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L O C A T I O N - B A S E D  S E R V I C E S

L
ocation is a core concept in most 

pervasive computing systems. 

Beyond simple uses such as pin-

pointing an individual’s position 

or identifying a region’s occupants, 

location is a key index for richer querying of an 

individual’s or environment’s context.

Although at �rst glance a simple concept, lo-

cation information’s representation has many 

forms and subtleties, each suited to particu-

lar application classes.1 To provide application 

developers with easy access 

to location information, we 

must support different posi-

tioning systems with varying 

data formats as well as fusion 

algorithms to estimate posi-

tion from multiple readings. 

We also need a data access ap-

proach that hides this complex-

ity and heterogeneity from the 

developer. This problem has no 

general solution, necessitating speci�c frame-

works for working with speci�c kinds of data.

To meet the needs of location-based applica-

tions, we’ve developed lightweight space and 

sensing models and a set of extensible compo-

nents that support customization and emerging 

technologies. The space model supports a range 

of geometric and relative-spatial-positioning 

descriptions found in the literature. The sens-

ing model abstracts over various types of posi-

tioning systems and incorporates the capture of 

uncertainty, serving as a foundation on which 

developers can apply sensor-fusion techniques. 

Our programming framework, LOC8, sits atop 

the space and sensing models, providing a rich 

API for querying location data and exploring its 

many representations.

Requirements
A location model should support location data 

representations from different positioning tech-

nologies and extensible metadata descriptions. 

Many well-known systems can report an enti-

ty’s coordinate or symbolic position, from GPS 

and Active Badge to more recent systems such 

as Ubisense and the �ngerprint-based position-

ing system.2 Beyond these are less conventional 

and less expensive methods of reporting an en-

tity’s location. For example, a Bluetooth spot-

ter, which can detect the presence of mobile 

phones, PDAs, and laptops, might position a de-

vice within 10 meters of a known point. We can 

use this information to infer the device owner’s 

position.

Using a location model supporting a range of expressive representations 

for spaces, spatial relationships, and positioning systems, the authors 

created LOC8, a programming framework for exploring location data’s 

multifaceted representations and uses.
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Environments frequently contain 

multiple positioning systems, so trans-

lating readings into a common language 

of location-centric primitives is impor-

tant. Because no positioning technol-

ogy claims to provide perfect accuracy, 

this language must also provide quality 

measures to support sensor-fusion tech-

niques for uncertain data. Quantifying 

uncertainty associated with positioning 

systems has proved a hot topic in recent 

years.3,4

A space model provides a set of prim-

itives that allow descriptions of regions 

of space and the relationships between 

them. Such primitives must support the 

mapping of positioning systems’ differ-

ent data formats while being expressive 

enough to support common application 

queries.

Christian Becker and Frank Durr 

divide these queries into four catego-

ries: positioning, range, nearest neigh-

bor (spatial relation), and navigation.5 

These queries have led to more complex 

uses of location. Such higher-level que-

ries require �exible conversion between 

different location representations—for 

example,

• building a relative spatial relation-

ship between two mobile entities, or

• translating a track of an entity’s 

physical positions to a summary of 

its movement pattern or to its speed 

and heading.6

Increasingly, researchers don’t treat 

location information as independent 

but rather as tightly bound to user ac-

tivity, intention, and interaction. The 

extension of semantics in location is 

a popular research topic, underpin-

ning many potential context-aware 

applications.1

Realizing the Space Model
To represent our space model,7 we chose 

the Web Ontology Language (OWL) 

because of its high-quality tool support  

and the applicability of reasoners and 

rules to help identify relationships be-

tween points and regions. At the heart 

of our ontology are the SymbolicRepre-
sentation, GeometricRegion, and RelativeLoca-
tion classes, which model the human-

friendly names and geometric extents of 

regions (such as rooms and buildings) 

and their physical relationships to other 

parts of the model.

Coordinates have an associated co-

ordinate reference system (CRS), which 

can be a global standard or locally de-

�ned to simplify a region’s spatial rep-

resentation. For example, if an appli-

cation is bound to a single building, it 

makes more sense to de�ne a local coor-

dinate system than to use the WGS 84 

coordinate system. Translations from 

one CRS to another are described by an 

origin point and a rotation matrix. The 

origin is the displacement of the new 

CRS relative to its reference CRS, and 

the rotation matrix describes changes 

to rotation of the x-, y-, and z-axes. We 

used Chianghao Jiang and Peter Steen-

kiste’s model8 to convert coordinates 

from one CRS to another. Geometric 

regions consist of one or more 2D or 

3D geometric shapes, each de�ned by a 

set of coordinates; symbolic represen-

tations take the form of an individual 

associated with a descriptive label.

Developers must assign each space 

a granularity (the granularity property), 

whose possible values, such as coordi-

nate, room, and city, are de�ned in the 

model and are customizable. This al-

lows �exibility in that developers can 

rede�ne granularities to suit different 

applications. The querying process uses 

granularities to request an entity’s loca-

tion at a particular resolution.

Our model supports four spatial re-

lationships: containment, adjacency, 

connectedness, and overlap. Contain-

ment, adjacency, and overlap are what 

their names suggest. Connectedness is 

a particular case of adjacency, in which 

an entity can pass from a space to its 

adjacent space. The relationship might 

specify a third location, such as an exit 

or elevator, that enables the transition. 

Connectedness is a rich relationship, 

implying both the passage’s direction 

and the notion of an accessible (rather 

than a straight-line) distance between 

the related locations.

We also provide two types of relative 

representation: center and compass.7 

In the center representation, a target 

location is a geometric area, such as 

a circle or a cuboid, whose center is 

a coordinate—or a reference loca-

tion’s center point—and whose edge 

or diameter length is twice a speci-

�ed distance. The compass represen-

tation involves building a CRS whose 

origin is a coordinate—or a reference 

location’s center point—and whose 

rotation matrix follows the standard 

compass directions. In this CRS, the 

target location’s description contains 

a distance to its origin; the horizontal 

angle to the target location, measured 

clockwise from north; and the angle 

of elevation from the horizontal plane.

For some maps, specifying a set of 

symbolic regions and their spatial re-

lationships will suf�ce. Maps that de-

�ne region geometry let reasoners infer 

some symbolic relationships, such as 

containment and adjacency, and esti-

mate missing geometry. 

Realizing the Sensing Model
The sensing model maps the reported 

positions of entities—for example, 

a person, locatable tag, or wireless  

device—to points and regions in our 

space model. (For an overview of the 

high-level ontologies we use to describe 

our applications, see “Ontonym: A 

A space model provides a set of primitives  

that allow descriptions of regions of space  

and the relationships between them. 
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Collection of Upper Ontologies for De-

veloping Pervasive Systems.”9) Again, 

the essential part of this process is cap-

turing metadata associated with the 

sensing process.

We adopt a standard approach to rep-

resenting the sensed data’s characteris-

tics and imperfections by using a quality 

matrix, which satis�es the sensing mod-

el’s uncertainty measure requirement. 

The quality matrix consists of granu-

larity, frequency, coverage, and a list of 

accuracy and precision pairs.10 Granu-

larity is the smallest spatial element per-

ceivable. Frequency is the sample rate—

how often a sensor generates readings. 

The sensor manufacturers’ technical 

speci�cations determine these proper-

ties’ values. Coverage is the extent of 

space in which an entity’s position can 

be sensed; the accuracy and precision 

pairs, which might be multiply de�ned, 

describe the probability that an entity’s 

true position is within a given distance 

of the reported value. For example, with 

our Ubisense installation in University 

College Dublin’s Complex and Adap-

tive Systems Laboratory (CASL) build-

ing, we achieve 70 percent accuracy 

with two meters’ precision. Although 

our general quality matrix works with 

most positioning sensors, it isn’t de�ni-

tive, and we encourage its extension.

All data that a sensor adds to the 

model references the sensor’s quality 

matrix. Figure 1 describes the granular-

ity, frequency, coverage, and precision- 

accuracy pairs associated with our 

Ubisense sensor; Figure 2 describes a 

sample reading. Both �gures use No-

tation 3 (www.w3.org/DesignIssues/ 

Notation3), a compact Resource De-

scription Framework (RDF) syntax.

The about property relates the reading 

to a particular entity, and the observedBy 
property relates the reading to the sen-

sor that provided it. The value property 

indicates the position at which the sen-

sor located the entity—in this case, a 

3D coordinate. Finally, the temporal-
Dimension property specifies the time 

span over which developers should re-

gard the reading’s value as re�ecting the 

entity’s true position.  

Developers can easily add a position-

ing system to the model, which requires 

only that they de�ne its metamodel and 

write a software adapter to transform 

sensor-reported positions to our model. 

Optionally, if the positioning system re-

ports coordinates, developers can spec-

ify the necessary information to trans-

late points from its CRS to another CRS.

example:CASLUbisense
  a sensor:Sensor ;
  sensor:coverage map:3f , map:4f ;
  sensor:frequency [...] ;
  sensor:granularity map:coordinateGranularity ;
  sensor:precisionAccuracy
    [ a sensor:PrecisionAccuracy ;
      sensor:accuracy “0.7” ;
      sensor:precision
        [ a muo:QualityValue ;
          muo:measuredIn ucum:meter ;
          muo:numericalValue “2”
        ]
    ];
  sensor:precisionAccuracy [...] 
  sensor:rateOfChange [...] .

example:reading
  a sensor:Observation ;
  sensor:about ubitag:010131789 ;
  sensor:observedAt [...] ;
  sensor:temporalDimension [...] ;
  sensor:observedBy example:CASLUbisense ;
  sensor:value
    [ a location:Coordinate ;
      location:referenceCoordinateSystem
        example:ubisenseCoordinateSystem ;
      location:x “1.15” ;
      location:y “3.67” ;
      location:z “21.35”
    ].

Figure 1. An abridged description of University College Dublin’s Complex and 

Adaptive Systems Laboratory (CASL) Ubisense sensor and its metadata. The sensor 

covers the third and fourth �oors of the CASL building, and is accurate to within two 

meters of a Ubitag’s true position 70 percent of the time. Distance descriptions use 

the Measurement Units Ontology (MUO), giving a basis for transforming between 

different representations.

Figure 2. An abridged reading produced by the CASL Ubisense sensor described 

in Figure 1. A Ubitag is related to a 3D coordinate position within the Ubisense 

coordinate system. The observation time and the source of the reading are also 

indicated.
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Using the  
Programming Framework
On the basis of Jeffrey Hightower and 

his colleagues’ Location Stack architec-

ture11 (see the “Related Work in Loca-

tion Modeling” sidebar), we developed 

the LOC8 framework in Java to sup-

port querying of the space and sensing 

models we constructed. Figure 3 shows 

LOC8’s architecture. The sensing layer 

reports positioning data as coordi-

nates, symbolic locations, or relative 

positions; the abstraction layer converts 

raw sensor data into the OWL repre-

sentation. As part of this process, the 

abstraction layer can query the context 

and space models to �nd the correct 

references for resources representing 

particular regions, people, or locat-

able objects. The context, sensing, and 

space models provide standard APIs for  

Nexus is an early open platform providing a foundation that 

makes developing location-aware applications easier.1 The Nexus 

platform’s core is a common augmented-world model that sup-

ports representation of the location of static real-world entities, 

such as buildings or trains, and virtual entities with which the 

real world is augmented, such as virtual billboards. Its query lan-

guage, Augmented World Query Language (AWQL), supports 

basic spatial queries including inside, overlaps, includes, excludes, and 

closest. In LOC8 (see the main article), we use a loosely coupled 

modeling technique that treats location information indepen-

dently from other forms of context. This lets us treat all locatable 

objects in the same way, irrespective of their property structure, 

real or virtual status, and use by applications.

The Location Stack is a successful software engineering model 

that structures location-aware services components into a lay-

ered system architecture with robust separation of concerns.2,3 

Our model is based on the Location Stack but differs in four main 

respects. First, the Location Stack’s measurements layer reports 

data from sensors at a lower level than we support, including 

distance, angle, and proximity. We decided to deal only with 

observations at the position level—for example, coordinate and 

symbolic—because most technologies tend to perform this cal-

culation/abstraction in the sensing system.

Second, we cleanly separate the space model from the sensing 

model, letting us treat the data in each independently. For ex-

ample, the sensing model’s implementation decides the length 

of time to retain readings. In contrast, the space model remains 

relatively static, but the LOC8 framework applies reasoning to its 

contents to infer additional spatial relationships from available 

geometric data.

Third, we’ve taken a cross-layered approach to LOC8’s design, 

recognizing that context and space information can play a role 

before and during the point of fusion. In contrast, the Location 

Stack introduces contextual fusion only in its highest layers.

Fourth, the Location Stack architecture includes an arrange-

ments layer, which uses information about the current probabi-

listic location estimates of multiple objects to identify relation-

ships between them, such as proximity or formation. This form 

of querying isn’t part of our framework’s core but is an extension 

that developers could build.

The Aura project’s space model combines hierarchical and co-

ordinate space models.4 Its interface extends traditional database 

SQL queries with spatial queries on the PostgreSQL database 

system, which improves performance and increases �exibility for 

location-aware applications. This location model supports �ex-

ible conversion between different coordinate systems. We’ve ex-

tended this idea in our location model. Although we don’t con-

sider our implementation’s performance in the main article, we 

support the queries the Aura model identi¡es and extend them 

to support other forms, such as relative positioning.

Finally, MiddleWhere is a distributed middleware infrastructure 

for location that separates applications from location-sensing 

technologies.5 Similar to LOC8, it can add sensing technologies 

dynamically and transparently from an application perspective. 

However, the two approaches differ in uncertainty management. 

MiddleWhere provides Bayes-based probabilistic reasoning to 

fuse multiple sensor readings, whereas we focus on the generic 

representation of different sensor data and its quality. We expose 

this through the programming framework, providing an inter-

face to accommodate different sensor-fusion approaches.
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querying their contents. The fusion 

layer uses these APIs to calculate prob-

abilities for an entity’s position and pro-

vides a set of calls to invoke this func-

tionality. Finally, the model’s top layer 

supports application querying, provid-

ing modules for each of the four query 

categories.

Positioning Queries

The most common query is for locat-

ing an entity within a space model using 

available positioning data. LOC8 sup-

ports this through its positioning-query 

module. We can con�gure the query us-

ing six parameters:

• entity speci�es the entity’s identi�er.

• finestGranularity and coarsestGranularity 
constrain the result’s granularity 

(for example, coordinate, cubicle, or 

building).

• precision  speci�es a proximate distance 

the querying application requires, 

which affects the con�dence value 

calculation.

• startTime and endTime specify the tempo-

ral interval of interest.

The position query’s expanded inter-

face is as follows:

1. List<PositionResult> locate(Entity entity,
2.  Granularity �nestGranularity,
3.  Granularity coarsestGranularity,
4.  Distance requiredPrecision,  
  DateTime startTime,
5.  DateTime endTime);

The API provides more compact 

variants using parameters’ default val-

ues; for example, the time parameter 

defaults to the current time. Consider 

the following code for the positioning 

query, “Where is Bob?”:

1. Entity bob = sensorModel.getEntity(ENTITY_ 
 URI + “Bob”);
2. List<PositionResult> results = positionQuery. 
 locate(bob);
3. for (PositionResult result : results) {
4.  if (result.getLocation(). 
  hasSymbolicRepresentation()) {
5.   System.out.printf(“%s - %s\n”,
6.   result.getLocation(). 
   asSymbolicRepresentation(),
7.   result.getCon�dence());
8.  }
9. }

In this code, we use the query API to 

obtain a list of candidates for Bob’s 

current position (lines 1 and 2). We 

then check whether each result has 

an associated symbolic representation 

(line 4). If so, we print that representa-

tion’s name to the console, along with 

its associated con�dence value (lines 5 

through 7). 

If the environment contains multiple 

positioning systems, we apply sensor 

fusion within the locate() method. This 

is a three-step procedure (see Figure 4):

 1. Get all observations that satisfy 

the query’s input requirements, 

including entity, time span, gran-

ularity, and precision. Transform 

them into to a triple consisting of 

the reading’s starting time, a posi-

tion ordered from �nest granular-

ity to required granularity, and a 

con�dence value that’s the sensor’s 

accuracy at the query’s required 

precision.

 2. Pass the triples to the sensor-fusion 

method fuse(). Developers can ap-

ply customized sensor-fusion tech-

niques to fuse(). We’ve implemented 

a simple fuzzy-based fuse() that or-

ganizes the collected readings in a 

tree structure according to their 

granularity and that uses fuzzy 

logic to update and integrate the 

con�dences on this location data.

 3. Order the results according to their 
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Abstraction

Sensing

PositionQuery.locate()

Positioning system 1

Positioning system 2

Positioning system n

fuse()

Collect readings Pass to fuse() method

Developers can override 
this method with other 

sensor-fusion techniques

Collect result

……

... (t 1
i
, loc 1

i
, cnf 1) ...

... (t 2
j
, loc 2

j
, cnf 2) ...

... (t n
k
, loc n

k
, cnf n) ...

Figure 3. LOC8’s architecture. Sensors 

provide raw data, which is translated 

to our model and mapped to entity 

and space descriptions. An interface for 

performing sensor fusion is exposed, 

while the top layer of the framework 

provides application developers with an 

API for common query types.

Figure 4. Sensor fusion in the positioning-query module. All entity observations 

that satisfy a query’s constraints are collected and passed to the fuse() method. 

Developers can implement customized fuse() methods to integrate the readings’ 

con�dence levels and resolve an entity’s position.
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granularity of location, con�dence, 

and time.

If we’re interested in Bob’s coordi-

nate position rather than the symbolic 

name associated with his position, we 

must address two issues:

• how to translate results into a target 

coordinate system, and

• how to deal with situations in which 

a symbolic location has no explicit 

geometry.

To address the �rst issue, we translate 

the coordinate system using the ap-

proach described earlier. For the second 

issue, we estimate geometry by assum-

ing a space’s boundary is the composite 

of all its subspaces. If no such informa-

tion is available, we approximate by in-

heriting the geometry of a space’s super-

space. Clearly, this process’s success 

depends on the amount of geometric 

information available and might not be 

suitable for all applications. So, devel-

opers can use hasExplicitGeometricRegion() and 

estimateGeometricRegion() at their discretion.

The following code illustrates the 

task of plotting Bob’s position on a 

map:

1. Entity bob = sensorModel.getEntity(ENTITY_ 
 URI + “Bob”);
2. PositionResult result = positionQuery. 
 locateMax(bob);
3. Coordinate centerPoint = result.getLocation()
4.  .asGeometricRegion().centerPoint();
5.  Coordinate translatedPoint = CoordinateUtils
6.  .convert(centerPoint, mapCRS);
7. map.plot(bob, translatedPoint);

We calculate Bob’s position as we did 

in the previous example, this time us-

ing locateMax() to return only the result 

with the highest con�dence at the �nest 

granularity (lines 1 and 2). Assuming 

Bob’s location has an associated geo-

metric region, we use his position as 

that region’s center point (lines 3 and 

4), transform it to the map’s coordinate 

system (lines 5 and 6), and call the ap-

plication plot method (line 7).

Range Queries

Essentially the inverse of a position 

query, a range query identi�es all en-

tities in a location that match certain 

criteria. There are four input param-

eters: space, the region whose contents 

we’re interested in; startTime and endTime, 
the time span we’re interested in; and 

entityType, the entity class to locate. Each 

result consists of a reference to a located 

entity and a con�dence value represent-

ing the likelihood that the entity is in 

the location at the given time. The in-

terface for the range query is as follows:

1. List<RangeResult> in(Space space,  
 Class entityType,
2.  DateTime startTime, DateTime endTime);

As with position queries, this method 

has several variants. The query defaults 

to returning all locatable entities cur-

rently in the speci�ed location if the 

querier omits time and entity type 

parameters.

To compute a result for a range 

query, we �rst query the entity model 

for the entities matching the speci�ed 

type. We then use positioning queries 

to locate each entity. Finally, we check 

whether each positioning query’s result 

matches, or is a subspace of, the speci-

�ed location. 

We code the range question, “Who 

is in the CASL building?” as follows:

1. Space casl = spaceModel.getSpace(MAP_URI +  
 “CASL”);
2. List<RangeResult> results = rangeQuery. 
 in(casl,Person.class);
3. for (RangeResult result : results) {
4.  System.out.printf(“%s - %s\n”,
5.  result.getEntity(),
6.  result.getCon�dence());
7. }

We �rst obtain a reference to the space, 

which we use to execute a query to �nd 

all people in the region (lines 1 and 2). 

An iterator over the results prints the 

set of entities along with the con�dence 

in each result (lines 3 through 7).

Spatial-Relation Queries

The spatial-relation module provides a 

set of methods for applications in which 

relations between locations are impor-

tant. The API’s most basic method, re-
lationship(), accepts two locations as pa-

rameters and checks for containment, 

adjacency, overlap, and connectedness. 

Containment, adjacency, and overlap 

relationships are either expressed di-

rectly in the model or calculated in pre-

processing at runtime by comparing the 

geometric regions’ boundaries. Map 

designers must explicitly express con-

nectedness. If none of these relation-

ships exist between the spaces, the next 

step is to calculate the compass relative 

position between the two locations. If 

the locations don’t share a common 

CRS and can’t be translated to a com-

mon CRS, the query is unanswerable.

We use several variants of the closest() 
method to �nd proximate entities. Its 

input parameters follow the same pat-

tern as the previous queries, with the 

space parameter providing an outer 

boundary for the search. We then cal-

culate the results’ positions relative to 

the target entity and order them from 

closest to farthest. The method signa-

ture is as follows:

1. List<ProximityResult> closest(Entity entity,
2.  Space boundary, Class entityType,
3.  DateTime startTime, DateTime endTime);

Consider a spatial-relation query in 

which we want to �nd the shop nearest 

Essentially the inverse of a position query, 

a range query identi¡es all entities 

in a location that match certain criteria.
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Bob. To represent the answer symboli-

cally or as a coordinate, we use the ap-

proaches we just described. However, 

the �nal representation we identify is 

a relative position—for instance, 100 

meters northwest. We achieve this by 

computing the distance and bearing be-

tween the points:

1. Entity bob = sensorModel.getEntity(ENTITY_ 
 URI + “Bob”);
2. Space campus = spaceModel.getSpace(MAP_ 
 URI + “UCD”);
3. List<ProximityResult> results = relationQuery
4.  .closest(bob, campus, Shop.class);
5. for (ProximityResult result : results) {
6.  CompassLocation rel = result.getLocation()
7.  .asCompassRelative(bob);
8.  System.out.printf(“%s relative to %s:  
  (%d %d)\n”,
9.  bob, result.getEntity(), rel.getDistance(),
10. rel.getHorizontalAngle());
11. }

We look up the objects for Bob and 

for the University College Dublin cam-

pus, which we use to limit the search 

space (lines 1 and 2). We then execute 

the query, limiting the search to entities 

that are shops (lines 3 and 4). The result 

is an ordered list of shops, from closest 

to farthest away. We iterate through the 

results, displaying the distance and hor-

izontal angle between Bob and the tar-

get shop for each (lines 5 through 11).

Navigation Queries

The navigation-query module sup-

ports path�nding between the mod-

el’s different regions using a selection 

of path() methods that takes two pa-

rameters—source and destination—which 

can be locations or entities. Methods 

that accept entities as parameters �rst 

calculate the entities’ positions using 

the position-query module before pro-

ceeding in the same manner as if the 

developers had passed a location. The 

basic path�nding algorithm works as 

follows:

 1. Check whether the source and des-

tination locations are the same.

 2. If the locations are the same, return 

the answer.

 3. If the locations aren’t the same, 

recursively call the path�nding al-

gorithm using each location con-

nected to the source location as the 

new source, keeping track of paths 

to avoid cycles.

The algorithm has two versions—

one that terminates after �nding a path 

and another that searches all paths. 

This algorithm’s current implementa-

tion is suited only for evaluating paths 

through small space models. Consid-

ering source and destination locations 

with different granularities—for ex-

ample, from Bob’s desk to the coffee 

area—increases the complexity. Im-

proving this approach is a possible area 

of future research.

The navigation-query module can 

also calculate the distance between two 

locations. It determines the point-to-

point Euclidian distance by �rst evalu-

ating each location’s center point. If the 

connection relationship metadata pro-

vides the accessible distance, it can also 

calculate the path-accessible distance.

Extending the previous example, the 

following code calculates the path be-

tween Bob and the nearest shop:

1. Path path = navigationQuery.path(bob,  
 nearestShop)
2. for (Step step : path.steps()) {
3.  System.out.printf(“from %s to %s (%d)\n”,
4.  step.getSource(),

5.  step.getDestination(),
6.  step.pathDistance());
7. }

After the query executes (line 1), we 

iterate through each step in the path, 

printing out the details and the path-

accessible distance for each (lines 2 

through 7).

Combination Queries

Constructing more sophisticated que-

ries that use the core queries we just 

described can simplify application de-

velopment. Consider a scenario from 

the Cooperative Object Detection and 

Ranging (Codar) system demonstra-

tion12 in which two cars are heading 

for a collision (see Figure 5). We want 

to construct a service that predicts po-

tential collisions and calculates their 

time and location. Here’s an outline of 

a simple implementation of this service:

1. PositionResult locA = positionQuery. 
 locateMax(carA);
2. PositionResult locB = positionQuery. 
 locateMax(carB);
3. CompassLocation rel = locB. 
 asCompassRelative(locA);
4. …
5. Double degree = rel.getHorizontalAngle();
6. if ((velocity(carB)/velocity(carA))
7.  == Math.abs(Math.tan(degree))) {
8.  Double collisionTime = rel.getDistance()
9.   / relativeVelocity(carB, carA);
10. ...
11. }

Treating car A as a base location, we 

can deduce car B’s position relative to 

A using our relative-positioning que-

ries (lines 1 through 3). We can then 

calculate the rate at which the cars are 

approaching using the distance mea-

sure between them over a set of time 

instances (not shown). We estimate the 

time when the distances between the 

two cars will reach zero using B’s ve-

locity relative to A (lines 5 through 9).

Semantic Queries

We can also extend the query model 

We can also extend the query model  

by integrating additional context  

into the query process. 
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by integrating additional context into 

the query process. Consider building a 

query to report whether a person is at 

home. We achieve this using the follow-

ing code:

1. public boolean atHome(Entity person) {
2.  boolean result = false;
3.  Property residesIn = ResourceFactory
4.   .createProperty(“http://example.com/ 
   residesIn”);
5.  PositionResult locA = positionQuery. 
  locateMax(person);
6.  if(person.hasProperty(residesIn, result. 
  getLocation()) {
7.   result = true;
8.  }
9.  for(Space space: result.getLocation(). 
  containedBy()) {
10.   if(person.hasProperty(residesIn, space)) {
11.    result = true;
12   }
13. }
14. return result;
15.  }

After we obtain a reference to the 

residesIn property (de�ned externally) 

(lines 2 and 3), we use the positioning-

query module to �nd the entity’s posi-

tion (lines 3 and 4). We then check to 

see whether this location, or any loca-

tion that contains it, is associated with 

the person by the residesIn property (lines 

6 through 12). Finally, the result is re-

turned (line 14).

Discussion
We developed core space and sensing 

models from our original requirements 

set and constructed a rich query model 

to support common application uses 

of location. Consequently, most per-

vasive computing systems that need to 

model or work with location can use 

LOC8.

Engineering Effort

LOC8 provides developers a well- 

structured, simplified approach for 

working with what’s essentially highly 

enriched sensor data. This requires 

engineering effort in terms of con-

structing a space map, integrating a 

new positioning system, and designing 

applications.

For the early adopter, using OWL 

involves a signi�cant learning curve; 

an editing tool such as Protégé13 can 

ease the process. The language has 

several complexities, and its serial-

izations are visually unappealing and 

can be dif�cult to work with. To ease 

map construction, designers can apply 

translations to our model to existing 

map-drawing tools’ output format. 

Although we developed only a simple 

prototype of this feature using Archi-

CAD, it demonstrates that designers 

can construct maps without getting 

their hands dirty. This also opens up 

the possibility of deriving maps di-

rectly from professional architectural 

drawings.

Mapping positioning systems to the 

sensing model also falls to early adopt-

ers, and is essentially free to other de-

velopers. Beyond interfacing directly 

with each positioning system—a re-

quirement for creating a stand-alone 

application—developers must use 

OWL to describe the sensor, its CRS, 

and its readings. This incurs a one-time 

cost for each positioning system.

Subsequent application developers 

will rarely use OWL—perhaps only 

when tagging locatable entities or de-

�ning a local CRS if an existing one 

doesn’t suit. Most cases won’t require 

either of these steps. The framework 

provides a fully featured API for tra-

versing the space model, and the built-

in query modules support the execution 

of the core query types to meet most 

applications’ needs, as Christian Becker 

and Frank Durr identi�ed.5

Flexibility and Extensibility

The space model’s loose coupling with 

other aspects of the model and develop-

ment process has clear bene�ts. Mod-

elers needn’t be concerned with how 

the application reads, interprets, or ac-

cesses the model, so they’re less likely 

to take shortcuts in the mapping pro-

cess. Using the established Measure-

ment Units Ontology (MUO; http://idi. 

fundacionctic.org/muo) to represent 

units of measurement mitigates po-

tential encoding bias from the model-

ing process, and the choice of OWL 

means that the space model is natu-

rally distributed. Developers can parti-

tion the responsibility for creating the 

model and integrate the results. This 

implies straightforward evolution of 

space models over time. In most cases, 

the developer needs to build the space 

model only once for any particular 

region. Once this initial cost is out of 

A

B

α

South (y)

East (x)
Collision
point

Relative distance d(A, B)

X

A

Real-world car collision scenario Building relative spatial relationship

B

Figure 5. A dynamic-location example: 

car collision prediction. We repeatedly 

evaluate the relative position of car B 

to car A over time to calculate the rate 

at which the cars are approaching. We 

can predict the estimated collision time 

using their relative velocity.
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the way, sharing the model across all  

applications requires zero effort.

Expressiveness

Because location has many meanings,1 

our model’s expressiveness is key to let-

ting location-aware services leverage 

its subtleties. Because our framework 

already supports positioning, range, 

spatial-relation, and navigation que-

ries, developers don’t need much code 

to perform them. Developers can de-

rive more complex location-based sce-

narios by combining these queries or 

incorporating additional semantics, 

as the car-collision prevention and  

residential-query scenarios show.

Consistency Checking

We check the consistency of developer-

declared spatial relationships when the 

maps are loaded. As we mentioned ear-

lier, we also use our ontological engines 

to infer spatial relationships, which we 

use to validate and complement the de-

clared relationships.

Future Improvements

We intend to further improve and re�ne 

our approach. Currently, our imple-

mentation supports only the modeling 

of Cartesian CRSs, although the addi-

tion of polar CRSs is straightforward. 

We also don’t yet support the modeling 

of elliptical CRSs. The exception to this 

is WGS 84, which, because of its ubiq-

uity (through GPS), we implemented di-

rectly into the Java model. Performing 

an accurate mapping from a Cartesian 

CRS to an elliptical one using the rota-

tion matrix and offset technique is im-

possible. To overcome this, we assume 

that over short distances we can treat 

WGS 84 as a linear system, which lets 

us perform the conversion. However, 

the greater the distance from the origin, 

the greater the error introduced.

Our sensing model assumes that a 

particular CRS’s axes share the same 

unit of measurement, which isn’t al-

ways true. We also model the sensor-

provided precision levels as a single 

value, which is another simpli�cation. 

Depending on factors affecting the in-

stallation, as we’ve found from evalu-

ating our Ubisense installation, dif-

ferent precision levels are available on 

each axis. We could go even further 

and model precision at different points 

in the sensing system’s coverage area, 

but we remain unconvinced that the 

benefits would outweigh the added 

complexity.

T
he key to supporting appli-

cation developers who work 

with location is by separat-

ing the concerns of map-

ping space, working with positioning 

systems, and querying data. Our goal 

in developing LOC8 was to construct 

a framework that glued these three ele-

ments together. Application developers 

don’t need an understanding of sensor 

system operation and can model spaces 

without concern for how the data will 

later be accessed.

We’re focused on optimizing the core 

query modules’ implementation and 

evaluating their performance. Beyond 

this, we intend to further explore the 

semantic queries to investigate the inte-

gration of additional context types into 

the querying process.

Our space and sensing ontologies 

are available
 

under an open source li-

cense to promote our model’s adoption 

and practical use by other research-

ers and developers in the community 

(http://ontonym.org). We plan to re-

lease the query framework code in the 

near future.
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