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Abstract

This article is a guide to the literature on existence theorems for the Einstein
equations which also draws attention to open problems in the field. The local in time
Cauchy problem, which is relatively well understood, is treated first. Next global
results for solutions with symmetry are discussed. This is followed by a presentation
of global results in the case of small data, and some miscellaneous topics connected
with the main theme.

1 Introduction

Many of the mathematical models occurring in physics involve systems of partial dif-
ferential equations. Only rarely can these equations be solved by explicit formulae.
When they cannot, physicists frequently resort to approximations. There is, how-
ever, another approach which is complementary. This consists in determining the
qualitative behaviour of solutions, without knowing them explicitly. The first and
most fundamental step in doing this is to establish the existence of solutions under
appropriate circumstances. Unfortunately, this is often hard, and obstructs the way
to obtaining more interesting information. It may appear to the outside observer that
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Alan D. Rendall 2

existence theorems become a goal in themselves to some researchers. It is important
to remember that, from a more general point of view, they are only a first step.

The basic partial differential equations of general relativity are Einstein’s equa-
tions. In general they are coupled to other partial differential equations describing
the matter content of spacetime. The Einstein equations are essentially hyperbolic in
nature. In other words, the general properties of solutions are similar to those found
for the wave equation. It follows that it is reasonable to try to determine a solution
by initial data on a spacelike hypersurface. Thus the Cauchy problem is the natural
context for existence theorems for the Einstein equations. The Einstein equations are
also nonlinear. This means that there is a big difference between the local and global
Cauchy problems. A solution evolving from regular data may develop singularities.

A special feature of the Einstein equations is that they are diffeomorphism invari-
ant. If the equations are written down in an arbitrary coordinate system then the
solutions of these coordinate equations are not uniquely determined by initial data.
Applying a diffeomorphism to one solution gives another solution. If this diffeomor-
phism is the identity on the chosen Cauchy surface up to first order then the data
are left unchanged by this transformation. In order to obtain a system for which
uniqueness in the Cauchy problem holds in the straightforward sense it does for the
wave equation, some coordinate or gauge fixing must be carried out.

Another special feature of the Einstein equations is that initial data cannot be
given freely. They must satisfy constraint equations. To prove the existence of a
solution of the Einstein equations, it is first necessary to prove the existence of a
solution of the constraints. The usual method of solving the constraints relies on the
theory of elliptic equations.

The local existence theory of solutions of the Einstein equations is rather well
understood. Section (2) points out some of the things which are not known. On
the other hand, the problem of proving general global existence theorems for the
Einstein equations is beyond the reach of the mathematics presently available. To
make some progress, it is necessary to concentrate on simplified models. The most
common simplifications are to look at solutions with various types of symmetry and
solutions for small data. These two approaches are reviewed in Sections (3) and (4)
respectively. Section (5) collects some miscellaneous results which cannot easily be
classified.

The area of research reviewed in the following relies heavily on the theory of dif-
ferential equations, particularly that of hyperbolic partial differential equations. For
the benefit of readers with little background in differential equations, some general
references which the author has found to be useful will be listed. A thorough in-
troduction to ordinary differential equations is given in [45]. A lot of intuition for
ordinary diffential equations can be obtained from[48]. The article[2] is full of infor-
mation, in rather compressed form. A classic introductory text on partial differential
equations, where hyperbolic equations are well represented, is [52]. Useful texts on
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3 Local and global existence theorems for the Einstein equations

hyperbolic equations, some of which explicitly deal with the Einstein equations, are
[78, 54, 62, 57, 76, 53].

An important aspect of existence theorems in general relativity which one should
be aware of is their relation to the cosmic censorship hypothesis. This point of view
was introduced in an influential paper by Moncrief and Eardley[60]. An extended
discussion of the idea can be found in[33].

2 Local existence

2.1 The constraints

The unknowns in the constraint equations are the initial data for the Einstein equa-
tions. These consist of a three-dimensional manifold S, a Riemannian metric hab
and a symmetric tensor kab on S, and initial data for any matter fields present. The
equations are:

R− kabkab + (habkab)
2 = 16πρ (1)

∇akab −∇b(hackac) = 8πjb (2)

Here R is the scalar curvature of the metric hab and ρ and ja are projections of the
energy-momentum tensor. Assuming matter fields which satisfy the dominant energy
condition implies that ρ ≥ (jaj

a)1/2. This means that the trivial procedure of making
an arbitrary choice of hab and kab and defining ρ and ja by equations (1) and (2) is
of no use for producing physically interesting solutions.

The usual method for solving the equations (1) and (2) is the conformal method[15].
In this method parts of the data (the so-called free data) are chosen, and the con-
straints imply four elliptic equations for the remaining parts. The case which has
been studied most is the constant mean curvature (CMC) case, where trk = habkab
is constant. In that case there is an important simplification. Three of the elliptic
equations, which form a linear system, decouple from the remaining one. This last
equation, which is nonlinear, but scalar, is called the Lichnerowicz equation. The
heart of the existence theory for the constraints in the CMC case is the theory of the
Lichnerowicz equation.

Solving an elliptic equation is a non-local problem and so boundary conditions or
asymptotic conditions are important. For the constraints the cases most frequently
considered in the literature are that where S is compact (so that no boundary con-
ditions are needed) and that where the free data satisfy some asymptotic flatness
conditions. In the CMC case the problem is well understood for both kinds of bound-
ary conditions[12, 29, 49]. The other case which has been studied in detail is that
of hyperboloidal data [1]. The kind of theorem which is obtained is that sufficiently
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differentiable free data, in some cases required to satisfy some global restrictions, can
be completed in a unique way to a solution of the constraints.

In the non-CMC case our understanding is much more limited although some re-
sults have been obtained in recent years (see [51] and references therein.) It is an
important open problem to extend these so that an overview is obtained compara-
ble to that available in the CMC case. Progress on this could also lead to a better
understanding of the question, when a spacetime which admits a compact, or asymp-
totically flat, Cauchy surface also admits one of constant mean curvature. Up to now
there are only isolated examples which exhibit obstructions to the existence of CMC
hypersurfaces[4].

It would be interesting to know whether there is a useful concept of the most
general physically reasonable solutions of the constraints representing regular initial
configurations. Data of this kind should not themselves contain singularities. Thus
it seems reasonable to suppose at least that the metric hab is complete and that the
length of kab, as measured using hab, is bounded. Does the existence of solutions of
the constraints imply a restriction on the topology of S or on the asymptotic geometry
of the data? This question is largely open, and it seems that information is available
only in the compact and asymptotically flat cases. In the case of compact S, where
there is no asymptotic regime, there is known to be no topological restriction. In
the asymptotically flat case there is also no topological restriction implied by the
constraints beyond that implied by the condition of asymptotic flatness itself[82].
This shows in particular that any manifold which is obtained by deleting a point
from a compact manifold admits a solution of the constraints satisfying the minimal
conditions demanded above. A starting point for going beyond this could be the
study of data which are asymptotically homogeneous. For instance, the Schwarzschild
solution contains interesting CMC hypersurfaces which are asymptotic to the product
of a 2-sphere with the real line. More general data of this kind could be useful for
the study of the dynamics of black hole interiors[70].

To sum up, the constraints are well understood in the compact, asymptotically
flat and hyperboloidal cases under the constant mean curvature assumption, and only
in these cases.

2.2 The vacuum evolution equations

The main aspects of the local in time existence theory for the Einstein equations
can be illustrated by restricting to smooth (i.e. infinitely differentiable) data for the
vacuum Einstein equations. The generalizations to less smooth data and matter fields
are discussed in Sections (2.3) and (2.4) respectively. In the vacuum case the data
are hab and kab on a three-dimensional manifold S, as discussed in Section (2.1). A
solution corresponding to these data is given by a four-dimensional manifold M , a
Lorentz metric gαβ on M and an embedding of S in M . Here gαβ is supposed to be a
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5 Local and global existence theorems for the Einstein equations

solution of the vacuum Einstein equations while hab and kab are the induced metric
and second fundamental form of the embedding, respectively.

The basic local existence theorem says that, given smooth data for the vacuum
Einstein equations, there exists a smooth solution of the equations which gives rise
to these data[15]. Moreover, it can be assumed that the image of S under the given
embedding is a Cauchy surface for the metric gαβ . The latter fact may be expressed
loosely, identifying S with its image, by the statement that S is a Cauchy surface. A
solution of the Einstein equations with given initial data having S as a Cauchy surface
is called a Cauchy development of those data. The existence theorem is local because
it says nothing about the size of the solution obtained. A Cauchy development of
given data has many open subsets which are also Cauchy developments of that data.

It is intuitively clear what it means for one Cauchy development to be an extension
of another. The extension is called proper if it is strictly larger than the other de-
velopment. A Cauchy development which has no proper extension is called maximal.
The standard global uniqueness theorem for the Einstein equations uses the notion
of the maximal development. It is due to Choquet-Bruhat and Geroch[14]. It says
that the maximal development of any Cauchy data is unique up to a diffeomorphism
which fixes the initial hypersurface. It is also possible to make a statement of Cauchy
stability which says that, in an appropriate sense, the solution depends continuously
on the initial data. Details on this can be found in [15].

A somewhat stronger form of the local existence theorem is to say that the solution
exists on a uniform time interval in all of space. The meaning of this is not a priori
clear, due to the lack of a preferred time coordinate in general relativity. The following
is a formulation which is independent of coordinates. Let p be a point of S. The
temporal extent T (p) of a development of data on S is the supremum of the length
of all causal curves in the development passing through p. In this way a development
defines a function T on S. The development can be regarded as a solution which exists
on a uniform time interval if T is bounded below by a strictly positive constant. For
compact S this is a straightforward consequence of Cauchy stability. In the case of
asymptotically flat data it is less trivial. In the case of the vacuum Einstein equations
it is true, and in fact the function T grows at least linearly at infinity [29].

When proving the above local existence and global uniqueness theorems it is neces-
sary to use some coordinate or gauge conditions. At least no explicitly diffeomorphism-
invariant proofs have been found up to now. Introducing these extra elements leads
to a system of reduced equations, whose solutions are determined uniquely by ini-
tial data in the strict sense, and not just uniquely up to diffeomorphisms. When a
solution of the reduced equations has been obtained, it must be checked that it is
a solution of the original equations. This means checking that the constraints and
gauge conditions propagate. There are many methods for reducing the equations. An
overview of the possibilities may be found in [42]
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2.3 Questions of differentiability

Solving the Cauchy problem for a system of partial differential equations involves
specifying a set of initial data to be considered, and determining the differentiability
properties of solutions. Thus two regularity properties are involved - the differentia-
bility of the allowed data, and that of the corresponding solutions. Normally it is
stated that for all data with a given regularity, solutions with a certain type of regu-
larity are obtained. For instance in the Section (2.2) we chose both types of regularity
to be ‘infinitely differentiable’. The correspondence between the regularity of data
and that of solutions is not a matter of free choice. It is determined by the equations
themselves, and in general the possibilities are severely limited. A similar issue arises
in the context of the Einstein constraints, where there is a correspondence between
the regularity of free data and full data.

The kinds of regularity properties which can be dealt with in the Cauchy prob-
lem depends of course on the mathematical techniques available. When solving the
Cauchy problem for the Einstein equations it is necessary to deal at least with nonlin-
ear systems of hyperbolic equations. (There may be other types of equations involved,
but they will be ignored here.) For general nonlinear systems of hyperbolic equations
there is essentially only one technique known, the method of energy estimates. This
method is closely connected with Sobolev spaces, which will now be discussed briefly.

Let u be a real-valued function on Rn. Let:

‖u‖s = (
s∑
i=0

∫
|Diu|2(x)dx)1/2

The space of functions for which this quantity is finite is the Sobolev space Hs(Rn).
Here |Diu|2 denotes the sum of the squares of all partial derivatives of u of order i.
Thus the Sobolev space Hs is the space of functions, all of whose partial derivatives
up to order s are square integrable. Similar spaces can be defined for vector valued
functions by taking a sum of contributions from the separate components in the inte-
gral. It is also possible to define Sobolev spaces on any Riemannian manifold, using
covariant derivatives. General information on this can be found in [3]. Consider now
a solution u of the wave equation in Minkowski space. Let u(t) be the restriction of
this function to a time slice. Then it is easy to compute that, provided u is smooth
and u(t) has compact support for each t, the quantity ‖Du(t)‖2s + ‖∂tu(t)‖2s is time
independent for each s. For s = 0 this is just the energy of a solution of the wave
equation. For a general nonlinear hyperbolic system, the Sobolev norms are no longer
time-independent. The constancy in time is replaced by certain inequalities. Due to
the similarity to the energy for the wave equation, these are called energy estimates.
They constitute the foundation of the theory of hyperbolic equations. It is because of
these estimates that Sobolev spaces are natural spaces of initial data in the Cauchy
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7 Local and global existence theorems for the Einstein equations

problem for hyperbolic equations. Due to the locality properties of hyperbolic equa-
tions (existence of a finite domain of dependence), it is useful to introduce the spaces
Hs

loc which are defined by the condition that whenever the domain of integration is
restricted to a compact set the integral defining the space Hs is finite.

In the end the solution of the Cauchy problem should be a function which is
differentiable enough in order that all derivatives which occur in the equation exist
in the usual (pointwise) sense. A square integrable function is in general defined
only almost everywhere and the derivatives in the above formula must be interpreted
as distributional derivatives. For this reason a connection between Sobolev spaces
and functions whose derivatives exist pointwise is required. This is provided by the
Sobolev embedding theorem. This says that if a function u on Rn belongs to the
Sobolev spaceHs

loc and if k < s−n/2 then there is a k times continuously differentiable
function which agrees with u except on a set of measure zero.

In the existence and uniqueness theorems stated in Section (2.2), the assumptions
on the initial data for the vacuum Einstein equations can be weakened to say that hab
should belong to Hs

loc and kab to Hs−1
loc . Then, provided s is large enough, a solution

is obtained which belongs to Hs
loc. In fact its restriction to any spacelike hypersurface

also belongs to Hs
loc, a property which is a priori stronger. The details of how large s

must be would be out of place here, since they involve examining the detailed structure
of the energy estimates. However there is a simple rule for computing the required
value of s. The value of s needed to obtain an existence theorem for the Einstein
equations is that for which the Sobolev embedding theorem, applied to spatial slices,
just ensures that the metric is continuously differentiable. Thus the requirement is
that s > n/2 + 1 = 5/2, since n = 3. It follows that the smallest possible integer s
is three. Strangely enough, uniqueness up to diffeomorphisms is only known to hold
for s ≥ 4. The reason is that in proving the uniqueness theorem a diffeomorphism
must be carried out, which need not be smooth. This apparently leads to a loss of
one derivative. It would be desirable to show that uniqueness holds for s = 3 and to
close this gap, which has existed for many years. There exists a definition of Sobolev
spaces for an arbitrary real number s, and hyperbolic equations can also be solved in
the spaces with s not an integer [77]. Presumably these techniques could be applied
to prove local existence for the Einstein equations with s any real number greater
than 5/2. However this has apparently not been done explicitly in the literature.

Consider now C∞ initial data. Corresponding to these data there is a develop-
ment of class Hs for each s. It could conceivably be the case that the size of these
developments shrinks with increasing s. In that case their intersection might con-
tain no open neighbourhood of the initial hypersurface, and no smooth development
would be obtained. Fortunately it is known that the Hs developments cannot shrink
with increasing s, and so the existence of a C∞ solution is obtained for C∞ data. It
appears that the Hs spaces with s > 5/2 are the only spaces containing the space of
smooth functions for which it has been proved that the Einstein equations are locally
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solvable.
What is the motivation for considering regularity conditions other than the ap-

parently very natural C∞ condition? One motivation concerns matter fields and will
be discussed in the Section (2.4). Another is the idea that assuming the existence of
many derivatives which have no direct physical significance seems like an admission
that the problem has not been fully understood. A further reason for considering
low regularity solutions is connected to the possibility of extending a local existence
result to a global one. If the proof of a local existence theorem is examined closely it
is generally possible to give a continuation criterion. This is a statement that if a local
solution is such that a certain quantity constructed from the solution is bounded, then
the solution can be extended further. If it can be shown that the relevant quantity is
bounded on any region where a local solution exists, then global existence follows. It
suffices to consider the maximal region on which a solution is defined, and obtain a
contradiction if no global solution exists. This description is a little vague, but con-
tains the essence of a type of argument which is often used in global existence proofs.
The problem in putting it into practise is that often the quantity whose boundedness
has to be checked contains many derivatives, and is therefore difficult to control. If
the continuation criterion can be improved by reducing the number of derivatives
required, then this can be a significant step towards a global result. Reducing the
number of derivatives in the continuation criterion is closely related to reducing the
number of derivatives of the data required for a local existence proof.

A striking example is provided by the work of Klainerman and Machedon [55]
on the Yang-Mills equations in Minkowski space. Global existence in this case was
first proved by Eardley and Moncrief [38], assuming initial data of sufficiently high
differentiability. Klainerman and Machedon gave a new proof of this which, though
technically complicated, is based on a conceptually simple idea. They prove a local
existence theorem for data of finite energy. Since energy is conserved this immediately
proves global existence. In this case finite energy corresponds to the Sobolev space
H1 for the gauge potential. Of course a result of this kind cannot be expected for the
Einstein equations, since spacetime singularities do sometimes develop from regular
initial data. However, some weaker analogue of the result could exist.

2.4 Matter fields

Analogues of the results for the vacuum Einstein equations given above are known
for the Einstein equations coupled to many types of matter model. These include
perfect fluids, elasticity theory, kinetic theory, scalar fields, Maxwell fields, Yang-
Mills fields and combinations of these. An important restriction is that the general
results for perfect fluids and elasticity apply only to situations where the energy
density is uniformly bounded away from zero on the region of interest. In particular
they do not apply to cases representing material bodies surrounded by vacuum. In
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9 Local and global existence theorems for the Einstein equations

cases where the energy density, while everywhere positive, tends to zero at infinity, a
local solution is known to exist, but it is not clear whether a local existence theorem
can be obtained which is uniform in time. In cases where there the fluid has a sharp
boundary, ignoring the boundary leads to solutions of the Einstein-Euler equations
with low differentiability (cf. Section 2.3), while taking it into account explicitly leads
to a free boundary problem. For more discussion of this and references see [72]. In
the case of kinetic or field theoretic matter models it makes no difference whether the
energy density vanishes somewhere or not. There is apparently little in the literature
on the initial value problem for the Einstein equations coupled to fermions, e.g. for the
Einstein-Dirac system, although there seems no reason to expect special difficulties
in that case. One paper related to this question is [13].

3 Global symmetric solutions

3.1 Stationary solutions

Many of the results on global solutions of the Einstein equations involve considering
classes of spacetimes with Killing vectors. A particularly simple case is that of a
timelike Killing vector, i.e. the case of stationary spacetimes. In the vacuum case
there are very few solutions satisfying physically reasonable boundary conditions.
This is related to no hair theorems for black holes and lies outside the scope of this
review. More information on the topic can be found in the book of Heusler [46]
and in his Living Review[47]. The case of phenomenological matter models has been
reviewed in [72] and there has been little further development in that area since then.

The area of stationary solutions of the Einstein equations coupled to field theo-
retic matter models has been active in recent years as a consequence of the discovery
by Bartnik and McKinnon[5] of a discrete family of regular static spherically sym-
metric solutions of the Einstein-Yang-Mills equations with gauge group SU(2). The
equations to be solved are ordinary differential equations and in [5] they were solved
numerically by a shooting method. The first existence proof for a solution of this
kind is due to Smoller, Wasserman, Yau and McLeod [75] and involves an arduous
qualitative analysis of the differential equations. The work on the Bartnik-McKinnon
solutions, including the existence theorems, has been extended in many directions.
Recently static solutions of the Einstein-Yang-Mills equations which are not spher-
ically symmetric were discovered numerically [56]. It is a challenge to prove the
existence of solutions of this kind. Now the ordinary differential equations of the
previously known case are replaced by elliptic equations. Moreover, the solutions
appear to still be discrete, so that a simple perturbation argument starting from the
spherical case does not seem feasible. In another development it was shown that a
linearized analysis indicates the existence of stationary non-static solutions [10]. It
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would be desirable to study the question of linearization stability in this case, which,
if the answer were favourable, would give an existence proof for solutions of this kind.

3.2 Spatially homogeneous solutions

A solution of the Einstein equations is called spatially homogeneous if there exists a
group of symmetries with three-dimensional spacelike orbits. In this case there are
at least three linearly independent spacelike Killing vector fields. For most matter
models the field equations reduce to ordinary differential equations. (Kinetic matter
leads to an integro-differential equation.) The most important results in this area
have been reviewed in a recent book edited by Wainwright and Ellis[81]. See, in
particular, part two of the book. There remain a host of interesting and accessible
open questions. The spatially homogeneous solutions have the advantage that it is
not necessary to stop at just existence theorems; information on the global qualitative
behaviour of solutions can also be obtained. An important open question concerns
the mixmaster solution, as discussed in [73].

3.3 Spatially inhomogeneous solutions

The most detailed results on global inhomogeneous solutions of the Einstein equations
obtained up to now concern spherically symmetric solutions of the Einstein equations
coupled to a massless scalar field with asymptotically flat initial data. In a series
of papers Christodoulou [17, 16, 19, 18, 20, 21, 22, 26] has proved a variety of deep
results on the global structure of these solutions. Particularly notable are his proofs
that naked singularities can develop from regular initial data [22] and that this phe-
nomenon is unstable with respect to perturbations of the data [26]. In related work
Christodoulou [23, 24, 25] has studied global spherically symmetric solutions of the
Einstein equations coupled to a fluid with a special equation of state (the so-called
two-phase model).

Solutions of the Einstein equations with cylindrical symmetry which are asymptot-
ically flat in all directions allowed by the symmetry represent an interesting variation
on asymptotic flatness. Since black holes are incompatible with this symmetry, one
may hope to prove geodesic completeness of solutions under appropriate assumptions.
This has been accomplished for the Einstein vacuum equations and for the source-
free Einstein-Maxwell equations in[7], building on global existence theorems for wave
maps[31, 30]. For a quite different point of view on this question see[83].

In the context of spatially compact spacetimes it is first necessary to ask what
kind of global statements are to be expected. In a situation where the model ex-
pands indefinitely it is natural to pose the question whether the spacetime is causally
geodesically complete towards the future. In a situation where the model develops a
singularity either in the past or in the future one can ask what the qualitative nature
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11 Local and global existence theorems for the Einstein equations

of the singularity is. It is very difficult to prove results of this kind. As a first step
one may prove a global existence theorem in a well-chosen time coordinate. In other
words, a time coordinate is chosen which is geometrically defined and which, under
ideal circumstances, will take all values in a certain interval (t−, t+). The aim is then
to show that, in the maximal Cauchy development of data belonging to a certain class,
a time coordinate of the given type exists and exhausts the expected interval. The
first result of this kind for inhomogeneous spacetimes was proved by Moncrief in [58].
This result concerned Gowdy spacetimes. These are vacuum spacetimes with two
commuting Killing vectors acting on compact orbits. The area of the orbits defines a
natural time coordinate. Moncrief showed that in the maximal Cauchy development
of data given on a hypersurface of constant time, this time coordinate takes on the
maximal possible range, namely (0,∞). This result was extended to more general
vacuum spacetimes with two Killing vectors in [6].

Another attractive time coordinate is constant mean curvature (CMC) time. For
a general discussion of this see [70]. A global existence theorem in this time for
spacetimes with two Killing vectors and certain matter models (collisionless matter,
wave maps) was proved in [74]. That the choice of matter model is important for this
result was demonstrated by a global non-existence result for dust in [71]. Related
results have been obtained for spherical and hyperbolic symmetry [69, 11].

Once global existence has been proved for a preferred time coordinate, the next
step is to investigate the asymptotic behaviour of the solution as t → t±. There
are few cases in which this has been done successfully. Notable examples are Gowdy
spacetimes [32, 50, 35] and solutions of the Einstein-Vlasov system with spherical and
plane symmetry[63].

4 Global existence for small data

An alternative to symmetry assumptions is provided by ‘small data’ results, where
solutions are studied which develop from data close to that for known solutions. This
leads to some simplification in comparison to the general problem, but with present
techniques it is still very hard to obtain results of this kind.

4.1 Stability of de Sitter space

In [39] Friedrich proved a result on the stability of de Sitter space. This concerns
the Einstein vacuum equations with positive cosmological constant. His result is
as follows. Consider initial data induced by de Sitter space on a regular Cauchy
hypersurface. Then all initial data (vacuum with positive cosmological constant)
near enough to these data in a suitable (Sobolev) topology have maximal Cauchy
developments which are geodesically complete. In fact the result gives much more
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detail on the asymptotic behaviour than just this and may be thought of as proving
a form of the cosmic no hair conjecture in the vacuum case. (This conjecture says
roughly that the de Sitter solution is an attractor for expanding cosmological models
with positive cosmological constant.) This result is proved using conformal techniques
and, in particular, the regular conformal field equations developed by Friedrich.

There are results obtained using the regular conformal field equations for negative
or vanishing cosmological constant [41, 43] but a detailed discussion of their nature
would be out of place here. (Cf. however Section (5.2).)

4.2 Stability of Minkowski space

The other result on global existence for small data is that of Christodoulou and Klain-
erman on the stability of Minkowski space[28]. The formulation of the result is close
to that given in Section (4.1) but now de Sitter space is replaced by Minkowski space.
Suppose then that initial data are given which are asymptotically flat and sufficiently
close to those induced by Minkowski space on a hyperplane. Then Christodoulou and
Klainerman prove that the maximal Cauchy development of these data is geodesically
complete. They also provide a wealth of detail on the asymptotic behaviour of the
solutions. The proof is very long and technical. The central tool is the Bel-Robinson
tensor which plays an analogous role for the gravitational field to that played by the
energy-momentum tensor for matter fields. Apart from the book of Christodoulou
and Klainerman itself some introductory material on geometric and analytic aspects
of the proof can be found in [8] and [27] respectively.

5 Further results

5.1 Isotropic singularities

The existence and uniqueness results discussed in this section are motivated by Pen-
rose’s Weyl curvature hypothesis. Penrose suggests that the initial singularity in a
cosmological model should be such that the Weyl tensor tends to zero or at least
remains bounded. There is some difficulty in capturing this by a geometric condition
and it was suggested by [79] that a clearly formulated geometric condition which,
on an intuitive level, is closely related to the original condition, is that the confor-
mal structure should remain regular at the singularity. Singularities of this type are
known as conformal or isotropic singularities.

Consider now the Einstein equations coupled to a perfect fluid with the radiation
equation of state p = ρ/3. Then it has been shown [61, 36] that solutions with
an isotropic singularity are determined uniquely by certain free data given at the
singularity. The data which can be given is, roughly speaking, half as large as in
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the case of a regular Cauchy hypersurface. The method of proof is to derive an
existence and uniqueness theorem for a suitable class of singular hyperbolic equations.
Generalizations of this by Anguige and Tod have been discussed in [80]. Details will
be given in Anguige’s thesis. Related work was done earlier in a somewhat simpler
context by Moncrief[59] who showed the existence of a large class of spacetimes with
Cauchy horizons.

5.2 Evolution of hyperboloidal data

In Section (2.1) hyperboloidal initial data were mentioned. They can be thought of
as generalizations of the data induced by Minkowski space on a hyperboloid. In the
case of Minkowski space the solution admits a conformal compactification where a
conformal boundary, null infinity, can be added to the spacetime. It can be shown
that in the case of the maximal development of hyperboloidal data a piece of null
infinity can be attached to the spacetime. For small data, i.e. data close to that of
a hyperboloid in Minkowski space, this conformal boundary also has completeness
properties in the future allowing an additional point i+ to be attached there. (See
[40] and references therein for more details.) Making contact between hyperboloidal
data and asymptotically flat initial data is much more difficult and there is as yet
no complete picture. (An account of the results obtained up to now is given in
[43].) If the relation between hyperboloidal and asymptotically flat initial data could
be understood it would give a very different approach to the problem treated by
Christodoulou and Klainerman (Section (4.2)).

5.3 The Newtonian limit

Most textbooks on general relativity discuss the fact that Newtonian gravitational
theory is the limit of general relativity as the speed of light tends to infinity. It is a
non-trivial task to give a precise mathematical definition of this statement. Once a
definition has been given the question remains whether this definition is compatible
with the Einstein equations in the sense that there are general families of solutions
of the Einstein equations which have a Newtonian limit in the sense of the chosen
definition. A theorem of this kind was proved in [68], where the matter content of
spacetime was assumed to be a collisionless gas described by the Vlasov equation. (For
another suggestion as to how this problem could be approached see [44].) The essential
mathematical problem is that of a family of equations depending continuously on a
parameter λ which are hyperbolic for λ 6= 0 and degenerate for λ = 0. Because of
the singular nature of the limit it is by no means clear a priori that there are families
of solutions which depend continuously on λ. That there is an abundant supply of
families of this kind is the result of [68]. Asking whether there are families which are
k times continuously differentiable in their dependence on λ is related to the issue of
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giving a mathematical justification of post-Newtonian approximations. The approach
of [68] has not even been extended to the case k = 1 and it would be desirable to do
this. Note however that for k too large serious restrictions arise [67]. The latter fact
corresponds to the well-known divergent behaviour of higher order post-Newtonian
approximations.

5.4 Newtonian cosmology

Apart from the interest of the Newtonian limit, Newtonian gravitational theory itself
may provide interesting lessons for general relativity. This is no less true for existence
theorems than for other issues. In this context it is also interesting to consider a
slight generalization of Newtonian theory, the Newton-Cartan theory. This allows
a nice treatment of cosmological models, which are in conflict with the (sometimes
implicit) assumption in Newtonian gravitational theory that only isolated systems
are considered. It is also unproblematic to introduce a cosmological constant into the
Newton-Cartan theory.

Three global existence theorems have been proved in Newtonian cosmology. The
first[9] is an analogue of the cosmic no hair theorem (cf. Section 4.1) and concerns mod-
els with a positive cosmological constant. It asserts that homogeneous and isotropic
models are nonlinearly stable if the matter is described by dust or a polytropic fluid
with pressure. Thus it gives information about global existence and asymptotic be-
haviour for models arising from small (but finite) perturbations of homogeneous and
isotropic data. The second and third results concern collisionless matter and the case
of vanishing cosmological constant. The second[65] says that data which constitute
a periodic (but not necessarily small) perturbation of a homogeneous and isotropic
model which expands indefinitely give rise to solutions which exist globally in the
future. The third[64] says that the homogeneous and isotropic models in Newtonian
cosmology which correspond to a k = −1 Friedmann-Robertson-Walker model in
general relativity are non-linearly stable.

5.5 The characteristic initial value problem

In the standard Cauchy problem, which has been the basic set-up for all the previous
sections, initial data are given on a spacelike hypersurface. However there is also
another possibility, where data are given on one or more null hypersurfaces. This
is the characteristic initial value problem. It has the advantage over the Cauchy
problem that the constraints reduce to ordinary differential equations. One variant is
to give initial data on two smooth spacelike hypersurfaces which intersect transversely
in a spacelike surface. A local existence theorem for the Einstein equations with an
initial configuration of this type was proved in [66]. Another variant is to give data
on a light cone. In that case local existence for the Einstein equations has not been
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proved, although it has been proved for a class of quasilinear hyperbolic equations
which includes the reduced Einstein equations in harmonic coordinates[37].

Another existence theorem which does not use the standard Cauchy problem, and
which is closely connected to the use of null hypersurfaces, concerns the Robinson-
Trautman solutions of the vacuum Einstein equations. In that case the Einstein
equations reduce to a parabolic equation. Global existence for this equation has been
proved by Chruściel[34].
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