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ABSTRACT2

Every act of information processing can in principle be decomposed into the component3

operations of information storage, transfer, and modification. Yet, while this is easily done for4

today’s digital computers, the application of these concepts to neural information processing5

was hampered by the lack of proper mathematical definitions of these operations on information.6

Recently, definitions were given for the dynamics of these information processing operations on7

a local scale in space and time in a distributed system, and the specific concept of local active8

information storage was successfully applied to the analysis and optimization of artificial neural9

systems. However, no attempt to measure the space-time dynamics of local active information10

storage in neural data has been made to date. Here we measure local active information storage11

on a local scale in time and space in voltage sensitive dye imaging data from area 18 of the cat.12

We show that storage reflects neural properties such as stimulus preferences and surprise upon13

unexpected stimulus change, and in area 18 reflects the abstract concept of an ongoing stimulus14
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despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity15

to test theories of cortical function, such as predictive coding.16

Keywords: Visual System, Neural Dynamics, Predictive Coding, Local Information Dynamics, Voltage Sensitive Dye Imaging,17

Distributed Computation, Complex Systems, Information Storage18

1 INTRODUCTION

It is commonplace to state that brains exist to ‘process information’. Curiously enough, however, it is19

much more difficult to exactly quantify this putative processing of information. In contrast, we have20

no difficulties to quantify information processing in a digital computer, e.g. in terms of the information21

stored on its hard disk, or the amount of information transfered per second from its hard disk to its random22

access memory, and then on to the CPU. Why then is it so difficult to perform a similar quantification for23

biological, and especially neural information processing?24

One answer to this question is the conceptual difference between a digital computer and a neural system:25

In a digital computer all components are laid out such that they only perform specific operations on26

information: a hard disk should store information, and not modify it, while the CPU should quickly27

modify the incoming information and then immediately forget about it, and system buses exist solely28

to transfer information. In contrast, in neural systems it is safe to assume that each element of the29

system (each neuron) simultaneously stores, transfers and modifies information in variable amounts,30

and the component processes are hard to separate quantitatively. Thus, while in digital computers the31

distinction between information storage, transfer and modification comes practically for free, in neural32

systems separating the components of distributed information processing requires thorough mathematical33

definitions of information storage, transfer and modification. Such definitions, let alone a conceptual34

understanding of what the terms meant in distributed information processing, were unavailable until very35

recently (Langton, 1990; Mitchell, 1998; Lizier, 2013).36

These necessary mathematical definitions were recently derived building on Turing’s old idea that every37

act of information processing can be decomposed into the component processes of information storage,38

transfer and modification (Turing, 1936) – very much in line with our everyday view of the subject.39

Later, Langton and others expanded Turing’s concepts to describe the emergence of the capacity to40

perform arbitrary information processing algorithms, or ’universal computation’, in complex systems,41

such as cellular automata (Langton, 1990; Mitchell et al., 1993), or neural systems. The definitions of42

information transfer and storage were then given by Schreiber (2000), Crutchfield and Feldman (2003)43

and Lizier et al. (2012b). However, the definition of information modification is still a matter of debate44

(Lizier et al., 2013).45

This is a provisional file, not the final typeset article 2



Wibral et al. Cortical active information storage

Of these three component processes above – information transfer, storage, and modification –46

information storage in particular has been used with great success to analyze cerebro-vascular dynamics47

(Faes et al., 2013), information processing in swarms (Wang et al., 2012), and most importantly, to48

evolve (Prokopenko et al., 2006), and optimize (Dasgupta et al., 2013) artificial information processing49

systems. This suggests that the analysis of information storage could also be very useful for the analysis50

of neural systems.51

Yet, while neuroscientists have given much attention to considering how information is stored52

structurally in the brain, e.g. via synaptic plasticity, the same attention has not been given to information53

storage in neural dynamics, and its quantification. As an exception Zipser et al. (1993) clearly contrasted54

two different ways of storing information: passive storage, where information is stored “in modified55

values of physiological parameters such as synaptic strength”, and active storage where “information56

is preserved by maintaining neural activity throughout the time it must be remembered”. In the same57

paper, the authors go on to point out that there is evidence for the use of both storage strategies in higher58

animals, and link the relatively short time scale for active storage (at maximum in the tens of seconds)59

with short-term or working memory and, therefore, refer to it as “active information storage”.60

Despite the importance of information storage for neural information processing, information theoretic61

measures of active information storage have not yet been used to quantify information processing in62

neural systems, and in particular not to measure spatiotemporal patterns of information storage dynamics.63

Therefore, it is the aim of this article to introduce measures of information storage as analysis tools for64

the investigation of neural systems, and to demonstrate how cortical information storage in visual cortex65

unfolds in space and time. We will also demonstrate how neural activity may be misinformative about its66

own future and thereby generates ‘surprise’.67

To this end, we first give a rigorous mathematical definition of information storage in dynamic activity68

in the form of local active information storage (LAIS). We then show how to apply this measure to voltage69

sensitive dye imaging data from cat visual cortex. In these data , we found sustained increases in dynamic70

information storage during visual stimulation, organized in clear spatiotemporal patterns of storage across71

the cortex, including stimulus-specific spatial patterns, and negative storage, or surprise, upon a change of72

the stimulus. Finally, we discuss the implications of the LAIS measure for neurophysiological theories of73

predictive coding (see Bastos et al. (2012), and references therein), that have been suggested to explain74

general operating principles of the cortex and other hierarchical neural systems.75
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2 MATERIAL & METHODS

The use of the stored information for information processing inevitably requires its re-expression in neural76

activity and its interaction with ongoing neural activity and incoming information. Hence, information77

storage actively in use for information processing will inevitably be reflected in the dynamics of neural78

activity, and is therefore accessible in recordings of neural activity alone. To quantify this stored79

information that is present in neural time series we will now introduce a measure of information storage80

called local active information storage (Lizier et al., 2012b). In brief, this measure quantifies the amount81

of information in a sample from a neural time series that is predictable from its past – and thereby has82

been stored in this past. This is done by simply computing the local mutual information between the past83

of a neural signal and its next sample at each point in time, and for each channel of a recording. As the84

following material is necessarily formal, the reader may consider skipping ahead to section 2.2.3 at first85

reading to gain an intuitive understanding of mechanisms that serve active information storage.86

2.1 NOTATION AND INFORMATION THEORETIC PRELIMINARIES

To avoid confusion, we first have to state how we formalize observations from neural systems87

mathematically. We define that a neural (sub-)system of interest (e.g. a neuron, or brain area) X produces88

an observed time series {x1, . . . , xt, . . . , xN}, sampled at time intervals δ. For simplicity we choose our89

temporal units such that δ = 1, and hence index our measurements by t ∈ {1...N} ⊆ N, i.e. we index90

in terms of samples. The full time series is understood as a realization of a random process X. This91

random processes is nothing but a collection of random variables Xt, sorted by an integer index (t in our92

case). Each random variable Xt, at a specific time t, is described by the set of all its J possible outcomes93

AXt
= {a1, . . . , aj , . . . , aJ}, and their associated probabilities pt(xt = aj). The probabilities of a specific94

outcome pt(xt = a) may change with t, i.e. when going from one random variable to the next. In this95

case, we will indicate the specific random variable Xt the probability distribution belongs to – hence the96

subscript in pt(·). For practical estimation of pt(·) then, multiple time-series realizations or trials would97

be required. For stationary processes, where pt(xt = a) does not change with t, we simply write p(xt),98

and practical estimation may be done from a single time-series realization. In sum, in this notation the99

individual random variables Xt produce realizations xt, and the time-point index of a random variable Xt100

is necessary when the random process is nonstationary. When using more than one system, the notation is101

generalized to multiple systems X ,Y ,Z, . . . .102

As we will see below, active information storage is nothing but a specific mutual information between103

collections of random variables in the process in question. We therefore start by giving the definition of104

mutual information (MI) I(X;Y ) as the amount of information held in common by two random variables105

U , V on average (Cover and Thomas, 1991):106
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I(U ;V ) =
∑

u∈AU ,v∈AV

p(u, v) log
p(u, v)

p(u)p(v)
, (1)

=
∑

u∈AU ,v∈AV

p(u, v) log
p(v | u)

p(v)
, (2)

where the log can be taken to an arbitrary base, and choosing base 2 yields the mutual information in107

bits. Note that the mutual information I(U ;V ) is symmetric in U and V . As shown more explicitly in108

equation 2, the MI I(U ;V ) measures the amount of information provided (or the amount that uncertainty109

is reduced) by an observation of a specific outcome u of the variable U about the occurrence of another110

specific outcome v of V - on average over all possible values of u and v. As originally pointed out by111

Fano (1961), the summands log p(v|u)
p(v) have a proper interpretation even without the weighted averaging112

– as the information that observation of a specific u provides about the occurrence of a specific v. The113

pointwise or local mutual information is therefore defined as:114

i(u; v) = log
p(v | u)

p(v)
. (3)

It is important to note the distinction of the local mutual information measure i(x; y) considered here115

from partial localization expressions, i.e. the partial mutual information or specific information I(u;V )116

which are better known in neuroscience (DeWeese and Meister, 1999; Butts, 2003; Butts and Goldman,117

2006). Partial MI expressions consider information contained in specific values u of one variable U about118

the other (unknown) variable V . Crucially, there are two valid approaches to measuring partial mutual119

information, one which preserves the additivity of information and one which retains non-negativity120

(DeWeese and Meister, 1999). In contrast, the fully local mutual information i(x; y) that is used here121

is uniquely defined as shown by Fano (1961).122

2.2 LOCAL ACTIVE INFORMATION STORAGE

Using the definition in equation 3, we can immediately quantify how much of the information in in the123

outcome xt of the random variable Xt at time t was predictable from the observed past state x
k−
t−1 of the124

process at time t− 1:125
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a(xt) = i(xk−t−1; xt) (4)

= log
pt(xt | x

k−
t−1)

pt(xt)
. (5)

This quantity was introduced by Lizier et al. (2012b) and called local active information storage126

(LAIS). Here, x
k−
t−1 is an outcome of the collection of previous random variables X

k−
t−1 =127

{Xt−1, Xt−t1 , . . . , Xt−tkmax
}, called a state (see below). The corresponding expectation value over all128

possible observations of xt and x
k−
t−1, A(Xt) = I(Xk−

t−1;Xt), is known simply as the active information129

storage. The naming of this measure aligns well with the concept of active storage in neuroscience130

by Zipser et al. (1993), but is more general than capturing only sustained firing patterns. In the131

following subsections, we comment on practical issues involved in estimating the LAIS, and discuss132

its interpretation.133

2.2.1 Interpretation and construction of the past state As indicated above, the joint variable134

x
k−
t−1 in (equation 4) is an outcome of the collection of previous random variables: X

k−
t−1 =135

{Xt−1, Xt−t1 , . . . , Xt−tkmax
}. This collection should be constructed such, that it captures the state of136

the underlying dynamical system X , and can be viewed as a state-space reconstruction of this system. In137

this sense, Xk−
t−1 must be chosen such that Xt is conditionally independent of all Xt−tl with tl > tkmax

,138

i.e. of all variables that are observed earlier in the process X than the variables in the state at t − 1 .139

The choice must be made carefully, since using too few variables Xt−tl from the history can result140

in an underestimate of a(xt), while using too many (given the amount of data used to estimate the141

probability density functions (PDFs) in (equation 4)) will artificially inflate it. Typically, the state can be142

captured via Takens delay embedding (Takens, 1981), using d variables Xt−tl with the tl delays equally143

spaced by some τ ≥ 1, with d and τ selected using the Ragwitz criteria (Ragwitz and Kantz, 2002)144

– as recommended by Vicente et al. (2011) for the related transfer entropy measure (Schreiber, 2000).145

Alternatively, non-uniform embeddings may be used (e.g. see Faes et al. (2012)).146

If the process has infinite memory, and kmax does not exist, then the local active information storage is

defined as the limit lim
k→∞

of equation 4:

a(xt) = lim
k→∞

i(xk−
t−1; xt) (6)

= lim
k→∞

log
pt(xt | x

k−
t−1)

pt(xt)
. (7)
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2.2.2 Relation to other measures and dynamic state updates The average active information storage147

(AIS), is related to two measures introduced previously. On the one hand, a similar measure called148

’regularity’ had been introduced by Porta et al. (2000). On the other hand, AIS is closely related to149

the excess entropy (Crutchfield and Feldman, 2003), as observed in (Lizier et al., 2012b). The excess150

entropy E(Xt) = I(Xk−
t−1;X

k+
t ), with X

k+
t = {Xt, Xt+t1 , . . . , Xt+tkmax

} being a similar collection of151

future random variables from the process, measures the amount of information (on average) in the future152

outcomes xk+
t of the process this is predictable from the observed past state x

k−
t−1 at time t − 1. As such,153

the excess entropy captures all of the information in the future of the process that is predictable from154

its past. In measuring the subset of that information in only the next outcome of the process, the AIS is155

focused on the dynamic state updates of the process.156

From the point of view of dynamic state updates, the AIS is complementary to a well-known measure157

of uncertainty of the next outcome of the process which cannot be resolved by its past state. Following158

Crutchfield and Feldman (2003) we refer to this quantity as the “entropy rate”, the conditional entropy159

of the next outcome given the past state: Hµ(Xt) = H(Xt | X
k−
t−1) =

〈

− log2 pt(xt | x
k−
t−1)

〉

. The160

complementarity of the entropy rate and AIS was shown by Lizier et al. (2012b): H(Xt) = A(Xt) +161

Hµ(Xt), where H(Xt) is the Shannon entropy of the next measurement Xt. Hµ(Xt) is approximated162

by measures known as the Approximate Entropy (Pincus, 1991), Sample Entropy (Richman and163

Moorman, 2000), and Corrected Conditional Entropy (Porta et al., 1998), which have been well studied164

in neuroscience (see e.g. the work by Vakorin et al. (2011); Gómez and Hornero (2010), and references165

therein). Many such studies refer to Hµ(Xt) as a measure of complexity, however modern complex166

systems perspectives focus on complexity as being captured in how much structure can be resolved rather167

than how much cannot (Crutchfield and Feldman, 2003).168

Furthermore, given that the most appropriate measure of complexity of a process is a matter of open169

debate (Prokopenko et al., 2009), we take the perspective that complexity of a system is best approached170

as arising out of the interaction of the component operations of information processing: information171

storage, transfer and modification (Lizier, 2013), and focus on measuring these quantities since they are172

rigorously defined and well-understood. Crucially, in comparison to the excess entropy discussed above,173

the focus of AIS in measuring the information storage in use in dynamic state updates of the process make174

it directly comparable with measures of information storage and modification. Of particular importance175

here is the relationship of AIS to the transfer entropy (Schreiber, 2000), where the two measures together176

reveal the sources of information (either being the past of that process itself – storage, or of other processes177

– transfer) which contribute to prediction of the process’ next outcome.178

The formulation of the transfer entropy specifically eliminates information storage in the past of the179

target process from being mistakenly considered as having been transferred (Lizier, 2013; Lizier and180
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Prokopenko, 2010; Wibral et al., 2013). An interesting example is where a periodic target process is181

in fact causally driven by another periodic process – after any initial entrainment period, our information182

processing view concludes that we have information storage here in the target but no transfer from the183

driver (Lizier and Prokopenko, 2010). While causally there is a different conclusion, our observational184

information processing perspective is simply focussed on decomposing apparent information sources of185

the process, regardless of underlying causality (which in practise cannot often be determined anyway).186

In this view, a causal interaction can computationally subserve both information storage or transfer (as187

discussed further in the next section). Information transfer is necessarily linked to a causal interaction, but188

the reverse is not true. It has previously been demonstrated that the information processing perspective is189

more relevant to emergent information processing structure in complex systems, e.g. coherent information190

cascades, in contrast to causal interactions being more relevant to the micro-scale physical structure of a191

system, e.g. axons in a neural system (Lizier and Prokopenko, 2010).192

2.2.3 Mechanisms producing active information storage In contrast to passive storage in terms of193

modifications to system structure (e.g. synaptic gain changes), the mechanisms underlying active194

information storage are not immediately obvious. The mechanisms that subserve this task have been195

formally established however, and can be grouped as follows:196

1. Physical mechanisms in the system. This could incorporate some internal memory mechanism in the197

individual physical element giving rise to the process X (e.g. some decay function, or the stereotypical198

processes during the refractory period after a neural spike). More generally, it may involve network199

structures which offload or distribute the memory function onto edges or other nodes. In particular,200

Zipser et al. (1993) reported that networks with fixed, recurrent connections were sufficient to201

account for such active storage patterns, which is in line with earlier proposals. Furthermore, Lizier202

et al. (2012a) quantified the AIS contribution from self-loops, feedback and feedforward loops (as203

the only network structures contributing to active information storage).204

2. Input-driven storage. This describes situations where the apparent memory in the process is caused205

by information storage structure which lies in another element which is driving that process, e.g. a206

periodically spiking neuron that may cause a downstream neuron to spike with the same period (Obst207

et al., 2013). As described in Section 2.2.2 above, an observer of the process attributes these dynamics208

to information storage, regardless of the (unobserved) underlying causal mechanism.209

Of these mechanisms of active information storage the case of circular causal interactions in a loop motif,210

and the causal, but repetitive influence from another part of the system may seem counterintuitive at first,211

as we might think that in these cases there should be information transfer rather than active information212
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storage. To see why these interactions serve storage rather than transfer, it may help to consider that all213

components of information processing, i.e. transfer, active storage and modification, ultimately have to214

rely on causal interactions in physical systems. Hence, the presence of a causal interaction cannot be linked215

in a one-to-one fashion to information transfer, as otherwise there would be no possibility for physical216

causes of active information storage and of information modification left, and no consistent decomposition217

of information processing would be possible. Therefore, the notion of storage that is measurable in a part218

of the system but that can be related to external influences onto that part is to be prefered for the sake of219

mathematical consistency and ultimately, usefulness. We acknowledge that information transfer has often220

been used as a proxy for a causal influence, dating back to suggestions by Wiener (1956) and Granger221

(1969). However, now that causal interventional measures and measures of information transfer can be222

clearly distinguished (Lizier and Prokopenko, 2010; Ay and Polani, 2008) it seems no longer warranted223

to map causal interactions to information transfer in a one-to-one manner.224

2.2.4 Interpretation of LAIS values Measurements of the LAIS tells us the amount to which observing225

the past state x
k−
t−1 reduced our uncertainty about the specific next outcome xt that was observed. We can226

interpret this in terms of encoding the outcome xt in bits: encoding xt using an optimal encoding scheme227

for the distribution pt(xt) takes − log2 pt(xt) bits, whereas encoding xt if we know x
k−
t−1 using an optimal228

encoding scheme for the distribution pt(xt | xk−t−1) takes − log2 pt(xt | x
k−
t−1) bits, and the LAIS is the229

number of bits saved via the latter approach.230

At first glance we may assume that the LAIS is a positive quantity. Indeed, as a mutual information,231

the average AIS will always be non-negative. However, the LAIS can be negative as well as positive.232

It is positive where pt(xt | x
k−
t−1) > pt(xt), i.e. where the observed past state x

k−
t−1 made the following233

observation xt more likely to occur than we would have guessed without the knowledge of the past state.234

In this case, we state that xk−
t−1 was informative. In contrast, the LAIS is negative where pt(xt | x

k−
t−1) <235

pt(xt); i.e. where the observed past state x
k−
t−1 made the following observation xt less likely to occur than236

we would have guessed without the knowledge of the past state (but it occurred nevertheless, making the237

cue given by x
k−
t−1 misleading). In this case, we state that xk−t−1 was misinformative about xt. To better238

understand negative LAIS also see the further discussion in (Lizier et al., 2012a), including examples in239

cellular automata where the past state of a variable was misinformative about the next observation due to240

the strong influence of an unobserved other source variable at that time point.241

2.2.5 Choice of the overall time window for constructing probability densities from data As already242

pointed out above, active information storage is tightly related to predictability of a given brain area’s243

output as seen by the receiving brain area. This predictability hinges on the ability of the receiver to244

see the past states in the output of a brain area (see previous section) and to interpret the past states in245
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the received time series in order to make a prediction about the next value. In other words, the receiver246

needs to guess pt(xt,x
k−
t−1) correctly in order to exploit the active information storage. If the guess of the247

receiving neuron (n) or brain area, i.e.
∼
pn(xt,x

k−
t−1), is incorrect, then only a fraction of the information248

storage can be used for successfully predicting future events. The losses could be quantified as the extra249

coding cost for the receiving area, when assuming
∼
pn(·) instead of pt(·). This loss would simply be250

the Kullback-Leibler divergence DKL(pt||
∼
pn). This scenario sees the receiving brain area mostly as an251

optimal encoder or compressor. In contrast, the cost occurring in the framework of predictive coding252

theories would arise because the receiving brain area could not predict the incoming signal well, and253

thereby inhibit it via feedback to the sending brain area (Rao and Ballard, 1999). In this scenario, the254

cost of imperfect predictions resulting from using
∼
pn instead of pt, would be reduced inhibition and a255

more frequent signaling of prediction errors by the sending system, leading to a metabolic cost.256

To see the storage that the receiving brain area can exploit, the time interval used for the practical257

estimation of the probability density functions (PDFs) from neural recordings should best match the258

expected sampling strategy of the receiving brain area. For example, if we think that probabilities are259

evaluated over long time frames, then it might make sense to pool all available data in the experiment,260

as even a mis-estimation of the true probability densities pt(·) (due to potential nonstationarities) then261

will better reflect the internal estimate
∼
pn(xt,x

k−
t−1), and thus the internally predictable information.262

However, if we think that probabilities are only estimated instantaneously by pooling over all available263

inputs to a brain area at any time point, then we should construct the necessary PDFs only from all264

simultaneously acquired data from all measurement channels, but not pool over time. The latter view265

could also be described as assuming that the brain area receiving the signals in question computes the PDF266

instantaneously by pooling over all its inputs, without keeping any longer term memory of the observed267

probabilities. This construction of a PDF would be linked closely to an instantaneous physical ensemble268

approach, considering that all incoming channels are physically equivalent, but are only assessed at a269

single instant in time. In contrast, if we assume that learning of the relevant PDFs takes place on a270

lifelong timescale, then PDFs should be acquired from very long recordings of a freely behaving subject271

or animal in a natural environment, and the outcomes of a specific experiment should be interpreted using272

this ‘lifelong’ PDF. Here we lean towards this latter approach and pool all available data to estimate the273

internally available
∼
pn .274

Note that while we indeed pool over all the available data to obtain the distribution
∼
pn, the interpretation275

of the data in terms of the active information storage is local per agent and time step. This is exactly the276

meaning of ’local’ in local active information storage as introduced in (Lizier et al., 2012b) (this is also277

akin to the relation of the local mutual information introduced by Fano (1961) and the corresponding278

global PDF). The local active information storage values are thus obtained by interpreting realizations for279

a single agent and a single time step in the light of a probability distribtion that is obtained over a more280
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global view of the system in space and time. This is also indicated by the use of
∼
pn instead of pt. Also see281

the discussion for potential other choices of obtaining p.282

2.3 ACQUISITION OF NEURAL DATA

2.3.1 Animal preparation Data were obtained from an anesthetized cat. The animal had been283

anesthetized and artificially ventilated with a mixture of O2 and N2O (30/70 %) supplemented with284

Halothane (0.7 %). All procedures were along the guidelines of the Society for Neuroscience, in285

accordance with the German law for the protection of laboratory animals, permitted by the local authorities286

and overseen by a designated veterinarian.287

2.3.2 Voltage sensitive dye imaging For optical imaging the visual cortex (area 18) was exposed and an288

imaging chamber was implanted over the craniotomy. The chamber was filled with silicone oil and sealed289

with a glass plate. A voltage sensitive dye (RH1691, Optical Imaging Ltd, Rehovot, Israel) was applied to290

the cortex for about 2 hours and subsequently the excess of the dye was washed out. For imaging we used291

a CMOS camera system (Imager 3001, Optical Imaging Ltd, Rehovot, Israel, Camera: Photon Focus MV1292

D1312, chip size 1312x1082 pixel) fitted with a lens system consisting of two 50mm Nikon objectives293

providing a field of view of 8.7x10.5mm and an epifluorescence illumination system (excitation: 630+/-294

10nm, emission high pass 665nm). In order to optimize the signal-to-noise ratio raw camera signals were295

spatially binned to 32x32 camera pixels allowing for a spatial resolution of 30x32µm2 per data pixel.296

Camera frames were collected at a rate 150Hz, resulting in a temporal resolution of 6.7ms.297

2.3.3 Visual stimulation Stimuli were presented triggered to the heartbeat of the animal for 2s and298

camera frames were collected during the entire stimulation period. We will denote such a single299

stimulation period and the corresponding data acquisition as a trial here. Each trial consisted of 1s300

stimulation with an isoluminant grey screen followed by stimulation with fields of randomly positioned301

dots (dot size: 0.23◦ visual angle; 384 dots distributed over an area of 30◦ (vertical) by 40◦ (horizontal)302

visual angle) moving coherently in one of 8 different directions at 16 degree/s. Stimuli were presented303

in blocks of 16 trials, consisting of 8 trials using the stimuli described before and an additional 8 trials304

which consisted only of the presentation of the isoluminant grey screen for 2s (’blank trials’). Each motion305

direction condition was presented 8 times in total (8 trials), resulting in the presentation on 64 stimulus306

trials and 64 blank trials in total. Of the presented set of 8 stimulus types, 7 were used for the final analysis,307

as the computational process for one condition did not finish on time before local compute clusters were308

taken down for service.309
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2.3.4 VSD data post-processing After spatial binning of 32 x 32 camera pixels into one data pixel,310

VSD data were averaged over all presentations of blank trials and this average was subtracted from the311

raw data to remove the effects of dye-bleaching and heartbeat. Finally, the data were denoised using a312

median filter of 3x3 data pixels.313

2.4 MEASUREMENT OF LAIS ON VSD NEURAL DATA

Estimation of LAIS was performed using the open source Java information dynamics toolkit (JIDT)314

(Lizier, 2012), with a history parameter kmax of ten time points, spaced 2 samples, or (2/150Hz) =315

13.3 ms, apart. The total history length thus covered 133 ms, or or roughly one cycle of a neural316

theta oscillation, which seems to be a reasonable time horizon for a downstream neural population that317

ultimately must assess these states. To enable LAIS estimation from a sufficient amount of samples, we318

considered the data pixels as homogeneous variables executing comparable state transitions, such that319

the pixels form a physical ensemble in terms of information storage dynamics. Pooling data over pixels320

thus enables an ensemble estimate of the PDFs in question. This approach seems justified as all pixels321

reported activity from a single brain area (area 18 of cat visual cortex, see below). Mutual information was322

estimated using a box kernel-estimator (Kantz and Schreiber, 2003) with a kernel width of 0.5 standard323

deviations of the data.324

Here we assume that the neural system is at least capable of exploiting the statistics arising from the325

stimulation given throughout the experiment and thus construct PDFs from all data (time points and pixels)326

for a given condition. Therefore, we pool data over the full time course from -1 to 1 second of the327

experiment. Thus, each image of the VSD data had a spatial configuration of 67x137 spatial data pixels328

after removal of the 2 rows/columns on each side of an image because of the median filter that was applied.329

Each trial (of a total of 8 trials per condition) resulted in 288 LAIS values, based on an original data length330

of 298 samples and a history length (state dimension) of 10 pixels. The product of final image size and331

LAIS samples resulted in 2.64 · 106 data points per trial for the estimation of the PDF for each of the 8332

motion direction conditions. Due to computational limitations, LAIS estimates were performed on two333

blocks of four trials separately, resulting in 1.06 · 107 data points entering the estimation in JIDT.334

2.5 CORRELATION ANALYSIS OF LAIS AND VSD DATA

For each of the 7 analyzed motion direction conditions, VSD data and LAIS were initially organized335

separately per condition into 5 dimensional data structures, with dimensions: blocks (1,2), trials (1-336

4), time (-1 to 1 s), and pixel row (67) and columns (137). For correlation analysis, these arrays337

were linearized and entered into a Spearman rank correlation analysis to obtain correlation coefficients338

ρ(VSD,LAIS) and significance values.339
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Table 1. Correlation of LAIS and local VSD activity (*=p < 0.05/7)

Motion direction Corr. coeff Corr. coeff. Correlation coefficient
full epoch -1s to 0 0.04 to 0.14 s 0.2 to 1 s

0◦ 0.05* -0.33* -0.09* 0.45*
4 ◦ 0.09* -0.50* -0.20* 0.65*
90◦ 0.12* -0.30* -0.13* 0.48*
180◦ 0.07* -0.27* -0.22* 0.44*
225◦ 0.07* -0.58* -0.22* 0.71*
270◦ 0.17* -0.39* -0.33* 0.68*
315◦ 0.03* -0.37* -0.17* 0.40*

Correlation coefficients are Spearman rank correlations.

3 RESULTS

LAIS values exhibited a clear spatial and temporal pattern. The temporal pattern exhibited higher LAIS340

values during stimulation with a moving random dot pattern than under baseline stimulation with an341

isoluminant grey screen, with effects being largest in spatially clearly segregated regions (Figure 1, 2,342

3). The spatial pattern of LAIS under stimulation was dependent on the motion direction of the drifting343

random dots in the stimulus (Figure 2).344

In contrast to this spatially highly selective elevation of LAIS values under stimulation, there was a sharp345

drop in LAIS values at approximately 40 ms after stimulus onset, with negative LAIS values measured at346

many pixels (Figure 1, 40 ms window; Figure 2, middle column; Figure 3, lower row). This indicates that347

the baseline activity was misinformative about the following stimulus related activity (since an observer348

would expect the baseline activity to continue). This transient, stimulus induced drop in LAIS was more349

evenly distributed throughout the imaging window than the elevated LAIS in the later stimulus period350

post 200 ms (Figure 2, middle column). The transient drop in LAIS had a recovery time of approximately351

34 ms, also giving an estimate of the dominant intrinsic storage duration of the neural processes.352

In all conditions we observed a positive, but weak correlation between the local VSD activity values and353

LAIS values over time and space (Table 1). Looking at individual time intervals, we found stronger, and354

negative, correlation coefficients both, for the baseline interval (-1 to 0 s), and for the initial interval after355

the onset of the moving dot stimulus (0.04 to 0.14 s). In contrast, we observed a strong positive correlation356

at the late stimulus interval (0.2 to 1 s). This means that the increased dynamic range observed in the VSD357

signals during stimulation with the moving stimuli led to an increased amount of predictable information,358

rather than to a decrease. This correlation also means that storage was generally higher in neurons that359

were preferentially activated by the respective moving stimulus (also compare left and right columns in360

Figure 2 for each motion direction).361
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Figure 1. Local active information storage (LAIS) allows to trace neural information processing in space
and time. Spatio-temporal structure of LAIS in cat area 18 – seven frames from the spatio-temporal LAIS
data, taken at the times indicated below each frame. Stimulation onset was at time 0. Baseline activity
(-74.5 ms) is around zero and mostly uniform. At 40 ms after stimulus onset, LAIS is negative in a region
that correlates to the region that later exhibits high LAIS. Around 227 ms increased LAIS sets in and
lasts until the end of the data epoch, albeit with slow fluctuations (up to 1 s, see Figure 3). Also see the
post-stimulus time-average in Figure 2.

4 DISCUSSION

Our results demonstrate increased local active information storage in the primary visual cortex of the cat362

under sustained stimulation, compared to baseline. The spatial pattern of the LAIS increase was clustered363

spatially and stimulus-specific (Figure 2). The temporal pattern of LAIS consisted of a first sharp drop in364

LAIS from 0.04 to 0.14 s after onset of the moving stimulus and a sustained rise in LAIS up to the end of365

the stimulation epoch ((Figure 3). The sharp drop at stimulus onset for many pixels is important because it366

indicates the past activity of the pixels was surprising or misinformative about the next outcomes near that367

onset. This has the potential to be used in detecting changes of processing regimes directly from neural368

activity.369

The subsequent sustained rise in LAIS is particularly notable because of the random spatial structure of370

each stimulus on a local scale; this random spatial structure translates into a random temporal stimulation371

sequence in the receptive field of each neuron because of the stimulus motion. The increased LAIS despite372

random stimulation of the neurons suggests that our observation is not due to input-driven storage, i.e.373

memory or storage contained already in the spatio-temporal stimulus features that drive the observed LAIS374

(as discussed in Section 2.2.3 and by Obst et al. (2013)). Nevertheless, as revealed by correlation analysis,375

storage was highest in regions preferentially activated by the stimulus, suggesting a representational nature376

of LAIS in these data with respect to the motion features of the stimulus. In sum, the changes of LAIS with377

stimulation onset, stimulation duration, and stimulus type clearly demonstrate that LAIS reflects neural378

processing, rather than mere physiological or instrumentation-dependent noise regularities. This leads us379

to believe that LAIS is a promising tool for the analysis of neural data in general, and of VSD data in380

particular.381
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Figure 2. VSD-activity and local active information storage (LAIS) maps. VSD activity averaged over

stimulation epochs and time after stimulus onset after the initial transient (0.2-1s) (left column). LAIS map
immediately after stimulus onset – negative values (blue) indicate surprise of the system (middle column).
Time-average LAIS maps from the stimulus period after the initial transient (0.2-1s) (right column). Rows
1-7 present different stimulus motion directions: 0, 45, 90, 180, 225, 270, 315 (in degrees, indicated by
arrows on the right, arrow colors match time-trace colors in Figure 3). 67x137 data pixel per image, pixel

dimension 30 x 32 µm2. Left-right image direction is anterior-posterior direction.

4.1 LOCAL ACTIVE INFORMATION STORAGE AND NEURAL ACTIVITY LEVELS

Any increase in LAIS may in principle arise from two sources: First, a richer dynamics with a larger382

amplitude range – increasing overall information content, while maintaining the predictability of the time383
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Figure 3.Temporal evolution of VSD activity and local active information storage. Spatial averages over
the 67x137 data pixels for VSD activity (black traces), and the LAIS (red traces) versus time. Motion
directions are indicated by arrows for each panel. Note that LAIS for the vertical, the right, and the
downward-right motion directions continues to rise towards the end of the stimulus interval, despite
declining activity levels. Also note that the unexpected onset response at approximately 40 ms leads to
negative active information storage. For an explanation see the Methods section.

series (e.g. quantified as the inverse of the signal prediction error, or the entropy-normalized LAIS), may384

increase LAIS. Alternatively, increased LAIS may be based on increased predictability under essentially385

unchanged dynamics. The significant positive correlation between LAIS and VSD activity after stimulus386

onset suggests that a richer, but still predictable, dynamics of VSD activity is at the core of the stimulus-387

dependent effects observed here. As a caveat we have to note that the use of a kernel estimator for LAIS388

measurement, coupled with pooling of observations over the whole ensemble of pixels and time points389

may also have introduced a slight bias in favor of a positive correlation between high VSD activity and390

LAIS, as it allows storage to be more easily measured in pixels with larger amplitude here. The negative391

correlation observed in the baseline interval, however, demonstrates that this bias is not a dominant effect392

in our data. This is because a dominant effect of the kernel-based bias would also assign higher storage393

values to high amplitude data in the baseline interval, and thereby result in a positive correlation in the394

baseline. This was not the case. The relatively low correlation coefficients across the complete time-395

interval, which are between 0.02 and 0.13, further suggest that LAIS increases due not follow higher396

VSD tightly. Therefore, LAIS extracts additional useful information about neural processing. This point397

is further supported by the stimulus-dependent changes that seem more pronounced in LAIS maps than in398

the VSD activity maps (compare left and right columns in Figure 2).399

For future studies the amplitude-bias problem introduced by the fixed-width kernel estimator should400

easily be overcome using a Kraskov-type variable width kernel estimator – see the original work of401
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Kraskov et al. (2004), and (Vicente et al., 2011; Lindner et al., 2011; Wibral et al., 2011, 2013; Lizier,402

2012) for implementation details of Kraskov-type estimators. Another possibility would be to condition403

the analysis on the activity level, as for example done for the transfer entropy measure by Stetter et al.404

(2012).405

4.2 TIMESCALES OF LAIS

The recovery time of the stimulus-induced, transient drop in LAIS was 34 ms. A drop of this kind means406

that the activity before the drop (baseline activity) was not useful to predict the activity during the drop407

(the onset response). This is expected as the stimulus is presented in an unpredictable way to the neural408

system. However, the recovery time of this drop of approximately 34 ms yields an insight into the intrinsic409

storage time scales of the neural processes. We note that the observed time-scale corresponds to the high410

beta frequency band around 29 Hz (1/34 ms). In how far this is an incidental finding or bears significance411

must be clarified in future studies.412

4.3 ON THE INTERPRETATION OF LOCAL ACTIVE INFORMATION STORAGE MEASURES

IN NEUROSCIENCE

When working with measures from information theory, it is important to keep in mind that the basic413

definition of information as given by Shannon revolves around the probabilities of events and the414

possibility to encode something using these events. To separate Shannon information content from415

information about something (new) in a more colloquial sense, one often also speaks about potential416

or syntactic information, when referring to Shannon information content, of semantic information when417

referring to human interpretable information, and last of pragmatic information for our everyday notion418

of information as in ’news’ (for details see for example the treatment of Deacon (2010) on this topic). In419

the same way, LAIS does not directly describe information that the neural system stores about things in420

the outside world – rather, it quantifies how much of the future (Shannon) information in the activity can421

be predicted from its past.422

In fact, information in the neural system about something in the outside world would have to be423

quantified by some kind of mutual information between aspects of the outside world and neural activity,424

while information in the classic sense of semantic information represented symbolically (e.g. in books,425

and other media) would be even more complicated: theoretically it should be quantified as a mutual426

information between the medium containing the symbols and activity in the neural system, while427

additionally satisfying the constraint that this mutual information should vanish when conditioning on428

the states of the world variables represented by the symbols.429
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While this lack of a more semantic interpretation of LAIS may seem disappointing at first, the430

quantification of the predictable amount of information makes this measure highly useful in understanding431

information processing at a more abstract level. This is important wherever we have not yet gained432

insights into what (if anything) may be explicitly represented by a neural system. Moreover, the focus433

on predictability provides a non-trivial link between LAIS and current theories of brain function as434

pointed out below. Nevertheless, a use of the concept in neuroscience may have to take the properties435

of the receiving neuron or brain area into account to consider how much of the mathematical storage in a436

signal is accessible to neural information processing. To address this concern, we used a pooling over all437

available data in space and time here as it seems to represent a way by which a receiving brain area could438

construct its (implicit) guesses of the underlying probability densities. However, also other strategies are439

possible and need to be explored in the future. As one example for another strategy of probability-density440

estimation, we have investigated a construction of probability densities via pooling over all data pixels441

but separately for each point in time. This approach avoids any potential issues with nonstationarities, but442

obscures the view of the ’typical transitions’ in the system over time to a point that no interpretable results443

were obtained (data not shown).444

4.4 LOCAL ACTIVE INFORMATION STORAGE AND PREDICTIVE CODING THEORIES

Information storage in neural activity means that information from the past of a neural process will predict445

some non-zero fraction of information in the future of this process. It is via this predictability improvement446

that information storage is also tightly connected with predictive coding, an important family of theories447

of cortical function. Predictive coding theories propose that a neural system is constantly generating448

predictions about the incoming sensory input (Rao and Ballard, 1999; Bastos et al., 2012; Friston,449

2005; Knill and Pouget, 2004) to adapt internal behavior and processing accordingly. These predictions450

of incoming information must be implemented in neural activity, and they typically need to be maintained451

for a certain duration – as it will typically be unknown to the system when the predictive information will452

be needed. Hence, the neural activity subserving prediction must itself have a predictable character, i.e.453

non-zero information storage in activity. Analysis of active information storage may thereby enable us to454

test central assumptions of predictive coding theories rather directly. This is important because tests of455

predictive coding theories so far mostly relied on the predictions being explicitly known and then violated456

– a condition not given for most brain areas beyond early sensory cortices, and for most situations beyond457

simple experimental designs. Here, the quantification of the predictability of brain signals themselves458

via LAIS may open a second approach to testing these important theories. To this end we may scan459

brain signals for negative LAIS, as negative LAIS values indicate the past states of the neural signals in460

question were not informative about the future, i.e. negative LAIS signals a breakdown of predictions. In461

our example dataset this was brought about by the sudden, unexpected onset of the stimulus. However, the462
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same analyses may be applied in situations that are not a under external control – for example to analyze463

internally driven changes in information processing regimes.464

In relation to predictive coding theories it is also encouraging that the predictive information was found465

on timescales related to the beta band. This is because this frequency band has been implied in the intra-466

cortical transfer of predictions (Bastos et al., 2012).467

4.5 SUB-SAMPLING AND COARSE GRAINING, AND NON-LOCALITY OF PDF ESTIMATION

When interpreting LAIS values it should be kept in mind that in neural recordings we typically do not468

observe the system fully or at the relevant scales – in contrast to artificial systems, such as cellular469

automata and robots, where the full system is accessible. More precisely, in neural data one of two470

types of sub-sampling is typically present – either coarse graining with local averaging of activity indices471

(as in VSD) or sub-sampling proper, where neural activity is recorded faithfully (e.g. via intracellular472

recordings) but with incomplete coverage of the full system. This sub-sampling may have non-trivial473

effects on the probability distributions of neural events (see for example (Priesemann et al., 2009, 2013)).474

Hence, LAIS values obtained under sub-sampling should be interpreted as relative rather than absolute475

measures and should only be compared to other experiments, or experimental conditions, when obtained476

under identical sampling conditions.477

In addition there is necessarily temporal subsampling in the form of finite data; we therefore note again478

the potential for bias in the actual MI values returned via the use of kernel estimation here, particularly479

for large embedding dimensions and small kernel widths. Alternatives to kernelestimators are known480

to be more effective in bias compensation (e.g. Kraskov-Grassberger-Stögbauer estimation (Kraskov481

et al., 2004)); or use of use kernel estimation is solely motivated by practical computational reasons.482

Effects of temporal subsampling also mandates to focus on relative rather than absolute values within this483

experiment.484

Even within the experiment though, the bias may not be evenly distributed amongst the local MI values,485

which tend to exhibit larger bias for low frequency events. With that said, our experiment did use a large486

amount of data (by pooling observations over pixels and time), which counteracts such concerns to a487

large degree, and many of the key results (e.g. Figure 3) involve averaging or correlating over many488

local values, which further ameliorates this. There are techniques suggested to alleviate bias in local or489

pointwise MI, e.g. (Turney and Pantel, 2010), and while none were applied here, we do not believe this490

alters the general conclusions of our experiment for the aforementioned reasons. As a particular example,491

the surprise caused by the onset of stimulus is still clearly visible as negative LAIS, despite any propensity492

for such low frequency events to have been biased strongly towards positive values.493
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4.6 ON THE LOCALITY OF INFORMATION VALUES

As a concluding remark, we would like to point out again that various ’levels of locality’ have to be494

carefully chosen in the analysis of neural data. One important level is the spatial extent (ensemble of495

agents) and the time span over which data are pooled to obtain the PDF. However, even pooling over a496

large spatial extent, i.e. many agents and a long time span, may still allow to interpret the information value497

of the data agent-by-agent and time step-by-time step, if agents i are identical and samples at subsequent498

time points t come from a stationary random process (see the book of Lizier (2013) for several examples).499

This is because one may pool data to estimate a PDF as long as these data can be considered ’replications’,500

i.e. as coming from the same random variable. Pooling data under these conditions will obviously not bias501

the PDF estimate away from the ground truth for any agent or time step. Irrespective of how many data502

points are pooled this way, it is then still possible to interpret each data point (xi,t,x
k−
i,t−1) individually in503

terms of its LAIS, a(xt,xt
k−
t−1). This locality of information values is identical to the local interpretation504

of the (Shannon) information terms h(xi) = − log(p(xi)) that together, as a weighted average over all505

possible outcomes xi, yield the (Shannon) entropy H(X) =
∑

i p(xi)h(xi) of a random variable X . As506

explained for example by MacKay (chapter 4, 2003), each and every outcome xi of a random variable X507

has its own meaningful Shannon information value h(xi), that may be very different from that of another508

outcome xj , although repeated draws from this random variable can be considered stationary. It is this509

sense of ’local’ that gives local active information storage its name. In contrast, how locally in space and510

time we obtain the PDF is more important for the precision of the LAIS estimates.511

In the analysis of LAIS from neural data three issues will necessarily blur locality, and impair the512

precision of the LAIS estimate to some extent:513

1. If a pool of identical agents i, all running identical stationary random processes Xi, is available, the514

only blurring of locality arises due to the intrinsic temporal extent of the state variables. However, the515

while the stored information may be encoded in a temporally non-local state xt
k−
t−1 , this information516

is used to predict the next value of the process xt at a single point in time.517

2. If agents are non-identical, but their data are pooled nonetheless, then the overall empirical PDF518

obtained across these agents is no longer fully representative of each single agent and the local519

information storage values per agent are biased due to the use of this non-optimal PDF. This effect520

may be present to some extent in our analysis, as we cannot guarantee that all parts of area 18 behave521

strictly identical.522

3. If the random process in question is not stationary, then a PDF obtained via pooling samples across523

time is also not representative of what happens at single points in time, and again a bias in the LAIS524

values for each agent and time step arises. This bias is potentially more severe. Nevertheless, we525
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pooled data across all available time samples here, as this seems to be closer to the strategy available526

to a neuron in a downstream brain area (also see section 2.2.5), when trying to estimate, or adapt527

to, its input distribution. This is because a neuron may more easily estimate approximate PDFs of528

its inputs across time than across all possible neurons in an upstream brain area, to most of which it529

simply doesn’t interface.530

4.7 CONCLUSION

Distributed information processing in neural systems can be decomposed into component processes of531

information transfer, storage and modification. Information storage can be quantified locally in space532

and time using an information theoretic measure termed local active information storage (LAIS). Here533

we present for the first time the application of this measure to neural data. We show that storage reflects534

neural properties such as stimulus preferences and surprise, and reflects the abstract concept of an ongoing535

stimulus despite the locally random nature of this stimulus. We suggest that LAIS will be a useful quantity536

to test theories of cortical function, such as predictive coding.537
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