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Abstract—In this paper we face the following problem: how
to provide each peer local access to the full information (not
just a summary) that is distributed over all edges of an overlay
network? How can this be done if local access is performed at
a given rate? We focus on large and sparse information and
we propose to exploit the compressive sensing (CS) theory to
efficiently collect and pro-actively disseminate this information
across a large overlay network.

We devise an approach based on random walks (RW) to spread
CS random combinations to participants in a random peer-to-
peer (P2P) overlay network. CS allows the peer to compress
the RW payload in a distributed fashion: given a constraint
on the RW size, e.g., the maximum UDP packet payload size,
this amounts to being able to distribute larger information and
to guarantee that a large fraction of the global information
is obtained by each peer. We analyze the performance of the
proposed method by means of a simple (yet accurate) analytical
model describing the structure of the so called CS sensing matrix
in presence of peer dynamics and communication link failures.
We validate our model predictions against a simulator of the
system at the peer and network level on different models of
random overlay networks. The model we developed can be
exploited to select the parameters of the RW and the criteria
to build the sensing matrix in order to achieve successful
information recovery. Finally, a prototype has been developed
and deployed over the PlanetLab network to prove the feasibility
of the proposed approach in a realistic environment.

Our analysis reveals that the method we propose is feasible,
accurate and robust to peer and information dynamics. We also
argue that centralized and other distributed approaches, i.e.,
flooding and gossiping, are unfit in the context we consider.

I. INTRODUCTION

Local access to global information is often indispensable in

distributed applications exploiting the P2P design paradigm for

controlling, monitoring and optimization purposes. Numerous

studies have been successful in devising strategies to provide

summaries (e.g., averages, ranking, etc.), of some global

system property to each peer in an overlay network. In these

works it is typically assumed that each peer holds a value, e.g,

CPU load, free storage, and that all peers must be provided

with an estimate of the summary information computed over

the values of the current set of active peers, e.g., [1].

In this paper we consider the following, more difficult,

problem: a set V of peers forming a P2P based distributed ap-

plication organize in a random overlay network by establishing

bidirectional connections among them. Each peer maintains a

set of c independent information for each outgoing link; the

overlay network thus defines c independent global information

x(i), i = 1 . . . c that can be viewed as vectors of as many

components as the number of edges (|E|) in the overlay. We

assume each x(i) to be k-sparse, i.e., x(i) has at most k ≪ |E|
non-zero elements. Is it possible to provide each peer local

access to the full information (not just a summary) x(i)? If

each peer requires local access at rate λr, how can this be done

without congesting the overlay network and without exceeding

the processing power of each peer?

We develop a technique that exploits both the CS theory

[2], [3], [4] and RW to efficiently collect and pro-actively

disseminate x(i) across a large overlay network. CS enables

compressed acquisition of the information by replacing the

standard sample by sample measurement approach with the

idea of collecting a (hopefully small) set of random combi-

nations of samples. CS theory guarantees that is possible to

recover each x(i) from m random projection y(i) = Φx(i),

where Φ is the m× |E| CS sensing matrix.

In our technique we use RW with limited lifespan, each one

carrying a random combination of the information samples.

The CS sensing matrix Φ, obtained according to this technique,

is random since the sequence of traversed peers by an RW is

random and Φ is sparse since the lifespan of each RW is

≪ |E|. Furthermore, Φ is the same for all the c information.

The access rate λr of peers to x(i) does not have impact

on the traffic generated. Indeed, each peer generates a fixed

number w of RWs during its activity: the higher w the lower

the latency. When an RW terminates the peer that first created

it is either notified or it timeouts and a new RW is generated.

Therefore the total amount of RWs in the overlay is bounded

by w ·|V |, independent from λr. Furthermore, since we exploit

RWs our technique is resilient to peer churning and unreliable

message transmission.

Since CS allows peers to compress the RW payload in a

distributed fashion, given a constraint on the RW size, e.g.,

the maximum UDP packet size, this amounts to being able

to distribute larger information and to guarantee that a large

fraction of the global information is obtained by each peer.

We analyze the performance of the proposed method by

means of a simple (yet accurate) analytical model describing

the structure of Φ in presence of peer dynamics and communi-

cation link failures. We validate our model predictions against

a simulator of the system at the peer and network level on



different models of random overlay networks. The model we

developed can be exploited to select the parameters of the RW

and the criteria to build the sensing matrix in order to achieve

successful information recovery. Finally, a prototype has been

deployed over the PlanetLab network to prove the feasibility

of the proposed approach in a realistic environment.

Work exploiting CS in computer science are discussed

in Section II. The reference system and the RW based CS

technique are presented in Section III. The first step in our

analysis is the investigation of the CS recovery probability in

the case where the Φ matrix is obtained by adding random

binary sparse rows. In Section IV we observe a dependence

of the recovery probability on the average number of non-

zero entries in columns of Φ; in particular, when this num-

ber is greater than a threshold information recovery can be

achieved with probability 1 for a given k. The technique is

subsequently analyzed by means of a simple (yet accurate)

analytical approximation of the probability distribution of the

number of non-zero entries in columns of Φ that we develop in

Section V. The analytical model includes possible unreliable

communication and peer dynamics that can join and leave the

overlay network alternating between active and idle periods.

The model is validated against results obtained from a system

simulator on several different types of random networks in

Section VI; this section also describes results we obtained

from a prototype implementation we deployed and tested on

PlanetLab. Section VII compares our technique with other

centralized and distributed approaches arguing that they are

unfit in the context we consider. Finally, Section VIII draws

conclusions and outlines some lines of future research.

II. RELATED WORK

Some applications of the CS theory in the field of mea-

surements in computer and sensor networks have recently ap-

peared. Identification of significant patterns in network traffic

has been the subject of [5], while CS is used to reduce the

memory cost of per-flow measurements in routers and switches

in [6]. Very recently, [7] exploited CS theory to define an

interpolation technique to reconstruct missing values in traffic

matrices based on direct and indirect measurements.

In the sensor networks domain, in [8], [9] CS is used in

wireless sensor networks to design distributed acquisition and

detection algorithms. In this context one assumes that each

sensor knows a sample of the signal x and random sketches at

a collecting peer can be obtained by exploiting the interference

on the wireless communication channel.

The works in [10], [11] deal with the more general scenario

of decentralized acquisition and compression for networked

data and share some resemblance with our work. In these

papers the sensing peers form a multi-hop network and one

cannot rely on interference to form random combinations of

the signal. Each peer is assumed to hold a sample of the

signal and is assumed to use random coefficients to build a

measure. A consensus technique based on random gossiping is

proposed to create and disseminate the measurement vector to

all peers. On random geometric graphs the number of single

hop communications is Θ(mcn2). The major limitation of this

approach is that the number of sensing peers must be known

to all participants to initialize the consensus algorithm. As

a consequence, only static networks are considered. Further-

more, the application of the same technique to recover a set

of c signals defined on the network links would dramatically

increase its communication complexity. Last but not least,

these strategies may become unfeasible as the access rate λr

of peers increases as discussed in Section VII.

III. THE TECHNIQUE

In this section we provide a brief summary of the main

issues of CS theory we exploit in this paper. We refer the

reader to [2], [3], [4], [12], [13], [14] for a detailed treatment

of this subject. We also define the reference system and the

technique we developed.

A. CS main facts

CS enables compressed acquisition of information by re-

placing the standard sample by sample measurement approach

with the idea of collecting a small set of random combinations

of samples. CS theory guarantees that is possible to recover

each x(i) from m random combination y(i) = Φx(i), where

Φ is the m × |E| CS sensing matrix and m ≥ αk log |E|,
where α is a constant. In particular, it has been proved that the

probability of information recovery depends on the so called

restricted isometry property (RIP), which requires that every

set of k (or less) columns of Φ forms an approximatively

orthonormal basis. In other words, this assures that k-sparse

information does not fall into the null space of Φ. If Φ
satisfies the RIP property then x(i) can be recovered with

probability 1 in a certain range of k and m. In this setting,

the recovery algorithm for x(i) can be recast as the following

linear program: min || ˆx(i)||1 sub. to Φ ˆx(i) = y, where ˆx(i)

represents the recovery of x(i).

In theory, Φ shall be constructed according to some criterion

guaranteeing the RIP property. The performance of binary

sparse random matrices has been recently studied in [12], [13],

[14]. The most important result is that a sparse Φ permits to

simplify the updating and recovery process without impacting

on the CS performance. In particular, in [13] it is shown that

a RIP-1 property can be used as guarantee for CS recovery

and that, more importantly, binary sparse matrices constructed

by placing d ≪ m 1’s in d random positions of each column

yield optimal recovery. The parameter d is usually termed as

the column degree and it was noted in [12] that any value

8 ≤ d ≪ m yields almost the same recovery probability.

B. The reference system

Let us consider a set of peers organized in an overlay

network. We denote the set of peers as V and the set of logical

connections among them as E ⊆ V × V . Connections are

assumed to be bidirectional. The neighborhood of peer v is

defined as N(v) = {u ∈ V : (v, u) ∈ E}. We assume any

random connected overlay: we make no assumptions on the

overlay formation algorithm.



Each peer stores a set of c independent information for

each outgoing link; to improve readability and to avoid clut-

tering the notation in the following we consider c = 1 and

consequently drop the dependency on information component

i. We consider a global information x defined on the edges

of the overlay network, i.e., x is a |E|−dimensional vector.

We denote the value of the information for a generic edge

e as xe. The information we consider is k-sparse meaning

that each sample is non-zero with probability q such that

q · |E| = k. Each peer is interested in recovering x from

m random combinations y = Φx; to this end, each peer stores

its own Φ that is the m×|E| random sparse binary CS matrix

and its own m vector y.

C. The proposed technique

To gather random combinations of x each peer generates w
RWs, i.e., messages that are forwarded to a randomly chosen

neighbor. The total number of RWs is thus equal to w · |V |.
Each RW r is allowed to be forwarded for a maximum number

of hops denoted as TTL. The TTL value is the same for all

RWs. The peer that receives an expired RW notifies the peer

that has originated the RW; the RW is then regenerated in

order to keep a constant number of RWs visiting the overlay

at any time. A RW contains several pieces of information:

the identities of the visited peers (hence the identities of

the traversed edges), the accumulated value of the random

combination, and the residual number of allowed hops. Each

time a RW is forwarded the identity of the receiving peer is

added, the combination is updated, and the residual number

of allowed hops is decreased by one unit.

A peer v updates the combination of an RW r as follows:

v extracts the accumulated combination value yr and updates

it by summing its contribution, i.e., yr = yr +Φr,e · xe where

e is a randomly chosen outgoing edge and Φr,e represents

an element of the CS matrix. Each element in Φ can be

chosen in several ways: the simplest choice corresponds to

set Φr,e = 1 yielding a binary CS matrix. In general, Φr,e can

be randomly chosen using a given probability distribution. In

our system, a peer that receives an RW sets Φr,e = ±1 with

uniform probability. The explicit values of Φr,e need not to

be stored in the RW provided that any peer is able to repeat

the random generation process. For instance, the seed of the

random number generator used by v can be initialized to a

value that can be reconstructed from the identity of e and

from the position of e in the RW performed by r.

A peer that receives an RW can use the information it carries

to add a row in its CS matrix Φ. This row contains a non-zero

entry only for the links visited by the RW. Furthermore, the

peer inserts the combination of x computed on the visited

links in its y vector. If the number of hops taken by the

RW (that we denote as s(r)) is much smaller than |E| then

Φ admits an efficient sparse representation. Furthermore, a

sparse representation of Φ is unavoidable since E, and thus its

cardinality, is not known in advance to peers. A peer adds rows

to its own Φ until m RWs are received; when Φ rows are all

filled a new row overwrites the oldest one so to realize a sliding

window mechanism to store only the m most recent pieces of

information. The decision to store the information carried by

a received RW r is taken by peers using a probability ps(r)
that depends only on the number of hops already taken by r,

i.e., on the amount of information carried by the combination.

For instance a peer can insert in Φ the information carried by

r if s(r) ≥ sm, where the minimum number of hops sm is a

parameter of the technique.

Communication is assumed to be unreliable, i.e., RWs may

be lost with probability ploss upon each transmission. No

loss detection and recovery mechanism are employed by peers

that alternate between active and idle periods. An active peer

performs all operations we described while an idle peer leaves

the overlay without notifying its neighbors about its departure,

i.e., departures are all silent. If a peer selects an idle neighbor

peer the transmitted RW gets lost; peers employ a timeout

mechanism to detect such losses and to regenerate RWs. An

idle peer becoming active maintains its neighbors and discards

previous information stored in its own Φ and y data structures.

It also generate its w RWs to contribute to the spreading of

random combinations of x. The information x is constituted

by associating a random integer value xe to each outgoing

edge with probability q.

Time is assumed to be slotted; at each time slot an active

peer manages RWs as described. Furthermore, with probability

pidle a peer switches to the idle state departing from the

overlay. Similarly, with probability pactive an idle peer rejoins

the overlay network and discards all rows in Φ accumulated

during the previous active period. This means that each time a

peer activates it has to wait for a startup time necessary to fill

all m rows in Φ. Clearly, the average activity period must be

greater than the average startup time to allow for information

recovery. To help the reader Table I summarizes the notation

that will be used throughout the rest of the paper.

Remarks

The scenario we consider is the most unfavorable because

communications are unreliable and losses are neither detected

nor recovered. Departures are not notified to neighbors there-

fore RWs that are forwarded to idle peers are lost. Last but

not least, each time a peer rejoins the overlay network it starts

anew by discarding all rows of Φ accumulated during its last

active period.

IV. CS MATRIX PROPERTIES AND PERFORMANCE

The performance of a CS system depends on the properties

of matrix Φ. In theory, Φ shall be constructed according to

some criterion guaranteeing the RIP property. The technique

we propose yields random, sparse and binary matrix Φ at each

peer.

These matrices Φ are constructed by rows and we cannot

enforce any guarantee on the column degree as discussed in

Section III-A. In the following we empirically analyze the

CS performance when Φ is built by rows. To this end let us

consider a binary signed sparse Φ whose rows are constructed

as follows: first pick up a random integer g in the range



Symbol Description

V set of peers

E set of connections

u, v generic peers in V
e generic edge in E
x information to recover

xe information value for edge e
N(v) neighborhood of peer v
q probability of non-zero sample in x
m number of random combinations of x
y vector of m random combinations of x
Φ m× |E| random binary CS matrix

d(d) Φ column degree (and its average)

r generic RW

w number of RWs per peer

TTL maximum number of hops for RW

s(r) number of hops taken by RW r
ps(r) probability to store information of RW r
sm minimum number of hops before RW insertion in Φ
ploss probability of lossy transmission

pidle probability an active peer goes idle

pactive probability an idle peer goes active

TABLE I
SYMBOL NOTATION AND DESCRIPTION.

[sm, TTL], then select g random integers in the range [1, |E|]
and place ±1 in the corresponding column positions. The

proposed construction method assumes that every outgoing

link is visited with the same probability by every RW and

that every peer v stores a set of m RWs that have performed

at least sm hops. Moreover, we assume that the length of the

stored RWs is uniformly distributed between sm and TTL.

Clearly, the random construction of Φ imposes a row degree

distribution that depends on parameters TTL and sm. As a

consequence, the column degree distribution depends on TTL,

sm and the number of combinations m. In the following we

estimate d(TTL, sm,m), which is the average column degree

yielded by the proposed construction method.

To test the performance of the proposed RW based Φ
construction method we use an experimental setup similar

to the one reported in [13], where binary matrix with fixed

column degree are studied. We randomly generate the k-sparse

information x with |E| = 1000 samples; k = q|E| out of the

|E| samples are set to positive random integer values. We

fix the values for q, TTL and sm and let m vary. We then

estimate the empirical recovery probability estimated from

100 CS recovery trials for each point (q,m) on a discrete

grid, using 100 independent random samples of the pair x,Φ.

In Figure 1(a) we show the obtained CS recovery region as

a function of q and m for some values of the parameters

TTL and sm. Each curve represents the lowest value of m
yielding an empirical recovery probability equal to 1, i.e., 100

independent successful CS reconstructions have been reported

for a given q,m point on the curve. Therefore, all points

lying below each of the reported curves represent the region

where CS yields a perfect reconstruction of x. It is worth

noting that different choices of TTL and sm yield very similar

performance, i.e. for a given q they require almost the same

number of combinations. In Figure 1(b) the same results are

shown by substituting the value of m on the x-axis with the

corresponding value of d(TTL, sm,m). Figure 1(b) clearly

shows that CS recovery is not possible if d < 8. This finding

is in line with observation made in [12], [13], when replacing

d with d. This is a key observation for the selection of the

parameters of our CS system. As an example, one may want

to fix the number of combinations m that a peer can store,

i.e., the memory requirements, and select the minimum TTL
and sm values guaranteeing information recovery for a certain

sparsity q by enforcing a constraint on d.

V. MODEL DEVELOPMENT

In this section we describe the analytical model we de-

veloped to characterize the structure of the CS matrix Φ at

each peer. In particular, we derive the probability distribution

of the number of non-zero entries for columns of Φ, and an

approximate formula to compute the average filling rate of Φ
that can be used to obtain the average startup time.

A. The model

Consider an RW r that reaches peer v after l hops (that is,

s(r) = l and 1 ≤ l ≤ TTL) and a randomly selected edge

e ∈ E. The model we develop is based on the following ap-

proximation: the average probability that e has been traversed

by r is equal to l
|E| , i.e., we assume that an RW of length l is

equivalent to a random sampling of a set of l edges in E. Under

this assumption the probability that edge e is visited h times

by k RWs reaching v after l hops is simply B(k, l
|E| , h), i.e.,

a binomial probability distribution whose population is equal

to k with parameter l
|E| . Since each RW is inserted in Φ with

probability ps(r) the probability distribution {dh}
m
h=0 of the

number of rows where the entries corresponding to edge e are

non-zero is given by

dh = R(m, |E|, TTL, h) =
TTL∑

l=1

fl ·B(m,
l

|E|
, h) (1)

where fl =
pl∑

TTL
l=1

pl
hence ∀l, 0 ≤ fl ≤ 1 and

∑TTL
l=1 fl = 1.

From this probability distributions the fraction of x that cannot

be reconstructed by peers is represented by d0.

The main index we are interested in is

d =

∑m
h=1 h · dh
1− d0

=
m

|E|
·
TTL∑

l=1

fl ·
l

1− (1− l
|E| )

m
(2)

representing the average value of the number of non-zero en-

tries per column in Φ; it is the first moment of the conditional

distribution R(m, |E|, TTL, h|h > 0) and it determines the

feasibility of the information reconstruction as discussed in

Section IV since it determines the probability of successful

recovery for x. It is easy to observe that d depends on the

length of the RWs that are inserted in Φ: the higher the TTL
the higher d. Since in our system a peer could insert a random

combination in Φ only if at least sm hops have been taken, it

follows that the probability distribution in Equation (1) turns
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Fig. 1. CS recovery region with RW in the case |E| = 1000 as a function of m, q (a) and d, q (b).

to be pl = 0, if 1 ≤ l < sm and 1 if sm ≤ l ≤ TTL. Thus

we obtain

dh =

∑TTL
l=sm

B(m, l
|E| , h)

TTL− sm + 1
. (3)

The system we consider does not provide reliable commu-

nication therefore RWs might get lost during transmissions.

In this case, the model in Equation (1) can be adapted to

consider losses at each transmission with probability ploss by

setting ∀l, pl = (1− ploss)
l, i.e., an RW is inserted in Φ with

probability equal to l consecutive error-free transmissions.

Clearly, the model that includes unreliable transmissions can

be combined with the model that selects the minimum length

of an RW to obtain

dh =

∑TTL
l=sm

(1− ploss)
l ·B(m, l

|E| , h)∑TTL
l=sm

(1− ploss)l
. (4)

Another feature of the system we consider is the possibility

of peers to join and leave the overlay network. Active peers

go into idle state with probability pidle while idle peers

activate with probability pactive. It follows that the average

probability of finding a peer in the idle state is given by

poff = pidle

pactive+pidle
while the average probability of finding a

peer in the active state is given by pon = 1−poff . The general

model defined in Equation (1) can be tailored to cope with

peers dynamics by setting ∀l, pl = [1−(poff+pon·pidle)]
l, i.e.,

an RW is inserted in Φ with probability equal to l consecutive

choices of active neighbors that do not switch to the idle state.

Once again, a model incorporating both RW selection and peer

dynamics is obtained as

dh =

∑TTL
l=sm

[1− (poff + pon · pidle)]
l ·B(m, l

|E| , h)∑TTL
l=sm

[1− (poff + pon · pidle)]l
. (5)

Finally, a complete model including RW selection, unreli-

able transmission, and peer dynamics can be defined as

dh =

∑TTL
l=sm

(1− pfail)
l ·B(m, l

|E| , h)∑TTL
l=sm

(1− pfail)l
. (6)

where pfail = poff + pon · [1− (1− ploss) · (1− pidle)]

According to the system described in Section III, each time

a peer activates and rejoins the overlay network it discards

previously filled rows of Φ. It is then important to characterize

the startup delay of each peer defined as the time before

all m rows of Φ are filled. To this end, we approximate

the probability that an RW starting at peer s is at peer v
after t hops as

|N(v)|
|E| , i.e., the limiting value for t → ∞.

This approximation is certainly accurate when t is greater

than the mixing time of the RW on the overlay network. We

introduce a further approximation by setting this probability

equal to 1
|V | , i.e., the probability an RW is at peer v is a

uniform probability. This second approximation is expected to

be acceptable for random overlay networks where the degree

distribution of peers is peaked around its average value. Under

these hypothesis the average number of RWs that is received

by a peer in a time slot (the filling rate of Φ) is simply given

by rf = w · |V | · 1
|V | = w. In the general case

rf = w ·

∑TTL
l=sm

(1− pfail)
l

TTL
, (7)

therefore the startup delay is simply obtained by Tf = m
rf

.

VI. RESULTS

In this section we describe the simulator we developed

to validate the analytical model presented in Section V; in

particular, the accuracy of Equations (2) and (7) is validated.

Furthermore, we describe the implementation of the proposed

CS technique in a prototype that has been deployed and tested

on PlanetLab to demonstrate the feasibility in a real distributed

network of planetary scale.

A. The simulator

The performance of the proposed system has been analyzed

by means of a simulator. The simulator, developed in C++ lan-

guage, works at the overlay level managing logical connections

E among the peer set V . The overlay network is one of the

inputs of the simulator in the form of graph instance produced

using the igraph C library. Time is assumed to be slotted. Two

kinds of peer are implemented.



The forwarding peer is able to update and propagate (with

probability 1−ploss) the RWs received in the previous time

slot. Timeouts are scheduled in order to detect RW losses

and regenerate them. The update procedure is performed by

using Φr,e = ±1 with uniform probability. Therefore, the

combinations are updated by summing/subtracting a given

sample xe. At each time slot the peer state (active or idle)

is updated according to the probabilities pidle, pactive. A

peer switching from the idle to the active state updates the

information on its outgoing edges with probability pupdate.

The second peer class is represented by the sensing peer,

that inherits all the forwarding peer data structures and

methods and adds the CS functionalities. The sensing peer

maintains a circular buffer of size m, where the most recent

RWs, meeting the requirements on the minimum number of

hops sm, are stored. This data structure permits to extract

the CS matrix Φ: from m RW payloads the set of edges

Ev ⊆ E observed by v is extracted. Each RW is mapped

onto a row of Φ by regenerating the corresponding coefficients

Φr,e. CS recovery is attempted as soon as Φ fills up for the

first time. Then, more attempts are performed when a certain

percentage of RWs, e.g. 10%, has been refreshed in the circular

buffer. The CS recovery is based on the algorithm in [15]

(implemented using the LAPACK and sparse BLAS libraries),

that has been selected because of its limited computational

cost, compared to the linear programming approaches. The

research in the area of CS recovery algorithms is very active

and our choice is not meant to be the optimal one. The goal of

our implementation is to demonstrate that the proposed system

is feasible also from the point of view of the computational

cost.

B. Simulation results

In this section we first present the validation results we

obtained by comparing the accuracy of the model predictions

against detailed simulation of the RW based CS on random

networks with |V | = 2000 peers and average number of

outgoing connections z = 10, 20, 30. We considered instances

of synthetic random graphs using two different models: Erdös-

Rényi graphs with probability of an edge between any two

peers equal to z
|V | and random graphs whose degree distri-

bution is uniform in the interval [z − 5, z + 5]. 1 We also

considered the following system parameters: TTL = 50,

sm = 30, w = 1, pidle = 5 · 10−4, pactive = 9.5 · 10−3

(hence poff = 0.05), ploss = 0.001, information sparsity

q = 0.1, and increasing values for m in the range [500, 2500].
The simulation has been run until 10% of randomly chosen

peers in the network filled their Φ matrix. This limitation is

due to the impossibility of storing Φ and y for all peers in the

RAM of the workstation we used. This limitation affects all the

simulator results, whereas it will be removed when using the

prototype implementation on PlanetLab. For each simulation

1We also validated the model on Watts-Strogatz small world graphs with
z connections and where 10% of links are randomly rewired and on regular
random graphs with z edges per peer. Results accuracy is comparable to the
presented cases and are omitted due to the lack of space.

TABLE II
CS RECOVERY FOR TTL = 100, sm = 75 VERSUS q.

q pCS nf/|V | d0
Uniform

0.010 0.990 0.0 0.000073
0.015 1.0 0.0 0.000070
0.020 1.0 0.0 0.000075
0.025 0.431 0.15 0.000067

Erdös-Rényi
0.010 1.0 0.0 0.000070
0.015 0.990 0.0 0.000063
0.020 1.0 0.0 0.000078
0.025 0.384 0.16 0.000066

on a graph instance results have been averaged over all sensing

peers. Each point in the following curves has been obtained

by considering 30 instances of each type of random graphs

and results are averaged over all graph instances.

The results of this validation are presented in Figure 2 where

the relative error | d̂−d
d

| is plotted for increasing values of m

where d̂ is the estimated average number of non-zero entries

in columns of Φ as computed by the simulator. It can be noted

that the predictions of Equation (2) are very accurate for both

types of graphs. In all cases the relative error approaches 0 as

m increases.

Figure 3 presents the validation for the filling rate rf as

defined in Equation (7) in a setting where z = 10, TTL =
100, sm = 1, pidle = 10−3, and ploss = 10−2 for increasing

values of poff . Also in this case we note that the model is

very accurate despite several approximations we introduced;

it is able to represent the behavior of the simulated r̂f rather

closely for all the considered network models.

We conclude that the analytical model we developed is

accurate and can safely be exploited for system design and op-

timization.Due to the lack of space we only reported a subset

of the validation results we obtained for several combinations

of the system parameter values.

The simulator has been used to test performance of the

proposed technique in a controlled scenario. We consider a

static network as in the case of the model validation with

poff = ploss = 0, w = 1, |V | = 2000 and z = 10.

As already noted, CS recovery performance depends on the

value of d as described in Section V. We fix the number of

combinations that can be stored by each peer m = 2500 and

select the RW parameters TTL = 100 and sm = 75 imposing

d > 10 according to the model (2), where |E| = |V | · z. In

Table II we show the experimental results as a function of the

information sparsity q. All results have been averaged over

a subset of 100 sensing peers, that are allowed to perform 5

CS recovery attempts. The performance is measured in terms

of the average CS recovery probability pCS and the fraction

of peers that always fail CS recovery nf/|V |. Moreover, the

experimental value of the fraction of the missed edges d0
is reported. The obtained results confirm that the model (2)

predicts the behavior of the CS matrix so as to guarantee a
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Fig. 2. Relative error | d̂−d
d

| as a function of m for Erdös-Rényi (a) and uniform (b) random graphs.

 0.01

 0.1

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

r f

poff

Matrix filling rate (Erdos-Renyi)

w=1 (model)
w=2 (model)

w=1 (simulation)
w=2 (simulation)

(a)

 0.01

 0.1

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

r f

poff

Matrix filling rate (Uniform degree distribution)

w=1 (model)
w=2 (model)

w=1 (simulation)
w=2 (simulation)

(b)

Fig. 3. Filling rate rf as a function of poff for Erdös-Rényi (a) and uniform (b) random graphs.

successful information recovery in a proper range of sparsity

q. Our experimental results show that is possible to reliably

reconstruct x up to q = 0.02, i.e. k = 400 non-zero values over

|E| = 20000 samples from m = 2500 random combinations.

The simulator can be used to test the proposed technique

in presence of both peer and information dynamics. In this

case we consider ploss = 0, pidle = 10−5 and poff = 0.02
using m = 2500, TTL = 150 and sm = 55. In Table

III the experimental results are reported as a function of

pupdate for a fixed value of sparsity q = 0.01. In order to

appreciate the effect of the time varying information on the CS

recovery we show, along with pCS and nf/|V |, the ratio of the

reconstructed edges which are active in the instant when a peer

performs the signal recovery (active ratio). The performance

reported in Table III shows that is possible to design the CS

system so as to cope with both peer and signal dynamic; of

course, pCS decreases and the number of peers that failed

recovery increases as pupdate gets larger.

C. PlanetLab prototype

The proposed technique has been implemented in a pro-

totype that has been deployed and tested on PlanetLab.

PlanetLab allowed us to demonstrate the feasibility of the

proposed approach in a real distributed network of planetary

scale. Moreover, in this case we allow peers to dynamically

TABLE III
CS RECOVERY FOR TTL = 100, sm = 55, q = 0.01 AND poff = 0.02

VERSUS pupdate .

pupdate pCS nf/|V | d0 active ratio

Uniform
0.008 0.909 0.0 0.001 0.967
0.01 0.667 0.04 0.001 0.962
0.02 0.437 0.16 0.001 0.962

Erdös-Rényi
0.008 0.881 0.01 0.002 0.965
0.01 0.483 0.11 0.002 0.961
0.02 0.349 0.21 0.001 0.962

update the information associated with the outgoing links; in

particular information changes each time a new peer joins the

overlay.

The prototype implements two functionalities, namely the

creation and maintenance of a random overlay network of

peers and the distribution of the RWs to be used to recover

the information samples. Only UDP datagram communications

are used among peers. A random mesh overlay is built using

a rendez-vous peer, i.e. the tracker, that stores the list of the

participating peers and provides a random subset of such list

upon request. A new joining peer retrieves a set of peers

from the tracker, issues a connection request to them and

forms its neighborhood with the ones that reply positively.



Each peer keeps a number of neighbors between zmin and

zmax. In the present implementation we set zmin = 15,

zmax = 25. The sparse information x is created dynamically;

each peer associates an integer value to every outgoing edge

as soon as it is able to finalize a connection request. The

corresponding sample xe is set to a random positive integer

with probability q, to 0 otherwise. When a peer leaves the

network its neighborhood and the tracker are informed so as to

update their lists. Both the peers and the tracker use timeouts

to infer silent departures, e.g. because of peer crashes. The

proposed RW based system is rather simple to implement. At

startup, each peer initiates w RWs. The peer is authorized to

initiate a new RW in two cases: one of its RWs has performed

TTL hops in the network or a timeout Tr has expired. The first

event is reported by the peer that has collected the RW after

TTL hops. Since all the communications are based on UDP

the timeout Tr is crucial to regenerate an RW in presence of

packet losses or peer failures. The following experiments have

been worked out with Tr = 30 ·(TTL+1) ms. Every received

RW is updated and propagated to a neighbor. When an RW

expires in a peer its originator is signaled. Each peer uses a

circular buffer of size m to store the most recent RWs that

have already performed at least sm hops. Each peer attempts

CS reconstruction as soon as the circular buffer fills up or at

least 10% of the collected RWs have been refreshed.

The described prototype has been deployed on PlanetLab

and tested under 3 scenarios with different behaviors of the

peers. In the first case we emulate a stable network where

440 peers stay connected to the overlay for 10 minutes. The

number of peers is determined by the resources available on

PlanetLab during the experiments. In the second scenario we

consider an overlay where peers join the overlay at a pace

of 10 peers per second (up to the limit of 440 peers), then

remain in the overlay for 10 minutes. In the third scenario

we introduce peer churn, letting the peer join and stay in the

overlay for random exponential time intervals. In this case the

available 440 peers cyclically join the overlay for an average

time of Ton = 900 s and turn off for an average time of

Toff = 30 s. In this latter case the performance has been

measured on period of 30 minutes after the overlay reaches

the steady state population, i.e., the average value of connected

peers oscillates around the theoretical value 440 · Ton

Ton+Toff
.

Although the churn may appear very limited, it should be noted

that each time a peer joins the network it gets new neighbors

from the tracker and updates the information, thus making the

CS reconstruction a challenging issue. In all the scenarios we

considered a sparse information with q = 0.01 and we use

w = 20 RWs per peer.

Each peers v logs the values of the created edges and all

the links values obtained at every CS recovery attempt. This

allowed us to evaluate the following performance indexes: the

number of links |Ev| observed by v, the reconstruction error

rate REv for each CS recovery attempt, defined as the ratio

between the number of reconstruction errors and the number of

observed links |Ev|. We compute also the percentage PRv(tol)
of recovery attempts with an error rate below a tolerance tol,

TABLE IV
AVERAGE RECONSTRUCTION ERROR RATE (RE) AND AVERAGE

PERCENTAGE OF RECONSTRUCTION BELOW TOLERANCE 10−3 (PR).

Scenario m TTL sm RE PR(10−3)

Stable
1500 150 45 9.2 · 10−5 98.0

3000 50 30 1.5 · 10−4 99.1

Mass arrival
1500 150 45 4.6 · 10−4 92.3

3000 50 30 2.8 · 10−4 95.9

Churn
1500 150 45 2.1 · 10−3 20.6

1500 100 30 1.5 · 10−3 43.5

2500 50 30 1.2 · 10−3 56.2

to measure the reliability of collected information, given a

certain admissible error margin. All previous indexes can be

averaged over all peers to get global performance indexes.

In Table IV the performance indexes, averaged over all the

peers, are shown for the 3 different scenarios. The parameters

of the RW, namely m, TTL and sm have been selected using

the analytical model, i.e., imposing d > 10. It can be noted that

our technique yields an accurate estimate of the information

in all the considered scenarios. As obvious, the stable overlay

represents the most favorable scenario. With the mass arrivals

peers are still very likely to reliably recover the information.

In the most dynamic case, i.e. peer churning and updating

the information, the performance of the technique improves

by decreasing the value of TTL. This can be explained by

noting that a reduced TTL limits the effect of RWs spreading

information on links that do no exist any more because of peer

departure. In this case the column degree corresponding to

such links can only decrease with time contributing to reduce

the value d.

In the churn case, the average results in Table IV are

completed with the empirical cumulative distribution function

of the RE shown in Figure 4. It can be noted that 90% of the

CS reconstructions yield an error rate below 0.002, that is a

good result in such a difficult setting. Finally, in Figure 5 the

temporal behavior of |Ev| and REv for two sample peers is

shown before and after the network reaches its steady state.

It can be noted that, even in this case, the technique is able

to track the number of links in the system with a low RE

both when the overlay is forming (a) or most of the peers are

leaving (b).

VII. COMPARISON WITH OTHER APPROACHES

In this paper we discussed the feasibility of CS based

techniques to allow all peers to have local access to large

and sparse global information defined on edges of a random

overlay networks. In this section we argue that approaches that

do not exploit compression are less efficient. In the sequel we

denote as λr the rate of global data access request of a peer

and µ the service capacity of peers.

A. Centralized solution

A centralized solution can be conceived where all peers

periodically pack the non-zero x(i), i = 1 . . . c data for all

their outgoing links into a data packet that is sent as an update

to a common data repository that could be implemented in
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Fig. 5. Reconstruction error rate Rv as function of time (cross marker) and corresponding Ev for two sample peers in presence of churn.
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the application rendez-vous point, e.g., the BitTorrent tracker.

Peers access the global data by sending request messages

to the rendez-vous point that provides response messages.

Unfortunately, this straightforward solution suffers from poor

scalability and resilience since the rendez-vous point commu-

nication and processing resources could be easily saturated. In

fact, if we neglect the load offered by the update messages,

the load factor on the rendez-vous point is equal to
|V |·λr

µ
that

quickly becomes greater than 1 leading to requests loss and

unbounded delays.

B. Decentralized solutions

Decentralization can be achieved by letting peers receive

information on x(i) from all the others. Information could be

disseminated by means of flooding or gossiping.

In flooding-based dissemination a peer sends its packed non-

zero information to its neighbors. This collection of neighbors

then forwards the message to their neighbors (excluding, of

course, the neighbor that sent the original message). These

neighbors may then propagate the message to their neighbors

and so on up to a certain predefined maximum level (TTL).

To obtain local access to global information each peer starts to

flood the overlay network with its own non-zero packed data.

In gossiping peers can store in a buffer a maximum number

of messages, a message is forwarded up to a maximum number

of times, and each time a peer randomly selects a certain

number (called the fanout) other peers to forward the message

to. Dissemination is achieved by a peer that starts a round of

gossiping and in our context each peer starts its own gossiping

round. It is proved that atomic reliable broadcasting, i.e., all

peers receive the data a peer starts to disseminate, is achieved

with high probability if the fanout is on average O(log |V |)
[16] taking O(log |V |) rounds to complete.

Both schemes have the drawback of introducing a lot of

redundancy, i.e., the same message can be received more

than once by the same peer, especially for peers with a lot

of incoming connections. It means that some or all peers

may saturate their available processing and communications

capacities; indeed, in the most favorable case, the load factor

at each peer is
|V |·λr

µ
which is the same of the centralized

solution. For gossiping, this and other issues were already

discussed in [17] where the authors make explicit a lot of

hidden assumptions that are necessary to ensure robustness of

gossip-based protocols and that make gossiping unfit in the

context we consider in this paper.

RWs could also be exploited without CS. To compare the

RW based approach with and without CS we denote as bm the

number of bits to reserve in the message payload a sample of

the information. Without CS we consider an optimized coding

where a simple prefix code is used to achieve lossless compres-

sion of the RW payload. According to such an approach zero

values are stored using only one bit prefix code, e.g. 0, and

bm+1 bits are used to store a non-zero value, e.g. 1 followed

by the bm bits of the sample. The identities of the visited

edges must be carried by the RW in both cases, requiring ba
bits (if IPv4 addresses of peers are used as identifiers we have

ba = 32). It follows that without CS the size of the RW is

a random variable since a value associated with an outgoing

link is non-zero with probability q; in this case, the average

size of the RW is Swithout = ba ·TTL+ c · (q · bm+1) ·TTL.

The size of the RW with CS after TTL hops is equal to

Swith = ba · TTL + c · (bm + log2TTL), where the term

c · (bm + log2TTL) represents the cost to accommodate a

combination obtained as the sum of TTL values on bm bits.
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The first comparison is carried out by considering a max-

imum size K for the RW, e.g., the typical size of a UDP

datagram yields K = 12000 bits, a piece of information

with sparsity q = 0.05 and bm = ba = 32. In this case

the maximum value of c that can be dealt with by the two

techniques is obtained by equating Swith and Swithout to K
and solving for c. Figure 6(a) shows that for a fixed value of

TTL our solution allows for much larger values of c hence it

allows to access a larger global information.

Furthermore, we consider the case where the value of c is

fixed. We then obtain TTL from equating Swith and Swithout

to K and use Equations (2) and (3) with |E| = 10000 and

m = ⌊q · |E| · log( 1
q
)⌋ [15] to obtain sm that guarantees

that d > 10. The pair (sm, TTL) is used to compute d0
according to Equation (3) for both techniques. Figure 6(b)

clearly shows the superiority of the CS based approach that

allows for significantly smaller d0 values.

Two final remarks are in order: first, each peer only needs

to store one sensing matrix Φ for all c information since

the elements of Φ in our technique are determined only

by the path followed by the RWs. Second, peers constantly

receive on average a number of messages that depends only

on the number of neighbors and on the parameter w, i.e., it is

independent from λr and |V |. These two characteristics make

our approach very scalable.

VIII. CONCLUSIONS AND FUTURE WORKS

In this paper we devised a solution to grant peers local

access to global large and sparse information at a given rate.

The key ingredients of our technique are CS and RW. The

former allows one to collect and compress the information in a

distributed fashion; the latter represents a lightweight solution

to distribute this compressed information with a controlled

communication overhead.

We developed and validated an analytical model to design

the parameters of our technique to guarantee high recovery

probability. We proved the technique to be feasible by devel-

oping and deploying a prototype implementation on PlanetLab.

We are currently working to remove the assumption on the

signal sparseness according to the results that show that CS

can be used with any compressible information.
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