that the converted material
still shows "type A" behavior and <?(Aj) and g^\A0) do not intersect. Consequently,
there is no loss of monotonicity.

Figures 8 through 10 show possible results for a "type A" material when conversion-
softening is more "severe". As seen in all three figures, it is possible that there exist
points of intersection of <?(Aj) and 5^(A0). Figure 8 shows a case where the converting
material remains "type A". In Fig. 9 there is "type B" response. In Fig. 10, the converting
material demonstrates "type C" response. In each of the three cases, the condition for
dT0/dXi = 0 is satisfied at some A, = A". The assumption of deformation-induced
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■/"(A,) ( ) 9(A,) (■

9(1)(A„) <■

A"I

A.i

Fig. 8. Typical forms of g evaluated at inner and outer surfaces
of sphere vs. inner surface stretch ratio for "type A" material and
conversion-softening material with "type A" response

microstructural transformation makes possible a loss of monotonicity of Ta vs. A * which
cannot otherwise occur in "type A" materials.

Depending on the value of the geometric factor Ri/R0, spheres composed of "type
C" materials may exhibit monotonic or non-monotonic T0-A,; behavior. This explicit
geometric influence requires the consideration of many more possible cases than for ma-
terials of "type A" and "type B". These cases may be studied as above. Since no new
ideas are introduced, these effects are not presented graphically. It is proposed with-
out demonstration that the assumption of microstructural transformation can exert the
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Fig. 9. Typical forms of g evaluated at inner and outer surfaces
of sphere vs. inner surface stretch ratio for "type A" material and
conversion-softening material with "type B" response

same sort of influence as has been seen in Figs. 6 through 10. For values of Ri/R0 at
which the homogeneous sphere of "type C" material has a non-monotonic Ta-\i relation,
conversion can alter the values of Aj at which the local maxima and minima occur. For
values of Ri/R0 at which a "type C" homogeneous sphere cannot demonstrate a loss of
monotonicity, the assumption of conversion can make such non-monotonicity possible.

At this juncture, it is worth noting that an "equivalent elastic" material could be
considered, whose stress-stretch relation is given by combining the domains of definition
of T(1^ and T. For such an "equivalent elastic" material, Carroll's analysis would apply.
However, it cannot be overemphasized that the present stress-stretch relation is not for



214 H. E. HUNTLEY, A. S. WINEMAN, and K. R. RAJAGOPAL

Fig. 10. Typical forms of g evaluated at inner and outer surfaces
of sphere vs. inner surface stretch ratio for "type A" material and
conversion-softening material with "type C" response

a single elastic body. This fact becomes obvious when the body is unloaded (Huntley,
Wineman, and Rajagopal [1996]).

The general methodology for studying the possibilities of non-monotonic T0-Aj behav-
ior in the context of the present constitutive equation has been presented in this section.
Specific applications are carried out below.
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5. Numerical solution. In order to carry out a numerical solution, specific choices
must be made for two material properties—the deformation state function s and the
conversion rate function a(s) introduced in (3). The deformation state function is chosen
as s — A for A > 1. Since the stretch ratio varies with the radius R, so does the state
parameter; hence s(R) = A(R). The conversion activation criterion is satisfied for the
particle at radius R when s(R) = X(R) = Xa. The activation radius, then, is defined by
A (Ra) = Aa.

The conversion rate function a(A) = a(s) is chosen to be quadratic on a finite domain:

f 0, A < Aa,
aW = | <*(A — Aa)(A — Ac), A e [Aa, Ac], (46)

[o, A > Ac.

According to this definition of a(A), the process of material conversion occurs as the
deformation state parameter A increases over a finite interval and the process terminates
when A > Ac. Since the deformations under consideration are finite, the parameter A
will not exceed some finite value. Thus, Ac can be chosen sufficiently large that, in the
present examples, the conversion process need not reach completion. (It should be noted
that other choices of a(A) can be made in which Ac is not finite.)

In virtue of the incompressibility of the material, the rate of decrease of volume fraction
of original material equals the rate of increase of volume fraction of material with new
microstructure. This implies that the volume fraction of original material remaining at
any state of deformation A > Aa is

c A
6(A) = 1 - [

J aq
a(\)d\. (47)

With a(A) chosen as in (46) and b(A) chosen as in (47), the continuity condition for
dTrr/dR at R = Ra is satisfied. Let the total volume fraction of material that may
ultimately convert be denoted by C, where C < 1. Then by (47),

/•Ac
c = J a(X)d\. (48)

It then follows from (46) and (48) that

6 C , ,
a ~ ~ (Xc - Aq)3 ' (49)

Values of Aa, Ac, and C are selected so as to make evident the differences in response
between the sphere undergoing conversion and an elastic sphere (no conversion, C = 0).
For the examples in this section, An = 1.5 is chosen so that network conversion commences
at a relatively low level of deformation. It is desired to continue the simulation to the
level A = 6.0. Thus Ac = 6.1 is chosen. This permits the simulation to demonstrate the
effects of conversion of nearly all of the material specified by C while not exceeding Ac.

Define a dimensionless radial coordinate by R = R/Ri. The equation (14) giving the
stretch distribution becomes

/ \3 _ i \ V3A = A(i?)= (l + -^J • (50)
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When Xi is specified, A is a monotonically decreasing function of R. The numerical ex-
amples presented below assume a sphere occupying the reference domain R £ [1.0,10.0].
The dimensionless outer radius of the sphere, denoted by Ra = Ra/Ri, is thus Ra = 10.
The dimensionless activation radius Ra = Ra/Ri is given by

*-:mr '
Here, Ra is undefined for A, < \a. Ra moves outward through the sphere for increasing
A, > Aa. At large Aj, the plot of Ra vs. Ai asymptotically approaches the straight line
Ra — Aj(A;J — l)-1/3. The normal stress difference T and the traction Ta are normalized
by an elastic constant appropriate to the material model being considered. This gives
dimensionless quantities denoted by T and Ta, respectively.

The numerical procedure for solution begins with the specification of a value of the
deformation control parameter A;. Then A(i?) is known everywhere from (50). With
the activation stretch ratio A„ prescribed, (51) gives Ra. Using the quadratic form of
a(A) specified in (46), the integral in (25) can be expanded analytically. In order to
evaluate the integrals in (32), Ra is found from (51) and the region [1. /?„] is discretized
to form n intervals of equal size demarcated by the nodes R = Rj (j = 1, n + 1), with
Ri = 1 and Rn+\ — Ra■ Similarly, discretization of the region [Ra,R0] into m intervals
is accomplished with the evenly spaced nodes R = Rj (j = 1, m + 1), with R.y = Ra
and Rm+i = Ro- The integrand of (25) is then evaluated at the nodal values Rj and
the integral is approximated by Simpson's rule. The two distinct discretized regions are
necessary because, as is known from (32), different forms of T apply in the separate
regions. When A j > AQ, the numerical integration must be carried out from R = 1
precisely to R = Ra using T as given by (25); from R — Ra to R ~ R0, the integration
by Simpson's rule continues, using the expression (22) for T = T{1).

6. Examples.
6.1. Neo-Hookean material. Let it be assumed that the original material of the sphere

is a neo-Hookean elastic solid and that the material of each subsequently formed network
also exhibits neo-Hookean response. By Carroll's classification, a neo-Hookean material
is a "type B" material. Thus, this example is illustrative of the analysis associated with
Fig. 6. The strain energy density functions Wand W^ for the original and newly
formed network materials, respectively, are taken as

W^(h,I2)=c^(h-3y, wM(i1J2) = cW(i1-3), (52)

where c^1' and c^ are constants interpreted as material moduli. Comparison with (23)
and (26) shows that

c(1)=E^=Wr1(1); c(2) = E(2) = W^2\ (53)

In the present solution, T,T^\ and T0 in (32) are normalized by the modulus E1-^.
It is emphasized that the restriction to neo-Hookean network response is not necessary.
Both original and subsequently formed materials are taken as neo-Hookean in order
to demonstrate as clearly as possible the effects of the conversion phenomenon itself



LOAD MAXIMUM BEHAVIOR IN INFLATION OF HOLLOW SPHERES 217

on overall mechanical response. The possibility is allowed that the original and newly
formed materials have different moduli, that is, that E(-[> and E^ may not be equal.
Let E = E^/E^l

Figure 11 shows the external traction Ta vs. A,; for three values of the ratio of moduli
E. The conversion fraction is taken as C = 1.0. For comparison, the neo-Hookean case
with C = 0.0 is represented by the solid curve. It can be seen that the external traction
associated with a given value of the deformation control parameter A; is smaller when
conversion is assumed than in the purely elastic case. It may be said in general that
conversion leads to a softening of the load-expansion response of the sphere for Xi > Xa.
Figure 11 indicates that variations of the modulus ratio over the range E 6 [0.5,2.0]
used in this work have little noticeable influence on the T0-Aj relation. For this reason,
no further comparisons of response for different values of E are presented in this article.
The value E = 1.0 is used henceforth.

Figure 12 shows the Ta-Xi relation for different values of C. The softening effect is
evident for \i> \a = 1.5 for each value of C > 0.0 shown and is more pronounced when
C is larger.

All of the curves plotted in Fig. 12 demonstrate non-monotonic Ta-Xi relations. As
mentioned above, Carroll categorized the neo-Hookean material as a "type B" material:
in spheres of any normalized thickness Ra, a loss of monotonicity will occur at some Aj.
Recall from Sec. 4.2 that the T0-A; relation for a conversion-softening "type B" material
may lose monotonicity at a lower value of Aj than would occur if the response were purely
elastic. The local maximum of T0, indicated on each curve by a heavy dot, can be seen
to occur at smaller Ai and at lower values of Ta when C is greater. The critical value of
Xi decreases from Af « 5.00 for the neo-Hookean material to A" ss 4.06 when C = 1.0.
The external traction associated with A" decreases from T™ « 3.90 to T" ~ 3.64.

Define a dimensionless form of g{Xi) by g = g(Xi) = T(Aj)/A?. Figure 13 shows
g plotted as a function of Aj for each of the values of C considered in Fig. 12. The
function appropriate to the neo-Hookean case (C = 0.0) is shown by the upper solid
line. Superposed on this family of curves is the plot of <jj^(A0) vs. AIt has been
established that the intersection of g^(X0) with g(Aj) occurs at the value of Aj at which
the derivative dT0/dXi vanishes and the Ta-Xi relation loses monotonicity. It can be seen
from the figure that the intersection of g^(Xa) with the g(Xi) curve occurs at a lower
value of Xi when the conversion fraction C is greater. This set of values of A" for the
different values of C corresponds to the set of local maxima seen in Fig. 12.

6.2. Mooney-Rivlin material. A brief study of T0(Xi) is now presented for the Mooney-
Rivlin material. This model can be used to represent "type A" response by Carroll's
classification. Thus, this example illustrates the analysis associated with Figs. 7 and 8.

Assume that the original microstructural networks and all subsequently formed net-
works behave as Mooney-Rivlin materials. The strain energy density function for mate-
rials of this type is

W/(/i,/2) = c1(/1-3)+c2(/2-3), (54)

where C\ and c2 are constants. For simplicity, assume that WW = W^2' = W. Thus,
original and subsequently formed network materials have the same moduli. T,T^\ and
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neo-Hookean E=1.0_
E=2.0 E=0.5

Fig. 11. External radial tensile traction vs. inner surface stretch
ratio for various modulus ratios, with R0 = 10, C = 1.0, Aa = 1.5,
and Ac = 6.1

Ta in (32) are normalized by c\. Let 7 = C2/C1. The conversion rate function a(s) = a(A)
and the volume fraction of original material remaining b(s) — b(A) are taken as those
used in the study of neo-Hookean materials in Sec. 6.1.

Figure 14 shows the traction Ta vs. A; for different values of the conversion fraction C.
The activation value is taken as Aa = 2.0; conversion is considered complete at Ac = 6.1.
The dimensionless outer radius of the sphere is R0 = 4.0. 7 = 0.3 is chosen. Results for
a purely elastic Mooney-Rivlin material undergoing no microstructural transformation
are represented by the solid line. According to Carroll's classification, a Mooney-Rivlin
material with 7 = 0.3 is a "type A" material. The Ta-\i relation increases monotonically
for all values of A,. On the deformation range A^ G [1.0,6.0], the curve for C = 0.0 in
Fig. 14 shows such monotonicity. When amounts of conversion C > 0.0 are assumed,
material in the region R E [1, Ra] softens for A; > Aa = 2.0. The traction associated with
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T̂o

A,

Fig. 12. External radial tensile traction vs. inner surface stretch
ratio for various conversion fractions, with R0 = 10, E — 1.0, Aa =
1.5, and Ac = 6.1

a given value of Aj > 2.0 is lower than in the elastic case (C = 0.0). When C is larger, Ta
is smaller for all A, € [2.0,6.0]. It can be seen from the figure that monotonicity is lost
in the curves for C — 0.5, C — 0.75, and C = 1.0. Moreover, the value of Ai at which
the local maximum arises can be seen to decrease as C increases.
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A,

Fig. 13. g evaluated at inner and outer surfaces of sphere vs. inner
stretch ratio for various conversion fractions, with R0 = 10, E = 1.0,
Aa = 1.5, and Ac = 6.1
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Fig. 14. External radial tensile traction vs. inner surface stretch
ratio for various conversion fractions, with R0 = 4.0, 7 = 0.3, Aa =
2.0, and Ac = 6.1
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9

Fig. 15. g evaluated at inner and outer surfaces of sphere vs. inner
stretch ratio for various conversion fractions, with R0 = 4.0, 7 = 0.3,
Aa = 2.0, and Ac = 6.1
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Figure 15 shows g(Xi) = T(Xi)/X3i for each of the curves of Fig. 14. The curve shown
by the upper solid line in Fig. 15, representing purely elastic behavior, is denoted by

Superposed is a plot of g^(X0) as a function of A^. As can be seen from the
figure, and do not intersect for Aj € [1.0,6.0]; this corresponds to the
monotonic Ta-Xi relation seen for C = 0.0 in Fig. 14. The g(Aj)-Aj curve for C = 0.25
lies below g^\Xi) for A^ £ (2.0,6.0], but still exhibits the monotonic form of a "type A"
material and does not intersect g^(Ac); thus the Ta-\i curve for C = 0.25 is monotonic.
The plot of g(Xi) vs. Aj for C — 0.5 shows the local maximum and local minimum of a
"type C" material and intersects ^'(Ao) at A, ss 5.1; the corresponding local maximum
of T0(Xi) can be seen in Fig. 14. On the interval A, £ [1.0,6.0], g(Xi) displays the
single local maximum of "type B" material response when C = 0.75 or C = 1.0. The
intersection points of these curves with gW(A0(Ai)) at Xt « 4.2 and A, « 3.8 correspond
to the local maxima in Ta indicated by heavy dots in Fig. 14.

It has been seen from Figs. 14 and 15 for the case of a Mooney-Rivlin material that
the assumption of microstructural conversion can imply a loss of monotonicity in the
Ta-Xi relation which does not occur for the purely elastic material. Furthermore, the
values of the deformation A, and the traction Ta at which the local maximum occurs are
lower when a greater amount of network conversion is assumed.

7. Conclusion. The qualitative properties of the T0-A, relation have been investi-
gated using the constitutive equation for continuous microstructural change presented in
Sec. 2. The method of analysis of Sec. 4 shows that it is possible to use the constitutive
equation to study the influence of many aspects of microstructural change, including the
amount of change and the properties of the newly formed material relative to the orig-
inal material. The results show that softening can significantly change the qualitative
properties from those in the elastic case in which there is no microstructural change. In
particular, for elastic "type A" materials, it is shown that sufficient softening can cause
loss of monotonicity. For elastic "type B", the softening leads to loss of monotonicity at
smaller levels of inflation and at lower loads.
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