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Abstract— Large scale wind turbines are lightly damped
mechanical structures driven by wind that is constantly fluc-
tuating. In this paper, we address the design of a model-based
receding horizon control scheme to reduce the structural loads
in the transmission system and the tower, as well as provide
constant (or at least smooth) power generation. Our controller
incorporates two optimization problems: one to predict or
estimate mean wind speed, given LIDAR data, and the other to
carry out receding horizon control to choose the control inputs.
The method is verified against an existing wind turbine control
system, and shows reductions in both extreme loads and power
fluctuations by 80% and 90% respectively, when compared to
a conventional controller.

I. INTRODUCTION
The size of wind turbine structures has been increasing

rapidly during the last decade. Consequently, modern wind
turbines use lighter materials, which together with the expan-
sion of the size result in a less stiff structure. When designing
the wind turbine structure, one of the most challenging issues
is to design a control system which is able to dampen the
fluctuations of structural loads. The control of wind turbines
differs from control of a generic mechanical system, since
the source of the mechanical loads is the wind, which is also
the source of the driving force of the turbine. In other words,
this source comprises an uncontrollable input for the system.

In variable speed horizontal-axis wind turbines, the aero-
dynamic torque is controlled by pitching the blades in
full load operation [1]. In addition, the generator torque is
adjusted to specify the transmission torque. The pitch control
is a conventional gain-scheduled PID controller acting on the
generator speed. The reason that PID controllers are widely
used in industry is that they have a simple structure and
they can be easily tuned. However, their performance is not
optimal. Hence, they are mostly used for small-scale turbines.

Modern wind turbines are equipped with advanced sensors
such as strain gages, accelerometers, and recently light
detection rnd ranging (LIDAR). With the use of these sensors
more complex controllers are designed for further load
reduction [2], [3], [4], [5]. In this paper, we demonstrate
what can be gained when a LIDAR sensor is utilized. Using
similar concept to radars, LIDAR is able to measure wind
conditions such as speed and direction. When the LIDAR is
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mounted on the wind turbine, it is able to measure the wind
speed at a distance in front of the wind turbine. For wind
turbine control, this is of great importance when the coming
wind is measured in advance, because the controller is able to
optimize the operation for the time horizon in which the wind
is measured. Consequently, receding horizon control (RHC)
is chosen as a good candidate for wind turbine control when
LIDAR data is available.

RHC has become popular during the last three decades.
In RHC, we find the optimal inputs at each step in order to
move the system states on an optimal path over a fixed time
horizon. The solution of the current inputs will be applied
to the system and the time horizon will be shifted forward
to the next sample time. Such a controller is generally not
optimal, but recent work on bounding controller performance
has shown that it is often close to optimal [6]. The main
drawback of RHC up until recently was the large compu-
tation time required in each step (since a full optimization
problem is solved), which limited its use to slower systems,
with sample rates measured in seconds (or longer). This
problem has however been addressed in [7] and [6]. In these
works, fast optimization methods are developed, that can
solve the problems arising in RHC in times scales measured
in milliseconds or even microseconds.

The dynamics of wind turbine systems are nonlinear, so
the optimization problems arising in RHC are not convex.
In this paper, we will see that the nonlinear dynamics of the
wind turbine can be very well modeled as a linear parameter
varying (LPV) model. The varying parameter is the mean
wind speed, which is estimated using another optimization
algorithm, from the LIDAR data. The estimation algorithm
runs in a separate loop and provides the estimates for the
RHC loop, which obtains the optimal control input for the
receding horizon. In order to verify the method, we present
some extreme load conditions and compare the performance
of the RHC controller to the conventional PID controller with
respect to load reduction and power fluctuations.

II. MODEL

A. Shaft and Tower Dynamics

The kinetic energy of the wind flowing into the rotor disc
is given by

∆E =
1

2
ρA∆Xv2

r , (1)

where ρ is the air density, vr is the average wind speed on
the disc, A is the area of the disc, and ∆X = vr∆t is the
displacement of the air during the time interval ∆t. Thus,



the total wind power corresponding to lim
∆t→0

∆E/∆t will be

P =
1

2
ρAv3

r . (2)

Wind turbine blades only transfer part of the kinetic energy
of the wind flow into shaft mechanical energy. The obtained
mechanical energy is highly dependent on the blade aerody-
namic efficiency which is expressed by the power coefficient
CP . In wind turbine aerodynamics [8], there are two major
variables that change CP : the blade pitch angle β and the
blade tip speed ratio λ = Rωr/vr, where R is the radius of
the rotor plane and ωr is the rotor angular velocity. In fact,
CP is a function which is calculated by solving the blade
element momentum equations [8]. The result of the numeric
calculations are provided in a look-up table. Thus, the total
absorbed mechanical power by the rotor is given by

Pr =
π

2
ρR2v3

rCP (λ, β). (3)

The mechanical energy will exert a torque on the rotor which
is

Tr = Pr/ωr =
π

2
ρR2 v

3
r

ωr
CP (λ, β). (4)

Rotor torque will be transfered to the electrical generator
through the gearbox. However, the gearbox and shafts are
not stiff, i.e, the transmission system will also absorb some
of the energy and convert it to the potential energy. In
order to provide a model for the transmission system, we
assume that the gearbox is a rigid body while transferring
the deformations on the low-speed shaft. Fig. 1 shows the
structural model of such a transmission system. The low-
speed shaft is modeled by a rotational moment of inertia,
a viscous damper and a viscously damped rotational spring.
The inertia Ir represents the inertia of the rotor and shaft.
The viscous damper, with damping constant Br, models the
bearings. The stiffness and damping of the rotor are Kθ and
Bθ respectively. In this model, θ represents the shaft torsion.
The high-speed shaft is modeled by a smaller inertia and
a damper. The high-speed shaft is relatively stiff; and thus,
we can neglect the spring in the right side. The rotational
moment of inertia in the generator side, Ig represents the
sum of inertia of the high-speed shaft, gearbox and the rotor
of the generator. The viscous damper, with damping constant
Bg , represents the viscosity of the high-speed shaft bearings.

ωgTg

Kθ, Bθ
Br

Ir

Ig
N

Bg

ωrTr

Fig. 1. Mechanical scheme of the wind turbine transmission system.

The mechanical model in Fig. 1 corresponds to the fol-
lowing differential equations

Irω̇r = Tr −Kθθ −Bθ θ̇ −Brωr

Igω̇g = −Tg +
Kθ

N
θ +

Bθ
N
θ̇ −Bgωg

θ̇ = ωr −
ωg
N
,

(5)

where N is the gear ratio, ωg is the generator angular
velocity, and Tg is the generator torque.

In a double-fed induction generator (DFIG), the electric
power is normally controlled by changing the rotor current,
which results in changing the torque acting on the high-speed
shaft. As a consequence, the generator torque is one of the
control inputs for the wind turbine system. In summary, the
produced electrical power Pe is obtained from the following
differential equation

Ṗe =
1

τp
(Tgωg − Pe), (6)

where τp is the time constant.
The tower fore-aft deflection is the result of the wind force

on the rotor, known as thrust force. We consider the kinetic
energy in equation (1) and zero potential energy. The total
force of the wind on the disc is given by the Lagrangian
L = ∆E as

F =
∂L

∂∆X
− d

dt

∂L

∂∆Ẋ
, (7)

that is

F =
1

2
ρAv2

r . (8)

Similar to the power calculation, the thrust force on the
turbine blades is always less than the total force of the
wind. This will again depend on the blade aerodynamics
which is described by a dimensionless thrust coefficient CT .
The thrust coefficient is also a function of λ and β. In
practice, CT (λ, β) is calculated by solving the blade element
momentum theory equations. The result of the numeric
calculations are provided in a look-up table. Consequently,
the thrust force on the rotor is

Ft =
π

2
ρR2v2

rCT (λ, β). (9)

Thrust force will be transfered to the tower top through
the nacelle. This force will result on tower fore-aft motion.
The tower is lightly damped structure due to its size and
material, which is mostly steel. It is possible to simplify the
tower fore-aft motion by a mass, spring, and damper model.
Fig. 2 shows the schematic of this model. This schematics
represent the dynamics of the tower fore-aft as follows

Mtÿ +Btẏ +Kty = Ft, (10)

where y is the tower top displacement, Mt, Bt, and Kt are
the identified mass, damping coefficient, and stiffness for this
model. The coefficients are approximated by finite elements.
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Fig. 2. Mechanical scheme of the wind turbine tower fore-aft motion.

B. Linearization

Equations (4, 5, 6, 9, and 10) form the governing nonlinear
differential equations of the wind turbine model. We express
these equations as

ẋn = f(xn, un, vr), (11)

where xn = (ωr, ωg, θ, y, ẏ, Pe) is the vector of wind turbine
states, un = (β, Tg) is the vector of the control inputs, and
v is the average ambient wind speed on the rotor area. The
functions CP (λ, β) and CT (λ, β) are given in lookup tables;
however, we approximate them by differentiable functions
by smoothing the edges. Thus, linearization of the model
is possible using the first order term of Taylor approxima-
tion of (11) in the neighborhood of the operating points
(x∗Tn , u∗Tn , v∗r ), which are solutions of f(x∗n, u

∗
n, v
∗
r ) = 0.

The wind turbine has to work in different wind speeds while
wind speed is an uncontrollable input to the model. Thus,
x∗n and u∗n are computed for different values of v∗ in the
operating range (which is usually between 4m/s to 25m/s
for wind turbines). Consequently, the set of linear model
equations can be expressed as follows

ẋ = A(γ)x+B(γ)u+D(γ)w, (12)

where x = xn − x∗n, u = un − u∗n, w = vr − v∗r , and
γ is an estimation for the mean wind speed. The benefit
of this formulation is that if changes of mean wind speed
are slower than the system response, we will be able to
stabilize the system using a parameter varying feedback. This
requires establishing an algorithm which provides the mean
wind speed.

C. Optimal Mean Wind Estimation

A moving average is traditionally used in the wind power
industry in order to estimate the value of γ. This has a
drawback of having a delayed estimate of γ. The delay does
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Fig. 3. Comparison of estimated mean wind speed using moving average
and L1-regularized Least Square in (a) turbulent wind and (b) gust wind.

not cause a serious problem in turbulent wind as the deviation
of the wind from the estimated operating point for wind
is small (see Fig. 3a). However, we see a large deviation
in the case of gust. Fig. 3b (red line) shows the estimated
value of γ during a wind gust using the moving average.
When the wind speed is at its peak of 19m/s, the moving
average shows the mean value of 13m/s. Similarly, when
the wind speed falls back to 13m/s, the moving average
is at its peak of 18m/s. This deviation from the operating
point results in a large model mismatch which causes high
amount of loads as well as power fluctuations in such cases.
A small window for the moving average will surely result
in less delay; however, it will also result in fast variations
of the varying parameter in the LPV system that might
destabilize the closed-loop system, which was design under
the assumption that γ changes slowly.

When LIDAR is used, we have the possibility to look at
the wind in front of the turbine, and therefore, estimate the
average wind speed without causing a delay. We benefit from
the wind speed predictions and obtain the mean wind by
solving an optimization problem. Least squares (LS) is the
basic first choice to estimate the average values. However,
it has a drawback; despite the low bias, the variation of
the predictions are relatively high. The low bias may result
in performance degradation; however, fast variations may
destabilize the system. In order to avoid the fast variations we
use LS estimation with total variation (TV) regularizaiton.
Assume that the random variable v̂k is available in the
interval (tk, . . . , tk+Tp). For known γk−1, the objective is to



find the values of γk in this interval that minimizes both mean
square errors and variations in the rate of γk. Furthermore,
we can limit the rate of the variation in γk by S. This
is interpreted as constraint in the following optimization
problem

minimize
k+Tp∑
j=k

(v̂j − γj)2 + λ
k+Tp∑
j=k

|γj − γj−1|

subject to |γj − γj−1| ≤ TsS, j = k, . . . , k + Tp,
(13)

with variables γj , where λ is the (positive) weight of the TV
regularization and Ts is the sampling time. This problem is
readily solved using, for example, an interior-point method
in [9], [10].

Having the prediction of wind speed from LIDAR brings
the possibility to use the future data in order to estimate the
mean wind speed. It is not necessary to solve this optimiza-
tion algorithm at each sampling time. In our implementation,
we solve it for the second half of the predicted horizon. This
means that we have TpTs seconds to solve the problem, in
which Ts is the sampling time and Tp is half the number of
samples in prediction horizon. In case the number of samples
is odd, we round Tp toward zero. Fig. 3-a,b show the result
of the algorithm, when a prediction horizon of 5sec is used.

III. RECEDING HORIZON CONTROL

Equation (12) is a multivariable linear parameter varying
(LPV) state-space equation. In receding horizon control, we
need the current value of the states. Unfortunately, we are not
able to measure all states. However, the states are observable.
Thus, we measure the generator speed ωg , tower deflection
z, and electrical power Pe and employ a Luenberger observer
to estimate the other states.

It is more convenient to use the discrete time represen-
tation of the model for receding horizon control. Thus, we
express the discrete state-space model of equation (12) as

xk+1 = Ad(γk)xk +Bd(γk)uk +Dd(γk)wk, (14)

with wk = vk − γk. Most LIDARs provide the wind speed
data at a distance in front of the turbine; however, for RHC
we need a time history of the wind in front of turbine. This is
achieved by assuming the turbulence to be frozen. We assume
that the turbulent wind is moving toward the turbine with the
speed of the average wind. Thus, in practice, we propagate
the wind data in time in order to make a time history of
the wind. To this end, the frozen turbulence assumption will
result in uncertainties in wind information from LIDAR, v̂k,
which is not exactly the same as vk, and it includes the
uncertainty ek, i.e., vk = v̂k + ek. The prediction error ek is
assumed to be independent and identically distributed (IID)
with known distribution for each k. Here, we assume that
ek has a normal distribution with zero mean and a standard
deviation of about 10% of ŵk, where ŵk = v̂k − γk.

The objective function in RHC is defined as

J =

k+T−1∑
j=k

`(xj , uj) + `f (xk+T ), (15)

where T is the control horizon (T < Tp) and the function
`(x, u) is in the form

`(xj , uj) =

[
xj
uj

]T [
Q S
ST R

] [
xj
uj

]
+ qTxj + rTuj ,

(16)
where Q and R are symmetric matricies with

[
Q S
ST R

]

positive semidefinite, and q and r are vectors of the same
size as x and u. The function

`f (xk+T ) = xTk+TQfxk+T + qTf xk+T

is used to emphasize a large penalty on the final cost. In
RHC, the inputs have to be computed at each step by solving
the following emphquadratic program (QP)

minimize
k+T−1∑
j=k

`(xj , uj) + `f (xk+T )

subject to xj+1 = Ad(γ)xj +Bd(γ)uj +Dd(γ)ŵj
|uj+1 − uj | ≤ Tsus
|uj − 2uj−1 + uj−2| ≤ T 2

s ua
j = k, ..., k + T − 1

(17)
where the optimization variables are xk+1, . . . , xk+T and
uk, . . . , uk+T−1, us and ua are the constraints on the inputs,
e.g., pitch velocity and acceleration, and uk−1 and uk−2 are
the inputs at the previous samples. Only the first computed
input will be used at each time step. The convex optimization
problem is solved using CVXGEN [11], [12], which gen-
erates a fast custom reliable solver which applies standard
primal-dual interior point method to solve QPs.

The mean estimation and receding horizon control algo-
rithms are implemented in two separate loops which runs
in parallel. Assume that both loops start at time tk, the
algorithms are as following:

Mean wind estimation loop
1: Solve (13) for j = k + Tp + 1, . . . , k + 2Tp and obtain
γk+Tp+1, . . . , γk+2Tp .

2: Wait until sample k + Tp + 1.
3: k ← k + Tp + 1 and update the samples of v̂k.
4: Jump to 1.

RHC loop
1: Solve (17) for j = k, . . . , k+T and obtain uk, . . . , uk+T .
2: Apply uk to the inputs.
3: Wait until sample k + 1.
4: k ← k + 1 and update the variables xk, ŵk, γ, uk−1,

and uk−2.
5: Jump to 1.
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Fig. 4. Rotor wind speed with 50 year return gust (top figure), zoomed in
to the gust interval (bottom figure).

IV. RESULTS

The implemented RHC is verified against different ex-
treme wind cases. The extreme wind evaluations show the
worst case loads caused by the wind variation. The controller
response to one of the most severe wind cases is demon-
strated in this paper. According to IEC 6400-1 (see [8]), the
gust speed with a return period of 50 years shall be taken
in wind turbine certification tests. The wind is generated at
the rotor disc by simulation of the wind speed spectrum and
coherence for a given mean wind speed. The effective wind
speed is achieved by averaging the point wind speed over
the rotor disc. The gust is added to the wind speed. The
shape of the gust (‘rising and falling gust’) is the well-known
Mexican-hat function which incorporates slight fall before
and after rising by

v(h,t)=

 V (h)−0.37Vgust sin( 3πt
Ts

)(1−cos( 2πt
Ts

)) ts≤t≤ts+Ts
V (h) otherwise

(18)
where V (h) is the mean wind speed at height h, ts is start
of the gust and Ts is its duration, and Vgust is the amplitude
defined by

Vgust =
6.4σu

1 + 0.2RΛ
, (19)

where σu is the standard deviation of the turbulent wind
fluctuations and Λ is the turbulence scale parameter [8].

Fig. 4 shows the wind speed with incorporated gust of
10s duration. A prediction horizon of 4s seconds is used
for estimation of mean wind speed while the optimization
problem (13) is solved in a fraction of a second. The control
horizon of 10 samples with sampling time of 0.15s is used.
The RHC solver CVXGEN is able to provide the solution
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Fig. 5. Blade pitch angle (top figure), zoomed in to the gust interval
(bottom figure).

for (17) in 5ms (using Core Duo CPU @ 2.5GHz under
Windows 7). The collective pitch angle is illustrated in Fig. 5
in which we compare two control strategies in the designed
load case; RHC (blue line) and conventional gain-scheduled
PID control (red line). Most methods of wind turbine control
which focus on reduction of structural loads have a drawback
of increasing the pitch activity. Since we have introduced a
cost on variations of u in the optimization objective (16),
the overall pitch activity remains at the same level in RHC
case. Fig. 5-bottom shows a phase difference between RHC
and PID control. The reason for this difference is the use
of wind speed prediction in RHC. During large variations of
wind speed, RHC is clearly prepared for reaction in advance,
and thus, it will improve the performance by choosing the
optimal path. Fig. 6 shows the reduction of about 88% in
fluctuations of power when we used the RHC. In like manner,
Fig. 7 shows the reduction of about 80% in magnitude of the
fluctuations in tower top fore-aft deflection. Fig. 8 shows the
reduction of about 82% in magnitude of the fluctuations in
main shaft torsion when using RHC.

V. CONCLUSION

In this paper, we addressed the design of a receding hori-
zon controller for a wind turbine. The control system solved
an optimization problem in a time horizon in which the
wind was predicted using LIDAR sensor. The linearization
of wind turbine model led to a linear parameter varying
system, which takes the mean wind speed as an input
variable in order to determine the future response of the
system. The estimation of mean wind was improved using
an estimator. Subsequently, the result was used in a RHC
scheme which provided the optimal control inputs for a
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Fig. 6. Produced electrical power (top figure), zoomed in to the gust
interval (bottom figure).

fixed control horizon. Finally, RHC was compared to the
conventionally used PID control in extreme wind conditions.
The results showed significant reduction in structural loads
as well as improvements in output power fluctuations.
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Fig. 7. Tower top deflection in fore-aft direction (top figure), zoomed in
to the gust interval (bottom figure).
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Fig. 8. Main shaft torsion (top figure), zoomed in to the gust interval
(bottom figure).


