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Abstract
Our mobile robot system uses scale-invariant visual

landmarks to localize itself and build a 3D map of the
environment simultaneously. As image features are
not noise-free, we carry out error analysis and use
Kalman Filters to track the 3D landmarks, resulting in
a database map with landmark positional uncertainty.
By matching a set of landmarks as a whole, our robot
can localize itself globally based on the database con-
taining landmarks of sufficient distinctiveness. Exper-
iments show that recognition of position within a map
without any prior estimate can be achieved using the
scale-invariant landmarks.

1 Introduction
Mobile robot localization and mapping, the pro-

cess of simultaneously tracking the position of a mo-
bile robot relative to its environment and building a
map of the environment, has been a central research
topic for the past few years. Accurate localization
is a prerequisite for building a good map, and hav-
ing an accurate map is essential for good localization.
Therefore, Simultaneous Localization And Map Build-
ing (SLAMB) is a critical underlying factor for success-
ful mobile robot navigation in a large environment.

To achieve SLAMB, there are different types of sen-
sor modalities such as sonar, laser range finders and
vision. Many early successful approaches [4] utilize ar-
tificial landmarks, and therefore do not function prop-
erly in beacon-free environments. Vision-based ap-
proaches using stable natural landmarks in unmodified
environments are highly desirable for a wide range of
applications.

Harris’s 3D vision system DROID [9] uses the vi-
sual motion of image corner features for 3D reconstruc-
tion. Kalman filters are used for tracking features from
which it determines both the camera motion and the
3D positions of the features. It is accurate in the short
to medium term, but long-term drifts can occur.

There are two types of localization: local and
global. Local techniques aim at compensating odo-
metric errors during robot navigation. They require
that the initial location of the robot is approximately
known and they typically cannot recover if they lose
track of the robot’s position.

Global techniques can localize a robot without any
prior knowledge about its position, i.e., they can han-
dle the kidnapped robot problem, in which a robot
is kidnapped and carried to some unknown location.
Global localization techniques are more powerful than
local ones and can cope with situations in which the
robot is likely to experience serious positioning errors.

Markov localization was employed by various teams
with success [15, 19]. For example, the Deutsches
Museum Bonn tour-guide robot RHINO [5] utilizes
a metric version of this approach with laser sensors.
However, it needs to be supplied with a manually de-
rived map, and cannot learn maps from scratch. Us-
ing Markov localization, [6] proposes active localiza-
tion, i.e., the localization routine can control the robot
where to move and where to look, to increase the effi-
ciency and robustness of localization.

Unlike RHINO, the latest museum tour-guide robot
MINERVA [20] learns its map and uses camera mosaics
of the ceiling in addition to the laser scan occupancy
map. It uses the EM algorithm to learn the occupancy
map and the Markov localization with filter techniques
for global localization [8].

The Monte Carlo Localization method based on
the CONDENSATION algorithm was proposed in [7].
This vision-based Bayesian filtering method uses a
sampling-based density representation. Unlike the
Kalman filter based approaches, it can represent multi-
modal probability distributions. Given a visual map
of the ceiling obtained by mosaicing, it localizes the
robot globally using a scalar brightness measurement.
[12] proposed some modifications to this algorithm for
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better efficiency in large symmetric environments.
Since the sensor information (sonar, laser or bright-

ness measurement) only provides very low feature
specificity, these methods are probabilistic and require
the robot to move around, while the probabilities con-
verge towards one localized peak gradually.

Sim and Dudek [18] proposed learning natural vi-
sual features for pose estimation. Landmark matching
is achieved using principal components analysis and
a tracked landmark is a set of image thumbnails de-
tected in the learning phase, for each grid position in
pose space. [3] selects image patches in terms of their
uniqueness within the local region and dynamic relia-
bility as landmarks for navigation.

We have proposed a vision-based SLAMB algo-
rithm [17] by tracking SIFT (Scale Invariant Feature
Transform) landmarks correcting odometry locally. As
our robot is equipped with Triclops [14], a trinocu-
lar stereo system, the estimated 3D position of the
landmarks can be obtained and hence a 3D map can
be built and the robot can be localized simultane-
ously. The 3D map, represented as a SIFT land-
mark database, is incrementally updated over time and
adaptive to dynamic environments.

The kidnapped robot problem is similar to a recog-
nition problem where the robot tries to match the cur-
rent view to a previously built map. The SIFT features
used here were originally designed for object recogni-
tion purposes, and therefore these visual landmarks
are good for robot localization.

In this paper, we carry out error analysis for the
SIFT landmarks as image features are not noise-free.
By associating each landmark with a covariance ma-
trix, we employ the Kalman Filters to track the land-
marks, resulting in a database with landmark posi-
tional uncertainty. By enhancing the specificity of the
SIFT features, we consider matching a set of SIFT
landmarks as a whole, using the highly distinctive vi-
sual information to localize the robot globally from the
current view of the scene.

2 SIFT Features
SIFT was developed by Lowe [13] for image feature

generation in object recognition applications. The fea-
tures are invariant to image translation, scaling, rota-
tion, and partially invariant to illumination changes
and affine or 3D projection. These characteristics
make them suitable landmarks for robust SLAMB,
since when mobile robots are moving around in an
environment, landmarks are observed over time, but
from different angles, distances or under different illu-
mination.

Previous approaches to feature detection, such as
the widely used Harris corner detector [10], are sen-

sitive to the scale of an image and therefore are not
suited to building a map that can be matched from a
range of robot positions.

2.1 Feature Generation
Key locations are selected at maxima and minima of

a difference of Gaussian function applied in scale space.
This is computed by forming a pyramid of images using
Gaussian smoothing and subsampling, with adjacent
scales differing by a factor of

√
2.

Prior to subsampling, each image is subtracted from
its Gaussian smoothed image to produce a difference-
of-Gaussian image for each pyramid level. Feature lo-
cations are identified by detecting maxima and min-
ima relative to surrounding pixels and adjacent scales.
This provides an efficient method for identifying re-
peatable locations in scale space.

SIFT locates key points at regions and scales of high
variation, making these locations particularly stable
for characterizing the image. [13] demonstrated the
stability of SIFT keys to image transformations. At
each feature location, an orientation is selected by de-
termining the peak of a histogram of local image gradi-
ent orientations. A subpixel image location, scale and
orientation are associated with each SIFT feature.

2.2 Stereo Matching
In our Triclops system, we have three images at

each frame. In addition to the epipolar constraint and
disparity constraint, we also employ the SIFT scale
and orientation constraints for matching the right and
left images. These resulting matches are then matched
with the top image similarly, with an extra constraint
for agreement between the horizontal and vertical dis-
parities. The horizontal disparity is the difference in
row pixel position in the left and right cameras whereas
the vertical disparity is the difference in column pixel
position in the top and right cameras.

If a feature has more than one match satisfying
these criteria, it is ambiguous and discarded so that
the resulting matches are more consistent and reliable.
The final disparity is taken as the average between the
horizontal and vertical disparities.

From the positions of the matches and knowing the
camera intrinsic parameters, we can compute the 3D
world coordinates relative to the robot for each feature.
They can subsequently serve as landmarks for map
building and tracking.

2.3 Ego-motion Estimation
To build a map, we need to know how the robot

has moved between frames in order to put the land-
marks together coherently. The robot odometry data
can only give a rough estimate and it is prone to er-
ror such as drifting, slipping, etc. To find matches in
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the second view, the odometry allows us to predict the
region to search for each match more efficiently.

Once the SIFT features are matched, we can use
the matches in a least-squares procedure to compute
a more accurate camera ego-motion and hence better
localization. This will also help adjust the 3D coordi-
nates of the SIFT landmarks for map building.

We would like to maintain a database tracking the
SIFT landmarks and use it to match features found in
subsequent views. The initial coordinate frame is used
as the reference and all landmarks are relative to this
fixed frame.

Figure 1 show the SIFT detection, stereo matching
and frame-to-frame matching for some typical scene.
Readers are referred to [17] for further details.

3 Landmark Uncertainty
There are various errors such as noisy sensors and

quantization associated with the images and the SIFT
features found. They introduce inaccuracy in both
the landmarks’ position as well as the least-squares
estimation of the robot position. We would like to
know how reliable the estimates are, so we incorporate
covariance into the SIFT database.

We employ a Kalman Filter [1] to update the po-
sition of each landmark. A 3x3 covariance matrix is
associated with each SIFT landmark in the database.
When a match is found in the current frame, the cur-
rent covariance matrix for the landmark will be com-
bined with the covariance matrix in the database so
far, and the 3D position will be updated accordingly.
3.1 Image Coordinates Uncertainty

Uncertainty of the image coordinates and dispar-
ity obtained during the SIFT feature detection and
matching will be propagated to uncertainty in the
landmark 3D positions.

For stereo under a typical pinhole camera model,
we can compute the the 3D location (X,Y, Z) of a
landmark from its row and column image coordinates
(r, c) and its disparity d:

X =
(c− c0)I

d
; Y =

(r0 − r)I
d

; Z =
fI

d

where (r0, c0) are the image centre coordinates, I is
the interocular distance and f is the focal length.

For the first order error propagation [2], we have:

σ2
X =

I2σ2
c

d2
+
I2(c− c0)2σ2

d

d4

σ2
Y =

I2σ2
r

d2
+
I2(r0 − r)2σ2

d

d4

σ2
Z =

f2I2σ2
d

d4

(a)

(b)

(c)
Figure 1: (a) SIFT features found, with scale and ori-
entation indicated by the size and orientation of the
squares. (b) Stereo matching result, where horizontal
and vertical lines indicate the horizontal and vertical
disparities respectively. (c) The SIFT feature matches
between consecutive frames for a 5◦ clockwise rotation,
where the white dot indicates the current position and
the white cross indicates the new position.

where σ2
X , σ2

Y , σ2
Z , σ2

c , σ2
r and σ2

d are the variances of
X, Y , Z, c, r and d respectively.

Experiments show that both the row and column
coordinates are roughly normally distributed with
σ2
r = 1 and σ2

c = 1 (i.e., standard deviation of the
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feature location is about 1 pixel).
We compute the horizontal disparity hd as the dif-

ference between two column coordinates, and the ver-
tical disparity vd as the difference between two row
coordinates. Therefore, the variances for hd and vd
are both 2. Then, the final disparity is obtained as the
average between hd and vd, so the variance for the fi-
nal disparity is one quarter of the sum of the variances
for hd and vd, hence σ2

d = 1.
Knowing the intrinsic parameters of our system, we

can compute the variances for the landmark positions
according to the error propagation formulae above.
3.2 Landmark Matching

Based on the robot odometry, we predict the
database landmark positions in the new frame and
look for corresponding matches in the vicinity. We
then verify the matches according to the SIFT scale
and orientation information. This deals with the data
association problem and allows us to identify which
filters to be updated.

A landmark will be discarded from the database if
it has not been matched for more than a predefined
number of consecutive frames, otherwise, it will be
maintained to cater for temporary occlusion.
3.3 Backward Transformation

We use the robot pose estimate to transform land-
marks in the current coordinates frame into the ini-
tial frame. From the least-squares minimization pro-
cedure, we can obtain the robot pose as well as its
covariance, which needs to be propagated to the land-
mark 3D position uncertainty.

To transform from current frame to the initial
frame:

rnew = (Pθ(Pα(Pβrobs))) + V

where robs and rnew are the observed position in the
current frame and the transformed position in the ini-
tial frame respectively. V is the translational transfor-
mation while Pθ, Pα and Pβ are the rotational trans-
formations required (for yaw θ, pitch α and roll β)
around each of the three axes.

We would like to obtain the covariance of rnew
(Σnew) from the covariance of the observed position
Σobs, given by a diagonal matrix consisting of σ2

X , σ2
Y

and σ2
Z .

3.4 Error Propagation
Assuming the roll, pitch and yaw components are

independent, the transformation proceeds in 4 stages:
Pβ (roll), Pα (pitch), Pθ (yaw) and then V (transla-
tions). We obtain the variances (σ2

β ,σ2
α,σ2

θ) for these
parameters from the robot position covariance.

In general, given

X′ = P X

where P is a 3x3 matrix, X and X′ are the 3-vectors
for the old and new position respectively. When there
are errors associated with both P and X: ΛP (9x9
covariance for P) and ΛX (3x3 covariance for X), the
3x3 covariance for the resulting vector X′, based on
first order uncertainty analysis, is given by:

[
X> 0 0

0 X> 0 P

0 0 X>

][
ΛP 0
0 ΛX

]



X 0 0
0 X 0
0 0 X

P>




This covariance matrix is the product of three ma-
trices: the first matrix is a 3x12 matrix, the second
matrix is a 12x12 matrix and the third matrix is the
transpose of the first matrix (hence a 12x3 matrix).
3.5 Filter Update

Afterwards, we combine the new covariance matrix
Σnew with the previous covariance matrix of the land-
mark in the database ΣKF to obtain the new covari-
ance matrix Σ′KF . We combine the new position of the
landmark rnew with the database landmark position
sKF using the covariances to obtain a better estimate
of its new position s′KF . We have:

Σ′KF = (Σ−1
KF + Σ−1

new)−1

s′KF = Σ′KF (Σ−1
KF sKF + Σ−1

newrnew)

3.6 Database Map With Uncertainty
During the map building process, the robot tra-

verses around our 10m by 10m lab tracking the SIFT
landmarks. A Kalman Filter is initiated for each land-
mark and updated over frames. From the bird’s eye
view of the map, we can see that its uncertainty ellipse
shrinks when a landmark is being observed repeatedly,
while its positional uncertainty decreases.

Figure 2 shows the bird’s eye view of the SIFT
database as well as the robot trajectory after 148
frames with 4828 landmarks in the database. The
landmarks are three-dimensional and their uncertainty
are represented as ellipsoids, but ellipses are shown in
the bird’s eye view. Assuming errors are normally dis-
tributed, each landmark position has a χ2 distribution
with 3 degrees of freedom. Error ellipses covering a
region of 1 standard deviation in either sides of X and
Z directions are shown.

Uncertainty for landmarks closer to the robot tends
to be lower, as expected for landmarks with larger dis-
parities. The largest uncertainty is associated with
landmarks that are seen only from a distance, such as
those seen through an open door in the upper right
corner of Figure 2. Visual judgement indicates that
the SIFT landmarks correspond well to actual objects
in the lab.
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Figure 2: Bird’s eye view of the 3D SIFT database
map, showing the uncertainty ellipses of the land-
marks, and the robot trajectory during the map build-
ing. Note that the smallest ellipses represent the most
reliable and useful landmarks.

As the disparity error transforms to a larger error
in the depth direction, we can see that for most land-
marks, the uncertainty ellipses are elongated in the
direction along which they are observed. For exam-
ple, the robot was facing rightward in the X direction,
when the landmarks on the right hand side are ob-
served, therefore the ellipses are elongated in the X
direction.

4 Local Image Characteristics
So far, we have been using the scale and orientation

of each SIFT key for localization and map building.
In order to recognize where the robot is relative to a
previously built map, features sufficiently distinctive
are required to identify scenes in the map. In order to
obtain a feature vector for high specificity, we describe
the local image region in a manner invariant to various
image transformations [13].

This feature vector is formed by measuring the local
image gradients at a number of orientations in coordi-
nates relative to the location, scale and orientation of
the feature. The gradient locations are further blurred
to reduce sensitivity to small local image deformations,
such as result from 3D viewpoint change.

The local and multi-scale nature of the features
makes them insensitive to noise, clutter and occlusion,
while the detailed local image properties represented
by the features makes them highly selective for match-

ing to large databases of previously viewed features.
Lowe’s object recognition application used 8 orien-

tations, each sampled over 4x4 grid of locations, so the
total number of samples for each SIFT key is 128. For
our application, we experimentally compare different
sample sizes and it seems that a smaller vector is al-
ready sufficiently discriminating in our environment.
We use 4 orientations, each sampled over a 2x2 grid of
locations. The total number of samples in each SIFT
key vector is now 4 × 2 × 2 or 16 elements.

Using this local image vector metric, we can simply
compute the Euclidean distance measure between the
vectors of two features to check whether or not they
match.

Stereo matching and frame-to-frame matching is
still based on the scale and orientation, as very con-
sistent results can be obtained already, to avoid extra
computational burden.

5 Hough Transform Set Matching
During stereo and frame-to-frame matching, we

only consider each SIFT feature on its own. To tackle
global localization, we consider matching a set of SIFT
landmarks as a whole. Given a small set of current
SIFT features and a large set of SIFT landmarks in the
database, we would like to estimate the robot position
that would have brought the largest number of land-
marks into close alignment, provided that the robot
has previously viewed the current scene during the
map building stage.

Hough Transform [11] hashing methods are known
to be very efficient for this type of task. We start with
a three-dimensional discretized search space (X,Z, θ)
where X is the sideways displacement, Z is the forward
displacement and θ is the orientation. The algorithm
is as follows:

1. For each SIFT feature in the current frame,
find the set of potential SIFT landmarks in the
database that match, using the local image vec-
tor and the height as the preliminary constraints.

2. For each of the potential matches, for all dis-
cretized values of θ within the search space, com-
pute the X and Z required to match. Vote for
the Hough Transform bin that corresponds to the
particular X and Z.

3. Due to landmark uncertainty described above,
we also vote the neighbouring Hough bins within
±2.8σX and ±2.8σZ , i.e., covering a 95% confi-
dence region. Although the uncertainty is ellipti-
cal in shape for the X and Z directions, we simply
vote in the rectangular region covering the ellipse.

4. Afterwards, the bins with many votes correspond
to the pose configurations that are more likely to
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result in a large number of matches.

5. Select the topN pose configurations and carry out
feature matching for each pose. Use the matches
for least-squares minimization to obtain a pose
estimate. Then, for each of the N pose estimates,
iterate using least-squares minimization again to
obtain a better pose estimate. Selecting a small
set of hypotheses in a large space for verification
allows for noisy data and uncertainty.

6. Among the N hypothesis, we select the one with
the maximum number of matches and the lowest
least-squares error, corresponding to a robot pose
which can best match the most landmarks in the
database.

6 Global Localization Results
Using the SIFT database map built in Section 3.6,

the robot is carried to various positions and asked
to estimate where it is. We measure manually the
approximate location and orientation of the robot
and compare with the SIFT global localization results
(with N set to 10) for various test positions.

The results are tabulated as follows, where (X,Z,H)
represents X cm in the X direction, Z cm in the Z
direction and H degree orientation:

Case Measured Pose Pose Estimation
1 (45,90,25◦) (50.953,92.034,26.963◦)
2 (90,180,−5◦) (93.670,187.963,−4.278◦)
3 (70,300,−40◦) (75.800,295.850,−41.074◦)
4 (0,-150,0◦) (-2.733,-142.823,−1.226◦)
5 (0,0,0◦) (0.792,1.746,−0.426◦)
6 (0,0,15◦) (0.886,-4.071,16.035◦)
7 (-100,10,−90◦) (-93.816,4.357,−87.867◦)
8 (-10,-70,130◦) (-9.602,-74.298,128.918◦)

From these results, we can see that global localiza-
tion using SIFT features augmented with local image
description is good in all cases. Unlike Markov local-
ization, the robot does not need to traverse around to
localize, thanks to the specificity of the SIFT features.

The results are independent estimates obtained
from different positions and viewpoints. The aver-
age translational and rotational errors are 6.08cm and
1.21◦ respectively for this set of experiments. All esti-
mation results are within 10cm of the ground truth.

Figure 3 shows the localization results visually for
cases 1 to 4, indicating the robot’s estimated position
and orientation relative to the environment.

The Hough bin size does not seem to affect the re-
sults very much - currently we use 4cm discretization
in the X and Z directions and 2◦ discretization for the
orientation. Only a rough pose is required from the
Hough Transform stage, since we then proceed with

(a) (b)

(c) (d)
Figure 3: Robot global localization results showing the
estimated position and orientation. The vee indicates
the robot field of view. (a) Case 1. (b) Case 2. (c)
Case 3. (d) Case 4.

least-squares minimization to converge to a better es-
timate. The bin size does affect the run-time perfor-
mance. It takes around 2.5 seconds on a Pentium III
700MHZ processor for the localization here, with the
Hough space covering the lab size and all directions.
But this is a bootstrap phase which only needs to be
carried out once in the beginning, since after knowing
where it is, the robot will continue the usual concur-
rent localization and map building.

7 Conclusion
In this paper, we described briefly our vision-based

SLAMB algorithm based on the SIFT features. Be-
ing scale and orientation invariant, SIFT features are
good natural visual landmarks for tracking over long
periods of time from different views, to correct odom-
etry locally. As there are errors associated with image
features, error analysis is important to tell us how well
the landmarks are localized.

Beyond previous works, we have achieved mobile
robot global localization based on distinctive natural
visual landmarks in the environment, i.e., our robot
can localize itself without any prior knowledge about
its position. Through experiments, we have demon-
strated that using SIFT features provides promising
results for both local and global localization.

Maps can now be re-used as the robot knows where

419



it is, it can continue to improve and augment the pre-
vious map. Using the same database map, multiple
robots can localize themselves individually with ref-
erence to the same coordinates frame based on the
visual landmarks they are looking at. Knowing the
relative positions of the robots from each other is cru-
cial for multi-robot collaboration, such as navigation,
map building or other higher-level tasks. Unlike [16]
where the robots need to be within the field of view of
one another to be localized, our approach allows the
robots to be at different regions in the map.

A comprehensive database map is important for
global localization. For example, if the robot has only
observed the front of an object, then it will not be
able to recognize the back of the object, as they are
completely different landmarks. We are currently in-
vestigating some mobile robot exploration strategies
to build a good map for the environment, where the
robot would observe objects from various viewpoints.

When the global localization at some position is not
certain due to the lack of features or other reasons,
the robot should spin around until it is confident of
the estimate. Moreover, experiments with larger and
more complex environments are necessary to evaluate
the localization further, when the database map size
increases. The SIFT landmark specificity can be in-
creased if necessary to ensure enough distinctiveness
is maintained.
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