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Abstract

Background: Mathematical models of transmission dynamics are routinely fitted to epidemiological time series,

which must inevitably be aggregated at some spatial scale. Weekly case reports of chikungunya have been made

available nationally for numerous countries in the Western Hemisphere since late 2013, and numerous models have

made use of this data set for forecasting and inferential purposes. Motivated by an abundance of literature

suggesting that the transmission of this mosquito-borne pathogen is localized at scales much finer than

nationally, we fitted models at three different spatial scales to weekly case reports from Colombia to explore

limitations of analyses of nationally aggregated time series data.

Methods: We adapted the recently developed Disease Transmission Kernel (DTK)-Dengue model for modeling

chikungunya virus (CHIKV) transmission, given the numerous similarities of these viruses vectored by a common mosquito

vector. We fitted versions of this model specified at different spatial scales to weekly case reports aggregated at different

spatial scales: (1) single-patch national model fitted to national data; (2) single-patch departmental models

fitted to departmental data; and (3) multi-patch departmental models fitted to departmental data, where

the multiple patches refer to municipalities within a department. We compared the consistency of simulations from

fitted models with empirical data.

Results: We found that model consistency with epidemic dynamics improved with increasing spatial granularity of the

model. Specifically, the sum of single-patch departmental model fits better captured national-level temporal patterns

than did a single-patch national model. Likewise, multi-patch departmental model fits better captured department-

level temporal patterns than did single-patch departmental model fits. Furthermore, inferences about municipal-level

incidence based on multi-patch departmental models fitted to department-level data were positively correlated with

municipal-level data that were withheld from model fitting.

Conclusions: Our model performed better when posed at finer spatial scales, due to better matching between human

populations with locally relevant risk. Confronting spatially aggregated models with spatially aggregated data imposes

a serious structural constraint on model behavior by averaging over epidemiologically meaningful spatial variation in

drivers of transmission, impairing the ability of models to reproduce empirical patterns.
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Background
Viral diseases transmitted by mosquitoes, including den-

gue, Zika, chikungunya, and yellow fever, are a rapidly

growing problem and together pose a risk to approxi-

mately half the world’s population [1–3]. In the past 5

years, both the Zika (ZIKV) and chikungunya (CHIKV)

viruses were introduced into the Western Hemisphere

and rapidly spread among naïve populations in South

America, Central America, and the Caribbean, resulting

in millions of cases and causing a public health crisis

[4–9]. In addition, hundreds of millions of people are in-

fected by dengue virus (DENV) each year [1]. Due to the

influence of environmental conditions on DENV trans-

mission, as well as complex immunological interactions

among the four DENV serotypes, many regions experi-

ence periodic dengue epidemics [10, 11]. Faced with

these large epidemics, limited resources need to be tar-

geted towards areas with the highest transmission and

the most vulnerable populations. In addition, public

health officials would like to be able to predict where ep-

idemics of these diseases may spread next [12].

Mathematical models can play a critical role in identi-

fying at-risk populations and forecasting the course of

an epidemic based on current epidemiological condi-

tions [13–16]. Models are often fitted to time series of

confirmed or suspected cases to estimate epidemio-

logical parameters such as the reproduction number of

the pathogen, which can be used to predict how rapidly

the epidemic will spread or whether it is expected to die

out [17–19]. For simplicity, these models often make as-

sumptions about transmission dynamics that do not re-

flect biological reality [20]. One important assumption

that is often made is that the human population is well

mixed, which for a mosquito-transmitted pathogen

means that each person within a given area has an equal

chance of being bitten by any of the mosquitoes within

that area [20]. The spatial scale at which this assumption

is reasonable is determined primarily by the scales of

both human and mosquito movement [21]. Empirical

studies have shown that chikungunya clusters at scales

of neighborhoods or villages [22, 23], implying that

models posed at larger scales may be incompatible with

the biology of CHIKV transmission.

Over large spatial scales, e.g., at the national or provin-

cial scale, human populations are unevenly distributed,

and population mixing and movement depend on trans-

portation networks, with movement among localities af-

fected by a number of different economic, cultural,

geographical, and environmental factors [24–27]. Con-

tact rates between humans and mosquitoes also vary

considerably among locations due to the influence of

meteorological variables, such as temperature, rainfall,

and relative humidity, on mosquito population dynamics

[28–30]. As a result of these different factors, exposure

within a particular geographic region can be highly het-

erogeneous, with important implications for disease dy-

namics. For example, estimates of transmission rates

made from models assuming homogeneous mixing can

lead to underestimates of the level of effort needed to

control the spread of a pathogen [31]. Spatial heterogen-

eity in human-mosquito contact rates can be incorpo-

rated into disease transmission models by subdividing

the population and modeling movement between sub-

populations [32]. Heterogeneity in human-mosquito

contact rates between different subpopulations can be

represented by explicitly modeling mosquito population

dynamics based on local climate [33].

In late 2013, CHIKV was introduced into the Carib-

bean and soon spread throughout North and South

America, infecting millions of people [13, 34]. The first

confirmed cases in Colombia were reported in June

2014, and almost 500,000 cases were reported by the

end of 2015. Suspected chikungunya cases were reported

at the second administrative level (municipality) in

Colombia throughout the epidemic, enabling examin-

ation of its spatiotemporal dynamics. By simulating the

chikungunya epidemic in Colombia at different spatial

scales, we examine how model assumptions about the

scale of human-mosquito interactions affect the accur-

acy of model predictions. Specifically, we simulate dis-

ease dynamics at a finer spatial scale than the observed

time series used to fit the model and compare these

model results to simulations conducted at the coarser

spatial scale at which surveillance data were aggregated.

A comparison of model fits at different levels of spatial

aggregation is used to assess how incorporating spatial

heterogeneity in environmental and demographic condi-

tions improves model accuracy and provides additional

insights into the epidemiological parameters estimated

during the model-fitting process. In addition, simulation

results at spatial scales below the level of observation

provide estimates of unobserved spatial heterogeneity in

epidemic dynamics.

Methods

Model description

We modeled CHIKV transmission dynamics using a new

extension of the Institute for Disease Modeling’s (IDM)

Epidemiological Modeling Disease Transmission Kernel

(EMOD-DTK) software [35]. EMOD is an individual-

based disease modeling platform that supports multiple

disease transmission routes, including vector-based trans-

mission initially designed to simulate malaria transmission

dynamics [35]. We modified the generic vector-transmis-

sion model to represent the transmission dynamics of ar-

boviruses transmitted by Aedes aegypti mosquitoes.

Modifications to the generic vector model included in-

corporating life-history parameters specific to Ae. aegypti,
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including parameters that capture the sensitivity of its life

cycle to rainfall and temperature [36]. The modified model

also includes the ability to simulate the transmission of

multiple serotypes of the same pathogen; however, for

CHIKV we assume that there is a single strain. Mosquito

life-history parameters, as well as parameters determining

the temperature-dependent frequency of feeding on

humans, are described elsewhere [36].

Several parameters affecting the transmissibility of

CHIKV were estimated from recent studies (Table 1).

The probability of an infected individual developing a

symptomatic infection was estimated as 0.72 based on

the mean of estimates from 13 different studies (Table 2)

[37–49]. An individual’s infectiousness, ζ(t), over the

duration of infection was assumed to vary according to

ζ tð Þ ¼ e−a=c3 ; ð1Þ

where a = c1(Dt − c2)
2 and Dt is the number of days since

infection. The values for parameters c1, c2, and c3 were

estimated by fitting Eq. (1) to viremia data from [50] and

assuming that the dose-response curve for CHIKV was

the same as a DENV curve calculated elsewhere [51]. Be-

cause another study [50] did not find any significant dif-

ferences in viremias between asymptomatic and

symptomatic infections, we used the same parameter

values for asymptomatic and symptomatic individuals.

The extrinsic incubation rate, δT, for CHIKV in Ae.

aegypti following an infected blood meal depends on the

temperature (T) in Kelvins and was assumed to follow

the Arrhenius equation, δT ¼ a1e
−a2T , with parameters

fit to the exponential representation in [52]. CHIKV-

specific parameters a1 and a2 were estimated by fitting

to data from [53]. We assumed that only 8% of

symptomatic infections are reported, consistent with es-

timates for dengue [54] and similar to the 9% observed

for chikungunya in Puerto Rico [38]. The total number

of infections reported is the product of the symptomatic

rate and the reporting rate for symptomatic infections.

To ensure that our model results were not overly

dependent on particular values for either the symptom-

atic rate or reporting rate, we conducted a sensitivity

analysis by fitting the single-patch and multi-patch de-

partmental models for six different departments with

combined symptomatic and reporting rates that were

25% lower or higher than the values used in the main

analysis (corresponding to a symptomatic rate of 0.54–

0.9 when the reporting rate is 0.08 or a reporting rate of

0.06–0.10 when the symptomatic rate is 0.72).

EMOD-DTK is capable of simulating pathogen trans-

mission among humans and mosquitoes in a single

patch, as well as spatial dynamics across multiple

patches connected by human and mosquito movement.

The spatial scales considered in this study are much lar-

ger than the typical dispersal distance of Ae. aegypti

[55], so all spatial models only allowed for human move-

ment among patches. Within a single patch, humans

and mosquitoes are evenly mixed (although heteroge-

neous biting patterns can be implemented in the model).

Mosquito population dynamics were represented by a

compartmental model rather than modeled individually

to reduce the computational requirements of each simu-

lation. The compartmental model incorporates each

life-history stage and simulates adult female mosquito

biting and ovipositing behaviors.

CHIKV transmission was simulated in populations at

three different spatial scales. First, simulations of the

chikungunya epidemic for all of Colombia were run with

Table 1 Estimates for key parameters affecting the transmissibility

of chikungunya virus and the probability that an infection is

reported. Sources are studies from which values were taken or

studies that contained data that were used to estimate parameter

values (see Methods for details)

Parameter Value Source(s)

Symptomatic probability 0.72 See Table 2

Incubation period 3 days

Reporting probability 0.08 [54]

Infectiousness parameters [50]

c1 0.547

c2 3.256

c3 1.489

Extrinsic incubation rate [53]

a1 9.47 × 1012

a2 9550

Transmission probability 0.5

Table 2 Estimates of the probability of an infected individual

developing a symptomatic infection from 13 different

epidemiological studies

Location Value Sample Size Source

Saint Martin 0.61 42 [37]

Puerto Rico 0.625 56 [38]

Emilia-Romagna region, Italy 0.82 33 [39]

La Réunion 0.968 128 [40]

Cebu City, Philippines 0.179 106 [41]

Kerala, India 0.962 260 [42]

Lamu Island, Kenya 0.55 215 [43]

Comoros 0.857 209 [44]

Mayotte 0.723 440 [45]

La Réunion 0.833 967 [46]

Dakshina Kannada district, India 0.937 224 [47]

Bagan Panchor, Malaysia 0.825 40 [48]

Phatthalung province, Thailand 0.529 314 [49]
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a single patch representing the entire country. Second,

single-patch simulations were run for each of the 32 de-

partments (plus the capital district of Bogotá) individu-

ally. Finally, multi-patch simulations were run for each

department (except for Bogotá, which consists of a sin-

gle municipality) with separate patches for each munici-

pality (second administrative unit in Colombia). Within

a patch, various aspects of the mosquito population and

the extrinsic incubation period of the virus within the

mosquito are affected by local climate variables. Param-

eter values used in all simulations are described in

Table 1. Gridded daily temperature, precipitation, and

relative humidity from 2013 to 2016 were initially mod-

eled at a 5 km × 5 km resolution [56]. The mean climate

values at the country, department, and municipality

scales were calculated by taking population-weighted av-

erages of the daily values from the gridded data sets.

Due to computational constraints, the size of the hu-

man population in some simulations was either scaled

down or subsampled. For the single-patch simulations at

the national and departmental scales, the mosquito and

human populations were both scaled to one tenth of

their actual size. The populations in the multi-patch de-

partmental model were not scaled, because the human

population sizes are already smaller at the municipality

level. In addition, humans were simulated using an adap-

tive sampling scheme, with a maximum patch popula-

tion of 50,000 individuals in single-patch simulations

and 20,000 in multi-patch simulations. For patches in

the multi-patch simulations with fewer than 20,000 resi-

dents, everyone in the population is simulated individu-

ally. For patches with more than 20,000 residents, the

patch population size is set at 20,000 humans and each

individual in the simulation is weighted so as to approxi-

mate the actual population size (e.g., if the actual popu-

lation size is 200,000, then each individual in the

simulation receives a weighting of 10.0). To test the sen-

sitivity of simulation results to the maximum population

size used in the adaptive sampling scheme, we ran

simulations for a population of 4.85 million with the

maximum population size ranging from 5000 to

50,000 (the sampling factor ranged from ~ 1000:1 to

100:1). Between-simulation variance increased for

maximum population sizes < 20,000, but it was not

significantly reduced by increasing the maximum size

above 20,000 (Additional file 1: Figure S1A). There also

did not appear to be any bias in the mean incidence

estimates for maximum population sizes of ≥ 20,000

(Additional file 1: Figure S1B).

Epidemiological data and model fitting

We obtained a time series of weekly suspected cases for

each municipality in Colombia from the start of the epi-

demic through the end of the third week of 2016 from

the national system of surveillance for public health of

Colombia (SIVIGILA). A suspected case was defined as

a person having an acute onset of fever (> 38 °C) and se-

vere arthralgia or arthritis not explained by other med-

ical conditions and being a resident or having visited

epidemic or endemic areas within 2 weeks prior to the

onset of clinical symptoms. In the 2014–2015 period, a

laboratory-confirmed case was defined as a suspected

case with positive reverse transcription polymerase chain

reaction (RT-PCR), and in 2016 confirmed cases in-

cluded RT-PCR or positive serology.

These time series were used to estimate several model

parameters separately at each spatial scale. For both the

spatial and non-spatial models, we fitted the model to

time series data to estimate (1) the amount of rainfall-as-

sociated temporary mosquito larval habitat in each de-

partment (2) the decay rate of this temporary habitat,

and (3–5) the timing, magnitude, and duration of virus

importation into the country or department. For the

spatial model, we also fitted a scaling factor that modu-

lated movement rates among municipalities. Therefore,

the multi-patch departmental models involved fitting

only a single additional parameter relative to the single-

patch departmental models and the single-patch national

model (six vs. five).

Rainfall-associated temporary larval mosquito habitat in

the model increases with rainfall and decays at a rate pro-

portional to the evaporation rate driven by temperature

and humidity [35]. The amount of larval habitat is the pri-

mary driver of the number of adult mosquitoes per human

in simulations. Fitting the larval habitat parameters in the

model to the time series of suspected cases allowed us to

estimate the ratio of adult mosquitoes per human that re-

create the observed transmission dynamics. The amount

of temporary rainfall habitat was scaled by the department

population size, so that we could compare the relative

amounts of larval habitat per person in different depart-

ments. For the multi-patch models, a single larval habitat

size parameter was fitted for each department, with the

amount of habitat in each municipality scaled by the mu-

nicipality population size so that the amount of larval

habitat per person was constant for all municipalities in

the department.

The initial introduction of CHIKV was assumed to

occur via a single pulse of importation with variable tim-

ing, size, and duration. We represented this pulse with a

Gaussian probability density function, with the timing of

the introduction represented by the mean and the dur-

ation represented by the standard deviation. We then

multiplied this curve by a scaling factor representing the

overall magnitude of the importation pulse [36]. The

mean timing was allowed to range between the begin-

ning of 2014 and the end of the study period (the first

case in Colombia was reported in June 2014). The
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standard deviation was between 1 and 50 days, and the

magnitude corresponded to between 0.001 to 100 ex-

pected cumulative infections, with the actual number of

imported infections drawn from a Poisson distribution

with a mean equal to the scaled magnitude of the Gauss-

ian. For the spatial models, the initial imported case(s)

were assumed to occur in the largest municipality in the

department, with introduction into the other municipal-

ities (patches) occurring via simulated human movement.

Movement rates among municipalities within a depart-

ment were estimated using a gravity-like model [57] fit-

ted to department-level migration rates from the most

recent census, which were then downscaled to the muni-

cipality level based on population, distance, and eco-

nomic covariates. These migration rates were then

scaled to a short-term movement rate with an initial

scaling factor that was previously estimated in a

study [58] comparing census immigration rates and

cellphone-based movement patterns in Kenya. Be-

cause that study was conducted in a different coun-

try and the scaling factor was very different for

different travel lengths (e.g., 2.15 for daily travel but

101.92 for weekly travel), we fitted this range be-

tween 1.02 and 101.92, setting the upper bound at

the high weekly movement rate seen in Kenya. These

movement rates were represented in the model as

the fraction of individuals in patch i who travel on a

given day to patch j. Movement events are assumed

to last for 1 day, with a 100% probability that the in-

dividual will return to their home patch.

Fitting of the transmission model was conducted by

maximum likelihood using a gradient ascent iterative

optimization algorithm called OptimTool that has been

built into the EMOD-DTK software framework. The ini-

tial parameter values were drawn from the hypersphere

of the specified parameter ranges, centered around an

initial best guess for that parameter value with a mean

search radius determined by the number of parameters

and the standard deviation of the radius set at 1/10 of

the mean. One hundred draws from this parameter

space were conducted for each iteration of the

model-fitting process. Due to the stochasticity involved

in individual-based models, each sample was simulated

separately four times, for a total of 400 simulations per

iteration. At the end of each iteration step, the log likeli-

hood of each sample was calculated. The number of sus-

pected cases was assumed to be binomially distributed

given the population, and, in order to incorporate uncer-

tainty in the infection and reporting rates, the probability

of a reported case was assumed to come from a beta dis-

tribution, resulting in a beta-binomial likelihood function.

Initially, the beta distribution was assumed to be unin-

formative (α = 1, β = 1), but after simulation results be-

came available, the beta hyperparameters were adjusted to

reflect this new information via a Bayesian update. As a

result, α = 1 + Xi and β = 1 + Ni - Xi, where Ni is the popu-

lation size in patch i and Xi is the average number of re-

ported cases across simulations [59]. This process was

repeated ten times, with parameter draws from each suc-

cessive iteration based on the log likelihoods from all pre-

vious iterations.

The accuracies of model estimates were assessed by

calculating the mean absolute scaled error (MASE) of

the estimated vs. observed weekly suspected case num-

bers [60]. The MASE calculates the estimation error at

each time step (numerator) relative to the prediction

from a simple stationary autoregressive lag-1 (AR-1)

model:

MASE ¼
1

T

XT

t¼1

yt−xtj j
1

T−1

XT

t¼2
yt−yt−1j j

; ð2Þ

where yt and xt are the observed and estimated numbers

of cases for weeks t = 1,…,T. The relative accuracies of

the single-patch vs. multi-patch models for each depart-

ment were then measured by calculating the relative

MASE =MASEm/MASEs.

Because the municipality-level observations were not

used in the fitting process at the department level, we

were able to compare these observations to the pre-

dicted municipality-level dynamics from the multi-patch

models to assess the model’s capability to reproduce dis-

ease dynamics at spatial scales below the scale at which

the fitting process occurred. The total number of ob-

served cases and cumulative per capita incidence were

calculated for each municipality in a department and

compared to the estimated case totals and per capita in-

cidence per municipality. Comparisons were made by

calculating the Pearson’s correlation coefficient for the

reported and estimated municipality values within each

department using the model results from 100 best-fitting

simulations per department. These municipality-level

correlations were compared to correlations calculated

for a null model that allocates the estimated cases in a

department to each municipality within the department

using a multinomial distribution with probabilities

weighted by municipality population size.

Results
Fit to national time series

Between the start of 2014 and the third week of 2016,

our best-fit national-level model projects a median of

873,318 (95% confidence interval (CI) 0–1,000,353) re-

ported cases, an overestimate of the 481,284 actually re-

ported (Fig. 1a). The 95% CI includes zero because

about 19% of the time the importations did not result in

any locally acquired cases. Excluding these stochastic
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fadeouts, the median estimate of reported cases is

886,947 (95% CI 805,164–1,010,590). The best-fit

national-level model estimates matched the observations

well early in the epidemic through the end of 2014 but

overestimated cases following the peak in the second

week of 2015, projecting a continued increase in cases

until week 15 in 2015. The best-fit estimate for date of

introduction was week 7 of 2014 (95% CI week 52, 2013

to week 25, 2014).

The combined total of reported cases predicted by the 33

different single-patch department-level models was 864,296

(95% CI 709,075–892,697), overestimating the observed na-

tional total by 79.6% (95% CI 47.3–85.5%). The timing of

the epidemic was relatively accurate, but the size of the

peak was significantly overestimated, with estimated cases

during the peak week being 72.3% (95% CI 23.2–151.1%)

above the observed national number of cases (Fig. 1b).

The combined total of reported cases at the national

level predicted by the multi-patch department-level

models was more accurate than either the national-level

model or the combined total from the single-patch

department-level models (Fig. 1b). The median estimate

of reported cases was 451,920 (95% CI 375,139–

511,009), an underestimate of 6.1% (95% CI –6.2 to

22.1%). The number of cases during the week of peak

reported cases was underestimated by 11.5% (95% CI –

37.0 to 45.1%), and the estimated peak was 2 weeks earl-

ier than the observed peak. However, the estimated peak

was only 9.0% below the observed peak (95% CI –40.6

to 49.6%).
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Fig. 1 a Weekly number of reported chikungunya cases in Colombia (black), along with the mean and 95% CI from the (green) national-level model.

b National-level totals derived by combining the results of each departmental model with either a (blue) single-patch model per department, or (red)

the multi-patch models. c Maps of Colombia showing the spatial scale of the different models, with the color coding for the different

models used in all figures
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Department-level fits

The median MASE across single-patch departmental

models was 3.37 (95% CI 0.50–27.46), while the median

MASE across all multi-patch departmental models was

1.75 (95% CI 0.50–6.11), for an overall relative MASE of

0.55 (95% CI 0.12–1.90). The MASE of the multi-patch

model was lower than the MASE of the single-patch

model for the majority of departments (Fig. 2). The 95%

CI of the MASE from the single-patch model was not

entirely below the MASE from the multi-patch model

for any department, while it was entirely above the

multi-patch model MASE for 15 departments: Atlantico

(10.22–15.83 vs. 1.55–2.81), Caldas (6.7–7.76 vs. 0.95–

1.92), Caqueta (3.20–4.99 vs. 1.40–2.86), Cauca (25.09–

28.83 vs. 2.67–8.13), Cesar (4.41–9.06 vs. 1.57–1.87),

Cordoba (4.35–6.44 vs. 1.01–3.27), Cundinamarca

(5.51–6.33 vs. 1.08–1.52), Huila (1.71–3.39 vs. 1.14–

1.60), Magdalena (5.72–8.74 vs. 1.64–4.92), Putumayo

(3.07–12.32 vs. 1.59–2.76), Quindio (5.14–6.68 vs. 1.49–

2.82), Risaralda (10.36–12.75 vs. 1.68–2.14), Santander

(11.456–17.01 vs. 2.40–10.97), Valle del Cauca (1.87–

4.71 vs. 1.24–1.76), and Vichada (5.26–7.86 vs. 1.06–

1.96). In a few departments, the single-patch model

overestimated the number of cases by a large margin

while the multi-patch model provided a good fit to the

observed time series (e.g., Cauca, Santander, and Risar-

alda; Fig. 3). In the department where the relative MASE

for the multi-patch model was the poorest (Narino), the

best-fit simulation from the multi-patch model actually

reproduced the epidemic well, but overestimated the

epidemic size in some simulations, while the

single-patch model underestimated the epidemic size.

Parameter estimates

The estimated amount of larval habitat per capita was

higher in the single-patch than in the multi-patch model

for many of the departments (Additional file 1: Figures

S2–S9); particularly for departments where the MASE of

the multi-patch departmental model was significantly

less than the MASE of the single-patch departmental

model. In departments with higher single-patch

departmental model MASE values and where the model

overestimated epidemic size, the estimated larval habitat

decay rates tended to be lower than the estimate from

the multi-patch departmental model, which also

corresponds to larger mosquito populations in the

Fig. 2 Fit of multi-patch simulations vs. single-patch simulations to department-level time series for each department in Colombia (excluding

Bogotá). Relative model fit is measured via the relative mean scaled error (relMASE) of the single-patch fit to the multi-patch fit, with relMASE

< 1 indicating a better fit for the multi-patch model
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single-patch departmental models (Fig. 4e, f,

Additional file 1: Figures S2–S9). The joint distributions

for the parameters that dictate importation timing and

magnitude are presented in Additional file 1: Figures

S10–S17. Model fits were not overly sensitive to varying

the symptomatic or reporting rates, with relative
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single-patch and multi-patch model fits being qualita-

tively the same for both lower and higher symptomatic/

reporting rates (Additional file 1: Figures S18 and S19).

The one exception was the multi-patch departmental

model for Antioquia, where the number of reported

cases was overestimated with both low and high symp-

tomatic rates, but not at the middle rate used in the

main analysis.

Municipality-level fits

Although the multi-patch simulations for each depart-

ment were only fitted to the department-level time

series, the ensemble of municipality-level simulations

captured several important aspects of the observed

municipal-level dynamics. Overall, the total number of

simulated cases per municipality was strongly correlated

with the observed number of cases per municipality

(across simulation runs: median r = 0.86; interquartile

range (IQR) of r = 0.53–0.97). At the same time, a null

model (in which the single-patch departmental model

results were allocated to municipalities proportional to

population) produced similar results (median r = 0.84;

IQR 0.52–0.97). A bigger distinction between the

multi-patch and single-patch departmental models was

seen when examining per capita incidence. In this case,

the correlation between observed and simulated per

capita incidence for the multi-patch model (median r =

0.17; IQR –0.02 to 0.39) was clearly higher than the

single-patch model (median r = 0.00; IQR –0.13 to 0.13)

(Fig. 5). Whereas the result about raw incidence reflects

the importance of population size in driving overall case

numbers, the result about per capita incidence dem-

onstrates that there the parameters and assumptions

of the multi-patch model contain information about

risk not captured by the data to which the model was

fitted. Examples of municipality-level estimates are

presented in Fig. 6.

Discussion

At the national level, aggregating simulated epidemics

from single-patch departmental models did not improve

the estimate of overall epidemic size compared to the

single-patch national model fitted directly to

national-level data. However, the aggregated single-patch

departmental models did improve the shape of the re-

constructed national-level epidemic curve, with the tim-

ing of the peak correctly estimated in early 2015 instead

of several months later by the single-patch national

model. This result indicates that the single-patch depart-

mental models were somehow more appropriate for

their respective time series than was the single-patch na-

tional model for its time series, similar to a previous

finding about Zika dynamics in Colombia [61]. This re-

sult is particularly concerning for the prospect of using a

national-level model for forecasting, due to the fact that

it was incapable of capturing the temporal trajectory of

the epidemic (fitting early patterns but overestimating

later ones). The fact that it could not capture the shape

of the epidemic’s trajectory, even under ideal circum-

stances of being fitted to the entire time series, suggests

structural limitations of the model posed at this scale.

Two primary limitations are: (1) it does not allow for the

Fig. 5 Mean and 95% CI from simulations at the municipality level for Valle del Cauca and Antioquia departments. The four largest municipality-level

epidemics for each department are shown
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Fig. 6 Histogram of correlations (Pearson’s r) between the observed and simulated cumulative per capita incidence per municipality. Correlations

for the multi-patch departmental models (red) and (blue) correlations for the null model where departmental cases are allocated to each municipality

proportional to its population size
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timing of the start of the epidemic to vary locally, and

(2) it averages spatial covariates over a ludicrously large

scale in a country spanning the Andes to the Amazon.

Any decisions based on forecasts from such a model

could lead to the misallocation of critical resources or

undue panic if communicated to the public [62].

Going even further, the collection of multi-patch de-

partmental models also appeared more structurally ap-

propriate for the department-level time series to which

they were fitted, meaning that greater spatial granularity

in model structure consistently led to improved struc-

tural appropriateness for capturing temporal dynamics

[21], at least down to the municipal level. In fact, with

the multi-patch departmental models, we were able to

accurately estimate both the timing and the size of the

overall epidemic peak. Both the single-patch and

multi-patch departmental models also predicted variabil-

ity in the national-level time series better than the

single-patch national model. Rather than a smooth epi-

demic curve, there were several noticeable spikes in the

national-level time series following the introduction of

CHIKV into a new department or large municipality. By

estimating introductions into each department, both

single-patch and multi-patch departmental models can

capture this temporal heterogeneity. The multi-patch de-

partmental model can also simulate introductions at the

municipality level, allowing for exploration of which mu-

nicipalities might have been the most likely entry point

for a given department. In general, our results raise con-

cerns about the application of national-level models to

national-level time series, as has been done previously

for the chikungunya invasion of the Americas [63, 64]. It

is essential that population substructure be included in

models fitted to national-level data, and our multi-patch

model represents a structurally advantageous option, as

do others (e.g., [16]).

With respect to departmental dynamics, two major

patterns emerged when we compared the relative fits of

the single-patch and multi-patch departmental models.

First, for many of the departments where the relative

MASE of the multi-patch model was substantially lower,

the single-patch model provided a poorer fit to the

observed data because it overestimated the size of the

epidemic (e.g., Antioquia, Atlantico, Risaralda, and

Santander). In these departments, the single-patch

model may have overestimated the amount of available

larval mosquito habitat, or estimated a slower decay in

larval habitat size following rainfall. Because the climate

variables were averaged for the entire department, the

mean temperature in many departments was less suit-

able for Ae. aegypti and CHIKV transmission than it was

in some of the municipalities within the department

(Fig. 4a–d). This may be especially true for a mountain-

ous country such as Colombia, consistent with general

expectations that the nature of spatial autocorrelation af-

fects the type of bias that results from spatial aggrega-

tion [65]. If climate suitability is lower, then more larval

habitat is needed to achieve the same number of infec-

tious mosquitoes per human (Fig. 4e–h). Because the en-

tire department is homogeneously mixed, everyone in

the department experiences a similar risk of infection,

and the size of the epidemic is overestimated. The

multi-patch models, however, may contain municipal-

ities where the climate is not suitable for efficient

CHIKV transmission, lowering the portion of the popu-

lation at risk of infection and appropriately matching

geographic variation in human demography with geo-

graphic variation in climate. This issue of appropriately

matching populations with factors driving exposure is a

general and pervasive issue in spatial epidemiology, af-

fecting not only vector-borne diseases but even

non-communicable diseases such as leukemia [66].

The second major pattern was displayed by

single-patch departmental models where the timing of

the peak and the final epidemic size fit relatively well,

but the duration of the epidemic was underestimated. In

these departments (e.g., Huila, Meta, and Tolima), the

single-patch model overestimated the initial increase in

cases at the start of the epidemic, and then underesti-

mated how long it would take for the epidemic to fade

out after the peak. The multi-patch model may have

done a better job of estimating the rapid increase in

cases at the start of the epidemic because the conditions

in one or more municipalities were highly suitable for

rapid transmission compared to mean climate conditions

across the department. Once the peak was reached,

these departments could also experience a slower de-

cline in cases because municipalities with less favorable

conditions would take longer to reach their local peaks.

In addition, the spatial structuring of the human popula-

tion and movement within a structured population slows

the spread of the epidemic within the department [67].

These results mirror recent work [68] on influenza dy-

namics made possible by fine-scale spatial data, which

showed that a combination of detailed human geo-

graphic data and mobility patterns is important for being

able to recreate spatially heterogeneous epidemic pat-

terns below larger scales of spatial aggregation.

No single pattern or set of patterns was observed in

departments where the multi-patch model did not im-

prove on the fit of the single-patch departmental model.

In several departments, such as Bolivar and Norte de

Santander, the single-patch departmental model pro-

vided a good fit to the data, leaving little room for im-

provement with the multi-patch model. There were

several departments with smaller outbreaks, particularly

Boyaca and Nariño, where the multi-patch rather than

the single-patch departmental model had a tendency
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to overestimate the size of the epidemic. For both of

these departments, the mean estimate from the

multi-patch departmental model was actually a better

fit, but the variance between simulations was greater,

likely due to the additional stochasticity that arises

from the possibility of stochastic fadeout occurring in

each municipality in a multi-patch model. There were

also several departments with smaller population sizes

that had relative MASE scores near one. These de-

partments, such as Amazonas and Vaupes, had few

cases, and as a result neither the single-patch nor the

multi-patch models estimated that an outbreak had

occurred.

Impressively, our assumptions about transmission dy-

namics within and among municipalities turned out to

be good enough to enable estimation, to at least some

degree, of per capita incidence below the spatial scale of

the data to which the model was fitted. Implicitly, the

single-patch departmental model assumes that residents

of all municipalities within a department experience

equal risk of infection. Not surprisingly, there was vari-

ation in risk among residents of different municipalities,

and our multi-patch departmental model provided esti-

mates of that risk that were positively correlated with

per capita incidence based on suspected case numbers.

Because no data below the departmental scale were used

to inform those estimates, this result provides a clear in-

dication that the parameters and assumptions of the

multi-patch departmental model contain some degree of

positive predictive value. Models of mosquito-borne

pathogen transmission usually ignore within-patch het-

erogeneity [20] and instead default to assuming

well-mixed interactions at whatever scale data are

available. Our results suggest that this may often be a

mistake, given the potential for copious high-resolution

data on spatial drivers of transmission [56] and an

improved understanding of human mobility patterns

[57] to enable successful model predictions at finer

scales than that at which data are available. Although

gravity models are often capable of reproducing pat-

terns of epidemic spread similar to alternative models

of human movement [69], incorporating human

movement data from sources such as cell phone

metadata can improve model estimates of spread and

timing compared to a gravity model [32]. Human

movement data or transportation infrastructure infor-

mation may be particularly useful for modeling epi-

demic spread in geographically diverse countries like

Colombia, where the distance between locations may

not be representative of their connectivity due to

intervening mountain ranges or rainforests that re-

strict human movement.

Although the EMOD-DTK modeling framework is

flexible in many respects, we madeseveral simplifications

that could be viewed as limitations of this study. First,

while the 1122 municipalities do represent a granular

view of the country, there may be relevant heterogene-

ities at even finer spatial scales. Dengue spatial foci have

been estimated to occur at neighborhood scales [70, 71],

and both blood-feeding and microclimate heterogeneity

have been shown as far down as the household scale [30,

72]. Theoretical results indicate that these extremely

fine-scale heterogeneities may not be easily captured by

even modestly aggregated models [21]. Second, we as-

sumed a single, homogeneous larval mosquito habitat

for each municipality within a department. In reality,

these habitats are extremely numerous [73] and are

spatially associated with many factors [74]. More de-

tailed models of Ae. aegypti population dynamics exist

[75], but they come at exceedingly high computational

expense for the spatial scales of interest here and are

subject to numerous uncertainties [76]. Still, different

models of Ae. aegypti population dynamics can vary con-

siderably in their response to climatic drivers and inter-

ventions [77], suggesting that future refinement of this

aspect of the model may be worthwhile. Third, besides

climate, there are other important factors that influence

geographic heterogeneity in incidence rates that we did

not incorporate into our model that could improve esti-

mates at the department or municipality level. One im-

portant factor that is known to influence both the

amount of mosquito habitat and human contact with

mosquitoes is the local level of economic development,

with poorer areas having higher incidence rates due to

higher contact rates with Aedes mosquitoes [78]. Other

environmental factors might also affect the local suitabil-

ity for larval mosquitoes, such as how local infrastruc-

ture and development, as well as cultural practices

surrounding water storage, influence the amount of

mosquito breeding habitat. Fourth, we assumed a fixed

reporting rate based on an estimate for chikungunya

from Puerto Rico and overall estimates for dengue, al-

though reporting rates are likely to vary among depart-

ments or even among municipalities [79].

Conclusions

Simulating CHIKV transmission dynamics from versions

of our model with increasing spatial granularity im-

proved the fit of the model to temporal incidence pat-

terns, both at the scales to which the data were fitted

and when aggregated at the national level. This improve-

ment derived from the fact that simulations with

spatially granular models more appropriately captured

spatial heterogeneity in epidemiologically relevant fac-

tors, such as mosquito abundance and human demog-

raphy and movement. This improvement was evident

when moving from national to departmental levels and

from departmental to municipal levels. Models based on
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municipal-level spatial heterogeneity closely matched

epidemic size for the majority of departments and also

estimated the duration of the epidemic better than the

single-patch departmental models, particularly with re-

spect to the timing of the start of local epidemics. These

models also captured continued low levels of transmis-

sion for months following epidemic peaks in many of

the departments. Use of models posed at spatial scales

more granular than those at which data are available

represents a promising approach for the common situ-

ation of needing to answer questions about spatial het-

erogeneity in transmission below the scale at which

highly spatially aggregated data are available.

Additional file

Additional file 1: Figure S1. (A) Cumulative incidence as a function of

the maximum adaptive sampling population size. Dashed line represents

the mean, and the dotted lines are the mean ± the standard deviation.

(B) Epidemic time series for three different maximum adaptive sampling

population sizes. Solid lines are means and shaded areas represent the

range. Figures S2–S9. The joint distribution of parameter estimates for

amount of rainfall-associated temporary larval mosquito habitat and the

decay rate of that temporary habitat. Left panels are estimates from the

single-patch departmental model, and right panels are estimated from

the multi-patch departmental model. Each figure contains results from

four departments, with the departments ordered from lowest to highest

relative MASE as displayed in Fig. 2. Figures S10–S17. The joint distribution

of parameter estimates for the timing of the initial importation event(s) and

the magnitude of importation. Left panels are estimates from the

single-patch departmental model, and right panels are estimated from

the multi-patch departmental model. Each figure contains results

from four departments, with the departments ordered from lowest to

highest relative MASE as displayed in Fig. 2. Figures S18–S19. Comparisons

of department-level results for single-patch and multi-patch models for three

different symptomatic rates (0.54, 0.72, and 0.90). Black dots represent the

observed time series, darker colored lines are the single best-fitting simulations,

and lighter colored lines are the other 40 top simulations. (PDF 40161 kb)
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