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Abstract. In this paper we investigate the Cauchy Problem for coupled Navier-
Stokes-Poisson equation. The global existence of weak solutions in Sobolev framework is
proved by using some compactification properties deduced from the Poisson equation.

1. Introduction. In this paper we deal with the existence of weak solutions for the
coupled Navier-Stokes-Poisson problem. The interest for similar models is originated
by the study of semiconductor devices. In the numerical simulation for semiconductor
devices, the hydrodynamical models represent an acceptable compromise between accu-
racy and computational efficiency. Their common feature is the fact that the number
of independent variables is reduced. Hydrodynamical models are obtained from the infi-
nite hierarchy of the moment equations of the Boltzmann transport equation by suitable
truncation procedures (see for instance [6], [7], [18], [19]), and from these are derived
the classical continuity equation, the momentum balance equation, and the energy bal-
ance equation ([2], [3], [10], [12], [13], [24]). In the case of a 1-D Euler-Poisson model,
some results have been obtained in [16], [17]. In the model system considered here, we
take into account the viscosity terms but we remove the equation regarding the energy
(temperature). The removal of the energy balance is not completely justified from the
physical point of view, since by adding viscosity it would be reasonable to include other
physical quantities leading to effects of the same order. Unfortunately, the mathematical
theory for the Navier-Stokes equation has been widely developed in the isoentropic case,
but for the system including the energy balance equation, it is still at the initial state
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(see [15] for details). In particular we consider the following system

dn
——K divlnu) = 0
at

+ div(nu <E> u) + V(an7) - /xAu — £X7divu = nVcp — nu

A <fi — n — b(x)

in the region 0 x (0, T), V- being a bounded connected open smooth domain in R . The
previous system is supplemented with the initial conditions

n(x, 0) = n0(x), n(x,0)u(x, 0) = n0(x)u0(x), <j>(x, 0) = <p0(x),

for any i 6 U and the Dirichlet boundary condition

u = 0 on dfl x (0, T).

Here n > 0 denotes the electron density, u G RN the particle velocity, V</> e KjV the elec-
tron field which is generated by the Coulomb force of the particles, the function b = b(x)
stands for the density of fixed positively charged background ions, p = an7, 7 > 1 is the
pressure density relation, and j = nu will denote the electron current density.
In this paper we construct the weak solutions by using fixed point methods and com-
pactness arguments; namely, we will consider the system

911
——b div(nu) = 0
ot

+ div(nu <g> u) + Vfan7) — fi\u — £Vdivu = vVip — nu
at

A cj> = n — b(x)

with a given potential ip. We will define the following fixed point map, from a suitable
Banach space X into itself, as follows. We say that

Aip = <fi if and only if A<f> = n — b(x),

where n solves the first two equations of (1.2) with prescribed tp. At this point we need to
show that the map A is well-defined in suitable functional frameworks and will have some
compactness properties to apply Schauder's fixed point theorem. The well-posedness of
A requires to show that the map ip —> n(ip) is well defined, namely that we can produce
a solution to the problem (see [15])

dn
— + div(nu) — 0

(1.3)
dnu
-7^—I- div(nu ® u) + Vian1) — /iAu — £Vdivu = nVip — nu.

Of course, the uniqueness problem to (1.3) is still a major open problem (see [15], Remark
7.7, pg. 180); hence we could produce, in principle, more than one map A. Hence the
lack of uniqueness for (1.3) will reflect also on our results. Moreover, we will have another



EXISTENCE FOR THE COUPLED NAVIER-STOKES-POISSON PROBLEM 347

source of possible nonuniqueness which depends on the use of Schauder fixed point theory.
A technical difficulty that one should keep in mind relies on the Lions theory, which
assumes tp 6 L°°(0, T; W1'2 " (7_1'(fi)), while in our case (j) is reconstructed by means of
divj and this entails a loss of regularity with respect to ip. We overcome this difficulty
assuming some restriction on 7. The plan of the paper is as follows. In Sec. 2 we recall
some of the theorems we are going to use later and we will define the kind of weak
solutions we are going to build up. In Sec. 3, by using the theory of P. L. Lions [15], we
investigate the existence of solutions for system (1.3). Then, in Sec. 4, we show that the
map A : A —> A' has a fixed point, which is our solution. Because of the nature of this
problem we cannot apply a contractive-type theorem but we will use a Schauder-type
fixed point theorem. In order to satisfy the requirements of this theorem we will get
some restrictions on the possible values of 7 and on the time. Hence this will provide
only a local solution for our problem. Later, by proving some uniform continuity in time
of the local solutions, we will get the global existence.

2. General Framework.
2.1. Preliminary results. In this section we will recall the basic notations and theorems

that will be used later 011. We begin with the following version of the Ascoli Arzela
Theorem (see [22], pg. 135).

Theorem 2.1. Let A be a compact metric space, Y a Banach space, and C(A; Y) the
Banach space of continuous functions from A to Y with the sup norm. A subset H of
C(X;Y) has compact closure in C(A;Y) if and only if

(i) H is equicontinuous, and
(ii) for every x € A the set H(x) = {f(x) | / € H) has compact closure in Y.

Since in our system (1.1) we have a Poisson equation, we need the following elliptic
regularity theorem [20]:

Theorem 2.2. Consider the differential equation

Lu = divAVu = divf + Ii, in fI (2-1)

where A = A(x) is a complex measurable matrix such that

A= H + R

where H and R are matrices such that the inequalities

A|£|2 < (HU) < Kl2 A>0
|i?|<(l-6))A 0<(9<1

hold for all relevant x and £. If fJ is a bounded smooth domain, then (2.1) has a unique
solution in W01,p(f2) for every complex vector field / = f(x) £ Lp(f2) and every complex
function h = h(x) G Lr(Q) with r* > p. The solutions satisfy

\\gradu\\LV(n.) < C\\f\\LP^ + ||/i||L-(n),

where C is a constant depending only on 6A, p, and r.

We recall the following interpolation theorem ([4], pg. 310):
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Theorem 2.3. Let / G LP(Q) n W2'r{£l) with 1 < p < oo. Then / G W1,9(fi) where

- = and
q 2 \p rj

ll/lk^(fl<c||/||^.P(n)||/||^2(n). (2.2)
In particular, if p = q = r, then

Il/Ilw".p(n) < c||/||^a,p(n)ll/llLP2(n)- (2-3)

2.2. Statement of the problem. We will look for global weak solution of the following
system

dn ,
——|- aivynu) = 0
at

—|- div(nu (g) u) + V(an7) — //Aw. — £Vdivu — nV<fi — nu (2-4)

A0 = n — 6(x)

in 12 x (0,T), £2 a bounded connected open smooth domain in RN, endowed with the
initial conditions

n(x,0) = no(x) (2.5)

n(x, 0)u(x, 0) = n0(x)u0(x) = j0(x)

0(x,O) = 4>o(x) for any x £ Q

and the Dirichlet boundary condition

u = 0 on dfl x (0, T). (2.6)

Here the viscosity parameters satisfy > 0, /z + £ > 0, moreover a > 0 and the adiabatic
constant 7 > 1, n > 0, u G RN, 0 G R. We assume the following conditions hold:
(A.l) 0O G Ll{0,r;W1'2T/('i,-1>(n)), 0 = 0 on ^ x (0,T), 0 = 0,
(A.2) b= b(x) G Lx(«),
(A.3) n0 > 0 a.e. in 52, n0 G n L7(12),
(A.4) j0 G L27/(7+1)(n), jo = 0 a.e. on {n0 = 0}.
(A.5) |j0|2/n0 G L1(il) defined to be 0 on {no = 0} and no 7^ 0.

The conditions (A.l), (A.2), (A.3), (A.4), (A.5) are required to fit into the Lions frame-
work [15]. At this stage, we are not imposing any further restrictions. We introduce here
the notion of weak solution we are going to build and use.

Definition 2.4. By a weak solution of (2.4), we mean (n,u, 0) satisfying (2.4) in the
sense of distributions such that

n G L°°(0, T: L7(Q)) n C([0, T]; Lp(SI)) for 1 < p < 7, n > 0 a.e. (2.7)

Vji£L2(0,T;L2(0)), n|u|2 G L°°(0. T■. L1 {i})) (2.8)

j = nu G C([0, T], L27^7+1)(fi) - weak). (2.9)
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0 c *!(<»)} if tv > 2 (2.10)

<t> e /.'((). if N = 2 and 7 > 2
0 € Lx(0,T; VF1,3/2(r2)) if TV = 3 and 7 > 6.

The above notion of weak solution is very natural in this frame since it simply follows
from the energy identity which we will obtain in the next section.

3. Existence for the Navier-Stokes equations. This section is devoted to the
analysis of the first two equations of the system (2.4), namely, the Navier-Stokes equations

3 71
——b divinu) = 0 (3.1)
at
dinui)
——-—|- divinuui) + dAan7) — fxAut — £didivu — nVo — nui, (3.2)

at

1 < i < N, in D-. a bounded connected open smooth domain in 'SLN, where fx > 0,
//, + £ > 0, a > 0, and 7 > 1. Moreover, in this case tp = ip(x,t) is fixed; it is a given
function corresponding to the force terms on £] x (0.'/') for some fixed T G (0, 00). We
assume the following Dirichlet boundary condition

u = 0 on dCl x (0, T), (3.3)

and the initial conditions

n\t=o = n0 in 12, 0 = jo in O. (3.4)

In this section we report the main ideas from P. L. Lions's book [15] with some modifi-
cations in order to take into account the presence of the electric field and the collision
term nu.

3.1. Estimates for the Navier-Stokes equations. We begin with some a priori estimates
and compactness results.

3.1.1. A priori estimate. We specify better our initial condition; namely, we assume
that no, jo satisfy

no > 0 a.e. in no € Ll{Q) fl L7(f2), jo C L27/'7+1'(il),
jo = 0 a.e. on {no = 0} (3.5)
|j0|2/n0 defined to be 0 on {no = 0} £ Lx(fl) and no 7^ 0,

and for the moment we take xp G I. (0.ir '-'(S>)). From Eq. (3.1) we get that
n remains non-negative for all t > 0 and that Jn n(t)dx is independent of t > 0. In
addition, multiplying (3.2) by u, we deduce that

d\u\2/2 ,-Jul2 . \u\2 s ,n ,2 ,• \2n—  1- nu ■ V — AtA-- t;dw(udivu) + ^\Du\ + £(divu)dt 2 2

+ tt I —~—n I + div (u 0^ ny ) = nu ■ V1/3 — nu2. (3.6)dt V* • 1 / V 7 - 1
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Integrating (3.6) with respect to x and remembering the boundary condition on it, we
deduce that

d
dt

[ in——I ——nn\ dx+ [ [i\Du\2 + ^{divu^dx = I nuVvpdx (3.7)
Jn { 2 7-1 J Jn Jn

— / nu2dx
Jn

and obviously jn(divu)2dx = fndiUjdjUidx < ju\Du\2dx. Since /i > 0, /u + £ > 0, we
deduce from (3.7) that we have for some v > 0

~T I —I  —7,1X dx + v [ \Du\2 < I nu-Wi/jdx- I nu2dx. (3.8)
Jn I 2 7 - 1 J JQ ,/s2 Jn

Taking into account the condition on if), we have

/ nuVtpdx < ||nu||L2v-r+i(Q)||VV'||L2-,/T-i(n)
Jn

< ||v/"llL2^(n)llv/"w||L2(n)||Vi/'||L2-,/7-i(fi).

Setting

E(t) = [
Jn

and integrating on t, we have the following energy inequality

E(t) + v I f \Du\2dtdx + I f nu2dtdx < E(0) + / E(s)ds. (3-9)
Jo Jn Jo Jn Jo

Applying Gronwall's lemma, we get

E(t) < cect.

In this way we have proved the following

Theorem 3.1. Suppose (n, u) is a weak solution of (3.1), (3.2), Suppose that (A.l),
(A.2), (A.3), (A.4), (A.5) hold. Then n e L°°(0, T; L7(0)), V« e L2(0,T\ L2(Q)),
n\u\2 e Ll([0,T] x tt), nu e C([0. T], L2^^+1> - weak).

Finally, we remark that since we have Dirichlet boundary conditions, we get also
u £ L2(0,T;H^{n)).

3.1.2. Compactness results. Existence results often follow from the analysis of the
convergence of sequences of solutions and of the passage to the limits inside the equations.
In this section we briefly report the results of P. L. Lions [15] on the analysis of the
convergence and of the compactness of solutions. So we suppose to have a sequence
of weak solutions (nk,uk) of (3.1) and (3.2) with ip replaced by ipk and some initial
conditions

nk\t=o = nk in 0, nQUk\t=0 = jo a.e in fl. (3.10)

We always assume that nq, j'q satisfies (3.5) for all k > 1, and that (no)k>i is bounded
in LX(S1) nP(J]), (jo)k>i is bounded in L2'y^1+X\il)1 and (|j'o |2/no)fc>i bounded in
Ll(Sl). By the energy inequality we can assume that

• ("fc)fc>i is bounded in L°°(0, T; L1 fl L1 {{).)),
(nfe|wfc|2)fc>i is bounded in L°°(0, T; L1(fi)), and
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• (ufc)fc>i is bounded in L2(0, T; (0)).
Without loss of generality (extracting subsequences if necessary), we can assume that

• nk —^ n weakly in L7(f2 x (0, T)) and n G Loo(0,T;L1 flL7(f2)) n > 0 a.e.),
• itk u weakly in L2(0, T; 7/q (S7)),

—*■ yjn weakly in L2l(Q x (0, T)),
• \fn^uh —*■ u weakly in L2(0 x (0,T)) and i> € L°°(0, T; L2(Q)),
• nfcufc ->■ j weakly in L27/(7+1)(f2) and j G L°°(0, T; L27^7+1)(fi)),
• nku\uh —>■ ejj in the sense of measures on x (0, T) and is a bounded measure

on Q for almost all t € (0, T) which is bounded uniformly in t, G (0,T),
• nkV4>k nVxjj weakly in L7(f) x (0,T)).

In order to get compactness it is necessary to assume some a priori bounds on nk that
don't follow from the energy estimate. These bounds will be proved in the next section
when we deal with the existence question. We thus assume that for some fixed q > 2,
q < 7, s > N/2

(nk)k>i is bounded in L"(0, T; L"(K)) n L°°(0, T; Ls{SI)) I< c SI, compact set.
(3.11)

Now we can report the following theorem [15]:

Theorem 3.2. (1) We always have: v = ynu, j = nu, eij = n,UiUj a.e in S7 x (0, T) for
all 1 < i,j < N.
(2) If, in addition to the above assumptions, we assume that rig converges in L1(fi) to
no, then (n,u) is a weak solution of (3.1), (3.2) satisfying the initial conditions (3.4) and
we have

nk—>n in C([0, T\; Lp(Sl)) n Lr(K x (0, T)) (3.12)
for all 1 < p < s, 1 < r < q,

nkuk —» nu in Lp(0, T; Lr(S})) for all 1 < p < oo, 1 < r < 27/(7 + 1),
uk—>u in Lp(Sl x (0,T)) n {n > 0} and in L2{Sl x (0,T)) n {n > <5} (3.13)
for all 1 < p < 2, for all 5 > 0,

nkukuk—> nuiuj in Lp(0, T; Lx(fi)) (3-14)

for all 1 < p < 00, for all 1 < i,j < N.

One of the main tools in the proof of Theorem 3.2 is the use of renormalized solutions
of (3.1), (3.2); namely, u G L2(0, T; Hloc(Sl)), n G Lfoc(Sl) satisfying (3.1), (3.2) are
renormalized solutions of (3.1), (3.2) if they satisfy

d ^ + div(u(3(n)) + (divu)[f3(n) — /3'{n)n\ = 0

for any (3 G C1([0,00)) such that

3C > 0, for all t > 0, \0'(t)\ < C{ 1 + t)a
with a = (q — 2)/2, and also

{3(nk){(p + £)divuk — a(nfc)7} —^ /?{(//. + Qdivu — ap} in V,
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where (3, p are the weak limits of (nA')7, (3(nk) respectively. The use of the assumption
(3.11) is also important in passing into the limit in the terms such as nk[ukRij](nkukj),
where the operator R,j = ( — Ais bounded in all Lr spaces for 1 < r < oo.

3.2. Existence results. In this section we are going to prove the existence of a solution
(n, u) of (3.1), (3.2).

3.2.1. A priori bounds. We always assume that no, jo satisfy

no £ L1(fl) fl L7(i)) no > 0 a.e. in fi, no i=- 0,
jo G L27//'7+1)(f2), jo = 0 a.e. on {n0 = 0}, (3.15)
|jo|2/n0 G Lx(17) defined to be 0 on {no = 0}.

Following [15], in this section we take a more general hypothesis on

V0 G L1(0.T;L27/(7-1)(f])) +L2/(1+Q)(0,T:Lr(0)), (3.16)

where a = (2 — 7) + , i + - (l — §) + § + ^ = 1, and q = ^ N > 3, q is arbitrary
in [2, 00) if N = 2. Then from the energy estimate we have the natural a priori bounds

u G L2(0,T;//,}(«)), n G L°°(0, T; Ly(il)), n\u\2 G i1([0, T] x fl). (3.17)

In the last section the assumption (3.11) was important. Here, we want to derive this
crucial a priori estimate 011 n.

Theorem 3.3. Let (n,u) be a solution of (3.1), (3.2). We assume that V0GL1 (0, T: L3/2)
if TV = 3 and 7 > 6 and V'lp G L1(0,T; L2) if N = 2 and 7 > 2. We assume in addition
that n G LP(K x (0, T)) with p = max(p, 2) and p = 7 + ^7 — 1, K being an arbitrary
compact set in il. Then, n is bounded in L''(K x (0, T)) in terms of bounds 011 the data
only.

Remark 3.4. It is possible to provide some explanation for the exponent p occuring
in the above result. Indeed, 011 one hand n £ Lf°(L7), and on the other hand, if we
simply expect n7 and nu®u to have the same integrability, we deduce that n7 should
belong to L](Lx^Nsince u G L2(L^(jV_2)) by Sobolev embeddings. These two
bounds imply by interpolation that n G L'^ t, with p = 7 + ^7 — 1.

We will give only a sketch of the proof of Theorem 3.3, emphasizing the parts in which
some modifications are needed because of the collision term nu.

Proof. There is nothing to prove if 7 < 4y, since in that case, p < 7 — 1 and n G
L°°(0.T: Ll fl L1). Therefore, in all that follows, we assume that 7 > y. Since we are
in Dirichlet boundary conditions we have to localize our problem. I11 order to do so, we
introduce for any compact set K C 12 a cut-off function ip G C^°(f2) such that 0 < < 0,
Lp = 1 011 I\, and > 0 on il. We then apply the divergence 011 Eq. (3.2):

d

Multiplying by ip we obtain

— div(nui) + didj(nUiUj) — (// + £)A divu + A (an7) = div(n\7ip) — div(nut

d
— (<pdiv(nui)) + didj(ipnUiUj) — (p, + ^)A(<pdivu) + A(ap7i1") I=div(<pnS7ip)

— ipdiv(nui) + F,
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where F is given by

F = (dijip)nUiUj + 2diLpdj(nUiu) — (/i + £)Atp(divu) + aAipn1 (3.18)

— 2(// + £)V<p ■ Wdivu + 2aV</? • Vn7 — nVipVtp.

Now, applying the operator A-1 and multiplying the above equation by ne, 9 = p — 7,
we obtain

d
cnpriy+8 = 7— [n (—A)~l (ipdiv(nu))\ + div[un9 (—A)-1 {ipdiv(nu))\ — ne(—A)_1F

Ot

— ne {—A)"1 div^nWip) + n8 (—A)-1 ((pdiv(nu,)) + (fi + £){p(divu)n9

+ ne{RiRj(ipnuiUj) — u ■ V(—A)_1 (tpdiv(nu))}

+ (0 — l)(divu)ne (—A)-1 (ipdiv(nu)), (3.19)

where RiRj = (—A)~1didj. We consider first when N > 3. If N > 3, we get an
Llx t bound on <pn1+e = ipnp and thus 011 fKnpdx. In fact, by integrating (3.19) over
V, x (0,T), we deduce that

[ f npdxdt.<C + C ( n9(—A)~1(ipdiv(nu))dx
Jo Jn Jn

+ f dt f dx\divu\ne{\ + |(-A)~l div(nu)\)
Jo Jn

+ C dt dxne\RiRj((pnuiUj) — UiRiRj(<pnUj)\
Jo J n

+ C I dt f dxn9\( —A)~1div(i^V'0)|
Jo Jn

+ f dt f dxne(—A)~lF + ne(—A)~1(tpdiv(nu)). (3.20)
Jo ./si

We focus our attention on the bound in Lx(f2 x [0,T]) of the new term

ne{—A)~1(<pdiv(nu)).

Now we recall that n1 and n\u\2 are bounded in L°°(0,T; L1), while Du is bounded in
L2(fi x (0, T)) and u (using Sobolev embeddings) is bounded in L2(0, T; L2JV/,JV~2(S1)). In
particular, using Holder inequality, nu is bounded in L°°(0, T; L2y^+1) fl L2(0, T; Lr)
where £ = + i, and thus ne(—A)~1(ipdiv(nu)) G Loo(0,T;L1 ULS) where A =

7 + "27 N = N + 2 — £<!• The other terms are handled in the same way as in
[15]. We deduce then from (3.19) that

f f ipnpdxdt < C
/ 0 J n

1 + (/ / nP"V<y9'P/7 + 'AlP\p/l}dxdi^j (3.21)

to get

f f ipnPdxdt < CI + ( f f ipnpdxdt\ <C1+Tl ^ ( f ipnpdxdt.
'0 Jo. Wo Jn J Jo Jn
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Remembering that tp = 1 on K C i}, a compact set, we obtain the desired estimate when
n > 3.
Finally we consider the case when N = 2. In that case we need to handle in a different
way the terms n9{RiRj(ipnUiiij) — u ■ V(-A)_1(ipdiv(nu))} and
[divune( — A)~1(<pdiv(nu))}. After some calculation we have only to consider
ne{RiRj(ipnuiUj) — UiRiRj(ipniij)} and divun8(—A)-1 (div(ipnu)). In order to do so, we
are going to multiply (3.21) by tpm for some m to be determined later on. Here we follow
[15] exactly, but we point out that to estimate the term {RiRj(ipnUiUj) — UiRiRj(ipnUj)},
we use the fact that u is bounded in L2(0, T;Hl) and thus in L2(0, T: BMO). Then, by
the Coifman-Rochberg-Weiss commutator Theorem [5], we have for almost all t 6 [0,T]

||RiRj(ipnUiUj) - uiRiRj(ipnuj)\\L2P/(P+i) < C\\u\\BMo\\nu\\L2P/ip+i),

and we finally deduce that

||n8{R, Rj {<pnulUj) - < Rj {ipnuj)} || j2p/(p+l) ^ C\\nf'? . (3.22)
^x ,1 ■L/x.t

Hence, if we choose m such that mp/9 > 1 + m and 2p > 1 + m, then we have

JodtLipl+mnPdx-C(1+yi+m/p'<^w])

if we choose m such that mp/8 > 1 +m. In conclusion, the proof is complete, provided we
choose to and tp such that V<^m < C holds and 1 + m < 2p, mp/9 > 1 +m. In particular
we may take to = 1 and we conclude since p > 1 and p = — 1 > 20 = 2(7 — 1). □

3.2.2. Existence. We recall the notion of weak solution. We require n and u to satisfy
(3.1), (3.2) and

n G Ioo(0,T;L1nL7(fi))nC([0,7l,Lr(fi)) for all 1 < r < 7, n > 0 a.e. (3.23)

u G L2(0,T; Hq{Q)), n\u\2 e L°°(0, T; Lx(0)) (3.24)

nu e C([0,r],L27/(T+1)(n) - weak). (3.25)

Finally, as in Theorem 3.3, we assume that VV> € L^O. T; L3/2) if N = 3 and 7 > 6 and
<E Ll(0,T-,L2) if N = 2 and 7 > 2.

Theorem 3.5. Under the above conditions, and if we assume that 7>|ifiV = 2, 7 > |
li N = 3, and 7 > y if N > 4, there exists a solution (n,u) of (3.1) and (3.2) satisfying
the initial conditions (3.4) and such that n e LP(K x (0, T)) for any compact set K C 0,
where p = 7 + — 1. In addition (n,u) satisfies the following energy inequality for
almost all t e [0. T]\

/' IliP CL f
/ n——I -nJd,x+ / ds / fj\Du\2 + ^{divu)2 + nu2dx

Jsi 2 7 — 1 J0 Jq

— [ —1 -n^dx + [ ds [ nuVipdx. (3.26)
Jn 2 no 7 — 1 ,/0 Jq

Moreover, for any R > 0, if

lno||z,-<(S2) < R llio||L2^/h + 1)(n) ^ R ,|t.'||ij-i.2-,/(-, ii(£jj < R,



EXISTENCE FOR THE COUPLED NAVIER-STOKES-POISSON PROBLEM 355

then there exists c(R) > 0 such that

IW^)llz,°°(0,T;L'»(fi)) < C(-R) lli(->OllL~(0,T;L27/(7+i)(f!)) <c(R). (3.27)

Remark 3.6. The uniqueness of solutions, the regularity of solutions, and the fact
that this energy inequality (3.26) might be an equality are outstanding open questions.

Remark 3.7. It is possible to prove that the momentum j = nu of the Navier-Stokes
equation has actually some time regularity with values into L2TMT+1) endowed with its
strong topology (see [8] for details).

The proof of Theorem (3.5) will be made "backwards": if Eq. B approximates Eq. A,
we first explain how solutions of A can be obtained from solutions of B before explaining
how to obtain the latter via solutions of C. Here we report for completeness the first step
of the proof from [15].

Proof. We consider a "periodic box" Q = rii=i(ai'M such that 0 C 0; without loss
of generality, we may take cii = 0 and set T; = bi — di for 1 < i < N. Then we introduce
p G C°°(R ), periodic in each xl of period T, for each i G {1,..., iV}, such that p = 0
in fi, p > 0 in Q — Q. We then consider the following problem in RA x (0, T), where the
solution (n£,u£) is required to be periodic in xl of period T, for each i and e G (0.1]:

^-• + div(n£u£) = 0 n£ > 0

(3.28)
8( g" )+div(neu ® u£)+aV(n£)y - pAu£—^'Vdivu£+~pu£=n£Vip^n£u£,

where ?/> is an extension of ^ to Ox (0 ,T) by 0 and is then extended periodically to
M.N x (0,T). Now we assume to have a solution (ne,ue) of (3.28) satisfying all of the
properties listed in Theorem 3.5 and (3.26) is replaced by

r 1 . c.O ^ . /*,/*■ -  c,1) c i 1n"-\ue|2
2' 1 7-1

{n£ydx + f ds [ p,\DuE\2 + £(divu6)2 + n£\u£\2 + -pu£dx
Jo -hi £

in ~ no 1 — 1 Jo Jn
< / - — 1 -rigdx + ds n£u£\/ipdx. (3.29)

Of course, n£|t=o = no, n£u£\t=o = jo, and (^o^ jo) are periodic extensions of (no, jo)
by 0. The inequality (3.29) yields bounds on (ne)7 in L°°(0, T\ L1(0)), on n£\ue\2 in
L(yi x (0,T)), on u£ in L2(0, T; iJ1(fi)), and on \pu£ in L1(f2 x (0,T)) uniformly in e.
In addition, Theorem 3.3 yields a bound on (nE) in LP(K x (0, T)) for any compact set
K C 0, where p — 7 + % — 1. Extracting subsequences if necessary, we may assume
that n£ converges weakly in Lr(0,T; L7(Q)) for all r e (l,oo) as e goes to 0 to some
n G L°°(0,T; L7(0) D LP(K x (0, T)) for any compact set K C fi, and we may assume
that ue converges weakly in L2(0,T; Hl(£l)) as e goes to 0 to some u. In addition, since

pu£ is bounded in L2(fl x (0,T)), ^/pu£ converges to 0 in L2(Q x (0,T)) and thus

pu = 0 in SI x (0,T). Therefore u = 0 a.e. in (0 — Q) x (0,T). Since 51 is smooth, this
implies that mGL2(0,T; Hq).
Finally, in order to conclude, we simply observe that we can apply Theorem 3.2 to the
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sequences (nE,ue). In fact we can apply part (1) and part (2) of Theorem 3.2. Finally
from the energy inequality (3.26) we get (3.27). Now we have to show how to construct
a solution for (3.28); for this we can follow [15]. □

4. Existence for the Coupled Navier-Stokes-Poisson equation.
4.1. Local existence. We recall we are studying the following problem:

dn
——|- divlnu) = 0
at

—f div(nu <g) u) + V(an7) — fiAu — Sydivu = nS7<p — nu (4-1)

A<fr = n — b(x)
with the initial conditions (2.5), the boundary condition (2.6), and the hypotheses (A.l),
(A.2), (A.3), (A.4), (A.5). We wish to solve the previous problem by using a fixed point
argument on the potential </>; namely, we consider

Oti
——|- divinu) = 0 (4.2)
at

- + div(nu <g> u) + V(an7) — // Aw, — ES/divu = n'Vip — nu (4.3)

A (p = n — b(x) (4-4)

with the potential if) given. We assume the initial condition (2.5), the boundary condi-
tions (2.6), the hypotheses (A.l), (A.2), (A.3), (A.4), (A.5), and the following hypothesis
for all T > 0:
(A.6)

il> G L1(0, T; W1'2t/(t-1)) if N > 2,

e L\0, T; W1'2) if TV = 2 and 7 > 2.
6 Ll{0. T; Wh3/2) if N = 3 and 7 > 6.

We now define the mapping for which a fixed point will yield a solution of (4.1). Let us
denote by

F(01T1;i?) = {^L1(0,T1,lf1^-1(n)) | \\cf> - < #}

if TV > 8 and 7 > N/2 or 4 < N < 8 and 7 > 5N/(N + 2) or N = 3 and 3< 7 <6,

F(0,T1-,R) = {<l>£L1(0,TuW1'i((l)) | < R}
if N = 2 and 7 > 2, and

F(0,Ti-.R) = |<^ € T\,W 1,3//"(ri)) | \\(f> - ^>o||n(o,T1,iy1.3/2(a)) -

if N = 3 and 7 > 6.

We define a map from F(0. T\; R) into itself as follows:

A : F(0, T\\ R) —> F(0,Ti;i?)
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and
Aif) = cj> if and only if A(f> = n — b(x),

where (n. u) is the weak solution to the Navier-Stokes equation (4.2), (4.3) with a given
potential ip. The map A is well-posed, since from the previous section we have the
existence of weak solutions to (4.2), (4.3) in any arbitrary time interval [0, T). Now we
show the existence of a fixed point which will give a local weak solution to (4.1) with the
regularity defined in (2.7), (2.8), (2.9), and (2.10).

Theorem 4.1. Suppose that (A.l), (A.2), (A.3), (A.4), (A.5), (A.6) hold. Then if N > 8
and 7 > N/2 or 3 < N < 8 and 7 > 5N/(N + 2) or N = 3 and 3 < 7 < 6, there exists
Ti > 0 such that the map A is continuous and compact.

Proof. From Theorem 3.5 we have that n is bounded in L°°(0. T; L7(^)), while j = nu
is bounded in L°°(0, T; L27/7+1(Sl)). More precisely, there exists a constant c(R) > 0
depending only on the initial data such that

\\n ~ no||z,°°(0,T;L~<(fi)) < c(R) ||j||Loo(0,T;L2-'/^+1)(fi)) — C{R)■

From the Poisson equation (4.4) we get in the sense of distribution

div [V(/>t] = —divj (4-5)

and applying the elliptic regularity Theorem 2.2 we have

II- </>o(-)IUs(o) < ~ <M-)llw1.27/^+1>(Q)
— Il0('^)_ <M')llw'i-2^/h+i)(fi)
— illillLoo(0,T;L2T/<^ + 1)(n)) — tc(R),

where s is the Sobolev exponent of ■ We can also observe that

A<p(-,t) - A0(-,O) = n{-,t) - n0(•■),■

and so, applying Theorem 2.2 again we get

||Aip(-,t) - <M-)||w-^(n) ̂ IW'4) - ™o(-)lli^(o) < c{R).
Now we apply (2.2) of Theorem 2.3 to have

\\Aip(-,t) - < ■<#■(*>*) - - <M-)IIl,2(q)
< c{R)t1/2,

where q = ^2 anc' provided that q < s, which is true if N > 8 and 7 > N/2 or
3 < N < 8 and 7 > 5N/(N + 2). We have

|| Aip - </'o||L1(o,Ti,vy1.2T/(7-i)(n)) < c(R)Ti ^ •

Now taking, for instance,

! / R \
Tl 2 {c(R))

2/3
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we get that A is continuous from F(Q,Ti\R) into itself. Finally, we have to show that
A is a compact, map. It is sufficient to see that the range of A is relatively compact.
Applying Theorem 2.2 again we have, taking •(/> e F(0, T\: R),

\\Alp(-, t) — s)||W,-1,2t/(7 + 1) < C\t — s|||j||I/oo(0^T.i2-I/(:^ + l)(Q)) < c(R)\t — s|,

so AF(0,Ti\ R) £ C1/2 (0.|!(S>)). Moreover, since .4{,••(•. / } — <po(-) G
W01,7(O) fl VF2,7(f2), by using the hypotheses on 7 we get AF(0,7\;R), for any fixed
t, is relatively compact in Wl,2l> (7_1)(f2). I11 this way, all the hypotheses of Theorem
2.1 are fullfilled and we get, finally, the compactness of the map A. □
Now we investigate what happens in the other cases.

Theorem 4.2. Suppose that (A.l), (A.2), (A.3), (A.4), (A.5), (A.6) hold. Then if = 3
and 7 = 3 or 7 > 6, there exists 7\ > 0 such that the map A is continuous and compact.

Proof. If 7 > 6 by hypothesis (A.6), we can take ip £ L1(0, Ti, H/1,3,/2(f7)), arid so by
Theorem 2.2 we have

— 0o(Ollwi«« < < ̂ IIj''IIl°°(o,t;l2-t/(-'+i)(o))
<m,

and, moreover,

IIAlp — (fioIJ/,1 (q,Ti,W1'3/2(Q))" < c(i?)T2.
When 7 = 3, by applying the Sobolev embeddings theorem and the elliptic regularity
theorem, we get

where s is the Sobolev exponent of ^X.. Using the interpolation inequality (2.3) of
Theorem 2.3 we get

||V0(-,i) - V0o(-)||z^(n) < - ■0o(-)llwl"y(n)t) -
If s > 7 we get

||V0(-,t) - V0o(OII^(n) < c(i?)1/2||0(-,t) - Oo(-)!./,n»i
< c(J?)t1/2||j||xBo(o,T,L2T/^+1)(n)) ^ c(i?)t1/".

Now provided 7 > and choosing t sufficiently small, we get as in the previous

theorem our result. We have only to verify that -^y < 7 < s, and this is the case if
7 = 3 (actually this is the only case). As in Theorem 4.1 we get the compactness of
A. □
Finally we investigate the case N = 2.

Theorem 4.3. Suppose that (A.l), (A.2), (A.3), (A.4), (A.5), (A.6) hold. If ./V = 2 and
7 > 2, there exists T\ > 0 such that the map A is continuous and compact.

Proof. In the case N = 2 and 7 > 2, we follow the same argument of Theorem 4.1
with the difference that, in this case, ,s = 27 and q = and since 7 > 2 we have q < s.
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The compactness of A follows by using Theorem 2.1 in the same way as in Theorem
4.1. □
Now we can conclude with the main result in this section:

Theorem 4.4. Suppose that (A.l), (A.2), (A.3), (A.4), (A.5), (A.6) hold. Then if N > 8
and 7 > N/2 or 4 < N < 8 and 7 > 5N/(N + 2) or N = 3 and 7 > 3 or N = 2 and
7 > 2, there exists a local solution of system (2.4).

Proof. The theorem is a consequence of Theorem 3.5 and Schauder's fixed point The-
orem ([21], pg. 84). In fact, by Theorem 3.5, we get the existence of n and u in an
arbitrary time interval for (4.2), (4.3). Using Theorem 4.1, Theorem 4.2, and Theorem
4.3, we can apply Schauder's fixed point Theorem ([21], pg. 84) to the map A, getting a
fixed point for the map A. Namely, there exist </> E F(0,R) such that A0 = n — b(x);
that is our solution to the Cauchy problem. □

4.2. Global existence. From Theorem 4.4 we have the existence of a local weak solution
(n, u, (/>) in a time interval [0, T*), where T* is the maximal time of existence. We want
to prove that we can extend the weak solution of the system (4.1) to the whole interval
[0,T*]. From the energy estimates follows

Theorem 4.5. Let (n,u,4>) be a local weak solution of system (4.1); then j = nu is
equibounded in L°°(0, T*\ L2l^1+1\?l)).

Proof. Multiplying Eq. (4.3) by u and integrating with respect to x and remembering
the boundary conditions on u, we deduce that we have for some v > 0

d f /„M_ + "A dx + „ f ]Du?dx + ?iz2 f nbJ!ic
Jq { 2 7-1 J Jn 27 Jq 2

fnn~'dx + (4-6)

dt

< 7 + 1
47

Using Gronwall's lemma we get for any t £ [0,T*)

i-T*

and

|n"^2—^ dx < C\ + C2 J ||V0(-,a)||ia,/,-!(„)

lli(^!lL»i«n) < l|n(,^>lll(2(n)llriu2(-'t)llLi2(n)

< C\ + C2 f j|V0(-,s)||L27/-,-i(Q)ds.

By Theorem 2.2 and the previous estimates we get (from (4.1))

A
dt L27/(7 + l)(Q) < || V04(',t)||L27/7 + l(Q) < ^27/(7 + l)(Q)

< C\ + C2 sup || V^(-, i)IL27/-y-i(n).
tG[0,T«]

By Gronwall's lemma there exists M > 0 such that

sup ||V$(-,t)||L27/7+i (m<M
t€[0,T*]
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from which follows the equibound oil j = nu. □

Corollary 4.6. Suppose T* is the maximal time of existence of the solutions of system
(4.1) and that the hypotheses of Theorem 4.4 hold; then

^C1/2(0,ri;ir1*1»(n)) if AT > 2, (4.7)

(A e C1/2 (0. Ti; W1,2(fi)) if N = 2 and 7 > 2, (4.8)

(j) G Lip{0. Ti; W1,3/2(fi)) if N = 3 and 7 > 6; (4.9)

moreover, <fi is equicontinuous in time.

Proof. Combining the equation of system (4.1) and Theorem 2.2, we have

~ 4>o(-' s)lllVi.^/(-v + D(n) < \t - s||b'||L«=(0,T*;L2T/^+i).(Q5);

by Theorem 4.5 and the values of 7 we get the equicontinuity in time of <f>. □
By the previous results and by using standard continuation methods, we obtain the
following globally in time existence theorem.

Theorem 4.7. Assume that N > 8 and 7 > N/2 or 4 < N < 8 and 7 > 5N/(N + 2)
ox N = 3 and 7 > 3 or N = 2 and 7 > 2. If (A.l), (A.2), (A.3), (A.4), and (A.5) hold,
then the system (2.4) has a global weak solution satisfying (2.7), (2.8), (2.9), (2.10).
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