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Abstract The aim of this paper is fine-grained categoriza-

tion without human interaction. Different from prior work,

which relies on detectors for specific object parts, we pro-

pose to localize distinctive details by roughly aligning the

objects using just the overall shape. Then, one may proceed

to the classification by examining the corresponding regions

of the alignments. More specifically, the alignments are used

to transfer part annotations from training images to unseen

images (supervised alignment), or to blindly yet consistently

segment the object in a number of regions (unsupervised

alignment). We further argue that for the distinction of sub-

classes, distribution-based features like color Fisher vectors

are better suited for describing localized appearance of fine-

grained categories than popular matching oriented shape-

sensitive features, like HOG. They allow capturing the subtle

local differences between subclasses, while at the same time

being robust to misalignments between distinctive details.

We evaluate the local alignments on the CUB-2011 and on the

Stanford Dogs datasets, composed of 200 and 120, visually

very hard to distinguish bird and dog species. In our experi-

ments we study and show the benefit of the color Fisher vector

parameterization, the influence of the alignment partitioning,

and the significance of object segmentation on fine-grained

categorization. We, furthermore, show that by using object

detectors as voters to generate object confidence saliency

maps, we arrive at fully unsupervised, yet highly accurate
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fine-grained categorization. The proposed local alignments

set a new state-of-the-art on both the fine-grained birds and

dogs datasets, even without any human intervention. What

is more, the local alignments reveal what appearance details

are most decisive per fine-grained object category.
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1 Introduction

According to cognitive psychology, fine-grained categoriza-

tion of images, like the ones in Fig. 1, relies on iden-

tifying small differences in appearance of specific object

parts (Rosch et al. 1976). Humans learn to distinguish dif-

ferent types of birds by addressing the differences in spe-

cific details. Recent works in computer vision have veri-

fied this mechanism (Farrell et al. 2011; Zhang et al. 2012;

Chai et al. 2013; Zhang et al. 2013; Berg and Belhumeur

2013). The same holds for car types (Deng et al. 2009), air-

craft types (Maji et al. 2013) and dog breeds (Khosla et al.

2011; Liu et al. 2012). Active learning methods have been

proposed to extract attributes (Duan et al. 2012), volumet-

ric models (Farrell et al. 2011) or part models (Branson

et al. 2011). Such methods expect user input at runtime. In

contrast, we aim for fine-grained image categorization from

training example images, with no interaction other than the

fine-grained label.

Various methods learn what details to focus on for

fine-grained categorization. While good results have been

obtained by relying on high dimensional template match-

ing procedures (Yao et al. 2012), parts are adopted as

the natural template (Zhang et al. 2013). Yet, it remains

unclear how important it is to be able to accurately localize

123



Int J Comput Vis

corresponding locations over object instances even if that

reduces the ability of capturing detailed information from

raw visual data? While often these go hand in hand, e.g.,

when using templates, we defend the view that actually it is

the latter that matters most. Therefore, we argue that precise

localization is not always necessary. Rough alignments suf-

fice, as long as one manages to capture the distinctive details

in the appearances.

Localizing consistent locations on instances of certain

object categories is strongly related to part learning. Parts are

divided in intrinsic parts, i.e. semantic parts that are shared

by all (or at least most of) the sub-classes, as in (Branson

et al. 2011; Liu et al. 2012), such as the head of a dog or

the body of a bird, as opposed to distinctive parts, as in (Yao

et al. 2012; Yang et al. 2012) specific to a few sub-classes.

The large variability in poses and appearances renders the

clean detection of intrinsic parts difficult. In contrast, dis-

tinctive parts are most likely to be found on few sub-classes

only. They are more consistent in appearance, as the dis-

tinctive detail is better tailored to be detected on few sub-

classes. Still, the number of sub-class specific parts soon

becomes huge, each trained on a small number of exam-

ples. This limits the robust capturing of all viewpoints, poses

and condition changes. Hence, detecting parts, be it intrin-

sic or distinctive, both have their difficulties in the learning

phase.

Rather, we propose to roughly localize distinctive details

by first aligning the objects. This alignment is rough and

insensitive to most appearance variations. Rough align-

ment is not sub-class specific, thus the object representation

becomes independent of the number of classes or training

images (Yao et al. 2011, 2012). In essence, rough alignment

rests on the assumption that the sub-classes share a rough

shape.

Within a fine-grained categorization setting sub-classes

belonging to the same super-class often feature a similar

pose and posture. As our first contribution we exploit this

observation to predict the location of the interesting object

parts in a top-down manner. We first align objects and then

loosely define parts by their location on the object, either in

a supervised or an unsupervised fashion. This contrasts to

bottom-up models (Farrell et al. 2011; Yang et al. 2012; Chai

et al. 2013; Zhang et al. 2013), where one explicitly learns

appearance models for individual parts.

As our second contribution we propose to capture the

appearance variations of the estimated fine-grained parts

(using pooling-based encodings), rather than using shape-

sensitive descriptors such as HOG (Dalal and Triggs 2005)

or kernel descriptors (Bo et al. 2010) on deformable parts

(Felzenszwalb et al. 2010) as used in (Farrell et al. 2011;

Yang et al. 2012; Chai et al. 2013; Zhang et al. 2013). In

particular, we use Fisher vectors (Perronnin et al. 2010) on

color SIFT descriptors (van de Sande et al. 2010), which

have shown to improve object detection accuracy in large

datasets (Deng et al. 2009). To the best of our knowledge we

are the first to evaluate whether appearance is more effec-

tive than shape when describing fine-grained parts, and with

the exception of the concurrent work from (Chai et al. 2013;

Zhang et al. 2013), the first to propose pooling-based encod-

ings to describe fine-grained parts.

Thirdly, we assess the impact of segmentation on fine-

grained categorization. We first quantify the relationship

between segmentation accuracy and fine-grained categoriza-

tion accuracy, having as a baseline perfect ground truth seg-

mentation. This allows us to draw conclusions independent

of the segmentation model unlike (Nilsback and Zisserman

2008; Chai et al. 2011, 2012). However, in a realistic recogni-

tion scenario no indication of the object location is provided,

leading to difficulties in segmenting the foreground from the

background (Chai et al. 2011). To overcome this we pro-

pose to compute object saliency maps by averaging object

detector proposals and use them as priors for the subsequent

segmentation. Last, to make the object part representation

more robust to deformations and clutter, we refine square

parts with segmentation.

The methodology we present allows for performing fine-

grained categorization with minimal human interaction.

Where user input is often required both during training and

testing, either in providing the object location (Gavves et al.

2013; Chai et al. 2013; Zhang et al. 2013), its parts (Bran-

son et al. 2011) or its attributes (Duan et al. 2012; Branson

et al. 2014), we present a system that does not rely on any

user input, not even during training, without sacrificing the

fine-grained categorization accuracy. In fact, we show that

competitive accuracy is obtained even when no bounding

boxes are provided neither during training nor testing. Thus,

we can limit the amount of human interaction required to just

providing labelled training images.

To achieve a better understanding of the fine-grained cat-

egorization process and the limitations of visual features,

we conclude by performing a qualitative analysis. Where

visual features extracted from the fine-grained object fail

to discern between species, possibly due to almost identi-

cal appearance, one could attempt to analyze the environ-

ment, as Darwin (1859) would argue. Moreover, we attempt

to answer what makes a bobolink a bobolink. We find that

advanced, orderless, features, such as Fisher vectors, oper-

ate as a spatial hashing function, that builds correspon-

dences between spatial details and certain feature dimen-

sions.

This paper is an extension of our previous work (Gavves

et al. 2013). Compared to our earlier version, we present a

richer related work section, and we enrich our methodology

by (i) extending the types of fine partitionings and (ii) allevi-

ating the bounding box requirement at runtime. Furthermore,

we extend the experimental section by including seven more

123



Int J Comput Vis

experiments, qualitatively and quantitatively evaluating all

extensions on the challenging Birds (Wah et al. 2011b) and

Dogs (Khosla et al. 2011) datasets.

We proceed with presenting a list of related works on fine-

grained categorization in Sect. 2. In Sect. 3 we describe the

proposed method, including the localization, the extraction

and the description of alignments. Experiments are presented

in Sect. 4 and we conclude in Sect. 5.

2 Related Work

We organize our discussion on related fine-grained catego-

rization works by the vision tasks involved: localization, par-

titioning, and description. Within each task we organize the

papers by the amount of required human intervention.

2.1 Localization

Many works in fine-grained categorization assume that the

(bounding box) location of the object is available, both at

training and test phase, see (Yao et al. 2011, 2012; Yang

et al. 2012; Jia et al. 2013; Berg and Belhumeur 2013; Chai

et al. 2013; Donahue et al. 2013; Xie et al. 2013; Gavves

et al. 2013). Knowing a priori the location of the fine-grained

object allows to focus on the detection and description of the

fine-grained details only. Hence, the above works report the

highest recognition rates in the literature, although it was

shown by Yao et al. (2012) that a bad bounding box can

be more harmful than having no box at all. In the current

work we localize fine-grained objects, without requiring a

bounding box.

Others require annotations only during training. Inspired

by the poselets of Bourdev and Malik (2009), Farrell et al.

(2011) use volumetric primitives, the “birdlets”, parameter-

ized to reflect the 3-D geometry of the body and head of birds,

resulting in pose normalized representations. Since birdlets

require expensive 3-D ground truth annotations, they are lim-

ited to small datasets. Therefore, Zhang et al. (2012) propose

to first employ simpler to detect 2-D poselets, which are then

warped in order to arrive at a consistent, pose-normalized

representation. Others require only bounding boxes for the

location of the fine-grained objects during training. Wah et al.

(2011a); Branson et al. (2011) employ deformable part mod-

els (Felzenszwalb et al. 2010) for detection, showing, how-

ever, that user feedback is necessary to improve accuracy. In

contrast to the above works, we localize fine-grained objects

without requiring anything but the class label for training.

Others working under such conditions proceed with fine-

grained categorization, without expecting any information

regarding the location of the fine-grained objects, neither dur-

ing training nor during testing. While Sanchez et al. (2011)

focus on image-level descriptions, purposefully ignoring the

spatial aspect, the main focus has been to discover the object’s

location in an unsupervised manner, usually applying image-

level segmentation like in Nilsback and Zisserman (2008), or

co-segmentation methods like in Chai et al. (2011, 2012). We

rely on segmentation as well.

We propose a multi-functional approach that performs

accurate fine-grained categorization, when bounding boxes

are (i) provided during training and testing, (ii) only dur-

ing training, using supervised object detectors like (Felzen-

szwalb et al. 2010) at test time or (iii) not provided at all,

using unsupervised object proposals like (Uijlings et al. 2013;

Manén et al. 2013) both at training and test time. In the latter

case we report competitive recognition rates that often out-

perform methods requiring bounding boxes. Last, we evalu-

ate the importance of accurate segmentation.

2.2 Partitioning

When classifying different bird sub-classes, like telling the

Forster’s Tern apart from the Least Tern, see Fig. 1, one

probably needs to discover details such as their beak color

patterns. Since consistently localizing such details is assumed

to be crucial, a large part of the fine-grained literature has put

considerable effort in this task, see (Farrell et al. 2011; Zhang

et al. 2012; Yao et al. 2011; Zhang et al. 2012; Yao et al. 2012;

Yang et al. 2012; Liu et al. 2012; Berg and Belhumeur 2013;

Xie et al. 2013; Chai et al. 2013).

Some methods focus on an active learning approach for

detecting locations. Wah et al. (2011a) consider user clicks,

guiding the machine to pose the most informative question to

the user, while Branson et al. (2011) propose online supervi-

sion to learn better part models. Given ground truth part anno-

tations, part sharing between classes was shown by Liu et al.

(2012) to result in accurate dog breed recognition. Going one

step further, Xie et al. (2013) demonstrate excellent results for

fine-grained categorization, assuming that ground truth part

annotations are available also at runtime. We do not require

part annotations at runtime.

The majority of works, however, targets towards auto-

matic partitioning. Yao et al. (2011) use randomized trees

to mine discriminative features. In (Yao et al. 2012) the same

authors propose to randomly generate thousands of tem-

plates, which after being convolved with the unseen images

lead to very high-dimensional representations. Extracting

unsupervised templates, which take into account part appear-

ance, co-occurrence and diversity, was shown by Yang et al.

(2012) to deliver excellent results in several datasets. Inspired

by the partial object model of Biederman (1987), Farrell

et al. (2011) and Zhang et al. (2012) consider the head of

a bird as most discriminative, using it to perform recogni-

tion. Moreover, Berg and Belhumeur (2013) showed that

ground truth part annotations can be used for designing

intricate features specific to certain sub-categories, arriv-
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Fig. 1 Examples of fine-grained sub-classes for the Birds and Dogs

datasets. Note the difficulty of recognizing these categories in a finer

detail. a All four birds belong to different sub-classes, although some

of them look very similar. b Dogs appear in all kinds of position, poses

and scales. Based on example images like these, fine-grained catego-

rization tries to discover which fine-grained species each image belongs

to. Rather than directly trying to localize parts (be it distinctive or intrin-

sic, see text), we propose to first roughly align the objects based on their

global shape, ignoring the actual fine-grained category. After aligning

the object, we then proceed with consistent partitioning, arriving at suc-

cessful classification

ing at excellent recognition rates. And recently, Chai et al.

(2013) and Zhang et al. (2013) proposed to employ modified

deformable part models (Felzenszwalb et al. 2010), to detect

consistent fine-grained parts that allow for pose-normalized

representations.

Similar to the above works, we detect interesting object

locations for discriminating between sub-species. Different

from the above works, we do not aim at directly localizing

individual parts. Instead, we propose to first align the object

as a whole. Based on this alignment, we then derive a small

number of partitionings. Although our alignments and the

subsequent partitionings can benefit from supervision dur-

ing training, we show that obtaining them in an unsupervised

manner is feasible, leading to high recognition in fine-grained

categorization that outperforms the state-of-the-art.

2.3 Description

For the description of features several possibilities have been

explored in the literature, some of them requiring user assis-

tance, while the majority is fully unsupervised.

Methods that propose user-assisted features mainly focus

on interpretable attributes. Discovering discriminative, user-

accredited attributes, e.g. whether a bird has spots or not, has

been repeatedly explored by Parikh and Grauman (2011);

Branson et al. (2010). In a similar manner, Duan et al. (2012)

detect mid-level attributes, which are, however, location and

not image-level specific. Since attributes need to be inter-

pretable to make sense, human labor and often expert knowl-

edge is required, rendering these approaches useful for small

datasets only as in Duan et al. (2012). In our work we do

not attempt to represent fine-grained objects in terms of mid-

level features or attributes.

Most works in the fine-grained categorization literature

do not require human-interpretable features. Raw features,

such as intensity SIFT proposed by Lowe (2004) or kernel

based descriptors proposed by Bo et al. (2010) have shown

to be good choices in describing the distributions of low level

appearance details, such as edges or color (Farrell et al. 2011;

Yang et al. 2012). However, being sensitive to misalignments

renders them less suited for objects that are distorted in the

presence of common image deformations. To cope with such

misalignments, feature encodings have also been proposed.

Locality-constrained linear coding in Yao et al. (2011), bag-

of-words in Zhang et al. (2012) and Fisher vectors in Sanchez

et al. (2011); Chai et al. (2012, 2013) were shown to describe

fine-grained categories accurately. For an excellent review on

how to adapt Fisher vector for fine-grained categorization we

refer to Gosselin et al. (2013). Furthermore, Berg and Bel-

humeur (2013) showed that supervised features trained to

be discriminative for pairs of classes achieve state-of-the-art

results. And Donahue et al. (2013) showed that employing a

deep learning architecture specialized to fine-grained subcat-

egories arrives at remarkable recognition rates, at the expense

of requiring additional images for feature learning. Here, we

also propose to use unsupervised features, more specifically

Fisher vectors (Perronnin et al. 2010). Different from most

previous works, we extend Fisher vectors to operate not only
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Fig. 2 Block diagram of the system. The proposed system results in

competitive recognition rates, even when no user input (bounding boxes,

part locations) is to be expected, not even during training. Naturally,

additional annotations allow for even higher recognition accuracy. The

individual blocks are detailed in Sect. 3

as global, object-level representations, but also to encode the

localized appearance of object parts.

Another interesting aspect of the description of object

locations is the exploitation of domain specific, low-level

appearance, such as color. Intuitively, in fine-grained sub-

categories of the natural world, such as birds species,

see (Wah et al. 2011b) or dogs breeds, see (Khosla et al.

2011), color is bound to have a great impact in telling

sub-categories apart. Surprisingly enough, the recent fine-

grained literature (Farrell et al. 2011; Yao et al. 2012) often

focuses on more traditional color based descriptors as found

in (Swain and Ballard 1991) rather than state-of-the-art solu-

tions, see (van de Sande et al. 2010). We evaluate and high-

light the potential of color in fine-grained categorization,

when advanced color descriptors are considered.

3 System

Within a fine-grained categorization setting we assume an

image I contains an object belonging to one of the 1, . . . , K

sub-categories of interest. Naturally, there might be several

other objects present in the image and not just the fine-grained

object. Furthermore, we do not restrict the location and scale

of the fine-grained object. Although in a fine-grained catego-

rization setting these problems are often evaded by assuming

that bounding boxes are provided by humans at query time

like in (Yao et al. 2012; Berg and Belhumeur 2013; Chai

et al. 2013; Gavves et al. 2013), in real world scenarios it

is not always realistic to expect such user input. Therefore,

localization of the object of interest needs to precede any fur-

ther fine-grained analysis regarding the specific sub-category

that is depicted. For localization, we propose to use object

detection as a soft prior for segmentation, to avoid important

details to be missed.

The localization provides a local frame of reference that

serves to identify the spatial properties of the object. When

we identify a local frame of reference in an image, consistent

with other local frames of reference in other images, then we

call the image aligned. Consistent means that corresponding

parts are found in corresponding locations, when expressed

with respect to their frame of reference.

By design we opt for finding the parts consistently, at the

cost of less precise detections, accepting the small drift in part

appearance that might occur. To avoid being oversensitive

to such drifts, we choose our supervised and unsupervised

alignments to be rough but consistent, rather than precise but

unstable. Given the rough nature of our alignments, we show

that orderless, powerful features are the preferred choice.

An overview of the system is illustrated in Fig. 2.

3.1 Localization

3.1.1 Why Not an Object Detector?

In order to discover the spatial support of an object the

apparent choice is to employ an object detection algorithm,

see (Uijlings et al. 2013; Felzenszwalb et al. 2010; Manén

et al. 2013; Vedaldi et al. 2009). In that case, we predict

the best possible bounding box that surrounds the object of

interest as tightly as possible. A successful detection D is

evaluated with respect to the amount of overlap between the

predicted bounding box and the ground truth bounding box

G

overlap = D ∩ G

D ∪ G
. (1)

The overlap penalizes both inclusion of extra background

and the exclusion of foreground. Since detection is diffi-

cult by nature, usually some error margin is allowed. This
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error margin is expressed as a minimum overlap threshold,

above which detection is considered to be correct. State-of-

the-art challenges (Everingham et al. 2007) set this threshold

to 50 %. The design of the overlap measure in Eq. (1), there-

fore, suggests that detections should minimize the amount of

the background in the detection D, even if some foreground

is missed.

This setup, however reasonable for object detection, may

cause problems to the subsequent segmentation required for

fine-grained categorization, see (Wah et al. 2011a; Bran-

son et al. 2011). To illustrate with an example, having a

box overlapping 50 % with the object of interest suffices for

an object detector. However, 50 % of overlap also implies

that a large chunk of the object’s body may be missed, thus

potentially losing the crucial details that make the differ-

ence between, e.g. the “Magnolia Warbler” and the “Myrtle

Warbler”. Furthermore, performing segmentation for all the

bounding box candidates returned by state-of-the-art object

detectors, like (Uijlings et al. 2013; Cinbis et al. 2013), would

be computationally challenging. To this end we propose to

alter the way traditionally object detectors are employed and

use them as soft priors for segmentation.

3.1.2 Objectmaps

We start from an object (proposal) detector. In order to remain

agnostic to the type of detector, we make no assumptions

other than the detector should return a sizable number of

bounding boxes {Di } that indicate potential existence of the

object in a particular image region. While some detectors,

e.g. (Uijlings et al. 2013), are designed to return several box

candidates, others, e.g. (Felzenszwalb et al. 2010), are para-

meterized to return only few. For the latter ones we set their

reliability threshold sufficiently low, thus acquiring several

promising candidates as well.

As explained above, we do not consider these bounding

boxes to be accurate enough to be trusted for as is. However,

we do consider them accurate enough as soft voters, that

collectively return the confidence that the pixel p lies on an

object, that is

o(p) =
∑

i Di (p)

Z
, (2)

where Di (p) = 1 when the i-th bounding box contains

the pixel p and Z is a normalization constant such that

max o(p) = 1. We will refer to the spatial prior o(p) as

objectmap.

Not all bounding boxes returned by object detectors are

relevant. We therefore employ filter functions to prune the

ones that are unlikely to cover part of the object. The first

filter relates to the size of the bounding boxes. As observed

by Uijlings et al. (2013); Carreira and Sminchisescu (2012),

the size of the relevant bounding boxes strongly depends

on the specific dataset at hand and a minimum bounding box

size is usually enforced. We discard the bounding boxes with

unlikely geometries according to the training images, e.g., too

extreme width-to-height aspect ratios. Although some boxes

will incorrectly be discarded, the rough location estimation

depends on the collective power of several bounding boxes.

Hence, missing a few relevant ones is not critical, as long as

the majority concentrates around the object of interest.

The second filter relates to the tendency of object detec-

tor algorithms to maximize recall of returned boxes. For

example, to avoid any missed detections, the selective

search of Uijlings et al. (2013) generates on average 1,000–

3,000 candidate boxes per image, whereas a DPM detector

of Felzenszwalb et al. (2010) visits more than 100,000 loca-

tions for a normal sized image, a number of visits that is

feasible because of the dynamic programming involved. We

compute a saliency map (Itti et al. 1998) of the image to

discard the detections Di that occur in regions less likely to

contain the actual object. The saliency score is helpful when

the image is not cluttered with too many objects. Empiri-

cally, we have observed that this is often the case with certain

fine-grained categories such as birds, as taking a picture of a

fine-grained object, e.g., a bird, implies a special interest to

the particular sub-category and often results in a clear photo

of the object.

After having obtained the objectmap for the fine-grained

object in the image, we proceed with the segmentation. The

segmentation component of our approach is based on Grab-

Cut, see Rother et al. (2004). GrabCut uses a gaussian mix-

ture model, which groups pixels with similar appearance

together, such that the foreground is separated from the back-

ground. The gaussian mixture model is trained iteratively in

an alternate fashion. During the first step the foreground and

background probability density functions are updated, based

on the current pixel foreground/background labels. During

the second step, the pixel labels are re-estimated via graph-

cut inference, using the updated foreground and background

probability density functions to calculate the unary terms and

the image gradients for the binary terms.

Using objectmaps we end up with figure-ground segmen-

tations, as shown in Fig. 3. While the segmentation masks

are not perfect, we recover sufficient spatial support for the

object for most of the images.

3.2 Alignments and Partitionings

3.2.1 Supervised Alignments

In a supervised setting the ground truth locations of basic

object parts, such as the beak or the tail of birds, are avail-

able in the training set. This is a typical scenario when the

number of images is limited, so that human experts can pro-
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Fig. 3 Figure-ground segmentations by objectmap localizations. The

result of the GrabCut segmentation algorithm is shown in the first row,

when a bounding box is provided by the user, a common methodology in

the fine-grained literature, see Yao et al. (2012); Berg and Belhumeur

(2013); Chai et al. (2013). The objectmaps computed with an object

detector, here selective search of Uijlings et al. (2013), are shown in

the second row. For these objectmaps no user input of any form is

required. Naturally, having no bounding box usually results in a less

accurate segmentation, especially when other salient objects appear in

the image as well. However, objectmaps still tend to concentrate on the

fine-grained object

vide annotations at such a fine level of granularity. In the

supervised alignment setting, we aim at accurately aligning

the test image with a small number of training images. Then,

we can use the common frame of reference to predict the part

locations in the test image.

Different from general object categories that are often

visually quite dissimilar from one another, fine-grained sub-

categories typically share a great deal of similarities, mainly

regarding their shape, their appearance and their poses.

Hence, if the exterior shape of a fine-grained object is accu-

rately captured, one can compare it with similar shapes in

the training set and align the respective fine-grained objects.

Note that, at this stage, it does not matter whether these

are images that belong to the same sub-category or not.

Having computed the figure-ground segmentation, we pro-

ceed with the description of the object shape. However, the

segmentation mask is usually not perfect and often back-

ground is included or foreground is omitted, see Fig. 3.

What is more, the interior of the object may contain inner

edges, e.g. due to the intricate color patterns of a bird.

As we are interested in the object silhouette and not the

inner edges we extract HOG features from the binary seg-

mentation mask and not from the segmented object. As a

result, the gradients of HOG will focus on and accentuate

the outer boundaries, while suppressing the interior shape

edges.

After having extracted the segmentation mask, we encode

the object shape by computing a HOG feature, that is hi =
H(Si ). A HOG descriptor forms a high-dimensional space,

which in theory may be populated by all shapes possible.

Fine-grained objects, however, tend to have similar shapes

and are seen in a limited repertoire of poses. More specifi-

cally, the observed exterior shapes reside on a lower dimen-

sional manifold. Given an unseen fine-grained object, we

can expect that its shape will probably be located in a spe-

cific region on this manifold. The fine-grained objects on this

part of the manifold will have similar exterior shapes and,

due to the anatomical constraints of the super-category they

belong to, also similar poses on average. We take advantage

of this principle to retrieve the N training exemplar images IN

from the training set Dt which have the most similar exterior

shapes using a query-by-example setting. For the compar-

isons we employ the ℓ2-distance metric on the unit-length

normalized HOG vectors. In the end we have a shortlist of

exemplar objects with similar poses, although no supervision

was required regarding object poses or geometry. Examples

of pose retrieval given an object of interest are shown in the

upper row of Fig. 4.

Having retrieved the exemplar images with the most sim-

ilar poses, we are in a position to transfer information from

the training set to the test images. For the training exemplars

IN we know the ground truth part locations x, as well as the

appearance of the image regions that surround the parts Vx.

In order to calculate the locations of the part of interest in

the test image Iq , we employ a geometric part aggregation

function f ( · ), that is

Fig. 4 Supervised alignment. a Predicting part locations: in the top

left, we have a query image, for which we want to predict part loca-

tions. On the right, we have the nearest neighbor training images, their

HOG shape representations on which they were retrieved (top) and their

ground truth part locations (bottom). Regressing the locations from the

nearest neighbors to the test image we get the predicted parts, shown as

the colorful symbols (bottom left). Although we rely on exterior shape

only, the part locations can be found consistently. b Describing parts

using all the information within a square patch (shown left) gives infe-

rior results compared to using only the information within the square

patch that falls inside the object’s segmentation mask (shown right)
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x̃ = f (Iq; xi , Vxi
), i ∈ IN (3)

The geometric part aggregation function f can vary in

sophistication. We can apply simple average aggregation, or

we can learn part appearance models in a similar manner

to Felzenszwalb et al. (2010); Azizpour and Laptev (2012).

With geometric part averaging the predicted part locations

are computed as the average of the respective part locations

in the nearest neighbor images of the training set. This works

well because the nearest neighbour images are well aligned to

the query image. Note also that the appearance of the part in

the nearest neighbour images is not used in this setting. We

have experimentally witnessed that geometric part averag-

ing yields accurate results, accurate enough to recover rough

alignments. To ensure maximum compatibility we apply the

above procedure for all the training and all the testing images

in the dataset, thus acquiring predicted part locations for all

the objects in the dataset.

Partitioning supervised alignments We know the location

of the part centers. Next, we need to define the shape of the

parts, given these centers. We consider two strategies, that is

square patches and square patches refined by segmentation,

which we will refer to as segmented patches, see Fig. 4b.

Patches The first strategy is related to most part-based mod-

els like Felzenszwalb et al. (2010). Given centers α, we sam-

ple local descriptors every d pixels from a square region

Rsq = {(x, y)|αx − T/2 < x < αx + T/2, αy − T/2 <

y < αy + T/2}. Patches capture both object and background

appearance.

Segmented patches The second strategy bears close resem-

blance to the first one, the difference being that we now take

into account also the segmentation mask that gives a spatial

support for the objects. For segmented parts we sample only

in the common area between the designated part region and

the segmentation mask, that is Rsg = Rsq ∩ Si . Segmented

parts better capture the object of interest, at the expense of

including less context, since descriptors are sampled only

within the segmentation mask.

Of course, more strategies can be imagined for partition-

ing with supervised alignments. Scale invariance could be

helpful for example. However, introducing scale invariance

for patches comes at the cost of increased complexity and is

therefore not considered in the current work.

3.2.2 Unsupervised Alignments

In contrast to the supervised case, in the unsupervised sce-

nario we assume that no ground truth is provided regarding

the part locations of the images in the training set. In the

absence of such a ground truth, it does not make sense to align

the test image to a small subset of training images. Instead,

we derive a frame of reference based on the global object

Fig. 5 Unsupervised alignments. Random birds and dogs, after their

shape has been recovered, see in (a) the black contour around the

objects. Based on the geometry of the shape we estimate the pose

of the object, assuming an elliptical form. Following the gravity vec-

tor assumption (Perdóch et al. 2009) of the green arrows, we obtain

the dominant pose orientation, see red arrows. Different strategies for

aligning unsupervised partitionings in (b). In the top image we have

gravitational alignments, that adopt an upwards dominant orientation

after the gravity vector assumption. In the bottom image we have grid

alignments, centered according to the center of the elliptical pose

shape, inspired by local affine frames used for affine invariant

keypoint description Mikolajczyk et al. (2005). More specif-

ically, given the location xs of the pixels on the segmentation

mask S we fit a 2-D ellipse, whose two axes are computed as

a j = x̄s + e j

√

λ j (4)

where λ j and e j are the j-th eigenvalue and eigenvector of

the covariance matrix C = (xs − x̄s)
T (xs − x̄s) and x̄s is

the average location of the mask pixels. Ideally, the ellipse

should follow the “spine” of the object. We show examples

of estimated poses and their local 2-d geometry in Fig. 5a.

Exploiting the preferred pose and posture can be a disad-

vantage when an object category appears in a great variety

of poses. For objects that appear in a variety of poses, often

placed in confusing backgrounds, the segmentation masks

are usually not perfect. To minimize such negative influence,

we use all the pixels of the foreground segmentation mask

for fitting the ellipse.

Partitioning unsupervised alignments For unsupervised

alignments one does not have much certainty regarding the

object pose. Hence, simple, yet consistent alignment geome-

tries are required to robustly describe similar object locations

in previously unseen images.

Gravitational partitionings Given an elliptical pose for the

fine-grained object, we need to define a reasonable orien-

tation. Following anatomical observations we first consider
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the longer axis to be the principal one. Having chosen the

direction of the principal axis, we need to define the starting

point. We follow the gravity vector assumption, see (Bay et al.

2008; Perdóch et al. 2009), and adopt the highest end point

of the principal axis as its origin to arrive at gravity vector

alignments. All partitionings are orthogonal to the principal

axis of the fine-grained object. Since this principal axis is

often similar to the “spine” of the object, each partitioning

captures indirectly a specific anatomical part. For example

in the case of four gravitational partitionings on birds, we

roughly capture the “head”, the “torso”, the “belly” and the

“tail” of the bird.

Grid partitionings Gravity vector alignments are supposed

to follow the principal direction of the object’s pose. Often,

however, objects are photographed in a wild variety of poses,

in which case gravitational alignments might return less

consistent results. In this case, and since spatial pyramids

have shown excellent result in image-level classification,

see (Lazebnik et al. 2006), one can compute grid partitionings

centered in the centre of gravity for the estimated elliptical

pose. Given an accurate local frame of reference, the grid par-

titionings capture in their quadrants semantically meaningful

regions of the fine-grained object. Furthermore, by vertically

mirroring the training images we inject invariance regarding

the pose and directionality of the fine-grained object regions.

For example, the upper quadrants capture the appearance of

the head, while lower quadrants encode the appearance of

the belly and the tail, no matter where the object is facing

to. Our strategies for aligning unsupervised, gravitational or

grid, partitionings are visually summarized in Fig. 5b.

In theory, extracting unsupervised alignments is less accu-

rate than extracting supervised ones. However, given an accu-

rate spatial support provided by the obtained local frame of

reference, and a robust set of rules for defining the pose of the

fine-grained objects in different images, we are still able to

obtain robust and consistent alignments over the entire data-

base. Another advantage of such unsupervised alignments

and their partitionings is that they are consistently found in

all the images of the whole dataset and not just a small num-

ber of them at a time. This contrasts to part detection methods

like that of Felzenszwalb et al. (2010); Yang et al. (2012),

which require several part templates to ensure high preci-

sion. Since such templates are normally activated only for a

portion of the training set, the number of available training

data for learning the part appearance is effectively reduced.

3.3 Description

3.3.1 Color Fisher Vectors

The proposed alignments, supervised or unsupervised, are

designed to be rough. Thus, comparing corresponding

regions of objects from different images is bound to be a

noisy procedure. Relying on features, such as HOG (Dalal

and Triggs 2005), that are designed to return precise represen-

tations, but also sensitive to common image transformations

are likely to be suboptimal. This is a problem which order-

less descriptors, such as Fisher vectors, (Perronnin et al.

2010), do not face, as by design they do not encode any spa-

tial properties of the appearance information. Nonetheless,

in a fine-grained categorization setting describing localities

is important. To inject such spatial awareness to orderless

descriptors, we extract Fisher vectors from the well aligned,

and therefore spatially constrained, partitionings. By doing

so we maintain a good amount of the spatial extent of the

appearance, while avoiding being overly vulnerable to occa-

sions where feature matching is challenging.

Fisher vectors are composed of the derivatives of the likeli-

hood, as measured with a gaussian mixture codebook model,

with respect to the model parameters. The Fisher kernel then

measures the similarity between two gradient vectors (using

the Fisher information matrix). For a gaussian mixture code-

book model, with mean terms µk and variances σk , the Fisher

vector representation is φ = [ ∂x
∂µk

, ∂x
∂σk

]T . The derivatives are

computed on local image intensity SIFT Lowe (2004) or color

SIFT van de Sande et al. (2010) descriptors.

As we cannot foretell which is the color representation that

best reflects the differences between fine-grained species,

we opt for extracting three different color SIFT descriptors,

namely RGB-, Opponent- and C-SIFT. All these models are

built on the diagonal model, It = D · Iu . In the diagonal

model Iu is the image taken in the unknown light source, It

is the transformed image to the color space of interest, and

D is a 3 × 3 diagonal matrix that stands for the color space

model. Given a location in an image the SIFT operator is

applied on each of the color channels independently. Then,

all the SIFT descriptors per channel are concatenated into a

single column vector.

RGB color model The RGB color model is the concatenation

of the 3 color channels, namely red, green and blue.

Opponent color model Opponent-SIFT uses the opponent

color space, namely [O1, O2]T = [ R−G√
2

, R+G−2B√
6

]T . The

third channel O3 stands for the intensity color space. Hence,

we do not consider O3 as intensity SIFT is independently

computed. Interestingly, the subtraction operation of O1 and

O2 cancels any light intensity offset that is added to all chan-

nels.

C color model Although the opponent space is shift invariant

to light changes, there is still intensity information contained

in the channels O1 and O2. To make the color space invariant

also with respect to light intensity scale changes, the C-color

space divides O1 and O2 by the intensity channel O3, thus

having the color space [ O1
O3

, O2
O3

]T . Due to the division by the

intensity the scaling factor for the diagonal matrix is canceled

out, thus rendering the C-space also scale invariant to the light

intensity.
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The combination of these color space SIFT descriptors,

especially when intensity SIFT is also considered, has been

shown (van de Sande et al. 2010) to be fruitful. For a more

comprehensive study on the various color descriptors we

refer to (van de Sande et al. 2010).

3.3.2 Normalization

Due to the generally small number of words that Fisher

codebooks use, unnormalized Fisher vectors are character-

ized by an over-burstiness of certain visual words. Therefore,

for optimal performance, Fisher vectors are (a) first, power-

normalized so that the large Fisher vector values become less

accentuated, then (b) ℓ2-normalized, see (Perronnin et al.

2010). These two subsequent normalizations can be viewed

as a single, recursive transformation u, that is φ̂ = u(φ).

Inspired by the findings of Perronnin et al. (2010), we follow

a similar normalization procedure that applies ℓ2 transfor-

mations to the feature vector recursively T times.

4 Experiments

4.1 Datasets

Animal categories and their sub-categories provide a chal-

lenging testbed for fine-grained categorization, as their tax-

onomy is usually connected to specific visual appearances.

We evaluate our proposed methods on popular fine-grained

datasets for recognition of bird species and dog breeds. These

datasets capture different aspects of fine-grained categoriza-

tion, as birds exhibit low inter-class variation of visual pat-

terns and dogs exhibit high intra-class pose variation. For this

reason we consider the two datasets complementary.

4.1.1 Birds

The Caltech-UCSD Birds-200-2011 dataset introduced by

Wah et al. (2011b), is one of the most extensive ones in the

fine-grained literature. The Birds dataset is composed of 200

sub-species of birds, several of whom bear tremendous simi-

larities, see Fig. 1a. The bird images in this dataset are distin-

guished only on a fine-grained level, since several of the sub-

species belong to the same family. A characteristic example

are the Forster’s Tern and the Least Tern sub-species in the

far right of Fig. 1a. As one description reads for the Forster’s

Tern for example, “the comma-shaped black ear patch in

winter plumage is distinctive, but some other plumages are

very confusing.”1 Recognizing, therefore, such nuances is

the key for their recognition. For each of the classes in the

Birds dataset there are 30 training images and approximately

1 http://www.allaboutbirds.org/guide/forsters_tern/id.

30 testing images. We use the standard training/test split pro-

vided by the authors of Wah et al. (2011b). In our experiments

we use the ground truth part locations only during learning,

unless stated otherwise. Furthermore, we use the ground truth

segmentations, only for evaluation and not for any kind of

learning.

4.1.2 Dogs

The Stanford Dogs dataset by Khosla et al. (2011) contains

images from 120 different breeds. The dogs are visually

easier to distinguish than birds, as only few breeds belong

to a common, larger family. See for example how differ-

ent the Norwich Terrier and the Scotch Terrier are in the

right of Fig. 1b. Dogs, however, are difficult to categorize

for other reasons. Since, they are domestic animals, they

are photographed in a great variety of poses, scales, view-

points and often with other objects occluding them. Hence,

for the fine-grained categorization of Dogs, before anything

else, one needs first to recover poses accurately. In the Dogs

dataset there are in total 12,000 annotated images provided

for training and 8,580 images for testing. We use the standard

training/test split provided by Khosla et al. (2011).

4.2 Technical Details

Following common practice in the fine-grained literature

(Yao et al. 2011, 2012; Yang et al. 2012) we mirror the train-

ing images in the datasets to double the size of the train-

ing set. We use the bounding boxes to normalize the size

of the images, unless stated otherwise. Furthermore, we do

not downscale the image like in (Yao et al. 2012; Yang et al.

2012), as we found this has a severe impact on the accuracy.

For example downscaling images with the maximum dimen-

sion being 250 pixels drops accuracy by 23 % for Birds. Last,

we note that only for the Birds dataset there exist ground truth

part locations as well as ground truth segmentations. There-

fore, for the experiments where such ground truth informa-

tion is needed, whether for evaluation or learning, we report

results on the Birds dataset only.

We extract SIFT descriptors using the VLFeat library

(Vedaldi and Fulkerson 2010). We sample densely every 3

pixels and at multiple scales ([16×16], [24×24], [32×32],

[40 × 40]). We reduce by PCA the dimensionality of the

intensity SIFT descriptors to 64 and of the larger color

SIFT descriptors to 80. To arrive at Fisher vectors we use a

Gaussian mixture model with 256 components. We use both

the derivatives with respect to µ and σ , obtaining Fisher vec-

tors of 32,768 and 40,960 dimensions, when using intensity

and color SIFT respectively. For the Fisher vectors we eval-

uate recursive normalizations for a varying number of recur-

sions, as described in Sect. 3.3. For HOG features we use the

VLFeat implementation on a standard spatial grid of 8 pix-
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els width per tile and then ℓ2 normalize them. Unless stated

otherwise, we apply the standard normalizations per feature

type, that is power and ℓ2 normalization for Fisher vectors

and ℓ2 normalization for HOG. Finally, as a classifier we use

the linear SVM PEGASOS implementation (Shalev-Shwartz

et al. 2007) with a fixed parameter C = 10.

We use the standard evaluation metric for these datasets,

that is the category normalized mean accuracy over all the

sub-categories within a dataset. Accuracy is defined as the

number of correctly classified pictures for a certain sub-

category, divided by the total number of pictures of that sub-

category. All results are reported strictly on the test sets.

4.3 Experiment 1: What Descriptors?

Setup In this first experiment we evaluate whether rigid

descriptors, such as HOG Dalal and Triggs (2005), or

distribution-based descriptors such as Fisher vectors Per-

ronnin et al. (2010) are more accurate for describing parts in

fine-grained categorization. For completeness, we also com-

pare with Bag-of-Words computed on 4,000 words and with

a χ2 kernel. To ensure a fair comparison, as well as to test

the maximum recognition capacity of parts for such a task,

we use the ground truth part locations for both the training

and test sets. We also investigate different parameterizations

for Fisher vectors. We experiment on the Birds dataset using

the provided part annotations. To minimize redundancy due

to the overlap, we use the following seven parts only, which

together cover the complete silhouette of a bird: beak, belly,

forehead, left wing, right wing, tail and throat. Fisher vec-

tors, HOG and Bag-of-Words are extracted on 100 × 100

pixel windows. We empirically found this to be a reasonable

tradeoff between capturing sufficient content and context,

while avoiding the influence of drastic deformations. Fisher

vectors, HOG and Bag-of-Words are also extracted from the

whole bounding box. In the end we concatenate the Fisher

vectors together into a single vector and the HOGs together

into a single vector.

We also evaluate the effect of applying recursive normal-

izations to the final accuracy. To avoid irrelevant factors influ-

encing the results, we conduct this experiment again under an

oracle setting and use the ground truth segmentation masks

provided for Birds to compute a single Fisher vector repre-

sentation per fine-grained object.

Results We show the results for the different parameteriza-

tion of the Fisher vectors in Fig. 6. For 128-PCA, we apply

the PCA matrix, thus de-correlating only and not reducing the

SIFT vectors. We observe that having more gaussian compo-

nents and more dimensions after PCA has a positive impact

on the accuracy. To control the final feature dimensionality,

as well as to be compatible with the state-of-the-art, in the

following we will make use of 256 gaussian components,
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Fig. 6 Influence of Fisher vector parameters. Increasing the number

of gaussian components and dimension after PCA improves the final

accuracy on the oracle segmentations, reaching up to 55.1 % for 1,024

gaussians and 128 dimensions after PCA
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Fig. 7 A fine-grained category-by-category comparison using parts

encoded by Fisher vectors or by HOG. We report results on the 200

Birds sub-categories measured in terms of accuracy. Fisher vectors per-

form consistently better on parts than HOG, having an average accuracy

of 52.5 % versus 31.8 %. We, furthermore, repeat the same experiment

using a Bag-of-Words model computed on 4,000 words and with a χ2

kernel, obtaining an average accuracy of 25 % (data not shown in the

plot)

with the dimensionality reduced to 64 for intensity SIFT and

80 for color SIFT descriptors.

In Fig. 7 we visualize the comparison between Fisher vec-

tors and HOG. Clearly, Fisher vectors are better in describ-

ing parts for fine-grained categorization than rigid descrip-

tors like HOG. Where HOG scores an accuracy of 31.8 %

on average, the Fisher vectors result in a final average score

of 52.5 %. The reason is that HOG descriptors require quite

precise part detection, so that the gradients are representa-

tive of the appearance. Fisher vectors, however, aggregate

the information from a larger area, adding more flexibility to

the representation. Two notable exceptions, where HOG out-

performs Fisher vector, are shown in Fig. 8. In the majority of

cases, however, Fisher vectors are clearly better for describ-

ing fine-grained subcategories than HOG, as Fig. 7 reveals,

outperforming for 184 out of the 200 bird categories. With

123



Int J Comput Vis

Fig. 8 Occasionally, encoding parts by HOG is better than Fisher vec-

tors. The Rhinoceros Auklet birds in the first row have a very character-

istic white horn on their beaks and two elongated white feather brows

next to their eyes and their beaks. The shape-sensitive HOG better cap-

tures the appearance of those birds. Similarly, the Brandt Cormorant

species also has a very distinctive sigmoid shape, also better described

with HOG. In the majority of cases, however, Fisher vectors are signif-

icantly more accurate, see Fig. 7

Bag-of-Words we obtain a lower accuracy of 25 %. Since

Fisher vectors can be viewed as an extension of the Bag-of-

Words model by considering the codebook derivatives, we

conclude that these additional statistics of Fisher vectors are

essential for fine-grained categorization. The above results

and conclusion will be added in the first experiment. From

now on we report results using Fisher vectors for describing

the appearance of parts and alignments.

Regarding the recursive normalization on Fisher vectors,

we observe that optimal results are obtained after two recur-

sions, that is T=2, improving recognition over the standard

power normalization by an absolute 2–3 %. This conclu-

sion was also confirmed in subsequent non-oracle experi-

ments, improving recognition even up to 4 % for color based

features.

4.4 Experiment 2: What Type of Regions?

Setup In this experiment we evaluate various partitionings

for the description of fine-grained objects. The majority of

the approaches in fine-grained categorization are evaluated

considering the bounding boxes available both during train-

ing and testing. For completeness, we also first evaluate the

case when bounding boxes are always available.

For the supervised alignments we follow the same setup as

in the previous experiment, using the same seven parts plus

a Fisher vector extracted from the whole bounding box. We

predict the location of these parts in unseen images using the

top-20 nearest neighbors. When the majority of the nearest

neighbors does not have a certain part, it is marked as absent

for the unseen image and the corresponding part of the Fisher

vector is set to the zero vector. Also, we repeat the same

experiment using only the predicted location of the beak.

For the unsupervised alignments no ground truth part

annotation is required, so we evaluate on both Birds and

Dogs. After extracting the principal axis of the object of inter-

est, we split the segmentation mask into aligned partition-

ings. For the object-level Fisher vector we use only the pixels

within the segmentation mask and not the whole bounding

box. We also examine what is the effect of a varying number

of parts on the final accuracy.

Finally, we provide comparisons with state-of-the-art

methods reported on the same datasets. For this purpose,

we first evaluate the significance of color in fine-grained cat-

egorization. Apart from grayscale SIFT features, we addi-

tionally extract SIFT features from the RGB, Opponent and

C-spaces (van de Sande et al. 2010).

Results. We show the results of this experiment for Birds

in Table 1. When considering supervised patch alignments,

we obtain 50.2 % accuracy, a large improvement over the

39.8 % from the 2×2 spatial pyramid. Comparing the individ-

ual accuracy differences, the supervised alignments perform

consistently better than spatial pyramids for 141 of the 200

classes (data not shown). The reason is that birds are well

aligned, so the Fisher vectors computed on the respective

parts capture the same nuances that differentiate sub-classes

more consistently.

We measure the accuracy of the estimated part locations

with respect to the ground truth locations. To cancel out the

different bounding box geometries we normalize the part

locations. After normalization the average location error is

12 %.
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Table 1 Experiment 2: What type of partitioning for Birds? Supervised

alignments are more accurate than a spatial pyramid kernel and an align-

ment based on the beak of a bird only, while being rather close to the

theoretical accuracy of the oracle parts that score 52.5 %. When con-

sidering the segmentation masks for the description of the supervised

alignments as in the right picture of Fig. 4b, the accuracy improves even

further

Method Accuracy (%)

Supervised segmented patch alignments 57.6

Unsupervised gravitational alignments 51.6

Supervised patch alignments 50.2

Unsupervised grid alignments 49.2

Fisher vector from segmentation masks 42.6

2 × 2 spatial pyramid 39.8

Supervised alignment on beak 37.8

Fisher vector from bounding box 32.1

Interestingly, when considering the supervised segmented

patch alignments using the GrabCut based segmentations the

recognition accuracy improves further, reaching 57.6 % and

outperforming all other methods. This translates to a 7 % gain

as compared to supervised patch alignments. We can there-

fore deduce that segmentation masks are helpful not only for

describing whole objects, as they are normally used (Chai

et al. 2012, 2013), but also for the description of individual

parts or regions of the fine-grained object of interest. With

an exception of the work from Arbelaez et al. (2012), who

use poselet-inspired region detectors, we are not aware of

any works that researched the potential of segmented parts

for recognition.

We focus now on the case when no ground truth of the part

locations is provided, neither for training nor for testing. For

unsupervised gravitational alignments we reach an accuracy

of 51.6 %. Having fewer partitionings leads to a lower accu-

racy (48.4 % for two partitionings), whereas too many align-

ments bring little extra benefit (51.7 % for seven partition-

ings). Extracting four partitionings therefore suffices and we

will use this number throughout the rest of the experiments

where we extract unsupervised alignments, unless stated oth-

erwise. Comparing the supervised and unsupervised align-

ments when using their optimal settings, we show the differ-

ences in Fig. 9. We observe that the supervised ones improve

the accuracy especially for the classes where unsupervised

alignments exhibit lower accuracy visible in the right part of

the figure.

For the Dogs dataset we present the results in Table 2. The

unsupervised grid alignments outperform the unsupervised

gravitational alignments. The reason is that dogs are seen in

a considerably larger variety of poses, scales and occlusions.

In fact, as it is often the case that only the dog face is visible,

any method that attempts to discover semantically meaning-

ful parts becomes weaker, as also observed from Chai et al.
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Fig. 9 Comparison between supervised segmented patch alignments

and unsupervised gravitational alignments for Birds. We observe that

the supervised ones are especially beneficial for those classes where

unsupervised alignments exhibit lower accuracy (right part of the figure)

Table 2 Experiment 2: What type of partitioning for Dogs? The unsu-

pervised grid alignments outperform the unsupervised gravitational

alignments. As also noted by Chai et al. (2013), the reason is that dogs

are seen in a considerably larger variety of poses, scales and occlusions

Method Accuracy (%)

Unsupervised grid alignments 45.2

Unsupervised gravitational alignments 42.9

2 × 2 spatial pyramid 42.8

Fisher vector from segmentation mask 40.1

Fisher vector from bounding box 36.2

(2013). Hence, for super-categories like Dogs, where the sub-

categories are found in varying and peculiar poses, precise

pose normalization should precede the extraction of fine-

grained details.

We conclude that extracting localized alignments or parts

matters in a fine-grained categorization setting. Furthermore,

given their high accuracy, as well as their independence from

ground truth part annotations, unsupervised alignments are

appealing compared to supervised ones.

Adding color First, we evaluate the importance of color

descriptors in fine-grained categorization tasks. In this exper-

iment, we use the ground truth bounding boxes, as this is

also done by the methods we are comparing against. The

results after the addition of color are available in Fig. 10a

for Birds and in Fig. 10b for Dogs. We observe that color

consistently improves accuracy. From individual color chan-

nels only Opponent-SIFT performs well, increasing accu-

racy from 51.6 to 62.7 % for Birds and from 45.2 to 51.5 %

for Dogs. When fusing the model predictions of the Fisher

vectors from all color channels by averaging, we reach an
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Fig. 10 Experiment 2: Adding color given bounding boxes. a For Birds

when considering the color information the accuracy becomes higher

than the 51.6 % obtained with grayscale only. More specifically, we

obtain 60.0 % by using C-SIFT, 61.5 % by using RGB-SIFT and 62.7 %

by using Opponent-SIFT. When fusing the Fisher vectors computed on

different color spaces with late fusion, the accuracies improve further to

67.0 %. b For Dogs we make similar observations: 45.3 % with C-SIFT,

48.3 % with RGB-SIFT, 50.1 % with Opponent-SIFT and 55.1 % with

average late fusion, as compared to 42.9 % when only grayscale SIFT

is used. Color is beneficial for fine-grained categorization

Table 3 Experiment 2: Comparison with state-of-the-art for Birds

given bounding boxes. Unsupervised alignments outperform the state-

of-the-art. Note here that the deep learning method of Donahue et al.

(2013) makes use of extra labeled data

Method Accuracy (%)

Unsupervised gravitational alignments 67.0

Donahue et al. (2013)+ Zhang et al. (2013) 65.0

Chai et al. (2013) 59.4

Donahue et al. (2013) 58.8

Berg and Belhumeur (2013) 56.9

Zhang et al. (2013) 50.1

Jia et al. (2013) 38.9

Highest scores marked with bold

accuracy of 67.0 % for birds and 57.0 % for dogs. Hence,

using multiple color channels brings a clear advantage over

only grayscale information, as known for general object and

scene detection (van de Sande et al. 2010). In fact the exper-

imental results reveal that a right use of color has an even

stronger impact on the categorization of fine details, at least

when animal species are considered.

State-of-the-art comparison given bounding boxes Next,

we compare state-of-the-art methods on fine-grained catego-

rization, which also assume that the bounding box around

the object is available at runtime. The results are available in

Tables 3 and 4 for Birds and Dogs respectively. We observe

that for birds unsupervised gravitational alignments arrive

at good recognition rates of 67.0 % compared to the very

recent state-of-the-art. The closest competitor, the deep learn-

ing approach of Donahue et al. (2013) combined with pose

normalization from Zhang et al. (2013), reaches an accuracy

Table 4 Experiment 2: Comparison with state-of-the-art for Dogs given

bounding boxes. Unsupervised alignments outperform the state-of-the-

art

Method Accuracy (%)

Unsupervised grid alignments 57.0

Chai et al. (2013) 45.6

Yang et al. (2012) 38.0

Bo et al. (2010) 36.0

Khosla et al. (2011) 22.0

Highest scores marked with bold

of 65 %. DeCAF makes use of large deep learning networks

composed of 7 layers that require elaborate pre-training on

many labeled images from 1,000 classes from ImageNet.

Similar results are observed for Dogs, where unsupervised

grid alignments score 57.0 % average accuracy. The closest

competitor is the recent work of Chai et al. (2013), report-

ing an accuracy of 45.6 %. We conclude that unsupervised

alignments achieve state-of-the-art recognition rates for fine-

grained categorization.

4.5 Experiment 3: Automatic Fine-Grained Categorization

Having the bounding box location is a useful piece of infor-

mation, as it separates, albeit roughly, the object of interest

from the majority of the background. However, in most real-

istic scenarios bounding boxes are not available. In this exper-

iment we examine the effectiveness of fully automatic fine-

grained categorization, a process that entails automatic detec-

tion, segmentation and categorization of the fine-grained

objects. To this end we first evaluate the importance of accu-
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Fig. 11 Experiment 3A: The effect of segmentation accuracy in fine-

grained categorization oracle segmentations on birds. Noisy segmen-

tation masks always hurt accuracy. However, missing superpixels of

the ideal object segmentation (over-segmentation) is noticeably more

harmful than including excessive background (under-segmentation)

rate segmentation in an oracle setting, by simulating added

noise on ground truth segmentation masks. Then, we eval-

uate automatically detecting, segmenting and categorizing

fine-grained objects.

4.5.1 Experiment 3A: Segmentation Accuracy

Setup In this experiment we evaluate the significance of

accurate segmentations in a theoretical fine-grained cate-

gorization setting, where we assume that perfect segmen-

tations for all fine-grained objects are available. We perform

this experiment on the Birds dataset, as it is the only one

for which ground truth segmentation masks are available.

To make sure that conclusions reflect only the importance

of segmentation accuracy, we extract a single Fisher vec-

tor from within the segmentation mask area, without con-

sidering any kind of partitionings. We start from the perfect

ground truth segmentations, then generate artificially fore-

ground or background noise. This way we simulate scenar-

ios of over-segmentation, where part of the object is over-

looked, and under-segmentation, where part of the back-

ground is considered as object. To generate the artificial

noise we first decompose an image into a large number of

superpixels using (Felzenszwalb and Huttenlocher 2004).

Then, for under-segmentation we include extra superpixels

neighboring the perfect segmentation mask, while for over-

segmentation we exclude superpixels from the foreground

mask. The superpixels are chosen such that the desired level

of artificial noise is reached.

Results We plot the results of this experiment in Fig. 11.

Over-segmentation appears to be quite harmful, see the left

part of Fig. 11. Losing a little bit of foreground, up to −20 %

has little impact on accuracy. However, when more fore-

ground information is missing, the accuracy drops rapidly.

When focusing on the right part of Fig. 11, where background

noise is added to simulate under-segmentation, we observe

a noticeable but not dramatic decrease in accuracy. Indeed,

adding 100 % background noise, that is an area equal to the

size of the bird, decreases the accuracy from 49.9 to 40.6 %.

If we expect the segmentation to be imperfect, either because

of the low imaging quality or the challenging viewing con-

ditions, a bias in favor of adding background than omitting

foreground should be preferred.

4.5.2 Experiment 3B: Fine-Grained Categorization Without

Human Intervention

Setup In this experiment we make no assumptions regarding

the location of the object and want to compute a probabil-

ity map, that encodes how likely is an object to be present

at a particular image region. The first candidate is object-

ness (Alexe et al. 2012), which was designed particularly

for this purpose. We use the objectness parameters sug-

gested in the latest release software, version 2.0, by the

authors. For the objectmaps we use three state-of-the-art

object proposal algorithms. Firstly, we use the deformable

part model (Felzenszwalb et al. 2010). We lower the DPM

detection threshold to −1.0, decided after visual inspection,

to increase the number of detections returned. Secondly, we

use selective search (Uijlings et al. 2013) to generate object

proposals. Last, we use the recently proposed prime pro-

posals (Manén et al. 2013). For fairness of comparison we

use the pre-configured object proposal and detector models

as proposed by the respective authors. For the supervised

deformable part model we use the bird and dog detectors

as trained on PASCAL VOC. As objectness, DPM, selec-

tive search and prime objectmaps serve the same purpose,

for clarity we will refer to all of them as objectmaps during

the evaluation. We include comparisons with state-of-the-art

methods that also do not require a location for the fine-grained

object at runtime.

Results We present the results for the Birds dataset in the

first two rows of Table 5. The highest accuracy is obtained

using the selective search and the prime objectmaps with

unsupervised gravitational and grid alignments respectively.

Their accuracy in the range of 40.5–44.1 % (for compactness

these numbers are not included in the tables) is a competitive

result, when compared to the 51.6 % accuracy obtained from

the same method when the bounding box locations are given,

and the 57.6 % when supervised segmented patch alignments

are employed, see Table 1. As in the previous experiment, we

also consider the addition of three color spaces for the selec-

tive search objectmaps, see Fig. 6. The results are consistent

with the conclusions of the previous experiment. Extract-
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Table 5 Experiment 3B: Fine-grained categorization without human

intervention. For birds unsupervised bounding box proposals (Uijlings

et al. 2013) suffice for computing an accurate location for the object of

interest. For dogs, however, where often multiple objects appear in the

image, supervised bounding box proposals, (Felzenszwalb et al. 2010),

are more accurate

Alignments Objectmaps

Objectness (%) DPM (%) Selective search (%) Prime proposals (%)

Birds Unsupervised gravitational 32.7 36.6 40.6 39.8

Unsupervised grid 31.7 33.4 38.6 40.8

Dogs Unsupervised gravitational 29.4 36.8 30.4 30.0

Unsupervised grid 31.4 36.8 34.0 32.6

Highest scores marked with bold

ing Fisher vectors from the Opponent-, RGB and C-SIFT

spaces increases accuracy to 51.6, 49.0 and 48.9 % respec-

tively. Applying late fusion using all color spaces as well as

grayscale SIFT, we arrive at a final accuracy of 53.6 %. For

comparison, the automatic system from Zhang et al. (2012),

that requires several part annotations during training, reports

an accuracy of 28.2 %. Note here that the selective search

and prime objectmaps are fully unsupervised, requiring no

human provided boxes, not even for training images, keeping

the amount of human intervention to the minimum of pro-

viding only image-level annotations for the training set. The

reason for their good performance in recovering bird loca-

tions is that birds often appear in isolation, with few other

objects in the image. As a result, the selective search and

prime bounding boxes usually concentrate around the most

prominent object, which is a bird in most cases.

For the dogs dataset the results are shown in the last

two rows of Table 5. For dogs, that often appear in a clut-

tered environment with many other objects, deformable part

objectmaps work best, be it for gravitational or grid align-

ments, reaching an accuracy of 36.8 % for both cases. After

the addition of color on deformable part objectmaps, we

obtain similar improvements as before, arriving at 47.2 and

49.0 % for gravitational and grid alignments respectively.

We conclude that fully automatic fine-grained categoriza-

tion is within reach. Using objectmaps as spatial priors allows

unsupervised alignments to have a competitive accuracy,

while requiring no user interaction regarding the parts nor

the location of the fine-grained objects.

4.6 Qualitative Analysis

Best recognized fine-grained objects. In Fig. 12 we plot

pictures from the Birds and Dogs categories for which unsu-

pervised alignments reach the highest accuracy. The results

for Birds are obtained with unsupervised gravitational align-

ments, whereas for Dogs with unsupervised grid alignments.

The fifteen birds with the highest recognition accuracy are

characterized by an extensive color palette on their plumage.

For example the European Goldfinch is easy to distinguish

based on the intricate color patterns of red patches on their

heads, followed by a black and white ring around their necks,

their white belly, brown back and black and yellow wings. It

appears that having several colors in different combinations

and on different bird locations explains why these specific

birds are easier to recognize than other species.

For Dogs we derive similar conclusions. First, as expected

the different dog species have different colors, yet their chro-

matic palette is significantly more limited than for birds. Nev-

ertheless, from the experimental results, see Fig. 10, we know

that color is also an asset. We conjecture that this is because

for dogs the color gradients are more important than the

color itself. The reason is that the color gradients locally

reveal a particular type of texture, usually characteristic of

the dog’s type of fur. For example the long, thin, “rasta”-

like hair colored with different gradients of gray identify

a Komondor, whereas the different gradients of brown and

yellow identify the shiny fur of a Sussex spaniel. Hence, for

Dogs extracting gradient based SIFT descriptors from differ-

ent color spaces appears to be a good design choice as well,

although the color variety is not as exotic as in the case of

Birds.

What are the limits of visual features? Here we examine

the other extreme, namely the categories which were diffi-

cult to recognize. In Fig. 13 we show images of the two most

confused pairs of bird categories, when only grayscale infor-

mation is used: Forster’s Tern versus Least Tern and Pelagic

Cormorant versus Red faced Cormorant. We observe that

all the confused pairs belong to the same family of species.

Indeed, their main differences are some colored details, e.g.,

the color of the beak. This is illustrated by a one-vs-one com-

parison of the birds in Fig. 13 and the color versions of them

in Fig. 1.

Now, we turn our attention to the case when also color is

considered. In Fig. 14 we show images of two highly con-

fused categories, when Opponent SIFT color features are

considered: Great Grey Shrike versus Loggerhead Shrike and

Caspian Tern versus Elegant Tern. These categories look very

similar. It is likely that these birds are taxonomized based on

some physiological, rather than purely visual, characteristics.

Indeed, when looking up the taxonomical motivation for the

Loggerhead Shrike and the Great Grey Shrike, we found that
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Fig. 12 Experiment 4: Some of

the best classified categories for

unsupervised alignments for

Birds and Dogs. For

completeness we draw the

detected boundaries after

segmentation, see black

contours. We observe that birds

and dogs in these sub-categories

have consistent appearance. It is

noteworthy, especially for Birds,

that most sub-species have very

distinctive color patterns, which

are well described by the color

Fisher vectors we extract. To

draw conclusions regarding the

limitations of visual features, we

present failure cases in

Fig. 13 and 14.
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Fig. 13 Experiment 4: Two of the most confused pairs of bird cate-

gories, when only grayscale information is used. On the left we have the

Forster’s Tern and Least Tern species, while on the right we have the

Pelagic Cormorant and the Red faced Cormorant. The visual similar-

ities between classes are remarkable, especially when no color is con-

sidered. Color is often necessary for telling such sub-categories apart

Fig. 14 Experiment 4: Two of the most confused pairs of bird cate-

gories after adding color with Opponent SIFT. The first pair of confused

birds contains the Great Grey Shrike and Loggerhead Shrike species,

whereas the second one the Caspian Tern and the Elegant Tern species.

These birds species seem very similar to each other, even after the

addition of color. It is likely that they are taxonomized based also on

non-visual criteria, such as anatomical or geographical ones. Indeed,

the main two differences between the Great Grey Shrike and Logger-

head Shrike are a the proportion between their head and their beak and b

their habitat, with Great Grey Shrike living in the north and Loggerhead

Shrike in the south

their main two differences are anatomical and geographical.

First, for the Loggerhead Shrike the proportion between the

head and the beak is usually larger2. Second, the two species

are parapatric3. The Great Grey Shrike appears in Northern

Eurasia and America, whereas the Loggerhead Shrike lives

in the southern Mediterranean zone. This type of anatomi-

cal or geographical information is unlikely to be recovered

from single pictures, where the birds appear in all sorts of

angles, viewpoints and scales and the context is limited. We

conclude that when this is the level of recognition required,

expert knowledge, metadata, or perhaps analysis of the envi-

ronment, as Darwin (1859) would argue, might be necessary

for guiding the machine further. For example, to recognize

the Great Grey Shrike from the Loggerhead Shrike we could

examine whether the surroundings correspond to a subarctic

or a temperate habitat respectively4, either in an automatic

fashion or via questions posed to the user (Branson et al.

2010).

What makes a Bobolink a Bobolink? Here we exploit

the properties of the linear SVM classifier, more specifi-

cally the additivity of the classification scores per feature

dimension (Maji et al. 2008; Gavves et al. 2012). Given a

2 http://en.wikipedia.org/wiki/Great_Grey_Shrike.

3 https://en.wikipedia.org/wiki/Parapatric_speciation.

4 http://www.allaboutbirds.org/guide/loggerhead_shrike/id.

sub-category c and its classification model wc, we retrieve

the dimensions d with the largest, positive weight values

d = argd ′ max wc
d ′ , since they contribute the most to the final

classification score. We then identify those pixels that have

the strongest Fisher response for the dimensions d of the sub-

category classifier wc
d . Due to monotonicity, the power and

ℓ2 normalization do not influence the outcome of this quali-

tative evaluation. We visualize in Fig. 15 results for the top

20 dimensions (|d| = 20) for the 20 pixels with the strongest

Fisher response using unsupervised alignments and Oppo-

nent SIFT.

Given the rough nature of the alignments we make sev-

eral observations from the visualizations. First, it appears that

the distinctive details appear consistently on similar locations

on the fine-grained objects. For the Boat tailed Grackle the

wide, round tail is the most distinctive detail. For the Red

face Cormorand, it is the red patch on the bird’s head. An

interesting case is the Hooded Marganser. What is consid-

ered very distinctive for this bird are the bright yellow eyes

and secondarily the black and white stripes on its breast. As

most birds have dark eyes, a brightly colored eye makes the

difference. On the contrary, the large back of the head is not

considered very discriminative and would probably be better

captured by HOG. Overall, it appears that Fisher operates

as a spatial hashing function, that builds a correspondence

between spatial details and certain feature dimensions. As a
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Fig. 15 What makes a Bobolink a Bobolink? Visualizing why birds

are recognized as certain sub-species. We first compute the d classifier

dimensions with the largest positive weights. Then, we detect the SIFT

descriptors for which we observe the maximum response for these d

dimensions. Finally, to generate the saliency maps we average the rec-

tangular patches on which the SIFT descriptors were computed. The

qualitative results show that the distinctive details appear consistently

on similar locations on the fine-grained objects. Furthermore, we gen-

erally observe that the most prominent appearance detail lies usually

on the head
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result, although a more precise object or part localization is

always welcome, employing features, such as Fisher vectors,

may largely have the similar effect.

Furthermore, we generally observe that the most promi-

nent information lies usually on the head. Placing special

importance on detecting the head is therefore justified and

may bring significant accuracy benefits, as has also been

shown by Liu et al. (2012); Parkhi et al. (2012); Chai et al.

(2013). Finally, we answer that a Bobolink is made by angu-

lar beaks and very sharp, black and yellow edges around the

head and the neck of a bird.

5 Conclusion

We aim in this paper for fine-grained categorization without

human interaction. Different from prior work, we show that

localizing distinctive details by roughly aligning the object of

interest allows for successful categorization of fine-grained

categories. In cases when an object pose can be confidently

extracted, it is beneficial to focus first on recovering the pose

and then detecting the interesting part locations: the anatom-

ical constraints imposed by a detected pose make sure that

the parts do not drift away. We also postulate that since fine-

grained parts differ usually more in their appearance than in

their shape, parts are better described by classification-based

encodings than shape-based descriptors.

Furthermore, we explore alternative uses of segmentation

for fine-grained categorization. We quantify the link between

segmentation accuracy and classification accuracy. We find

that when imperfect segmentations are to be expected, it

is better to include extra background than to omit part of

the foreground (Fig. 11). When one cannot expect bound-

ing boxes, we propose a methodology to recover the spatial

support of a fine-grained object, even in the absence of a

user-provided bounding box. Further, we show that refining

parts by segmentation improves fine-grained categorization

further (Table 1).

We perform experiments on the challenging CUB-2011

dataset composed of 200 bird species and on the Stanford

Dogs datasets composed of 120 dog breeds. Under a con-

trolled, oracle setting the experimental results indicate that

for rough alignments, distribution based features, such as

Fisher vectors, are a better choice than rigid features, like

HOG (Fig. 7).

We proceed with performing fine-grained categoriza-

tion on unseen images, obtaining high recognition rates

(Table 1, 2). What is more, the experiments reveal the impor-

tance of color SIFT in the recognition of fine-grained sub-

species (Tables 3, 4). Averaging the outputs of all color based

classifiers leads to 67 % mean accuracy in classifying Birds

and 57 % in classifying Dogs, a new state-of-the-art even

when compared with deep learning approaches that make

Table 6 Experiment 3B: Comparison for Birds with state-of-the-

art, without human intervention. Late fusion of unsupervised gravita-

tional alignments increases accuracy significantly. Here selective search

objectmaps are used

Method Accuracy (%)

Late fusion 53.6

Opponent-SIFT 51.6

RGB-SIFT 49.0

C-SIFT 48.9

Grayscale 40.6

Zhang et al. (2012) 28.2

Highest scores marked with bold

use of extra data. We attribute the high recognition rates of

supervised and unsupervised alignments encoded with color

Fisher vectors to two factors: first, the rough, but consistent

grouping of spatially neighboring fine-details and second, the

potential of the Fisher vectors in describing such fine-details,

even when the latter are not precisely localized.

In the absence of bounding boxes the proposed objectmaps,

built on off-the-shelf object hypothesis algorithms, provide

a good enough spatial support for the fine-grained object of

interest. With unsupervised alignments that expect no user

input such as bounding boxes, not even during training, we

obtain an accuracy of 53.6 %, where the previous best was

28.2 % reported by Zhang et al. (2012) (Table 6).

Finally, our qualitative analysis reveals that Fisher oper-

ates as a spatial hashing function, that builds a correspon-

dence between spatial details and certain feature dimensions

(Fig. 15). Therefore, even though a more precise object or part

localization is always welcome, employing features, such as

Fisher vectors, may largely have a similar impact. We, fur-

thermore, observe that computer vision alone cannot solve

all categorizations, as the subtle species differences might be

anatomical, epochal, or geographical (Fig. 14). In such situ-

ations, use of expert knowledge, active learning or metadata

would be necessary. For the majority of cases, however, local

alignments allow for accurate, and inexpensive, categoriza-

tion of fine-grained categories.
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