
The VLDB Journal (2011) 20:83–106

DOI 10.1007/s00778-010-0192-8

REGULAR PAPER

Local and global recoding methods for anonymizing set-valued
data

Manolis Terrovitis · Nikos Mamoulis · Panos Kalnis

Received: 26 May 2009 / Revised: 2 March 2010 / Accepted: 16 April 2010 / Published online: 10 June 2010

© Springer-Verlag 2010

Abstract In this paper, we study the problem of protecting

privacy in the publication of set-valued data. Consider a col-

lection of supermarket transactions that contains detailed

information about items bought together by individuals. Even

after removing all personal characteristics of the buyer, which

can serve as links to his identity, the publication of such

data is still subject to privacy attacks from adversaries who

have partial knowledge about the set. Unlike most previous

works, we do not distinguish data as sensitive and non-sensi-

tive, but we consider them both as potential quasi-identifiers

and potential sensitive data, depending on the knowledge of

the adversary. We define a new version of the k-anonymity

guarantee, the km-anonymity, to limit the effects of the data

dimensionality, and we propose efficient algorithms to trans-

form the database. Our anonymization model relies on gener-

alization instead of suppression, which is the most common

practice in related works on such data. We develop an algo-

rithm that finds the optimal solution, however, at a high cost

that makes it inapplicable for large, realistic problems. Then,

we propose a greedy heuristic, which performs generaliza-

tions in an Apriori, level-wise fashion. The heuristic scales

M. Terrovitis

Institute for the Management of Information Systems (IMIS),

Research Center “Athena”, Athena, Greece

e-mail: mter@imis.athena-innovation.gr

N. Mamoulis (B)

Department of Computer Science, University of Hong Kong,

Hong Kong, China

e-mail: nikos@cs.hku.hk

P. Kalnis

Division of Mathematical and Computer Sciences and Engineering,

King Abdullah University of Science and Technology,

Thuwal, Saudi Arabia

e-mail: panos.kalnis@kaust.edu.sa

much better and in most of the cases finds a solution close to

the optimal. Finally, we investigate the application of tech-

niques that partition the database and perform anonymization

locally, aiming at the reduction of the memory consumption

and further scalability. A thorough experimental evaluation

with real datasets shows that a vertical partitioning approach

achieves excellent results in practice.

Keywords Database privacy · Set-valued data · Anonymity

1 Introduction

We consider the problem of publishing set-valued data, while

preserving the privacy of individuals associated with them.

Consider a database D, which stores information about items

purchased at a supermarket by various customers. We observe

that the direct publication of D may result in unveiling the

identity of the person associated with a particular transaction,

if the adversary has some partial knowledge about a subset

of items purchased by that person. For example, assume that

Bob went to the supermarket on a particular day and pur-

chased a set of items including coffee, bread, Brie cheese,

diapers, milk, tea, scissors and a light bulb. Assume that some

of the items purchased by Bob were on top of his shopping

bag (e.g., Brie cheese, scissors, light bulb) and were spotted

by his neighbor Jim, while both persons were on the same

bus. Bob would not like Jim to find out other items that he

bought. However, if the supermarket decides to publish its

transactions and there is only one transaction containing Brie

cheese, scissors, and light bulb, Jim can immediately infer

that this transaction corresponds to Bob, and he can find out

his complete shopping bag contents.

This motivating example stresses the need to transform

the original transactional database D to a database D′ before

123

84 M. Terrovitis et al.

publication, in order to avoid the association of specific trans-

actions to a particular person or event. In practice, we expect

the adversary to have only partial knowledge about the trans-

actions (otherwise, there would be little sensitive informa-

tion to hide). On the other hand, since the knowledge of the

adversary is not known to the data publisher, it makes sense

to define a generic model for privacy, which protects against

adversaries having knowledge limited to a level, expressed

as a parameter of the model.

In this paper, we propose such a km-anonymization model,

for transactional databases. Assuming that the maximum

knowledge of the adversary is at most m items in a specific

transaction, we want to prevent him from distinguishing the

transaction from a set of k published transactions in the data-

base. Equivalently, for any set of m or less items, there should

be at least k transactions that contain this set, in the published

database D′. In our example, Jim would not be able to iden-

tify Bob’s transaction in a set of 5 transactions of D′, if D′

is 53-anonymous.

This anonymization problem is quite different compared

to well-studied privacy preservation problems in the litera-

ture. Unlike the k-anonymity problem in relational databases

[24,25], there is no fixed, well-defined set of quasi-identifier

attributes and sensitive data. A subset of items in a transaction

could play the role of the quasi-identifier for the remaining

(sensitive) ones and vice versa. Another fundamental dif-

ference is that transactions have variable length and high

dimensionality, as opposed to a fixed set of relatively few

attributes in relational tuples. Finally, we can consider that

all items that participate in transactions take values from the

same domain (i.e., complete universe of items), unlike rela-

tional data, where different attributes of a tuple have different

domains.

The m parameter in the km guaranty introduces a degree

of flexibility in the traditional k-anonymity. It allows con-

sidering different scenarios of privacy threats and adjusting

the guaranty depending on the severity of the threat and the

sensitivity of the data. km-anonymity simulates k-anonymity

if m is set equal to the domain size, i.e., the adversary knows

all items. Still, this is not a realistic scenario in the trans-

actional context. Since all items can act as quasi-identifiers,

an attacker who knows them all and can link them to a spe-

cific person has nothing to learn from the original database;

her background knowledge already contains the original

data.

To solve the km-anonymization problem for a transac-

tional database, we follow a generalization approach. We

consider a domain hierarchy for the items that participate in

transactions. If the original database D does not meet the

km-anonymity requirement, we gradually transform D, by

replacing precise item descriptions with more generalized

ones. For example, “skimmed milk” could be generalized to

“milk” and then to “dairy product” if necessary. By carefully

browsing into the lattice of possible item generalizations, we

aim at finding a set of item generalizations that satisfies the

km-anonymity requirement, while retaining as much detail

as possible to the published data D′.

We propose three classes of algorithms in this direction.

Our first algorithmic class is represented by the optimal anon-

ymization (OA) algorithm, which explores in a bottom-up

fashion the lattice of all possible combinations of item gen-

eralizations, and finds the most detailed such sets of combina-

tions that satisfy km-anonymity. The best combination is then

picked, according to an information loss metric. Although

optimal, OA has very high computational cost and cannot be

applied to realistic databases with thousands of items.

Motivated by the scalability problems of the OA, we pro-

pose a second class of heuristic algorithms, which greedily

identify itemsets that violate the anonymity requirement and

choose generalization rules that fix the corresponding prob-

lems.

The first direct anonymization (DA) heuristic operates

directly on m-sized itemsets found to violate k-anonymity.

Our second, apriori anonymization (AA) is a more carefully

designed heuristic, which explores the space of itemsets, in

an Apriori, bottom-up fashion. AA first identifies and solves

anonymity violations by (l − 1)-itemsets, before checking

l-itemsets, for l = 2 to m. By operating in such a bottom-up

fashion, the combinations of itemsets that have to be checked

at a higher level can be greatly reduced, as in the meanwhile

detailed items (e.g., “skimmed milk”, “choco-milk”, “full-

fat milk”) could have been generalized to more generalized

ones (e.g., “milk”), thus reducing the number of items to be

combined. Our experimental evaluation, using real datasets,

shows that AA is a practical algorithm, as it scales well with

the number of items and transactions, and finds a solution

close to the optimal in most tested cases.

AA does not operate under limited memory, so there is

still a case where the database will be large enough to pro-

hibit its execution. We introduce a third class of algorithms,

Local Recoding Anonymization (LRA) and Vertical Parti-

tioning Anonymization (VPA), which anonymize the dataset

in the presence of limited memory. The basic idea in both

cases is that the database is partitioned and each part is pro-

cessed separately from the others. A short version of this

paper covering the first two classes of algorithms appears in

[26].

The rest of the paper is organized as follows. Section 2

describes related work and positions this paper against it.

Section 3 formally describes the problem, provides an anal-

ysis for its solution space, and defines the information loss

metric. In Sect. 4, we describe the algorithms and the data

structures used by them. In Sect. 5, we discuss the advanced

concepts of negative knowledge and ℓm-diversity. Section 6

includes the experimental evaluation, and Sect. 7 concludes

the paper.

123

Local and global recoding methods 85

2 Related work

Anonymity for relational data has received considerable

attention due to the need of several organizations to pub-

lish data (often called microdata) without revealing the iden-

tity of individual records. Even if the identifying attributes

(e.g., name) are removed, an attacker may be able to asso-

ciate records with specific persons using combinations of

other attributes (e.g., 〈zip, sex, bir thdate〉), called quasi-

identifiers (QI). A table is k-anonymized if each record is

indistinguishable from at least k−1 other records with respect

to the QI set [24,25]. Records with identical QI values form

an anonymized group. Two techniques to preserve privacy are

generalization and suppression [25]. Generalization replaces

their actual QI values with more general ones (e.g., replaces

the city with the state); typically, there is a generalization

hierarchy (e.g., city→state→country). Suppression excludes

some QI attributes or entire records (known as outliers) from

the microdata.

The privacy-preserving transformation of the microda-

ta is referred to as recoding. Two models exist: in global

recoding, a particular detailed value must be mapped to the

same generalized value in all records. Local recoding, on the

other hand, allows the same detailed value to be mapped to

different generalized values in each anonymized group. The

recoding process can also be classified into single dimen-

sional, where the mapping is performed for each attribute

individually, and multidimensional, which maps the Carte-

sian product of multiple attributes. Our work is based on

global recoding and can be roughly considered as single

dimensional (although this is not entirely accurate), since

in our problem all items take values from the same domain.

Meyerson and Williams [18] proved that optimal

k-anonymity for multidimensional QI is N P-hard, under

both the generalization and suppression models. For the lat-

ter, they proposed an approximate algorithm that minimizes

the number of suppressed values; the approximation bound is

O(k ·logk). Aggarwal et al. [3] improved this bound to O(k),

while [22] further reduced it to O(log k). Several approaches

limit the search space by considering only global recod-

ing. Bayardo and Agrawal [5] proposed an optimal algo-

rithm for single-dimensional global recoding with respect

to the Classification Metric (CM) and Discernibility Metric

(DM), which we discuss in Sect. 3.3. Incognito [14] takes a

dynamic programming approach and finds an optimal solu-

tion for any metric by considering all possible generaliza-

tions, but only for global, full-domain recoding. Full-domain

means that all values in a dimension must be mapped to the

same level of hierarchy. For example, in the country→con-

tinent→world hierarchy, if Italy is mapped to Europe, then

Thailand must be mapped to Asia, even if the generalization

of Thailand is not necessary to guarantee anonymity. A dif-

ferent approach is taken in [21], where the authors propose

to use natural domain generalization hierarchies (as opposed

to user-defined ones) to reduce information loss. Our opti-

mal algorithm is inspired by Incognito; however, we do not

perform full-domain recoding, because, given that we have

only one domain, this would lead to unacceptable informa-

tion loss due to unnecessary generalization. As we discuss

in the next section, our solution space is essentially different

due to the avoidance of full-domain recoding. The computa-

tional cost of Incognito (and that of our optimal algorithm)

grows exponentially, so it cannot be used for more than 20

dimensions. In our problem, every item can be considered as

a dimension. Typically, we have thousands of items, there-

fore we develop fast greedy heuristics (based on the same

generalization model), which are scalable to the number of

items in the set domain.

Several methods employ multidimensional local recod-

ing, which achieves lower information loss. Mondrian [15]

partitions the space recursively across the dimension with

the widest normalized range of values and supports a limited

version of local recoding. Aggarwal et al. [2] model the prob-

lem as clustering and propose a constant factor approxima-

tion of the optimal solution, but the bound only holds for the

Euclidean distance metric. Xu et al. [29] propose agglom-

erative and divisive recursive clustering algorithms, which

attempt to minimize the NC P metric (to be described in

Sect. 3.3). Our problem is not suitable for multidimensional

recoding (after modeling sets as binary vectors), because the

dimensionality of our data is too high; any multidimensional

grouping is likely to cause high information loss due to the

dimensionality curse. Nergiz et al. [19,20] studied multire-

lational k-anonymity, which can be translated to a problem

similar to the one studied here, but still there is the funda-

mental separation between sensitive values and quasi-iden-

tifiers. Moreover, there is the underlying assumption that the

dimensionality of the quasi-identifier is limited, since the

authors accept the traditional unconditional definition of

k-anonymity.

In general, k-anonymity assumes that the set of QI attri-

butes is known. Our problem is different, since any combina-

tion of m items (which correspond to attributes) can be used

by the attacker as a quasi-identifier. Recently, the concept of

ℓ-diversity [17] was introduced to address the limitations of

k-anonymity. The latter may disclose sensitive information

when there are many identical sensitive attribute (SA) values

within an anonymized group (e.g., all persons suffer from the

same disease). The authors Ghinita et al. [7], Xiao and Tao

[28], Zhang et al. [31] present various methods to solve the

ℓ-diversity problem efficiently. Ghinita et al. [8] extends [28]

for transactional datasets with a large number of items per

transaction, however, as opposed to our work, distinguishes

between non-sensitive and sensitive attributes. This distinc-

tion allows for a simpler solution that the one required in

out setting, since the QI remains unchanged for all attackers.

123

86 M. Terrovitis et al.

Xu et al. [30] also considers transactional data and

distinguishes between sensitive and non-sensitive items, but

assumes that the attacker has limited knowledge of up to

p non-sensitive items in each transaction (i.e., p similar to

our parameter m). Given this, [30] aims at satisfaction of

ℓ-diversity, when anonymizing the dataset and requires that

the original support of any itemset retained in the anony-

mized database is preserved. A greedy anonymization tech-

nique is proposed, which is based on suppression of items

that cause privacy leaks. Thus, the main differences of our

work to [30] is that we do not distinguish between sensitive

and public items and that we consider generalization instead

of suppression, which in general results in lower information

loss. Li et al. [16] proposes an extension of ℓ-diversity, called

t-closeness. Observe that in ℓ-diversity, the QI values of all

tuples in a group must be the same, whereas the SA values

must be different. Therefore, introducing the ℓ-diversity con-

cept in our problem is a challenging, if not infeasible, task,

since any attribute can be considered as QI or SA, leading to

contradicting requirements. In Sect. 5, we discuss this issue

in more detail.

Related issues were also studied in the context of data

mining. Verykios et al. [27] consider a dataset D of transac-

tions, each of which contains a number of items. Let S be

a set of association rules that can be generated by the data-

set, and S′ ⊂ S be a set of association rules that should be

hidden. The original transactions are altered by adding or

removing items, in such a way that S′ cannot be generated.

This method requires the knowledge of S′ and depends on

the mining algorithm; therefore, it is not applicable to our

problem. Another approach is presented in [4], where the

data owner generates a set of anonymized association rules,

and publishes them instead of the original dataset. Assume

a rule a1a2a3 ⇒ a4 (ai ’s are items) with support 80 ≫ k

and confidence 98.7%. By definition, we can calculate the

support of itemset a1a2a3 as 80/0.987 ≃ 81; therefore, we

infer that a1a2a3¬a4 appears in 81 − 80 = 1 transaction. If

that itemset can be used as QI, the privacy of the correspond-

ing individual is compromised. Atzori et al. [4] presents a

method to solve the inference problem which is based on

the apriori principle, similar to our approach. Observe that

inference is possible because of publishing the rules instead

of the transactions. In our case, we publish the anonymized

transactions, therefore the support of a1a2a3¬a4 is by default

known to the attacker and does not constitute a privacy

breach.

Concurrently to our work, a new approach for anony-

mizing transactional data was proposed in [12]. The authors

introduce a top-down local recoding method, named Partition

using the same assumptions for data as we do, but they focus

on a stronger privacy guaranty, the complete k-anonymity.

They present a comparison between their method and AA

algorithm. Partition is superior to AA, when large values of

m are used by AA to approximate complete k-anonymity,1

However, Partition is inferior to AA for a small m. Since both

local recoding algorithms we propose in this paper use the

AA algorithm, we are able to provide a qualitative compari-

son with the Partition algorithm. The comparison appears in

Sect. 6, and it is based on the experimental results of [12] for

the AA and Partition algorithms.

3 Problem setting

Let D be a database containing |D| transactions. Each trans-

action t ∈ D is a set of items2. Formally, t is a non-empty

subset of I = {o1, o2, . . . , o|I|}. I is the domain of possible

items that can appear in a transaction. We assume that the

database provides answers to subset queries, i.e., queries of

the form {t | (qs ⊆ t) ∧ (t ∈ D)}, where qs is a set of items

from I provided by the user. The number of query items

in qs defines the size of the query. We define a database as

km-anonymous as follows:

Definition 1 Given a database D, no attacker that has back-

ground knowledge of up to m items of a transaction t ∈ D

can use these items to identify fewer than k tuples from D.

In other words, any subset query of size m or less, issued

by the attacker should return either nothing or more than k

answers. Note that queries with zero answers are also secure,

since they correspond to background information that cannot

be associated to any transaction.

3.1 Generalization model

If D is not km-anonymous, we can transform it to a km-

anonymous database D′ using generalization. Generaliza-

tion refers to the mapping of values from an initial domain

to another domain, such that several different values of the

initial domain are mapped to a single value in the destina-

tion domain. In the general case, we assume the existence

of a generalization hierarchy where each value of the initial

domain can be mapped to a value in the next most general

level, and these values can be mapped to even more general

ones, etc. For example, we could generalize items “skimmed

milk”, “choco-milk”, and “full-fat milk”, to a single value

“milk” that represents all three detailed concepts. At a higher

generalization level, “milk”, “yogurt” and “cheese” could be

1 It should be noted that even if m is equal to the maximum record

length, km -anonymity is not equivalent to k-anonymity, as explained in

[12].

2 We consider only sets and not multisets for reasons of simplicity. In a

multiset transaction, each item is tagged with a number of occurrences,

adding to the dimensionality of the solution space. We can transform

multisets to sets by considering each combination of (〈item〉,〈number

of appearances〉) as a different item.

123

Local and global recoding methods 87

Fig. 1 Sample generalization

hierarchy

(a) (b)

Fig. 2 Transformation using {a1, a2} → A. a original database (D),

b transformed database (D′)

generalized to “dairy product”. The effect of generalization

is that sets of items which are different in a detailed level

(e.g., {skimmed milk, bread}, {full-fat milk, bread}) could

become identical (e.g., {milk, bread}).

Formally, we use a generalization hierarchy for the com-

plete domainI of items that may appear in a transaction. Such

an exemplary hierarchy is shown in Fig. 1. In this example, we

assume I = {a1, a2, b1, b2}, items a1, a2 can be generalized

to A, items b1, b2 can be generalized to B, and the two classes

A, B can be further generalized to AL L .

If a generalization is applied to a transaction, this leads

to the replacement of some original items in the transaction

by generalized values. For example, the generalization rule

{a1, a2} → A, if applied to all transactions of the database

D, shown in Fig. 2a, will result to the database D′, shown

in Fig. 2b. Notice that we consider strict set semantics for

the transactions; this leads to possibly reduced cardinality

for the generalized sets. For example, t4 is transformed to t ′4
that has two items instead of three. We say that itemset t ′4 is a

generalization of itemset t4. Formally a generalized itemset

is defined as follows:

Definition 2 A itemset gt is a generalization of itemset t iff

∀o(o ∈ t) ⇔ ((o ∈ gt) ∨ (g(o) ∈ gt))

Where g(o) stands for a generalization of item o.

If we aim for 22-anonymity, database D in Fig. 2a is not

secure, since there are 2-itemsets (e.g., {a1, b1}) that appear

in less than k = 2 transactions (e.g., only in t1). The appli-

cation of the generalization rule {a1, a2} → A to all trans-

actions of D results in a 22-anonymous database D′ (shown

in Fig. 2b). To test the anonymity requirement, we have to

translate all possible 2-itemsets from the original domain,

to the generalized domain and count their supports in D′.

For example, finding the support of {a1, b2} in D′ is equiva-

lent to finding the support of {A, b2} in D′, which is 3 (≥k).

Notice that, when testing an original itemset containing two

or more items that are mapped to the same generalized value,

this translates to testing a lower-cardinality set. For example,

{a1, a2} is generalized to {A} in D′, which has a support of

Fig. 3 Possible domain generalizations

4. Seeing A in the published dataset, one can only infer that

{a1, a2} appears up to four times in the original dataset.

All the proposed algorithms, except LRA, have a global

recoding approach [5,14] which applies the selected general-

ization rules to all transactions in the database. An example

of global recoding has already been shown in Fig. 2. The

LRA algorithm uses an alternative local recoding general-

ization [2,15] that applies selected generalization rules to a

subset of the transactions and results in a database where

items are generalized at different levels in different transac-

tions. This allows more flexibility and facilitates partitioning

of the anonymization procedure.

3.2 Possible solutions

A transformation of the original database D to a D′ is related

to a set of generalizations that apply to domain I. Formally,

the set of possible transformations corresponds to the set of

possible horizontal cuts of the hierarchy tree. Each such cut,

defines a unique set of generalization rules. Figure 3 shows

the possible cuts of the hierarchy depicted in Fig. 1 together

with the corresponding generalization rules. Each cut corre-

sponds to a set of non-overlapping subtrees of the hierarchy,

which altogether span the complete domain I. The root of

each subtree corresponds to the generalization rule that maps

all values in its leaves to the label of the root.

The trivial generalization I → AL L , suppresses the

whole database, since all items are replaced by a generalized

value (e.g., “product”). This generalization always leads to a

km-anonymous database, assuming that the original database

D has at least k transactions. However, the transformation

eliminates all information from the database, making it use-

less. In Sect. 3.3, we formally define the information loss of

a generalization rule (and a hierarchy cut).

The set of possible cuts also form a hierarchy, based on the

generalizations implied by them. Figure 4 shows this hier-

archy lattice for the cuts of Fig. 3. We say that cut c1 is a

generalization of cut c2, denoted by c1 ≻ c2, if the rules

123

88 M. Terrovitis et al.

Fig. 4 Hierarchy of domain generalizations

of c1 generalize the rules of c2. For example, in Fig. 4,

cut 〈{a1, a2, b1, b2} → AL L〉 is a generalization of cut

〈{a1, a2} → A〉. A cut can also be denoted by the gener-

alization it derives; e.g., cut 〈{a1, a2} → A〉 can be denoted

as 〈A, b1, b2〉.

3.3 Information loss

All privacy-preserving transformations cause information

loss, which must be minimized in order to maintain the ability

to extract meaningful information from the published data. A

variety of information loss metrics have been proposed. The

Classification Metric (C M) [13] is suitable when the pur-

pose of the anonymized data is to train a classifier, whereas

the Discernibility Metric (DM) [5] measures the cardinality

of the anonymized groups. More accurate is the General-

ized Loss Metric [13] and the similar Normalized Certainty

Penalty (NC P) [29]. In the case of categorical attributes,

NC P is defined with respect to the hierarchy. Let p be an

item in I. Then:

NC P(p) =

{

0, |u p| = 1

|u p|/|I|, otherwise

where u p is the node of the item generalization hierarchy

where p is generalized. |u p| and |I| are the number of leaves

under u p and in the entire hierarchy, respectively. Intuitively,

NC P tries to capture the degree of generalization of each

item, by considering the ratio of the total items in the domain

that are indistinguishable from it. For example, in the hierar-

chy of Fig. 1, if a1 is generalized to A in a transaction t , the

information loss NC P(a1) is 2/4. The NC P for the whole

database weights the information loss of each generalized

item using the ratio of the item appearances that are affected

to the total items in the database. If the total number of occur-

rences of item p in the database is C p, then the information

loss in the whole database due to the generalization can be

expressed by:

NC P(D) =

∑

p∈I
C p · N PC(p)

∑

p∈I
C p

The information loss of a particular generalization (cut)

ranges from 0 to 1 and can be easily measured. If we scan

the database D once and bookkeep the supports of all items

in I, we can use this information to measure the informa-

tion loss of any generalization, without having to access the

database again. For example, the information loss due to cut

〈{a1, a2} → A〉 in the database of Fig. 2a is 2·0.5+3·0.5+0+0
11

=
2.5
11

.

In addition, to NC P , we introduce a more specialized

information loss measure, which reflects the impact of anony-

mization to the result of data mining on the anonymized data.

The multiple level mining loss (M L2) measure expresses

the information loss in the detection of multilevel frequent

itemsets, when mining is performed on the published data-

set instead of the original one. Mining a dataset at multiple

levels of a generalization hierarchy is a technique that has

attracted interest in the data mining literature [9,10], since

it allows detecting frequent association rules and frequent

itemsets that might not appear at the most detailed level of

the data. Assume for example that we have a dataset that

describes sales of a supermarket. When using the original

data, which contain items at the most detailed product level,

we might not detect any interesting frequent itemset that asso-

ciates a specific skimmed milk product with a specific type

of cookie. Still, if we generalize the data (or move to a higher

level of abstraction in the terminology of [10]), we might be

able to infer that ‘skimmed milk’ and ‘cookies’ appear fre-

quently together. When using a generalization-based method

to anonymize the original data, frequent itemsets at the lower

levels of the hierarchy might be hidden and the correlations

between the items can only be detected at higher levels. M L2

expresses the percentage of all frequent itemsets that do not

appear at the appropriate generalization level when a mul-

tilevel mining algorithm is applied to the published dataset

instead of the original one. Formally:

M L2 = 1 −

∑h
i F Ii (Dp)

∑h
i F Ii (D)

(1)

where F Ii () returns the number of frequent itemsets at gen-

eralization level i , and Dp and D stand for the published and

original dataset, respectively.

We can further enhance the insight on the information

loss in multiple level data mining by tracing the difference

between the generalization level at which a frequent item

appears in the original data and the generalization level it

first appears in the published data. Assume, for example,

that in the dataset with supermarket sales, one can infer that

123

Local and global recoding methods 89

‘skimmed milk 2%’ and ‘cookies 100 g’ appear together at

some hierarchy level l. Since such a frequent itemset appears

at level l, a more generalized form of the itemset should

appear at all levels l ′ > l. In the anonymized dataset gener-

alizations can possibly hide ‘skimmed milk 2%’ or ‘cookies

100 g’, so an itemset that expresses this correlation might

firstly appear at level l + d as {‘skimmed milk’, ‘cookies’}.

The difference d between level l where a frequent itemset

appears in the original data and level l + d, which is the

lowest level at which the same correlation is expressed in

the published dataset can be used to define the differential

multiple level mining loss (d M L2). More formally:

d M L2 =

∑h
i

∑

f i∈FI i (D) dlevel(f i, D, Dp)
∑h

i F Ii (D)
(2)

where dlevel(f i, D, Dp) returns the level difference

between the generalization level at which a frequent item-

set f i first appears in the original data D, and the general-

ization level at which the same frequent itemset or a more

generalized form of it first appears in the published data Dp.

FI i (D) is the set of all frequent itemsets at level i in D

and F Ii (D) is their total number. Note, that the generalized

form of a frequent itemset might have a smaller arity than

the original, if some of the items have been generalized to a

common ancestor.

In the rest of the paper, unless otherwise stated, we will

use the generic NC P metric when referring to information

loss. M L2 and d M L2 are only used in our experimental eval-

uation to assess the quality of our anonymization techniques

from a different prism.

3.4 Monotonicity

We now provide a property (trivial to prove), which is very

useful toward the design of algorithms that seek for the best

hierarchy cut.

Property 1 (Monotonicity of cuts) If the hierarchy cut

c results in a km-anonymous database D′ then all cuts c′,

such that c′ ≻ c also result in a km-anonymous database D′′.

In addition, we know that if c′ ≻ c, then c′ has higher cost

(information loss) than c. Based on this and Property 1, we

know that as soon as we find a cut c that satisfies the km-

anonymity constraint, we do not have to seek for a better cut

in c’s ancestors (according to the cut hierarchy). Therefore,

for a database with at least k transactions, there is a set C

of cuts, such that for each c ∈ C , (i) the km-anonymity con-

straint is satisfied by the database D′ resulting after applying

the generalizations in c to D, and (ii) there is no descendant

of c in the hierarchy of cuts, for which condition (i) is true.

We call C the set of minimal cuts. The ultimate objective

of an anonymization algorithm is to find one of the optimal

cuts copt in C , which incurs the minimum information loss

by transforming D to D′. In the next section, we propose a

set of algorithms that operate in this direction.

4 Anonymization techniques

The aim of the anonymization procedure is to detect the cut in

the generalization hierarchy that prevents any privacy breach

and at the same time introduces the minimum information

loss. We first apply a systematic search algorithm, which

seeks for the optimal cut, operating in a fashion similar to

Incognito [14]. This algorithm suffers from the dimension-

ality of the generalization space and becomes unacceptably

slow for large item domains I and generalization hierarchies.

To deal with this problem, we propose heuristics, which

instead of searching the whole generalization space, they

detect the privacy breaches and search for local solutions.

The result of these methods is a cut on the generalization

hierarchy that guarantees km-anonymity, while incurring low

information loss. Before presenting these methods in detail,

we present a data structure, which is used by all algorithms

to accelerate the search of itemset supports.

4.1 The count-tree

An important issue in determining whether applying a gen-

eralization to D can provide km-anonymity or not, is to be

able to count efficiently the supports of all the combinations

of m items that appear in the database. Moreover, if we want

to avoid scanning the database each time we need to check

a generalization, we must keep track of how each possible

generalization can affect the database. To achieve both goals,

we construct a data structure that keeps track not only of all

combinations of m items from I, but also all combinations of

items from the generalized databases that could be generated

by applying any of the possible cuts in the hierarchy tree.

The information we trace is the support of each combination

of m items from I, be detailed or generalized. Note that, if

we keep track of the support of all combinations of size m

of items from I, it is enough to establish whether there is a

privacy breach or not by shorter itemsets. This follows from

the Apriori principle that states that the support of an itemset

is always less or equal to the support of its subsets.

To count the supports of all these combinations and

store them in a compressed way in our main memory, we

use a count-tree data structure, similar to the FP-tree [11].

An exemplary such tree for the database of Fig. 2a and

m = 2 is shown in Fig. 5. The tree assumes an order of

the items and their generalizations, based on their frequen-

cies (supports) in D. For instance, the (decreasing frequency)

order of (generalized) items in the database of Fig. 2a is

{AL L , A, B, a2, b1, b2, a1}. To compute this order, a data-

base scan is required. If we want to avoid the scan, a heuristic

123

90 M. Terrovitis et al.

Fig. 5 Count-tree for the database of Fig. 2

Fig. 6 Expanded database

approach is to put the items in order of the number of detailed

items they generalize (e.g., {AL L , A, B, a1, a2, b1, b2}).

However, since it makes no sense to count the number of

AL L occurrences (they are always |D|) and AL L cannot be

combined with any other item (it subsumes all items), there

is no need to include AL L in the tree. The support of each

itemset with up to m items can be computed by following the

corresponding path in the tree and using the value of the cor-

responding node. For example, the support of itemset {a1}

is 2 (i.e., the value of node a1) and the support of itemset

{A, b2} is 3 (i.e., the value at the node where path A → b2

ends).

Algorithm 1 is a pseudocode for creating this tree. The

database is scanned and each transaction is expanded by add-

ing all the generalized items that can be derived by generaliz-

ing the detailed items. Since we assume strict set semantics,

each generalized item appears only once. The expansion of

the database of Fig. 2a is shown in Fig. 6. Note that the

expansion does not have to be done explicitly for the data-

base; in practice, we expand each transaction t read from D

on-the-fly. For each expanded transaction t , we find all sub-

sets of t up to size m that do not contain any two items i, j ,

such that i is a generalization of j , we follow the corre-

sponding path at the tree (or create it if not already there)

and increase the counter of the final node in this search. For

example, the expanded transaction t2 in Fig. 6 generates the

following itemsets: a2, b1, A, B, {a2, b1}, {a2, B}, {b1, A},

{A, B}.

Algorithm 1 Creation of the tree for km anonymity

populateTree(D, tree, m)

1: for all t in D do ⊲ for each transaction

2: expand t with the supported generalized items

3: for all combination of c ≤ m items in the expanded t do

4: if ∄i, j ∈ c such that i generalizes j then

5: insert c in tree

6: increase the support counter of the final node

Although this tree facilitates fast support counting for any

ad hoc set of m items or less, generalized in any ad hoc

fashion, (i) it requires a large amount of memory and (ii) its

construction incurs high computational cost, as all m-sized or

less itemsets, generalized or not, in every transaction t have

to be found and inserted into the tree. For a database with

|D| transactions, each of size τ , the tree construction cost

is O
(

|D| ·
(

τ
m

))

. Our best algorithm, discussed in Sect. 4.4

greatly decreases this cost, by examining the itemsets level-

by-level and using the Apriori property to reduce the number

of item combinations that need to be inserted to the tree and

counted.

4.2 Optimal anonymization

To find the optimal cut, i.e., the generalization that satisfies

km-anonymity and has the least information loss, we can

examine systematically the generalizations in the cut hierar-

chy, in a bottom-up, breadth-first fashion. Initially, the cut cng

that corresponds to no generalization (i.e., bottommost cut in

the hierarchy) is put in a queue Q. While Q is not empty, we

remove the first cut c from it and examine whether c satisfies

km-anonymity. If so, it becomes a candidate solution. Any

immediate ancestors of c are marked as non-optimal (since

they cannot be minimal cuts) and removed from Q if they

appear there. The marked combinations are kept in a hash

table H , so they will not be added again in Q in the future.

The information loss of c is computed and compared with

that of the best found cut copt so far. If c’s information loss

is lower, then c replaces copt as the optimal solution found

so far.

If c does not satisfy km-anonymity, its immediate ances-

tors in the hierarchy, which do not have a descendant cut that

satisfies km-anonymity, are added to the queue of cuts Q to

be examined at the next lattice levels. The algorithm termi-

nates as soon as Q is empty. Algorithm 2 is pseudocode of

this optimal anonymization (OA) algorithm.

Note that the immediate ancestors of a cut c are cre-

ated constructively, by replacing a set of (generalized) items

which have common parent in the item hierarchy, by their

parent. For example, cut 〈A, B〉 is derived from 〈A, b1, b2〉,

by replacing {b1, b2}, by B. This way the complete hierarchy

lattice of the cuts does not need to be precomputed.

It is easy to see that when the size of I (and the corre-

sponding generalization hierarchy of items) grows, the algo-

rithm becomes prohibitive expensive. In specific, assuming

that the item generalizations form a tree hierarchy of node

degree κ , then the number of possible cuts is the solution to

the recurrence T (N) = 1 + T (N/κ)κ , for N = I, which

is lower-bounded by 2N/κ , i.e., exponential to N . More-

over, each iteration requires checking the supports of all

m-itemsets with respect to the corresponding generaliza-

tion, in order to determine whether the current node satisfies

km-anonymity or not. The basic problem of the optimal algo-

rithm is that it performs its search based on the domain

of the database. In the next sections, we present heuristic

approaches that greedily search for a domain generalization

123

Local and global recoding methods 91

that provides km-anonymity to D and, at the same time, have

low information loss.

Algorithm 2 Optimal anonymization algorithm

OA(D, I, k, m)

1: copt := null; copt .cost := ∞ ⊲ initialize copt

2: add cng to an initially empty queue Q

3: while (Q is not empty) do

4: pop next cut c from Q

5: if c does not provide km -anonymity to D then

6: for all immediate ancestors cans of c do

7: if cans does not appear in H then

8: push cans to Q

9: else ⊲ c provides km -anonymity to D

10: for all immediate ancestors cans of c do

11: add cans to H

12: if cans in Q then

13: delete cans from Q

14: if c.cost < copt .cost then

15: copt := c

16: return copt

4.3 Direct anonymization

The basic idea of our first heuristic algorithm, called direct

anonymization (DA), is to scan the count-tree once for

possible privacy breaches and then use the generalized com-

binations to track down a solution that solves each prob-

lem. Similarly, to the optimal anonymization (OA) algorithm,

this method is based on the precomputation of the com-

plete count-tree for sets consisting of up to m (generalized)

itemsets. DA scans the tree to detect m-sized paths that have

support less than k. For each such path, it generates all the

possible generalizations, in a level-wise fashion, similar to

the optimal anonymization (OA) algorithm, and finds among

the minimal cuts that solve the specific problem, the one

which incurs the lowest information loss.

Specifically, once the count-tree has been created, DA ini-

tializes the output generalization cout , as the bottommost cut

of the lattice (i.e., no generalization). It then performs a pre-

order (i.e., depth-first) traversal of the tree. For every node

encountered (corresponding to a prefix), if the item corre-

sponding to that node has already been generalized in cout ,

DA backtracks, as all complete m-sized paths passing from

there correspond to itemsets that will not appear in the gen-

eralized database based on cout (and therefore their supports

need not be checked). For example, if the algorithm reaches

the prefix path B-a2 the algorithm will examine its descen-

dants only if B and a2 have not already been further gener-

alized. Note that this path will be examined even if the items

b1 and b2 have not been generalized to item B. Due to the

monotonicity of the problem, we know that if B-a2 leads

to a privacy breach, then it is certain that b1-a2 and b1-a1

lead to privacy breach. Addressing the problem for the path

B-a2 allows the algorithm to avoid examining the other two

paths. During the traversal, if a leaf node is encountered, cor-

responding to an m-itemset J (with or without generalized

components), DA checks whether the corresponding count

J.count is less than k. In this case, DA seeks for a cut that (i)

includes the current generalization rules in cout and (ii) makes

the support of J at least k. This is done in a similar fashion

as in OA, but restricted only to the generalization rules that

affect the items of J . For example, if J = {a1, a2}, only gen-

eralizations {a1, a2} → A and {a1, a2, b1, b2} → AL L will

be tested. In addition, from the possible set of cuts that solve

the anonymity breach with respect to J , the one with the

minimum information loss is selected (e.g., {a1, a2} → A).

The generalization rules included in this cut are then commit-

ted (i.e., added to cout) and any path of the count-tree which

contains items at a more detailed level (e.g., a1 and a2) than

cout is pruned from search subsequently. Algorithm 3 is a

high-level pseudocode for DA.

Algorithm 3 Direct anonymization

DA (D, I, k, m)

1: scan D and create count-tree

2: initialize cout

3: for each node v in preorder count-tree traversal do

4: if the item of v has been generalized in cout then

5: backtrack

6: if v is a leaf node and v.count < k then

7: J := itemset corresponding to v

8: find generalization of items in J that make J k-anonymous

9: merge generalization rules with cout

10: backtrack to longest prefix of path J , wherein no item has

been generalized in cout

11: return cout

As an example, assume that we want to make the database

of Fig. 2a 22-anonymous. First, DA constructs the count-

tree, shown in Fig. 5. cout is initialized to contain no gener-

alization rules. Then DA performs a preorder traversal of the

tree. The first leaf node encountered with a support less than

2 is a1 (i.e., path a2-a1). The only minimal cut that makes

{a2, a1} k-anonymous is {a1, a2} → A, therefore the corre-

sponding rule is added to cout . DA then backtracks to the next

entry of the root (i.e., b1) since any other path starting from a2

would be invalid based on cout (i.e., its corresponding item-

set could not appear in the generalized database according to

cout). The next path to check would be b1-b2, which is found

non-problematic. DA then examines b1-a1, but backtracks

immediately, since a1 has already been generalized in cout .

The same happens with b2-a1 and the algorithm terminates

with output the cut 〈{a1, a2} → A〉.

The main problem of DA is that it has significant

memory requirements and computational cost, because

it generates and scans the complete count-tree for all

m-sized combinations, whereas it might be evident from

123

92 M. Terrovitis et al.

smaller-sized combinations that several generalizations are

necessary. This observation leads to our next algorithm.

4.4 Apriori-based anonymization

Our second heuristic algorithm is based on the apriori prin-

ciple; if an itemset J of size i causes a privacy breach, then

each superset of J causes a privacy breach. Thus, it is pos-

sible to perform the necessary generalizations progressively.

First, we examine the privacy breaches that might be feasible

if the adversary knows only one item from each transaction,

then two and so forth till we examine privacy threats from an

adversary that knows m items.

The benefit of this algorithm is that we can exploit the gen-

eralizations performed in step i , to reduce the search space

at step i+1. The algorithm practically iterates the direct algo-

rithm for combinations of sizes i = {1, . . . , m}. At each

iteration i the database is scanned and the count-tree is pop-

ulated with itemsets of length i . The population of the tree

takes into account the current set of generalization rules cout ,

thus significantly limiting the combinations of items to be

inserted to the tree. In other words, in the count-tree at level

i , i-itemsets which contain items already generalized in cout

are disregarded. Algorithm 4 is a pseudocode for this apri-

ori-based anonymization (AA) technique.

Algorithm 4 Apriori-based anonymization

AA (D, I, k, m)

1: initialize cout

2: for i := 1 to m do ⊲ for each itemset length

3: initialize a new count-tree

4: for all t ∈ D do ⊲ scan D

5: extend t according to cout

6: add all i-subsets of extended t to count-tree

7: run DA on count-tree for m = i and update cout

Note that in Line 5 of the algorithm, the current transac-

tion t is first expanded to include all item generalizations (as

discussed in Sect. 4.1), and then all items that are general-

ized in cout are removed from the extended t . For exam-

ple, assume that after the first loop (i.e., after examining

1-itemsets), cout = 〈{a1, a2} → A〉. In the second loop

(i = 2), t4 = {a1, a2, b2} is first expanded to t4 =

{a1, a2, b2, A, B} and then reduced to t4 = {b2, A, B}, since

items a1 and a2 have already been generalized in cout . There-

fore, the 2-itemsets to be inserted to the count-tree due to this

transaction are significantly decreased.

The size of the tree itself is accordingly decreased since

combinations that include detailed items (based on cout) do

not appear in the tree. As the algorithm progresses to larger

values of i , the effect of pruned detailed items (due to cout)

increases because (i) more rules are expected to be in cout (ii)

the total number of i-combinations increases exponentially

with i . Overall, although D is scanned by AA m times, the

computational cost of the algorithm is expected to be much

lower compared to DA (and OA). The three algorithms are

compared in the Sect. 6 with respect to (i) their computa-

tional cost and (ii) the quality of the km-anonymization they

achieve.

4.5 Local recoding

Local recoding has been used in traditional k-anonymity and

ℓ-diversity problems. It relies on generalizing existing values,

but unlike global recoding, where all or none of the occur-

rences of an item o are replaced with a more generalized

item g, the replacement here can be partial; only some occur-

rences of o are replaced with g. Local recoding can poten-

tially reduce the distortion in the data, by replacing o only

in a neighborhood of the data. The detection of a suitable

neighborhood is hard to achieve in a multidimensional set-

ting, where it is hard to detect data with similar values. Still,

using local recoding we can process the database locally, i.e.,

only a part of the dataset is processed at each moment. Even if

the information loss is greater compared to the AA algorithm,

there is better potential for scalability, since the database can

be partitioned according to the available memory.

As we discussed, the memory requirements for the

count-tree that is used by the anonymization heuristics can be

significant. Algorithms like AA algorithm reduce the count-

tree’s size, by progressively computing the required gener-

alizations for publishing a ki -anonymous, i = 1, . . . , m,

database. Nevertheless, even AA does not provide effective

control over the memory requirements of the anonymization

procedure. If the database and the items domain are large, AA

might have requirements that exceed the available memory.

The basic idea in the local recoding anonymization (LRA)

algorithm is to partition the original dataset, and anonymize

each part independently, using one of the proposed algo-

rithms (e.g., AA). It is easy to see that if all parts of the

database are km-anonymous, then the database will be km-

anonymous, too. If a part is km anonymous, then each m-

sized combination of items would appear at least k times in

this part. Unifying this part with other database parts, cannot

reduce the number of appearances of any m-sized combina-

tion. Hence, if all parts are km-anonymous, i.e. all m-sized

combinations of items appear at least k times in each part,

then the whole anonymized database (which is their union)

every m-sized combination will appear at least k-times. By

splitting the database into the desired number of chunks, we

can implicitly define the memory requirements.

Local anonymization can affect the data quality in two,

conflicting, ways. On the one hand, it fixes a problem locally,

thus it does not distort the whole database in order to tackle

a privacy threat. For example, assume that we split the data-

base in two parts D1 and D2 and that items o1, o2, which

are both specializations of item g, appear two times each in

123

Local and global recoding methods 93

Table 1 Decimal, binary and

gray coding of numbers Decimal Gray Binary

0 000 000

1 001 001

2 011 010

3 010 011

4 110 100

5 111 101

6 101 110

7 100 111

D1 and zero and four times in D2, respectively. With k = 3,

local anonymization would generalize both o1 and o2 to g in

D1, and it would leave o2 intact in D2. On the other hand,

the algorithm decides whether there is a privacy breach at

a local level, and fails to see whether this problem holds

when the whole database is considered. For example, if we

decide to split database D to two parts D1 and D2, a combi-

nation c which appears 2k − 2 times (k > 2) and does not

pose any threat for the user privacy, might only appear k − 1

times in both D1 and D2, thus causing generalizations that

could have been avoided. Intuitively, we could mitigate this

negative effect by mustering all the occurrences of any item

combination in a single chunk of D. This is far from triv-

ial to achieve, since each record supports numerous different

combinations. Splitting the database in a way that we get

both the desired number of chunks and completely different

item combinations at each chunk is usually impossible. In

the following, we propose a heuristic that tries to split the

database into the desired number of chunks, by minimizing

the overlap of the sets of different combinations of items that

appear in each chunk.

4.5.1 Partitioning by Gray code ordering

The Gray code [23] is a binary numeral system where two

successive values differ in only one digit (see Table 1). Num-

bers that are relatively close will have relatively similar Gray

codings in terms of the placement of 0s and 1s in their rep-

resentation. In the information theory terminology two suc-

cessive values in the Gray code system will have a Hamming

distance of 1.3 The Hamming distance between two strings

or sequences of equal length is the number of positions where

the corresponding symbols are different.

We exploit the Gray code ordering in the following way:

For each item i of the domain I , we create a signature with

|I | bits, where the i-th bit is 1 and all others are 0. Then, for

3 Assuming that all numbers are padded with 0s to have an equal length

representation.

each transaction of t of the database D we create a signature

of I bits by superimposing the signatures of the items that

appear in t , i.e., we perform an OR between the signatures.

Having transformed database D to a signature database D′,

we continue by sorting D′ according to Gray code ordering.

We assume that each signature is a Gray code and we sort

them all in ascending order. An example of this procedure is

depicted in Fig. 7. Since sequential Gray codes have a Ham-

ming distance of one, ordering all signatures according their

Gray ordering will bring together transactions that are close

in the Hamming distance space. As a result of this ordering,

transactions that contain similar sets of items will be placed

in the same neighborhood. Thus, by partitioning the Gray-

sorted transaction, we have high chances of creating chunks

having transactions with common item combinations. This

way, fewer generalizations will be needed to anonymize each

database chunk.

We chose to use gray code ordering as a basis for our par-

titioning instead of some transaction clustering algorithm for

reasons of efficiency. Our basic motivation behind propos-

ing a local recoding anonymization method is to provide a

more scalable solution than the AA algorithm. To this end, we

opted for a computationally cheap solution, like Gray code

based sorting, over some expensive clustering technique.

One consideration we have to take into account when par-

titioning a dataset with the aforementioned ordering is the

average record size in each chunk. One side product of the

Gray ordering is that transactions of the same size will be

positioned close to each other. If we naively split the ordered

database in chunks having equal numbers of transactions,

then the number of m-sized combinations that appear in each

chunk might vary significantly if we have records of various

sizes. Having a skewed distribution of the m-sized combina-

tions in the database chunks greatly affects the quality of the

solution and the memory requirements. As both the size of

the count-tree and of the solution space are directly affected

by the number of m-sized combinations that appear in the

data, we should create chunks with approximately the same

number of m-sized combinations and not the same number of

transactions. To estimate the total number of combinations,

an initial scanning of the database has to be performed. Note

that the computational overhead is small, since the number of

m-sized combinations C of each transaction needs only to be

calculated once for each different transaction size s. Then,

we simply calculate the product of C and the number of

transactions with length s. This calculation introduced only

an insignificant overhead in our experiments, which could

further be reduced with the help of sampling.

4.5.2 Flexible borders

LRA even with Gray ordering has a weakness; if an item of

one class appears very few times in a database chunk, then it

123

94 M. Terrovitis et al.

Fig. 7 Sorting the database

using gray code ordering

will cause all its siblings to be generalized even if they pose

no privacy threat. A way to tackle this problem is to allow

some flexibility in the partitioning of the database. Assume

that we have a database and we want to process it in four

chunks. A straightforward approach would be to split it in

four chunks with an equal number of m-sized combinations.

When we perform the split, some items might end up at the

wrong chunk, i.e., a single appearance of item i , which is very

common in the first chunk, might end up at the second chunk.

This has a significant impact on the quality of the data. The

appearance of a unique item and subsequently unique item

combinations, might require generalizing many other sibling

items in order to guarantee the km-anonymity. To minimize

the effect of having items in the wrong chunk, we allow the

algorithm to create chunks that deviate up to f transactions

from the initial partitioning. The algorithm chooses where to

split the database by selecting the pair or successive trans-

actions th, th+1 that have the maximum Hamming distance

among all other pairs of successive transactions in the region

of [teq− f , teq+ f), where teq is the transaction where the equal

size chunk teq would end.

Algorithm 5 Local recoding anonymization

LRA(D, I, k, m)

1: GrayPartitioning(D,D1, . . . , Dn)

2: for all Di in D1, . . . , Dn do

3: Di pub
:=AA(Di ,I, k, m)

4: insert Di pub
to Dpub

5: return Dpub

Algorithm 6 Gray ordering & partitioning

GrayPartitioning(D, D1, . . . , Dn)

1: D′ = ⊘ ⊲ empty signature database

2: for all t in D do ⊲ for each record of D

3: create signature st of t

4: insert st to D′

5: sort D′ by Gray code ordering

6: for all Di in D1, . . . , Dn do

7: Find the pair (th ,th+1) in [t
i×

|D|
n

− f
, t

i×
|D|
n

+ f
) of maximum Ham-

ming distance

8: from unassigned records of D′ assign records t ≤ th to Di

The pseudocode for the LRA algorithm is presented

in Algorithm 5 and for the Gray code partitioning in

Algorithm 6. The main anonymization algorithm simply

invokes the Gray Parti tioning procedure to create the

desired database chunks D1, . . . , Dn , and then anonymizes

each chunk using AA. The Gray Parti tioning procedure

first creates the transaction signatures, by setting the bits at

the positions corresponding to the items included in each

transaction, then sorts the signatures, and finally creates the

database chunks, following the flexibility heuristic.

4.5.3 Parallelization

An additional benefit of partitioning the database into chunks

and solving the anonymization problem for each of them is

that the anonymization procedure can be parallelized. The

parallelization of the LRA algorithm is trivial; as the local

problems at each chunk are independent, they can directly

be parallelized. Thus, the total execution time reduces to that

of partitioning the dataset plus solving the most expensive

sub-problem.

4.6 Anonymization by vertical partitioning

The generalization model as described in Sect. 3.1 groups

together different items that are semantically related, i.e.,

they belong to the same class. In Sect. 4.5, we saw that a cru-

cial point in splitting the database is to group related points

(and combinations of points) together. The Vertical Partition-

ing Anonymization algorithm (VPA), instead of splitting the

database horizontally, i.e., retaining the original transactions

but processing only some of them, it splits the database verti-

cally; all transactions are processed, but only selected items

are taken into account at each step. The idea is that if we

process only a subset of I, the size of the count-tree will be

smaller, but at the same time all combinations of these items

will be taken into account. There are two important issues

in this approach: a) how to select the items that will be pro-

cessed at each step and b) what to do with the combinations

that are composed by items processed at different steps.

The partitioning of the domain I should group together

items that belong to the same class, and classes that belong to

the same superclass. Since the generalization model relies on

replacing the members of a class with a generalized represen-

tative value, the effectiveness of the generalization depends

on how many members of a class will appear on the same

database part. Independently of the original item and class

identifiers, it is possible to sort I in such a way that each class

will contain a contiguous region of items in the order of I as

depicted in Fig. 8. For reasons of simplicity, we assume that I

is sorted this way, so that we can easily split the domain in the

desired number of regions. The partitioning of the domain can

123

Local and global recoding methods 95

Fig. 8 Splitting the domain at different hierarchy levels

take place at different hierarchy levels. If we want to split the

database in 3 parts, we can simply split the items that appear

in the leaf level of the generalization hierarchy in three equal-

sized groups. Alternatively, we can perform a partitioning of

the items that splits the classes of level 1 in three groups with

approximately the same number of items, or the classes of

level 2, etc. Creating a partitioning that splits items accord-

ing to their membership to high-level classes has a positive

impact on the quality of the data. Since generalization will

group together data from the same classes, there is a signif-

icant benefit in having all the items of a class in the same

chunk. Splitting the items in the leaf level does not guarantee

that all classes will have all their items in the same chunk,

especially the high-level ones. For example, partitioning the

items according to their level 1 classes, guarantees that all

level 1 classes will have their items in the same chunk. The

same holds for any other level. The tradeoff for partitioning

I in a high level is that the algorithm has less control over

how many items will end up in each chunk. Different classes

might have different sizes and in high levels there might not

exist enough classes to uniformly distribute them to different

chunks, as in Fig. 8. The memory requirements depend on the

maximum memory required by the different algorithm steps.

If too many items and combinations are examined in one step,

the algorithm’s memory requirements might be significantly

greater compared to a more uniform partitioning.

Algorithm 7 Vertical partitioning anonymization

VPA(D, I, k, m)

1: partition I to I1, . . . , In

2: for all Ii in I1, . . . , In do

3: Di = project D to Ii

4: HCi =AA(Di , Ii , k, m) ⊲ keep only hierarchy cuts

5: insert HCi to HCtemp ⊲ store all temporary HC

6: AA(D, I, k, m) ⊲ anonymize based on HCtemp

The pseudo-code for the VPA algorithm is depicted in

Algorithm 7. Processing at each step only a part Ii of I

ensures that all combinations of items from only Ii are taken

into account in the anonymization. The same holds for all

parts of I, I1, . . . , In . However, combinations that contain

items from multiple parts of I have not been examined at

any step (e.g., combination {a1, b1}, assuming a1 ∈ I1 and

b1 ∈ I2). To deal with these combinations we perform a

final step where all items of I are taken into account (i.e.,

as in the original AA algorithm). To this end, we rescan the

database and anonymize the whole data. However, instead of

examining all m-sized combinations from I, we consider all

generalizations HCtemp that have been done at any previous

step as committed. This means that the anonymization search

space is significantly smaller than directly applying AA to D

(i.e., without considering HCtemp). For example, if items a1

and a2 have been generalized to item A in HCtemp, when we

rescan the database we replace any appearance of a1 or a2

with A and we trace in the count-tree only the appearances

on A. The algorithm has an increased I/O cost compared to

the AA and LRA algorithms since it must scan the data three

times and write them once. VPA performs an initial scan

to partition D into chunks according to I1, . . . , In and store

them to temporary files; it then reads the partitions one by one

for anonymization. Finally, the original database in scanned

again for the final anonymization. As the dominant factor

of the anonymization process is the computational cost, the

increased I/O cost of VPA compared to LRA and AA is insig-

nificant compared to the benefit in computational savings, as

we will show in Sect. 6.

Despite the partitioning of the anonymization processes

in several steps, VPA performs global recoding, i.e., all the

appearances of the items of a class are generalized and not

only a part of them. A significant advantage of VPA is that

we have explicit control in the partitioning of I, thus better

control in the number of item combinations in each parti-

tion, which is the dominant cost factor of the anonymization

process.

4.6.1 Parallelization

The VPA algorithm, like LRA, can be easily parallelized,

as the processing of each chunk can be performed indepen-

dently. Since there is an essential final pass over the whole

database, the cost is determined by the two database scans

(one in the beginning for the data partitioning and the final

pass in the end) plus the cost of anonymizing the most expen-

sive partition.

5 Negative knowledge and ℓ-diversity

In this section, we discuss the impact of negative knowledge

in k-anonymity. In addition, we outline the reasons that make

the concept of ℓ-diversity hard to apply in our privacy prob-

lem and provide an ℓ-diversity definition for cases where

such a concept can be applied.

123

96 M. Terrovitis et al.

5.1 Negative knowledge

An important issue in privacy preservation is the treatment

of negative knowledge: the fact that an attacker knows that

a record does not contain a certain item. This problem is

more evident in multidimensional data, since in relational

data nulls in quasi-identifiers are usually treated as all other

values. Negative knowledge acting as an inference channel

for guessing sensitive values is studied in [4]: knowing that

a value does not exist in a record can be exploited to breach

privacy in several cases. Negative knowledge can be used in

the context of this paper to isolate fewer than k-tuples for

a given combination of m or fewer items; still, we opted to

focus on positive knowledge for three reasons:

1. Taking into account negative knowledge in a traditional

privacy guaranty, like k-anonymity, will lead to exten-

sive information loss due to the curse of dimensionality

[1]. Forfeiting negative knowledge was one of the mech-

anisms we used to reduce this cost. We believe it offers a

good trade-off since negative knowledge is fairly weak.

Transactional data are usually sparse, containing only a

small subset of the itemset domain. This means that pos-

itively knowing an item that appears in a transaction is a

lot more identifying than knowing an item that does not.

2. Apart from being weaker, negative knowledge is usually

a lot harder to obtain in most practical scenarios. E.g., in

a supermarket a customer usually buys tenths of differ-

ent products and never buys thousands of them. Not only

is the knowledge of those she does not buy unimportant

compared to the knowledge of those that she buys, but

also is it a lot harder to obtain this knowledge. For a casual

observer she has to follow all visits of the customer to

the supermarket in order to make sure that a product is

not bought, but she only has to observe the customer for

a limited time to know the buying of certain products.

The same goes for more powerful attackers who might

be able to trace the consumption of whole product series

(for example through promotional campaigns for certain

products, that require users to register); it is easier to

acknowledge that someone exploited the promotion and

bought a product than to rule out that someone has not

bought it.

3. Finally, we have left negative knowledge out of the

scope of our discussion for reasons of simplicity. The

km-anonymity guaranty can easily be extended to take

into account negative knowledge. Instead of considering

m-sized combinations of items that appear in a record,

we have to consider any m-sized combination of items

whether they appear in a record or not. To make this

more clear, assume that we populate each record with

the negation of each product that does not appear in it;

e.g., for a user that has bought only products a and b, we

should mark {a, b,¬c,¬d} (assuming that our domain

contains only items a, b, c, d). Using such a representa-

tion we can generalize our privacy guarantee so that the

anonymized dataset will consider all m-combinations of

any positively or negatively traced product in the records.

In other words, any combination of m items that are asso-

ciated or not associated with a person, will appear at

least k times in the anonymized database. For instance,

for m = 3 {a, b,¬c} can act as quasi-identifier. For a

dataset to be k3 anonymous, this quasi-identifier has to

appear at least k times.

5.2 ℓm-diversity

An important weakness of the k-anonymity guaranty is that

it does not prohibit an adversary from uncovering certain

values that are associated to a person. For example, assume

that a database D contains three records that are all iden-

tical: a, b, s1, where a and b are quasi-identifiers and s1 a

sensitive value. The database might be 3-anonymous, but an

adversary that knows a person which is associated to values

a and b can be certain that the same person is associated with

value s1 too. To tackle this problem the authors of [17], pro-

posed the ℓ-diversity guaranty where any person cannot be

associated with less than ℓ sensitive values. ℓ-diversity practi-

cally leads to the creation of equivalence classes, where each

set of quasi-identifiers is associated with at least ℓ different

sensitive values. This way linking public knowledge (quasi-

identifiers) to sensitive knowledge cannot be done with

certainty. There are basically three problems with applying

ℓ-diversity in our context:

1. Without the distinction between sensitive and non-

sensitive values, the ℓ-diversity guaranty implies a

requirement contradictory to almost all utility metrics.

While utility metrics try to preserve the statistical prop-

erties and the correlation between items, ℓ-diversity

requires that no itemset can be associated with any other

itemset with probability higher than 1/ℓ. Practically the

dataset would be rendered useless if all data were to be

treated both as sensitive and as quasi-identifiers. ℓ-diver-

sity is applicable only if are able to clearly differentiate

between items that are quasi-identifiers and items that

are sensitive.

2. In most practical applications it would be hard to charac-

terize as sensitive and non-sensitive the items that might

appear in a dataset. While in the relational context only

few attributes have to be characterized, here we must

have this knowledge for each item in a large domain.

3. Even if we knew which items are sensitive and which are

not, sensitive items can still act as quasi-identifiers. For

example, if sensitive items s1, s2, s3 appear in a single

123

Local and global recoding methods 97

record, in many practical scenarios we cannot rule out

the possibility that an adversary has somehow managed

to associate s1 and s2 with a specific person. Then she

would be able to use these sensitive items to associate s3

with the same person.

Despite the aforementioned problems, there can still be

cases where a practical distinction can be made between

sensitive values and quasi-identifiers. The distinction also

implies that sensitive values cannot act as quasi-identifiers,

i.e., there is no guarantee if the adversary manages somehow

to learn some of the sensitive values. In this setting we can

easily adapt the km-anonymity concept to ℓm-diversity.

Definition 3 Given a database D where all items are either

quasi-identifiers or sensitive values, no attacker that has back-

ground knowledge of up to m quasi-identifier items of a trans-

action t ∈ D can associate these items with any combination

of sensitive values with probability 1/ℓ.

The difference of ℓm-diversity from km anonymity is

that ℓm-diversity considers only a subset of D as quasi-

identifiers and has a different privacy criterion when check-

ing if a combination of quasi-identifiers can lead to a privacy

breach. Adjusting our algorithms to guarantee ℓm-diversity is

rather straight-forward. We now only have to consider com-

binations of items that can act as quasi-identifiers, thus the

count-tree has to be built solely on them. Instead of using

the support of a combination c, s(c) as a criterion for pri-

vacy breaches we have to also use the support of the most

frequent sensitive itemset s, sup(s) that co-appears with c.

If
sup(s)
sup(c)

> 1
l

then there is a privacy breach and items from c

have to be generalized. The criterion for choosing the items

remains the same: we choose the generalization that solves

the problem and has the lowest cost. The problem is solved

if the resulting combination c′ has a ratio
sup(s′)
sup(c′)

≤ 1
l
, where

s′ is the most frequent combination of sensitive items that

appears in the records that contain c′. Since only quasi-iden-

tifiers get generalized, the support of their combinations rises

(whereas the support of sensitive items in D remains stable),

thus ultimately ℓm-diversity will be achieved.

6 Experiments

We evaluated experimentally the proposed anonymization

techniques, i.e., the OA, DA, AA, LRA and VPA algorithms,

by applying them on data stemming from real world applica-

tions. The implementation was done in C++ and the experi-

ments were performed on a core-2 duo 2.8 GHz CPU server,

with 2 Gb memory, running Linux.

OA, DA, and AA use the count-tree to evaluate their can-

didate generalization, thus they avoid scanning the actual

database for this purpose. To construct the tree, OA and DA

Fig. 9 Characteristics of the datasets (|t | stands for transaction size)

scan the database once, and AA scans it m times (as one

tree is constructed for each set cardinality). The tree is kept

in main memory at all times. LRA sorts the database and

then scans it once for anonymizing each partition, whereas

VPA scans it three times as described in Sect. 4.5. We assume

that the local partitions of LRA and VPA fit in memory; thus,

although AA is used as a module by these methods to perform

local anonymization and AA may have to scan the partition

more than once, there is no extra I/O cost. In the following,

we detail the experimental setup, the performance factors we

trace, and the parameters we vary.

6.1 Experimental setup

6.1.1 Evaluation metrics

We evaluate our algorithms with respect to three performance

factors: a) total execution time, b) memory requirements and

c) information loss. We do not measure the I/O cost explicitly,

as all methods are CPU-bound (due to the high complexity

of checking all m-combinations of items in the worst case).

The memory requirements are dominated by the count-tree

so we report the memory usage in terms of tree nodes gen-

erated. Finally, we measure the information loss using the

NC P measure we introduced in Sect. 3.3.

6.1.2 Evaluation parameters

We investigate how our algorithms behave in terms of several

parameters: (i) the domain size |I|, (ii) the database size |D|

in terms of number of transactions, (iii) parameters m and

k of the km-anonymity model, and (iv) the height h of the

hierarchy tree, assuming a balanced tree with |I| leaves.

6.1.3 Datasets

To have a realistic setting for our experimental evaluation, we

used three real-word datasets introduced in [32]: BMS-POS,

BMS-WebView-1 and BMS-WebView-2. Dataset BMS-POS is

a transaction log from several years of sales of an electron-

ics retailer. Each record represents the products bought by a

customer in a single transaction. The BMS-WebView-1 and

BMS-WebView-2 datasets contain clickstream data from two

e-commerce web sites, collected over a period of several

months. The characteristics of each dataset are detailed in

Fig. 9. All experiments, except those of Figs. 10–12 were

123

98 M. Terrovitis et al.

 0

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14

s
e
c
o
n
d
s

|D| in 1000s

AA

DA
OA

 0

 5000

 10000

 15000

 20000

 2 4 6 8 10 12 14

tr
e
e
 n

o
d
e
s

|D| in 1000s

AA
DA
OA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 2 4 6 8 10 12 14

N
C

P

|D| in 1000s

AA
DA
OA

(a) (b) (c)

Fig. 10 Effect of database size on the performance of the algorithms. a time vs. |D|, b memory vs. |D|, c information loss vs. |D|

 0

 20

 40

 60

 80

 100

 120

 40 45 50 55 60

s
e

c
o

n
d

s

|I|

AA
DA
OA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 40 45 50 55 60

tr
e

e
 n

o
d

e
s

|I|

AA
DA
OA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 40 45 50 55 60

N
C

P

|I|

AA
DA
OA

(a) (b) (c)

Fig. 11 Effect of domain size on the performance of the algorithms a time vs. |I|, b memory vs. |I|, c information loss vs. |I|

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4

s
e
c
o
n
d
s

m

AA
DA
OA

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4

tr
e
e
 n

o
d
e
s

m

AA
DA
OA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 3 4

N
C

P

m

AA
DA
OA

(a) (b) (c)

Fig. 12 Effect of m on the performance of the algorithms a time vs. m, b memory vs. m, c information loss vs. m

run on the original datasets. We found that the OA and the

DA algorithms cannot deal with datasets that have very large

domains (DA runs out of memory because it performs no

pruning to the combinations of items inserted to the count-

tree, and OA does not provide a solution within reasonable

response time, i.e., several hours). Still, to be able to evaluate

how our heuristics compare to the optimal algorithm in terms

of information loss we created several smaller datasets with

data originating from BMS-WebView-2 in the following way.

We took the first 2, 5, 10 and 15 K records and created four

new datasets. Moreover, we had to limit the items domain

to only 40 distinct items, so that we could have some results

from the OA algorithm which scales the worst compared to

the other methods in the domain size. To investigate how OA

scales when the domain grows, we created two more datasets

with 10 K records from BMS-WebView-2 with a domain size

of 50 and 60 (for larger domains the algorithm did not respond

in a reasonable time). We reduced the domain by performing

a modulo on the items ids and sequentially removing the

duplicates.

Unfortunately, we did not have any real hierarchies for

the data, so we constructed some artificial ones. We created

those by choosing a fanout for each node in the hierarchy

tree, that is a default number of values that are generalized in

a direct generalization. For example, if we decide on a fan-

out of n, then each generalization from one level to another

123

Local and global recoding methods 99

generalizes n items. If the size of the domain is not divided

by n, some smaller generalization classes can be created. We

used an average fanout of 5 for the original datasets and a

average fanout of 4 for the smaller datasets.

6.2 Experimental results

Figures 10a, b show how the computational cost and mem-

ory requirements of the algorithms scale with the increase in

the database size |D|, after fixing the remaining parameters

to |I| = 40, k = 100, m = 3, and h = 4. As described

earlier, we used prefixes of BMS-WebView-2 for this pur-

pose. The figure shows that OA and DA have identical per-

formance, which increases linearly to the database size. This

is due to the fact that the performance of these methods rely

on the size of the count-tree which is not very sensitive to

|D|, as the distinct number of m-itemset combinations does

not increase significantly. On the other hand, AA is initially

much faster compared to the other methods and converges to

their cost as |D| increases. This is expected, because as |D|

increases less i-length itemsets for i < m become infrequent.

As a result, AA is not able to significantly prune the space of

m-itemsets to be included in the count-tree at its last iteration,

due to generalizations performed at the previous loops (where

i < m). This is also evident from the memory requirements

of AA (i.e., the size of the count-tree at the m-th iteration)

which converge to the memory requirements of the other

two algorithms. Nevertheless, as we will see later, AA does

not have this problem for realistic item domain sizes (|I|).

Figure 10c shows the information loss incurred by the three

methods in this experiment. Note that all of them achieve the

same (optimal) loss, which indicates the ability of DA and

AA in finding the optimal solution. This behavior is a result

of the limited domain size, which leads to a relatively small

solution space. In this space, the AA and DA manage to find

the same, optimal cut.

Figure 11 shows the effect of the domain size |I| on the

performance of the three methods, after fixing |D| = 10K,

k = 100, m = 3, and h = 4 (again a prefix of BMS-

WebView-2 is used). The results show that the costs of DA

and AA increase linearly with the item domain size, however,

OA has exponential computational cost with respect to |I|,

as expected by our analytical results. The memory require-

ments of OA and DA increase superlinearly with |I|, while

AA achieves better scalability, due to its ability to prune items

at early iterations. This does not compromise the information

loss of the algorithm, which is the same as that of the optimal

solution by OA.

In the next experiment, we change the value of m, fix

the values of other experimental parameters (|D| = 10K,

|I| = 40, k = 100, h = 4), and compare the three algo-

rithms on the three performance factors. As shown in Fig. 12,

the CPU-time of OA and DA does not scale well with m

(exponential), while the cost of AA increases linearly. This

is due to the exponential increase in the size of the count-tree

used by these two algorithms. Again, AA achieves better sca-

lability, due to the early generalization of a large number of

items. The information loss of DA and AA is very close to

that of the optimal solution.

In the next set of experiments (depicted in Fig. 13), we

measure the computational cost (in msec), memory require-

ments (in number of nodes in the count-tree), and information

loss of the AA algorithm for large, realistic problems, where

OA and DA cannot run. We used the same three datasets

described in Fig. 9, abbreviated as POS, WV1, and WV2,

respectively. First, we show the performance of AA on all

three datasets by setting m = 3, k = 5, and the fanout of

each node in the generalization hierarchies of all domains

to 5 (this results in h = 6, h = 5, and h = 7, for POS,

WV1, and WV2, respectively). Figure 13a shows that AA

runs in acceptable time, generating a manageable count-tree,

and producing a solution of low information loss (maximum

3%). Figure 13b shows the performance of AA on the POS

dataset, after varying k and keeping the values of m and h

fixed. The plot shows that both the computational cost and

the memory requirements are insensitive to k. Figure 13c,

fixes m and k and varies h. Note that for smaller values of h

AA is faster but produces worse solutions. For h = 4, in spe-

cific, AA fails to find a non-trivial generalization of the data-

set (note that this was the only experimental instance where

AA performed badly). For all other values the quality of the

solution is very good (information loss close to 1%). Finally,

Fig. 13d shows how the performance is affected by varying

m while fixing k and h. Time increases as m grows and the

solution found becomes slightly worse in terms of informa-

tion loss (but within acceptable limits). This is expected, as

m increases the maximum length of itemsets to be checked

and the size of the tree, accordingly.

In summary, AA is a powerful heuristic for solving

km-anonymity problems of realistic sizes, where the appli-

cation of an optimal solution is prohibitively expensive.

6.2.1 The LRA and VPA algorithms

The performance of the LRA and VPA algorithms is evalu-

ated in Figs. 14–19. Again we measure total execution time,

maximum memory required in terms of tree nodes and the

N PC information loss as defined in Sect. 3.3. Unless explic-

itly stated otherwise, we perform our experiments on the

BMS-POS dataset, with k = 5, m = 3, f lexibili t y = 10

(for LRA), parti tion level = 1 (for VPA; 0 is the leaf level)

and we split the database in 3 parts for both the LRA and VPA

algorithms.

Figure 14 shows how the algorithms behave on all the

three datasets. We also plot the performance of AA as a

point of reference. A surprising result at a first glance is

123

100 M. Terrovitis et al.

Fig. 13 Apriori algorithm on

the original datasets a AA on

three real datasets, b effect of k

(POS), c effect of h (POS), d

effect of m (POS)

 0.01

(a) (b)

(d)(c)

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

time memory NCP

POS
WV1
WV2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 10 100 1000
k

time
nodes

loss

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 4 5 6 7
h

time
nodes

loss

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 2 3 4
m

a-time

a-nodes
a-loss

 0

 500

 1000

 1500

 2000

POS

(a) (b) (c)

WV1 WV2

s
e

c
o

n
d

s

AA
LRA
VPA

 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

POS WV1 WV2

tr
e

e
 n

o
d

e
s

AA
LRA
VPA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

POS WV1 WV2

N
P

C

AA
LRA
VPA

Fig. 14 Performance on the three datasets a time, b memory, c information loss

the poor performance of the LRA method. While the infor-

mation loss is only slightly increased w.r.t. to AA, the LRA

has significantly greater memory requirements and execu-

tion time, especially for WV1. The explanation lies in the

skewed distribution of record sizes in WV1. This dataset has

average record length of 2.5, but contains some very large

records, with more than 200 items each. The Gray code order-

ing brings together records that not only have small Hamming

distance, but they also have similar sizes. LRA partitions the

database w.r.t. to the number of m-sized combinations that

lie in each chunk, thus we end up with chunks that have few

large records and others that have numerous small records.

Large records support all combinations between their items,

i.e., they completely support a subspace of the space of com-

binations of the items of I. As a consequence, the chunks

with few large records usually have few privacy threats and

few generalizations are performed. The fewer generaliza-

tions greatly reduce the pruning in the count-tree, thus the

memory requirements and the time to construct the larger

count-tree is greatly increased for these chunks. As it can

be seen in Fig. 18, if we increase the number of chunks we

can limit the memory requirements, but still LRA cannot

beat VPA.

The most efficient method, as indicated by Fig. 14, is VPA.

It requires significantly less memory and execution time than

the other algorithms and incurs an information loss similar

to the information loss of AA. The superiority of VPA lies

in the fact that we have better control over the partitioning

of the anonymization space, which is affected mainly by the

number of item combinations considered at the anonymiza-

123

Local and global recoding methods 101

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 10

(a) (b) (c)

 100 1000

s
e

c
o

n
d

s

k

AA
LRA
VPA

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 1 10 100 1000

tr
e

e
 n

o
d

e
s

k

AA
LRA
VPA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 10 100 1000

N
P

C

k

AA
LRA
VPA

Fig. 15 Effect of k on the performance of the algorithms a time vs. k, b memory vs. k, c information loss vs. k

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0

(a) (b) (c)

 1 2 3 4 5

s
e

c
o

n
d

s

m

AA
LRA
VPA

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 0 1 2 3 4 5

tr
e

e
 n

o
d

e
s

m

AA
LRA
VPA

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 1 2 3 4 5

N
P

C

m

AA
LRA
VPA

Fig. 16 Effect of m on the performance of the algorithms a time vs. m, b memory vs. m, c information loss vs. m

tion. This number is significantly smaller at the partitions of

VPA, which are well-balanced according to this factor, com-

pared to the partitions of LRA and of course the full itemset

space examined by AA. Moreover, in the final step of VPA,

when the whole dataset is anonymized, the solution space

has already been substantially pruned. In Fig. 14c, we can

see that VPA manages to have marginally better information

loss that AA. As they are both heuristics, there is no guar-

antee on their relative information loss. The two methods

perform different generalizations at the initial steps, which

sometimes turn out to be better in the case of VPA. This result

does not reflect the general case; our complete experimental

view shows that AA is in generally (slightly) better than VPA

in terms of information loss.

Figures 15 and 16 depict the effect that k and m have

in the performance of the algorithms (using the BMS-POS

dataset). First, we fix all other parameters and we vary

k = 5, 20, 100, 1000. The VPA algorithm is significantly

faster and requires less memory than the other two, offering

an information loss comparable to AA’s for small k. For a

very large k, all algorithms are fast and have small mem-

ory requirements, since the generalizations that take place

at the first level of AA (which is used by both LRA and

VPA) significantly reduce the domain. At the same time, we

can see that the information loss introduced by the LRA and

VPA becomes significantly larger for k = 1,000, since it is

harder for them to create combinations with support k in the

partition of the database that is at their disposal at each step.

To examine the effect of m, we fix all other parameters and

vary m = 1, 2, 3, 4. As m grows and more item combinations

must be examined, VPA and LRA scale much better than AA,

with VPA consistently being much faster than the other meth-

ods. Both LRA and VPA demonstrate a behavior similar to

AA in terms of information loss. Figure 17 shows the behav-

ior of the algorithms w.r.t. to different generalization hierar-

chy heights. A high level signifies a more refined hierarchy

and less information loss. On the other hand, the increase in

h increases the solution space, meaning that the algorithms

may have to spend more effort to reach a solution. Note that

VPA has significantly smaller memory requirements than the

other two methods. LRA and AA have similar performance,

with LRA being better when the partitioning manages to

cluster items from the same classes well, and worse when it

does not.

In Fig. 18, we investigate the effect of factors unique to

the LRA and VPA algorithms. Figures 18a, b show the effect

of database partitioning. In the horizontal axis, we vary the

number of partitions in the data. For the LRA algorithm,

this reflects database chunks and for the VPA algorithm the

domain parts. As expected, when the number of partitions

grows, the memory requirements and the quality of the data

decrease. This is not a strictly monotonous procedure; as

123

102 M. Terrovitis et al.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4

(a) (b) (c)

 5 6 7

s
e

c
o

n
d

s

h

AA
LRA
VPA

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 4 5 6 7

tr
e

e
 n

o
d

e
s

h

AA
LRA
VPA

 0

 0.05

 0.1

 0.15

 0.2

 4 5 6 7

N
P

C

h

AA
LRA
VPA

Fig. 17 Effect of hierarchy level h on the performance of the algorithms a time vs. h, b memory vs. h, c information loss vs. h

Fig. 18 Factors affecting the

LRA and VPA algorithms a

number of parts vs NPC, b

number of parts vs memory, c

effect of flexibility, d effect of

partitioning level

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0

(a) (b)

(c) (d)

 1 2 3 4 5 6 7 8 9 10 11

N
P

C

number of parts

information loss

LRA

VPA

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 2 4 6 8 10

tr
e

e
 n

o
d

e
s

number of parts

memory requirements

LRA

VPA

 0.025

 0.0255

 0.026

 0.0265

 0.027

 0.0275

 0.028

 0.0285

 0.029

 0.0295

 0.03

 0 200 400 600 800 1000

N
P

C

of transactions

flexibility

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3

level

partition level

npc
memory

the database chunks get smaller there is a chance that fewer

rare items might appear, thus the other items of the same

class will not be generalized in the first iteration of AA. This

effect explains the small increase in memory requirements

for the LRA algorithm. In Figs. 18c, d, we see how flexibil-

ity affects the LRA algorithm and how the partitioning level

affects VPA. We observe that these factors do not have a sig-

nificant effect in the performance of the methods. We omit

time for Fig. 18d and time and memory for Fig. 18c, as they

remain approximately stable.

In the set of experiments depicted in Fig. 19, we mea-

sure the total time and the total memory needed by LRA and

VPA if they are used to parallelize the anonymization of the

data. LRA does not benefit much from parallelization due to

the fact that there usually exists an expensive partition to be

serially processed that dominates the overall cost. As

explained, with LRA we may end up with a chunk of few

but very long transactions. This chunk is very hard to anon-

ymize as there is a huge number of item combinations that

do not violate km-anonymity. For this chunk, the AA mod-

ule of LRA cannot perform many generalizations at its first

iterations, therefore a huge count-tree is constructed. On the

other hand, the partitions generated by VPA are balanced with

respect to the item combinations and VPA benefits the most

from parallelization. In summary, VPA is the most robust

method for km-anonymity and can accelerate AA to a high

degree, especially with the use of parallelization, while it

does not compromise the quality of the result.

123

Local and global recoding methods 103

Fig. 19 Time and memory

requirements in parallel

execution

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

AA LRA VPA

s
e

c
o

n
d

s

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

AA LRA VPA

tr
e

e
 o

f
n

o
d

e
s

Fig. 20 The M L2 and d M L2

information loss measures

 0

 20

 40

 60

 80

 100

POS WV1 WV2

M
L

2
 (

%
)

AA
VPA

 1

 1.2

 1.4

 1.6

 1.8

 2

POS WV1 WV2

d
M

L
2

AA
VPA

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
L

2

k

AA
VPA

 0

 20

 40

 60

 80

 100

 1 2 3 4

M
L

2

m

AA
VPA

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3

M
L

2

support threshold (%)

AA

VPA

Fig. 21 Behavior of M L2 with respect to k, m and the frequent itemset support threshold

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100 1000

d
M

L
2

k

AA

VPA

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 3 4

d
M

L
2

m

AA
VPA

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3

d
M

L
2

support threshold (%)

AA
VPA

Fig. 22 Behavior of M L2 with respect to k, m and the frequent itemset support threshold

Finally, in Figs. 20–22 we evaluate the best algorithms

we have according to the previous experiments, AA and

VPA, in terms of the M L2 and d M L2 information loss mea-

sures, which we introduced in Sect. 3.3. To measure M L2

and d M L2, we mined the original and the anonymized data-

sets for frequent itemsets in all generalization levels, using

support thresholds 1, 2 and 3%. The results presented in

Fig. 20 are based on the average values of all three thresh-

olds for each dataset. Both M L2 and d M L2 follow the

N PC results depicted in Fig. 14. M L2 (measured in per-

centage points) shows the fraction of frequent itemsets that

are not detected in the appropriate level of the generalization

123

104 M. Terrovitis et al.

Fig. 23 Comparison of VPA

with Partition algorithm

 0

 0.05

 0.1

 0.15

 0.2

 1 10 100 1000

N
P

C
k

Partition

VPA

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 1 2 3 4 5 6

N
P

C

m

Partition

VPA

hierarchy in the anonymized dataset. d M L2 shows the dif-

ference between the actual level the itemsets and the level

they were detected when using the anonymized dataset. Note,

that in d M L2 we take into account only the frequent item-

sets that were not appropriately detected, thus the theoretical

minimum is 1. The anonymization was performed using the

default parameters for both AA and VPA. The results show

that the percentage of frequent itemsets which are detected

only at a more generalized level is low in general. In addi-

tion, the level at which they are detected is not much higher

than their actual level. This implies that the datasets anon-

ymized by our methodology do not have a negative effect

on the results of frequent itemset mining methods, since fre-

quent itemsets usually satisfy km anonymity and they are

not generalized; even in the cases where they are general-

ized, the information loss is not very high as they are found

only 1 or 2 levels above in the generalization hierarchy. In

Fig. 21, we explore in more depth the effect of k, m and the

support threshold we used to retrieve the frequent itemsets.

We fixed all parameters in the default values (we used 2% as

the default support threshold) and varied each time only one

parameter. As is the case of N PC , the M L2 grows linearly

with k and m. On the other hand, as the support threshold

grows, less frequent itemsets are detected in the low levels of

the generalization hierarchy. This means that the impact of

the anonymization procedure, which hides data on these lev-

els, is reduced, and this is reflected on the decrease in M L2.

In Fig. 22, we can observe how d M L2 is affected by the

same parameters. The general observation is that apart from

the case of m = 1, where the anonymization has significantly

less impact on the dataset, d M L2 does not demonstrate great

volatility. Thus, even if the number of frequent itemsets that

are not appropriately detected in some generalization level

changes, these frequent itemsets are found in a fixed higher

generalization level.

6.2.2 Comparison with partition algorithm

In [12], the authors propose a top-down local recoding algo-

rithm, named Partition, for preserving the privacy in the

publication of data that contain set-values. Although the

focus of the paper is on full k-anonymity, they present an

experimental comparison with AA. The comparison investi-

gates the difference in the information loss between the km

anonymity achieved by the AA and the k-anonymity achieved

by the Partition algorithm for different values of k and m.

Their results show that for small m the information loss of AA

is less than that of Partition and that Partition is significantly

faster than AA. In Fig. 23, we complement the experimental

evaluation of our algorithms by showing how the Partition

compares to the most efficient of them, i.e., the VPA. We

used our implementation for VPA and the implementation of

[12] for the Partition algorithm, which we acquired from the

authors. Using again the default parameter values, we per-

formed the experiments on BMS-POS dataset. The results on

Fig. 23 support the same results with [12]; km anonymity by

the VPA algorithm incurs less information loss for a small m

than k-anonymity with Partition and the picture is reversed

for a large m. Notice that the average record size for BMS-

POS is 6.5, thus the point where Partition outperforms VPA

(m = 5) is quite large. The experiments show that when we

fix m = 3 and vary k, the VPA retains its advantage. In terms

of evaluation time, Partition is a lot faster; it takes only ∼20 s,

whereas VPA starts from ∼40 s for m = 1 and goes up to a

bit less than 5 h for m = 6. This is due to the fact that VPA,

being a bottom-up algorithm, runs well when few general-

izations are needed but it is slow when the top levels of the

generalization hierarchy must be reached.4

A final point for VPA and LRA is that they have good par-

allelization properties and they can take advantage of parallel

architectures like map/reduce [6]. Partition has paralleliza-

tion properties but offers less explicit control on the partition-

ing, since the size of the partitions is not set explicitly but

it follows the generalization hierarchy (in top-down order).

In contrast, we can directly choose how many records or

4 The information loss depicted in Fig. 23 is slightly lower for VPA than

that reported in the previous experiments. This is due to the fact that we

had to create a different generalization hierarchy for this experiment,

so that it would be compatible with the Partition implementation. The

previous hierarchy had an average fanout of 5, whereas this one has a

constant fanout of 5.

123

Local and global recoding methods 105

how many items will fall in each partition of LRA and VPA,

respectively.

7 Conclusions

In this paper, we studied the k-anonymization problem of

set-valued data. We defined the novel concept of km-

anonymity for such data and analyzed the space of possible

solutions. Based on our analysis, we developed an optimal,

but not scalable, algorithm which is not practical for large,

realistic databases. In view of this, we developed two greedy

heuristic methods, of lower computational cost, which find

near-optimal solutions. Our apriori-based anonymization

algorithm, in specific, has low memory requirements, making

it practical for real problems.

We complemented our work with two partitioning-based

approaches aiming at the reduction of the memory consump-

tion and execution cost. The local recoding anonymization

algorithm is an intuitive method, which partitions the data-

base horizontally and solves the problem at each part. How-

ever, this method does not perform well in practice, because

it is hard to create good clusters of transactions due to the

extremely high dimensionality of the problem. Although a

sophisticated Gray-ordering scheme has been used for parti-

tioning, it is often the case that there exists a partition which is

very expensive to anonymize and becomes the bottleneck of

the whole process. To overcome these problems, we proposed

a vertical partitioning algorithm, which splits the hierarchi-

cal classification of the items into a forest of subtrees, and

projects the database at each subtree, creating a partition. The

partitions are then anonymized and a final pass is applied on

the database to handle privacy breaches caused by itemsets

with items from different partitions. The vertical partitioning

algorithm is shown to be the best method in practice, as it

creates balanced partitions that can be processed very fast.

We have shown that this method can also greatly benefit from

parallelization.

We emphasize that our techniques are also directly

applicable to databases, where tuples contain both a set-

valued attribute and other sensitive attributes. In this case,

k-anonymity with respect to all m-subsets of the domain of

the set-valued attribute can help avoiding associating the sen-

sitive value to less than k tuples.

Acknowledgments We would like to thank the authors of [12] for

sharing with us the implementation of the Partition algorithm. This

work was supported by grant HKU 715108E from Hong Kong RGC.

References

1. Aggarwal, C.C.: On k-anonymity and the curse of dimensionality.

In: VLDB ’05: Proceedings of the 31st International Conference on

Very Large Data Bases, pp. 901–909. VLDB Endowment (2005)

2. Aggarwal, G., Feder, T., Kenthapadi, K., Khuller, S., Panigrahy, R.,

Thomas, D., Zhu, A.: Achieving anonymity via clustering. In: Pro-

ceedings of ACM PODS, pp. 153–162 (2006)

3. Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R.,

Panigrahy, R., Thomas, D., Zhu, A.: Approximation algorithms for

k-anonymity. J. Priv. Tech. (Paper number: 20051120001) (2005)

4. Atzori, M., Bonchi, F., Giannotti, F., Pedreschi, D.: Anonymity

preserving pattern discovery. VLDB J. (accepted for publication)

(2008)

5. Bayardo, R.J., Agrawal, R.: Data privacy through optimal

k-anonymization. In: Proceedings of ICDE, pp 217–228 (2005)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on

large clusters. pp. 137–150. December (2004)

7. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast data anony-

mization with low information loss. In: vldb, pp. 758–769 (2007)

8. Ghinita, G., Tao, Y., Kalnis, P.: On the anonymization of sparse

high-dimensional data. In: Proceedings of ICDE (2008)

9. Han, J., Fu, Y.: Discovery of multiple-level association rules from

large databases. In: vldb, pp. 420–431 (1995)

10. Han, J., Fu, Y.: Mining multiple-level association rules in large

databases. IEEE TKDE 11(5), 798–805 (1999)

11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate

generation. In: Proceedings of ACM SIGMOD, pp. 1–12 (2000)

12. He, Y., Naughton, J.F.: Anonymization of set-valued data via top-

down, local generalization. PVLDB 2(1), 934–945 (2009)

13. Iyengar, V.S.: Transforming data to satisfy privacy constraints.

In: Proceedings of SIGKDD, pp. 279–288 (2002)

14. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: effi-

cient full-domain k-anonymity. In: Proceedings of ACM SIGMOD,

pp. 49–60 (2005)

15. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidi-

mensional k-anonymity. In: Proceedings of ICDE (2006)

16. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond

k-anonymity and l-diversity. In: Proceedings of ICDE, pp. 106–115

(2007)

17. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam,

M.: l-Diversity: privacy beyond k-anonymity. In: Proceedings of

ICDE (2006)

18. Meyerson, A., Williams, R.: On the complexity of optimal

K-anonymity. In: Proceedings of ACM PODS, pp. 223–228 (2004)

19. Nergiz, M., Clifton, C., Nergiz, A.: Multirelational k-anonymity.

Technical Report CSD TR 08-002

20. Nergiz, M., Clifton, C., Nergiz, A.: Multirelational k-anonymity.

In: Proceedings of ICDE, pp. 1417–1421 (2007)

21. Nergiz, M.E., Clifton, C.: Thoughts on k-anonymization. Data.

Knowl. Eng. 63(3), 622–645 (2007)

22. Park, H., Shim, K.: Approximate algorithms for k-anonymity.

In: Proceedings of ACM SIGMOD, pp. 67–78 (2007)

23. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.:

Numerical recipes in C, 2nd edn. Cambridge University Press,

Cambridge (1992)

24. Samarati, P.: Protecting respondents’ identities in microdata

release. IEEE TKDE 13(6), 1010–1027 (2001)

25. Sweeney, L.: k-Anonymity: a model for protecting privacy.

Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(5), 557–

570 (2002)

26. Terrovitis, M., Mamoulis, N., Kalnis, P.: Privacy-preserving anon-

ymization of set-valued data. In: Proceedings of the VLDB Endow-

ment (PVLDB) (former VLDB proceedings) 1(1) (2008)

27. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni,

E.: Association rule hiding. IEEE TKDE 16(4), 434–447 (2004)

28. Xiao, X., Tao, Y.: Anatomy: simple and effective privacy preser-

vation. In: Proceedings of VLDB, pp. 139–150 (2006)

29. Xu, J., Wang, W., Pei, J., Wang, X., Shi, B., Fu, A.: Utility-based

anonymization using local recoding. In: Proceedings of SIGKDD,

pp. 785–790 (2006)

123

106 M. Terrovitis et al.

30. Xu, Y., Wang, K., Fu, A.W.-C., Yu, P.S.: Anonymizing transaction

databases for publication. In: Proceedings of KDD, pp. 767–775

(2008)

31. Zhang, Q., Koudas, N., Srivastava, D., Yu, T.: Aggregate query

answering on anonymized tables. In: Proceedings of ICDE,

pp. 116–125 (2007)

32. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of

association rule algorithms. In: Proceedings of KDD, pp. 401–406

(2001)

123

	Local and global recoding methods for anonymizing set-valued data
	Abstract
	1 Introduction
	2 Related work
	3 Problem setting
	3.1 Generalization model
	3.2 Possible solutions
	3.3 Information loss
	3.4 Monotonicity

	4 Anonymization techniques
	4.1 The count-tree
	4.2 Optimal anonymization
	4.3 Direct anonymization
	4.4 Apriori-based anonymization
	4.5 Local recoding
	4.5.1 Partitioning by Gray code ordering
	4.5.2 Flexible borders
	4.5.3 Parallelization

	4.6 Anonymization by vertical partitioning
	4.6.1 Parallelization

	5 Negative knowledge and -diversity
	5.1 Negative knowledge
	5.2 lm-diversity

	6 Experiments
	6.1 Experimental setup
	6.1.1 Evaluation metrics
	6.1.2 Evaluation parameters
	6.1.3 Datasets

	6.2 Experimental results
	6.2.1 The LRA and VPA algorithms
	6.2.2 Comparison with partition algorithm

	7 Conclusions
	Acknowledgments
	References

