
Introduction Load Shedding Evaluation

Load Shedding in Network

Monitoring Applications

Pere Barlet-Ros1 Gianluca Iannaccone2

Josep Sanjuàs1 Diego Amores1 Josep Solé-Pareta1

1Technical University of Catalonia (UPC)
Barcelona, Spain

2Intel Research
Berkeley, CA

Intel Research Berkeley, July 26, 2007

1 / 11



Introduction Load Shedding Evaluation

Outline

1 Introduction

Motivation

Case Study: Intel CoMo

2 Load Shedding
Prediction Method

System Overview

3 Evaluation and Operational Results
Performance Results

Accuracy Results

2 / 11



Introduction Load Shedding Evaluation

Motivation

Building robust network monitoring applications is hard

Unpredictable nature of network traffic

Anomalous traffic, extreme data mixes, highly variable data rates

Processing requirements have greatly increased in recent years

E.g., intrusion and anomaly detection

3 / 11



Introduction Load Shedding Evaluation

Motivation

Building robust network monitoring applications is hard

Unpredictable nature of network traffic

Anomalous traffic, extreme data mixes, highly variable data rates

Processing requirements have greatly increased in recent years

E.g., intrusion and anomaly detection

The problem

Efficiently handling extreme overload situations

Over-provisioning is not possible

3 / 11



Introduction Load Shedding Evaluation

Case Study: Intel CoMo

CoMo (Continuous Monitoring)1

Open-source passive monitoring system

Fast implementation and deployment of monitoring applications

Traffic queries are defined as plug-in modules written in C

Contain complex stateful computations

1http://como.sourceforge.net

4 / 11

http://como.sourceforge.net


Introduction Load Shedding Evaluation

Case Study: Intel CoMo

CoMo (Continuous Monitoring)1

Open-source passive monitoring system

Fast implementation and deployment of monitoring applications

Traffic queries are defined as plug-in modules written in C

Contain complex stateful computations

Traffic queries are black boxes

Arbitrary computations and data structures

Load shedding cannot use knowledge about the queries

1http://como.sourceforge.net

4 / 11

http://como.sourceforge.net


Introduction Load Shedding Evaluation

Load Shedding Approach

Main idea

1 Find correlation between traffic features and CPU usage

Features are query agnostic with deterministic worst case cost

2 Leverage correlation to predict CPU load

3 Use prediction to guide the load shedding procedure

5 / 11



Introduction Load Shedding Evaluation

Load Shedding Approach

Main idea

1 Find correlation between traffic features and CPU usage

Features are query agnostic with deterministic worst case cost

2 Leverage correlation to predict CPU load

3 Use prediction to guide the load shedding procedure

Novelty: No a priori knowledge of the queries is needed

Preserves high degree of flexibility

Increases possible applications and network scenarios

5 / 11



Introduction Load Shedding Evaluation

Traffic Features vs CPU Usage

0 10 20 30 40 50 60 70 80 90 100
0

2

4

x 10
6

C
P

U
 c

y
c
le

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

P
a
c
k
e
ts

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

x 10
5

B
y
te

s

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

Time (s)

5
−

tu
p
le

 f
lo

w
s

Figure: CPU usage compared to the number of packets, bytes and flows

6 / 11



Introduction Load Shedding Evaluation

System Overview

Figure: Prediction and Load Shedding Subsystem

7 / 11



Introduction Load Shedding Evaluation

Load Shedding Performance

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9
x 10

9

time

C
P

U
 u

s
a
g
e
 [
c
y
c
le

s
/s

e
c
]

CoMo cycles

Load shedding cycles

Query cycles

Predicted cycles

CPU frequency

Figure: Stacked CPU usage (Predictive Load Shedding)

8 / 11



Introduction Load Shedding Evaluation

Load Shedding Performance

0 2 4 6 8 10 12 14 16

x 10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU usage [cycles/batch]

F
(C

P
U

 u
s
a
g
e
)

 

CPU cycles per batch

Predictive

Original

Reactive

Figure: CDF of the CPU usage per batch

9 / 11



Introduction Load Shedding Evaluation

Accuracy Results

Queries estimate their unsampled output by multiplying their

results by the inverse of the sampling rate

Errors in the query results (mean ± stdev )

Query original reactive predictive

application (pkts) 55.38% ±11.80 10.61% ±7.78 1.03% ±0.65

application (bytes) 55.39% ±11.80 11.90% ±8.22 1.17% ±0.76

flows 38.48% ±902.13 12.46% ±7.28 2.88% ±3.34

high-watermark 8.68% ±8.13 8.94% ±9.46 2.19% ±2.30

link-count (pkts) 55.03% ±11.45 9.71% ±8.41 0.54% ±0.50

link-count (bytes) 55.06% ±11.45 10.24% ±8.39 0.66% ±0.60

top destinations 21.63 ±31.94 41.86 ±44.64 1.41 ±3.32

10 / 11



Introduction Load Shedding Evaluation

Ongoing and Future Work

Ongoing Work

Query utility functions

Custom load shedding

Fairness of service with non-cooperative users

Scheduling CPU access vs. packet stream

Future Work

Distributed load shedding

Other system resources (memory, disk bandwidth, storage space)

11 / 11



Introduction Load Shedding Evaluation

Availability

The source code of our load shedding prototype is publicly
available at http://loadshedding.ccaba.upc.edu

The CoMo monitoring system is available at
http://como.sourceforge.net

Acknowledgments

This work was funded by a University Research Grant awarded by the Intel Research Council
and the Spanish Ministry of Education under contract TEC2005-08051-C03-01

Authors would also like to thank the Supercomputing Center of Catalonia (CESCA) for giving
them access the Catalan RREN

11 / 11

http://loadshedding.ccaba.upc.edu
http://como.sourceforge.net


Appendix Backup Slides

Work Hypothesis

Our thesis

Cost of mantaining data structures needed to execute a query

can be modeled looking at a set of traffic features

Empirical observation

Different overhead when performing basic operations on the
state while processing incoming traffic

E.g., creating or updating entries, looking for a valid match, etc.

Cost of a query is mostly dominated by the overhead of some of

these operations

2 / 11



Appendix Backup Slides

Work Hypothesis

Our thesis

Cost of mantaining data structures needed to execute a query

can be modeled looking at a set of traffic features

Empirical observation

Different overhead when performing basic operations on the
state while processing incoming traffic

E.g., creating or updating entries, looking for a valid match, etc.

Cost of a query is mostly dominated by the overhead of some of

these operations

Our method

Models queries’ cost by considering the right set of traffic features

2 / 11



Appendix Backup Slides

Traffic Features vs CPU Usage

1800 2000 2200 2400 2600 2800 3000
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

6

packets/batch

C
P

U
 c

y
c
le

s

new_5tuple_flows < 500

500 ≤ new_5tuple_flows < 700

700 ≤ new_5tuple_flows < 1000

new_5tuple_flows ≥ 1000

Figure: CPU usage versus the number of packets and flows

3 / 11



Appendix Backup Slides

Multiple Linear Regression (MLR)

Linear Regression Model

Yi = β0 + β1X1i + β2X2i + · · · + βpXpi + εi , i = 1, 2, . . . ,n.

Yi = n observations of the response variable (measured cycles)

Xji = n observations of the p predictors (traffic features)

βj = p regression coefficients (unknown parameters to estimate)

εi = n residuals (OLS minimizes SSE)

Feature Selection

Variant of the Fast Correlation-Based Filter2 (FCBF)

Removes irrelevant and redundant predictors

Reduces significantly the cost of the MLR

2
L. Yu and H. Liu. Feature Selection for High-Dimensional Data:

A Fast Correlation-Based Filter Solution. In Proc. of ICML, 2003.

4 / 11



Appendix Backup Slides

System Overview

Prediction and Load Shedding subsystem

1 Each 100ms of traffic is grouped into a batch of packets

2 The traffic features are efficiently extracted from the batch (multi-resolution bitmaps)

3 The most relevant features are selected (using FCBF) to be used by the MLR

4 MLR predicts the CPU cycles required by the query to run

5 Load shedding is performed to discard a portion of the batch

6 CPU usage is measured (using TSC) and fed back to the prediction system

5 / 11



Appendix Backup Slides

Load Shedding

When to shed load

When the prediction exceeds the available cycles

avail_cycles = (0.1 × CPU frequency) − overhead

Corrected according to prediction error and buffer space

Overhead is measured using the time-stamp counter (TSC)

How and where to shed load

Packet and Flow sampling (hash based)

The same sampling rate is applied to all queries

How much load to shed

Maximum sampling rate that keeps CPU usage < avail_cycles

srate = avail_cycles
pred_cycles

6 / 11



Appendix Backup Slides

Load Shedding

When to shed load

When the prediction exceeds the available cycles

avail_cycles = (0.1 × CPU frequency) − overhead

Corrected according to prediction error and buffer space

Overhead is measured using the time-stamp counter (TSC)

How and where to shed load

Packet and Flow sampling (hash based)

The same sampling rate is applied to all queries

How much load to shed

Maximum sampling rate that keeps CPU usage < avail_cycles

srate = avail_cycles
pred_cycles

6 / 11



Appendix Backup Slides

Load Shedding

When to shed load

When the prediction exceeds the available cycles

avail_cycles = (0.1 × CPU frequency) − overhead

Corrected according to prediction error and buffer space

Overhead is measured using the time-stamp counter (TSC)

How and where to shed load

Packet and Flow sampling (hash based)

The same sampling rate is applied to all queries

How much load to shed

Maximum sampling rate that keeps CPU usage < avail_cycles

srate = avail_cycles
pred_cycles

6 / 11



Appendix Backup Slides

Load Shedding Algorithm

Load shedding algorithm (simplified version)

pred_cycles = 0;

foreach qi in Q do
fi = feature_extraction(bi);

si = feature_selection(fi, hi);
pred_cycles += mlr(fi , si , hi);

if avail_cycles < pred_cycles × (1 + êrror) then
foreach qi in Q do
bi = sampling(bi , qi , srate);

fi = feature_extraction(bi);

foreach qi in Q do
query_cyclesi = run_query(bi , qi , srate);

hi = update_mlr_history(hi, fi , query_cyclesi);

7 / 11



Appendix Backup Slides

Testbed Scenario

Equipment and network scenario

2 × Intel R© PentiumTM 4 running at 3 GHz

2 × Endace R© DAG 4.3GE cards

1 × Gbps link connecting Catalan RREN to Spanish NREN

Executions

Execution Date Time
Link load (Mbps)
mean/max/min

predictive 24/Oct/06 9am:5pm 750.4/973.6/129.0
original 25/Oct/06 9am:5pm 719.9/967.5/218.0
reactive 05/Dec/06 9am:5pm 403.3/771.6/131.0

Queries (from the standard distribution of CoMo)

Name Description

application Port-based application classification
counter Traffic load in packets and bytes

flows Per-flow counters

high-watermark High watermark of link utilization

pattern search Finds sequences of bytes in the payload
top destinations List of the top-10 destination IPs

trace Full-payload collection

8 / 11



Appendix Backup Slides

Packet Loss

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

(a) Original CoMo

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

Unsampled

(b) Reactive Load Shedding

09 am 10 am 11 am 12 pm 01 pm 02 pm 03 pm 04 pm 05 pm
0

1

2

3

4

5

6

7

8

9

10

11
x 10

4

time

p
a

c
k
e

ts

Total

DAG drops

Unsampled

(c) Predictive Load Shedding

Figure: Link load and packet drops

9 / 11



Appendix Backup Slides

Related Work

Network Monitoring Systems

Only consider a pre-defined set of metrics

Filtering, aggregation, sampling, etc.

Data Stream Management Systems

Define a declarative query language (small set of operators)

Operators’ resource usage is assumed to be known

Selectively discard tuples, compute summaries, etc.

10 / 11



Appendix Backup Slides

Related Work

Network Monitoring Systems

Only consider a pre-defined set of metrics

Filtering, aggregation, sampling, etc.

Data Stream Management Systems

Define a declarative query language (small set of operators)

Operators’ resource usage is assumed to be known

Selectively discard tuples, compute summaries, etc.

Limitations

Restrict the type of metrics and possible uses

Assume explicit knowledge of operators’ cost and selectivity

10 / 11



Appendix Backup Slides

Conclusions and Future Work

Effective load shedding methods are now a basic requirement

Rapidly increasing data rates, number of users and complexity of

analysis methods

Load shedding operates without knowledge of the traffic queries

Quickly adapts to overload situations by gracefully degrading

accuracy via packet and flow sampling

Operational results in a research ISP network show that:

The system is robust to severe overload

The impact on the accuracy of the results is minimized

Limitations and Future work

Load shedding methods for queries non robust against sampling

Load shedding strategies to maximize the overall system utility

Other system resources (memory, disk bandwidth, storage space)

11 / 11


	Introduction
	Motivation
	Case Study: Intel CoMo

	Load Shedding
	Prediction Method
	System Overview

	Evaluation and Operational Results
	Performance Results
	Accuracy Results

	
	Appendix
	Appendix
	Backup Slides
	Work Hypothesis
	Traffic Features vs CPU Usage
	Multiple Linear Regression
	System Overview
	When, Where and How Much
	Load Shedding Algorithm
	Testbed Scenario
	Packet Loss
	Related Work
	Conclusions and Future Work



