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Abstract

MicroRNA-based therapies that target cardiomyocyte proliferation have great potential for the 

treatment of myocardial infarction (MI). In previous work, we showed that the miR-302/367 

cluster regulates cardiomyocyte proliferation in the prenatal and postnatal heart. Here, we describe 

the development and application of an injectable hyaluronic acid (HA) hydrogel for the local and 

sustained delivery of miR-302 mimics to the heart. We show that the miR-302 mimics released in 

vitro promoted cardiomyocyte proliferation over one week, and that a single injection of the 

hydrogel in the mouse heart led to local and sustained cardiomyocyte proliferation for two weeks. 

After MI, gel/miR-302 injection caused local clonal proliferation and increased cardiomyocyte 

numbers in the border zone of a Confetti mouse model. Gel/miR-302 further decreased cardiac 

end-diastolic (39%) and end-systolic (50%) volumes, and improved ejection fraction (32%) and 

fractional shortening (64%) four weeks after MI and injection, compared to controls. Our findings 

suggest that biomaterial-based miRNA delivery systems can lead to improved outcomes in cardiac 

regeneration.
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Heart disease is the leading cause of mortality across the world - in the United States and 

Europe, heart disease contributes to 600,000 and 4,000,000 deaths each year, respectively.1,2 

Myocardial infarctions (MI), or heart attacks, are individually linked to at least 50% of 

deaths.2 During MI, blood supply to cardiac tissue is compromised, initiating a tissue 

remodeling response. Central to this process is the permanent loss of contractile 

cardiomyocytes, the native muscle cell in the heart, and the replacement of healthy tissue 

with non-contractile, fibrotic tissue. Improved management of acute MI through medical and 

surgical intervention has allowed up to 95% of patients to survive hospitalization2; however, 

many of these patients will develop chronic heart failure, resulting in a 50% mortality rate at 

five years post-MI.2

Since a hallmark of MI is cardiomyocyte cell death, increasing the number of 

cardiomyocytes within the damaged myocardium may improve cardiac function. The major 

challenge to this approach is the limited capacity for renewal of cardiomyocytes in the adult 

heart.3,4 Cardiomyocytes are often thought of as being terminally differentiated, exiting the 

cell cycle within the first week postnatally with low to non-existent levels of proliferation 

after injury.5,6 This limited renewal capacity exacerbates the damage from ischemic injury 

during MI, as damaged cells are replaced with fibrotic scar tissue rather than contractile 

cardiomyocytes.7

Cellular therapy for cardiac regeneration remains an unmet challenge in the treatment of MI. 

Many cell types have been used in attempts to replace lost cardiomyocytes, including 

mesenchymal stem cells,8,9 skeletal myoblasts,10 and embryonic11 or induced pluripotent 

stem cell derived cardiomyocytes.12 However, only cardiomyocytes derived from pluripotent 

stem cells have been shown to engraft and produce functional myocardium. An alternative to 

cell delivery is to promote endogenous cardiomyocyte proliferation using growth factors, 

small molecules, and gene transfer.13–15 Among these strategies, certain microRNAs 

(miRNAs) induce cardiomyocyte proliferation, sometimes leading to improved cardiac 

function.16,17

miRNAs are 18–22 nucleotide long double-stranded RNAs that regulate gene expression 

post-transcriptionally by base-paring with the 3’ untranslated region (UTR) of target 

messenger RNAs (mRNAs) and inhibiting their expression. In our previous work, we 

identified a cluster of miRNAs (miR-302/367) that induced proliferation in cardiomyocytes 

through a direct binding site on the 3’ UTR of Mst1, Lats2, and Mob1, leading to inhibition 

of Hippo signaling. Consequently, Yap, the transcriptional effector of the Hippo pathway, 

translocated to the nucleus to interact with the TEAD transcription factor family to activate 

gene expression pathways that promote cellular proliferation.18 In mice, constitutive 

expression of the miR-302–367 cluster led to cardiomyopathy after MI due to persistent de-

differentiation in cardiomyocytes. However, systemic daily administration of miR-302 

mimics for one week after MI promoted cardiac regeneration by transiently reactivating the 

cardiomyocyte cell cycle to increase cell number, leading to proliferation and improved 

function. This work served as a proof of concept for miR-302 in regeneration; yet, systemic 

delivery had significant limitations including potential off-target organ accumulation and the 

need for serial daily administrations.
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Here, we demonstrate the use of local intramyocardial delivery of miR-302 mimics to 

infarcted myocardium via an injectable hydrogel, in an attempt to achieve miR-302 

translation and overcome the limitations of systemic delivery. Hydrogels are water-swollen, 

cross-linked polymers capable of encapsulating and releasing therapeutics after injection 

into tissues.19,20 Hydrogels have been explored widely for injection into cardiac tissue21–26 

and several formulations are currently in clinical trials and have demonstrated safety in 

humans.27 Hydrogels can be designed to undergo shear-thinning, in which physical 

crosslinks are reversible under shear stress, which allows them to be injected through a 

syringe or catheter.28 We previously developed shear-thinning, injectable hydrogels based on 

the guest-host interaction of modified hyaluronic acid (HA), a naturally occurring 

glycosaminoglycan.23–25 HA was modified with β-cyclodextrin (CD, host) or adamantane 

(AD, guest), where CD and AD form complexes in a defined structural arrangement with 

high affinity (Ka ~ 1 × 105 M−1). Thus, when CD-modified HA is mixed with AD-modified 

HA, they form a hydrogel that exhibits shear-thinning behavior during injection and rapid re-

healing after removal of shear, permitting injection into cardiac tissue.22,23,25,29

In this work, we utilize this guest-host HA hydrogel system to form injectable gel/miR-302 

complexes that release miR-302 to promote cardiomyocyte proliferation and regeneration 

after MI. Moreover, the gel/miR-302 induced cardiomyocyte proliferation leads to recovery 

of cardiac function. Thus, a combined gel/miRNA approach can be effectively used to 

promote mammalian cardiac regeneration through temporal specific activation of 

cardiomyocyte proliferation.

Cholesterol-modified mimics and CD–HA interaction

We previously identified miR-302b and miR-302c as active miRNAs in the miR-302–367 

cluster that modulates Hippo signaling, leading to cardiomyocyte proliferation.18 To 

improve cellular uptake, miR-302b and miR-302c were modified with cholesterol on the 5’ 

end of the passenger strand. As previously reported, cholesterol-modified double-stranded 

RNAs are passively internalized by cells in vitro and in vivo while unmodified RNAs are 

naturally repelled by cells due to electrostatics.30–33 To ensure that cholesterol modifications 

improved miR-302 mimic uptake, miR-302b and miR-302c with and without cholesterol 

modifications were added to mouse neonatal cardiomyocytes in culture and cells were 

stained with antibodies against Ki67, a marker for proliferation. Cardiomyocytes treated 

with cholesterol-modified miR-302b and miR-302c mimics (miR-302-chol) were 

significantly more proliferative (Ki67+) than those treated with unmodified mimics 

(Supplementary Figure 1a,b). Moreover, treatment of cardiomyocytes with cholesterol-

modified mimics also led to intracellular expression of miR-302 and knockdown of its 

Hippo signaling targets Lats2, Mob1, and Mst1 (Supplementary Figure 1c,d).18 Future 

studies were performed with equimolar amounts of miR-302b and miR-302c, hereafter 

simply termed miR-302.

Cholesterol is hydrophobic and has been well-described as a guest for interaction with CD 

as a host, suggesting that cholesterol-modified mimics may have improved affinity for CD-

HA (Figure 1a).34,35 To examine this interaction, we developed a fluorometric binding assay 

adapted from other similar assays.36,37 Rhodamine B (Rho) fluorescence was quenched by 
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CD-HA due to guest-host interactions between CD and Rho; however, cholesterol has a 

higher affinity for CD and should displace Rho and recover fluorescence. We observed that 

adding cholesterol-modified miR-302 increased the fluorescence of the solution suggesting 

that cholesterol-modified miR-302 bound to CD–HA in a dose-dependent fashion (Figure 

1b, Supplementary Figure 2a,b). In contrast, un-modified miR-302 did not change the 

solution fluorescence, suggesting minimal interaction (Supplementary Figure 2c). Assuming 

negligible Rho binding, a binding constant for miR-302-chol/CD–HA complex formation 

was approximated as Ka = 2.0 × 103 M−1 by fitting to the Benesi-Hildebrand equation, in 

agreement previous reports (Supplementary Figure 2d,e).38 Cholesterol-modified miR-302 

mimics were then assembled into gels with CD-HA and AD-HA (~20% modification of HA 

with either CD or AD, Supplementary Figure 3). Release of cholesterol-modified miR-302 

was sustained from gels over three weeks (Figure 1c), which was slower than the release of 

mimics without cholesterol, confirming the cholesterol/CD interaction (Supplementary 

Figure 4).

To confirm that cholesterol-modified miR-302 did not affect mechanical and erosion 

behavior of gels, we performed oscillatory rheology and gel erosions assays with and 

without encapsulated miR-302. Storage (G’) and loss (G’’) moduli were equivalent for gels 

with and without encapsulated cholesterol-modified miR-302 (Supplementary Figure 5a). 

Shear-yielding and recovery were also observed in response to alternating high and low 

strain, demonstrating the ability of these gels to thin under shear strain and rapidly 

reassemble upon cessation of strain, permitting injection and rapid recovery of the gel/

miR-302 system (Supplementary Figure 5b). Gel erosion was not affected by inclusion of 

cholesterol-modified miR-302 in the system (Supplementary Figure 6). Taken together, 

cholesterol-modification of miR-302 mimics serves to both enhance cellular uptake and 

improve affinity for the gel without compromising gel mechanics, shear-thinning, or erosion.

In vitro bioactivity of gel/miR-302 assemblies

To assess the effect of gel/miR-302 assemblies on cardiomyocyte proliferation in vitro, 

supernatants from gel assemblies with miR-302 were collected and replaced serially over 

two weeks (Figure 2a). Neonatal mouse cardiomyocytes were treated with supernatants from 

gel/miR-302 or controls and stained with DAPI and antibodies to detect Ki67 and cardiac 

Troponin T (cTnT). Gel/miR-302 assemblies significantly enhanced proliferation (~20–25% 

positive for Ki67+cTnT+) from D0-D1, D1-D4 and D4-D7 compared to gels with a non-

specific sequence (gel/miR-NC) or gels alone (~10% positive for Ki67+cTnT+) (Figure 

2b,c). At early time intervals (D0-D1, D1-D4, and D4-D7), between ~0.15–0.3 µg/µL (5–10 

µM) of miR-302 was released (Supplementary Figure 7), which we showed is biologically 

active (Supplementary Figure 1) and induced neonatal cardiomyocyte proliferation. At later 

time intervals (D7-D10, D10-D14, D14-D21), ~0.1 µg/µL miR-302 was released, leading to 

no proliferation compared to controls. Since our previous study showed that transient 

delivery of miR-302 for one week could enhance cardiac function in vivo, the gel release 

profile in vitro suggests that gel/miR-302 may replicate serial dosing for one week from a 

single gel injection.
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In vivo bioactivity of gel/miR-302 after cardiac injection

Neonatal cardiomyocytes retain some proliferative capacity and therefore may be more 

responsive to miR-302 stimulation; thus, we sought to test the bioactivity of gel/miR-302 

assemblies in adult cardiomyocytes, which have extremely limited capacity to proliferate 

both in vitro and in vivo. Gels were ejected from 27G × 1/2” tuberculin syringes into water 

to demonstrate their capacity for injection with rapid reassembly and minimal cargo loss 

(Figure 3a). Gels were then injected in two regions (2 × 5 µL) inferior and lateral to the 

proximal left anterior descending artery (LAD) in non-infarcted hearts of adult male mice, 

corresponding to the border zone of the infarct (Figure 3b). At 5, 14, or 28 days, hearts were 

stained for markers of cardiac proliferation, Ki67 and phosphorylated histone H3 (pH3), and 

a marker of cytokinesis, Aurora B kinase (Aurora B). Sites of injection were identified from 

Troponin T negative areas and proliferation in cardiomyocytes (Troponin T positive) was 

quantified around these sites of injection for all three markers.

Gel/miR-302 injections significantly increased the proportion of Ki67+ cardiomyocytes 

(Figure 3c). Cardiomyocyte proliferation was sustained at D5 and D14 in gel/miR-302 

compared to gel/miR-NC, but was no longer present by D28 (Figure 3e). Gel/miR-302 also 

induced non-myocyte proliferation at D14 and D28, although at lower levels than both 

groups at D5 (Supplementary Figure 8a). pH3+, and Aurora B+ cardiomyocytes around the 

site of gel/miR-302 injection were also elevated compared to controls at five days (Figure 

3d), demonstrating up to ~3% and ~2% of cardiomyocytes staining positive for these 

proliferation markers (Figure 3f,g).

Of note, gel/miR-302 led to significantly more cardiomyocyte proliferation than PBS/

miR-302 (Supplementary Figure 8b), suggesting sustained release and improved retention of 

miR-302 by the gel in vivo. Injections with gel/miR-NC also led to very low levels (<1%) of 

cardiomyocytes staining for of Ki67, pH3 and Aurora B, corroborating the very rare and 

limited capacity for adult cardiomyocyte self-renewal.39,40 Proliferating cardiomyocytes and 

non-myocytes were found within <200 µm of injection (Supplementary Figure 8c). To 

confirm that cardiomyocytes were proliferating through inhibition of Hippo signaling, 

sections were stained for Yap. In gel/miR-302 sections, there was increased total Yap in the 

nucleus in support of our established mechanism by which Yap dephosphorylated and 

localizes to the nucleus secondary to miR-302 (Supplementary Figure 9).18 No differences 

in cardiomyocyte maturity were observed following stimulation (Supplementary Figure 10),

Clonal proliferation in MHC-Confetti mouse model

To verify that the proliferation observed after gel/miR-302 treatment could generate new 

cardiomyocytes after MI, lineage tracing analysis was performed using a multicolor R26R-

Confetti Cre-reporter system with loxP-flanked nuclear green fluorescent protein (nGFP), 

red fluorescent protein (RFP), yellow fluorescent protein (YFP), and monomeric cyan 

fluorescent protein (mCFP) (Figure 4a).41 The construct was designed such that random 

recombination activates only one of the four fluorescent protein genes, allowing stochastic 

labeling of target cells and their descendants with a single color. This reporter system also 

allows cell fate analysis using any inducible Cre activation mouse line (Figure 4b).41–43 
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Confetti mice were bred with the Cre transgene expressed under the myosin heavy chain 6 

(Myh6) promoter (Myh6-MerCreMer, also abbreviated MHC-MCM) to express Cre 

specifically in cardiomyocytes in response to tamoxifen.44 In this system, Myh6-

MerCreMer:R26R-Confetti labeled cells and their daughter cells could express one of four 

different fluorescent reporters: nGFP, YFP, RFP, or mCFP.

Tamoxifen doses were titrated to ensure low levels of Myh6+ cardiomyocyte labeling so that 

individual clones could be identified (Supplementary Figure 11a). After tamoxifen, MI was 

induced by ligation of the LAD. Gel/miR-302 or gel/miR-NC (2 × 5 µL) was then injected 

adjacent to the infarct in the border zone. At 4 weeks, gel/miR-302 injected hearts were 

strongly labeled in the infarct border zones (Figure 4c), suggesting increased lineage labeled 

cardiomyocytes due to clonal expansion. In contrast, gel/miR-NC injected hearts exhibited 

sparse labeling that mimicked hearts prior to injection (Supplementary Figure 11b). 

Confocal imaging revealed expression of nGFP, RFP, and YFP in adult hearts injected with 

both gel/miR-NC and gel/miR-302 (Supplementary Figure 12a). In our hands, the 

expression of mCFP was too weak to reliably detect, as previously reported.41,42

Clonal cardiomyocytes expressing nGFP, RFP, and YFP were clearly identified in gel/

miR-302-injected hearts while few clones were observed from gel/miR-NC injection 

(Supplementary Figure 12a,b). Among labeled cardiomyocytes, multiple clusters expressing 

nGFP were detected in gel/miR-302 injected hearts and localized to the border zone of the 

infarction (Supplementary Figure 12a). The average distance between nGFP+ cells was 

significantly lower in gel/miR-302 treated groups, suggesting that these cells were derived 

from a common single cell (Supplementary Figure 12c,d). Further analysis with Wheat 

Germ Agglutinin (WGA) staining to identify cell membranes showed fluorescent cells 

within 50 µm were mostly contiguous in gel/miR-302 treated groups but not in gel/miR-NC 

groups (Figure 5a). No differences in cardiomyocyte size were observed in the three 

fluorescent channels using WGA to distinguish between cardiomyocytes (Supplementary 

Figure 12e). In gel/miR-NC groups, distant cells (>50 µm) were often interspersed by 

unlabeled cardiomyocytes. Using 50 µm as a standard, we quantified the number of cells to a 

single clone for nGFP, RFP, and YFP across all sections of the heart in the border zone of 

infarcts. Gel/miR-302-injected hearts had a significant increase in the number of cells per 

clone (as many as 8), suggesting that these cells were derived from a common parent cell 

that had divided (Figure 5b). Our results demonstrating expansion of clones parallel those of 

other reports that have used this system.45–47

Gel/miR-302 complex pharmacokinetics

To demonstrate that miR-302 mimics were localized and sustained in the heart after MI, the 

gel was labeled with a near-infrared fluorescent molecule through a Michael addition 

between a thiolated Cy7.5 dye and methacrylated CD-HA (CD-Me-HA) (Supplementary 

Figure 13).23 Cy7.5-labeled CD-HA was then assembled into gels with miR-302 and 

injected into the heart following MI for ex vivo tracking at various times.

Immediately following injection, gels exhibited intense signal surrounding the infarct site at 

the two injection sites (Figure 6a). This signal declined over the first week and distributed 
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over the heart, where it dissipated by 28 days. Quantification demonstrated a reduction in 

radiant efficiency by ~90% over the first week, suggesting highest rates of clearance during 

this period (Figure 6b). From qPCR, miR-302 expression in the heart was highest at D1, 

decreased over the first two weeks, and was similar to controls by D28 (Figure 6c). The 

targets of miR-302, Lats2, Mob1, and Mst1, also decreased in the heart by D7, suggesting 

bioactivity of the gel/miR-302 complex in modulating these components of Hippo signaling 

(Figure 6d). Low miR-302 expression was observed in the lungs at D7 (Supplementary 

Figure 14), suggesting vascular drainage of miR-302 through the coronary sinus.

Cardiac function after MI and gel/miR-302 injection

Recognizing the ability of gel/miR-302 to induce both cardiomyocyte proliferation and 

clonal, we examined the ability for of gel/miR-302 injections to improve physiological 

outcomes after MI by echocardiography. Adult mice were selected to receive gel/miR-302, 

gel/miR-NC, or PBS injection after MI. After four weeks, cardiac function was analyzed 

through echocardiography and measurements of left ventricular end diastolic volume 

(LVEDV), left ventricular end systolic volume (LVESV), ejection fraction (EF), and 

fractional shortening (FS) were made. Gel/miR-302 treated mice had reduced cardiac 

remodeling, demonstrated by reductions in LVEDV and LVESV, measures of cardiac 

volumes at the beginning and end of a single contraction, respectively, compared to PBS or 

gel/miR-NC controls (Figure 7a,b). LVEDV and LVESV of gel/miR-302 treated animals 

were not significantly different from non-infarcted mice. Whereas PBS and gel/miR-NC 

treated animals had significantly reduced EF and FS, EF and FS of gel/miR-302 treated 

animals were not significantly different from non-infarcted mice (Figure 7c,d). Masson’s 

trichrome staining at four weeks shows that the smallest ventricular areas from axial sections 

were with gel/miR-302 treatment, while gross tissue specimens also demonstrated decreased 

infarct size (Figure 7e). When quantified, gel/miR-302 appeared to decrease infarct size 

compared to gel/miR-NC from Masson’s trichrome sections, although this effect was not 

statistically significant (Figure 7f, Supplementary Figure 15). Representative 1-D 

echocardiographic M-mode measurements of wall movement are shown (Figure 7g), which 

illustrate improved anterior wall movement and decreased systolic and diastolic inner left 

ventricular diameters in gel/miR-302 treated mice. No changes in apoptosis or vascular 

density were observed at D28 between gel/miR-NC and gel/miR-302 treatments to suggest 

improvements were related to the cardiomyocyte response (Supplementary Figure 16, 

Supplementary Figure 17).

Discussion

The present study demonstrates that an engineered hydrogel, designed for injection and 

sustained delivery of miR-302, promotes both cardiomyocyte proliferation and functional 

regeneration. Our hydrogel system was developed to overcome the limitations of systemic 

delivery and to replace the requirement for 7 days of serial injections with sustained release 

from a single gel injection into the myocardium. The guest-host assembly mechanism was 

particularly attractive for this application as it permitted injection and self-healing to 

improve retention, and could potentially be adapted to minimally invasive delivery methods 
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(e.g., catheter). Lastly, the hydrogel was designed from HA, a component used in numerous 

clinical applications.48

To further control release, the guest-host assembly mechanism also presented cyclodextrin 

that can be used to sequester cholesterol-modified miRNA in the hydrogel. Interestingly, 

binding of cholesterol to the cyclodextrin had minimal effects on gel erosion and mechanics 

while sustaining the release of the miRNA mimics over three weeks in vitro, slower than 

when these interactions are not included. Because mimics released faster than the gel 

eroded, we believe diffusion played a major role in release, likely due to the dynamic 

interactions within the gel and anionic repulsion between negatively charged HA and RNA. 

Mimic release may also be sustained due to increase in size by cholesterol modification and 

the ability for cholesterol to aggregate with itself due to hydrophobicity, causing entrapment 

within the network.

In vitro, the gel/miR-302 complex led to proliferation in neonatal mouse cardiomyocytes in 

releasates collected as far out as 7 days. The reduction in proliferation from releasates 

collected after this time (D10, D15) could be due to RNA degradation given the extended 

time of the experiment. Remarkably, in vivo, our gel/miR-302 complex led to robust 

proliferation of cardiomyocytes at 5 and 14 days in the adult heart, a terminally 

differentiated organ. Expression of Aurora B kinase suggested that cardiomyocytes not only 

entered the cell cycle but were undergoing cytokinesis. Clonal expansion of newly generated 

cardiomyocytes was observed surrounding the infarct zone of the hearts treated with the gel/

miR-302 complex. The use of a multi-colored lineage reporter allowed us to verify the 

generation of new cardiomyocytes in comparison to simply observing an increase in 

proliferative markers. Our findings concur with recent data showing that small numbers of 

newly generated cardiomyocytes observed over the lifespan of mammals or after injury are 

due to proliferation of pre-existing cardiomyocytes rather than arising from a progenitor 

population.39 While these new cells may enhance contractility after MI, cardiomyocytes also 

play a role in limiting remodeling by signaling through paracrine factors to fibroblasts.49 

This explains the improvements in global cardiac volumes and function observed after 

delivery of the gel/miR-302 complex. Interestingly, while other gels have improved function 

after MI, no improvement was observed in our case. This may be related to the softness 

(~500 Pa) and relative rapid clearance of our gel in the heart. Previous gel formulations that 

led to cardiac bulking were stiffer with higher retention.23,25

The proliferative potential of the gel/miR-302 complex is further attributed to enhanced 

retention and sustained release of miR-302 mimics upon injection, particularly as there was 

minimal proliferation without gel. Complexing the miRNA with the gel likely protected the 

miRNA mimics from degradation by ubiquitous RNAse H mediated mechanisms, allowing 

for continuous and persistent release of active mimics. This work also builds on previous 

reports of intramyocardial miRNA injections, where miRNAs were injected naked, in a lipid 

complex with a transfection reagent.50,51 Since gels allow for a single application and have 

been well-tolerated in human trials,27 we believe the use of a gel/miRNA complex offers 

significant advantages to these other approaches. Other recent reports have also corroborated 

the benefit of hydrogels in promoting miRNA delivery to the heart, although with different 

therapeutic targets or with viral delivery.52,53
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Our research demonstrates the potential of a bioengineered miRNA delivery approach to 

promote cardiomyocyte proliferation and cardiac regeneration after MI. This delivery 

mechanism has distinct advantages over current methods including: (i) overcoming the short 

lifespan of injected mimics, (ii) use as a single application, (iii) optimization of release of 

miRNA mimics over times for promoting cardiomyocyte proliferation and cardiac 

regeneration, and (iv) potential for adaptation to percutaneous delivery through catheter. 

Currently, there are no approved treatments that regenerate myocardium; in this regard, our 

system may have unique advantages to other existing treatments for MI. Future studies to 

refine the gel/miRNA formulation in larger animal models of myocardial infarction are 

important to progress the gel formulation for in vivo delivery. Finally, this study establishes 

the proof-of-concept of a technology to permit minimally invasive, sustained miRNA 

delivery that can be tailored towards other small RNAs for application to cardiac and other 

tissues.

Methods

Material Synthesis

Sodium hyaluronate 74 kDa (LifeCore, Chaska, MN) was converted to a 

tetrabutylammonium salt (HA-TBA) by exchange against Dowex-100 resin and 

neutralization by tetrabutylammonium hydroxide. CD-HA and AD-HA were synthesized as 

previously described.24 Briefly, CD-HA was prepared by amidation between 6-(6-

aminohexyl)amino-6-deoxy-β-cyclodextrin and HA-TBA in the presence of benzotriazol-1-

yloxy)tris(dimethylamino)phosphoniumhexafluorophosphate (BOP). AD-HA was 

synthesized by esterification of HA-TBA with 1-adamantane acetic acid in di-tert-butyl 

bicarbonate (BOC2O) and 4-dimethylaminopyridine (DMAP). Products were dialyzed, 

frozen, and lyophilized prior to use. 1H NMR (Bruker) at 360MHz was used to determine 

final product modification, which was approximately 20% of HA disaccharide repeats for 

both CD-HA and AD-HA. Me-HA was synthesized by the esterification reaction between 

HA and methacrylic anhydride and maintenance of pH between 7.5–8.5 for 8 hours. Me-HA 

was then converted to a TBA salt (Me-HA-TBA) and subsequently modified with CD as 

previously mentioned. For Cy7.5 labeling, the fluorescent peptide GCKKG-Cy7.5 was 

synthesized by solid phase peptide synthesis (Protein Technologies) using glycinol 2-

chlorotrityl resin and FMOC protected amino acids that was then reacted with the free acid 

of Cy7.5. To couple the peptide to CD-Me-HA, the peptide was added dropwise to CD-Me-

HA in PBS at pH 8 for four hours.

Rheological Characterization

Measurements were performed using an AR2000 stress-controlled rheometer (TA 

Instruments) fitted with a 20-mm diameter cone and plate geometry, 59 min 42 s cone angle, 

and 27 µm gap. Rheological properties were examined by time sweeps (1.0 Hz; 0.5% strain). 

For shear recovery experiments, shear-thinning was performed at 250% strain with recovery 

at 0.5% strain at 20 Hz.
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miRNA purchase

All purchases were made as custom orders from GE Dharmacon. Their sequences are as 

follows:

cel-miR-67 (miR-NC)

5’-CGCUCAUUCUGCCGGUUGUUAUG-3’ (Guide)

3’-AGAUGAGAAAGAUCCUCCAACACU-Chol-5’(Passenger)

mmu-miR-302b (miR-302b)

5’-ACUUUAACAUGGGAAUGCUUUCU-3’ (Guide)

3’-GAUGAUUUUGUACCUUCGUGAAU-Chol-5' (Passenger)

mmu-miR-302c (miR-302c)

5’-GCUUUAACAUGGGGUUACCUGC-3’ (Guide)

3’-GGUGACUUUGUACCUUCGUGAA-Chol-5’ (Passenger)

Unmodified mimics did not have the cholesterol on the 5’ of the passenger strand.

Rhodamine Quenching Assay

Rhodamine B (50 ng/µL) was mixed with varying amounts of CD-HA (0–50 ng/µL) towards 

a final volume of 200 µL in DI H2O to determine saturating CD-HA concentrations for 

quenching. For unquenching assays, Rhodamine B (50 ng/µL) was quenched with 50 ng/µL 

CD-HA by mixing. Complexes were then mixed with miR-302 mimics (0–5 µM) in a final 

volume of 200 µL. Emission was measured on a Tecan Infinite200 96-well microplate reader 

at an excitation of 550 nm. miR-302b-chol affinity for Rho/CD-HA complexes was 

calculated by fit to the Benesi-Hildebrand equation.

miR-302 Release and Bioactivity

To form gels with miRNA mimics, CD-HA (3.2 mg) or AD-HA (2.1 mg) polymers were 

sterilized under UV and resuspended in solutions of miR-302b (210 µM) and miR-302c (210 

µM) in PBS under sterile conditions to a final polymer concentration of 5 wt%. Polymer/

miRNA solutions of CD-HA and AD-HA were mixed manually and centrifuged. Gels were 

incubated with OPTI-MEM in 1.5 mL Eppendorf tubes with 500 µL supernatants collected 

and replaced at D1, D4, D7, D10, D15 and D21. Total miRNA concentration in releasates 

was quantified by RiboGreen (ThermoFisher) according to manufacturer’s protocols. 

Briefly, 20 µL of releasate was incubated with Hi-Range RiboGreen Buffer in 1x TE buffer 

to a final volume of 200 µL and fluorescence was measured at excitation of 500 nm and 

emission of 520 nm on a Tecan Infinite200 96-well microplate reader.

Neonatal Cardiomyocyte Isolation and Culture

Ventricular cardiomyocytes from neonatal mice were isolated as described previously.17 

Briefly, ventricles from neonatal mice (postnatal day 0–3) were separated from atria, cut into 

pieces, and then subjected to trypsin (0.5%) digestion buffer in calcium free HBSS 

containing 10mM HEPES and 0.54 mM EDTA under constant stirring. After digestion for 
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18 hours at 4°C, minced hearts were dissociated with calcium free HBSS supplemented with 

10% horse serum, 5% FBS, and 10mM HEPES. Cells were then washed with calcium free 

DMEM supplemented with 10% horse serum and 5% FBS. After a final wash, the cells were 

plated on uncoated plastic dishes for 2 hours with media supplemented with 10% horse 

serum and 5% FBS. Non-attached cells were passed through a cell strainer (70 µm, BD 

Falcon) and seeded on a gelatin coated 96-well plate at a density of 15,000 cells/well. After 

incubation for 48 hours, the majority of cells started to beat. Mouse ventricular 

cardiomyocytes prepared using this procedure consistently yielded a purity of >90%. For 

proliferation assays, gel/miR-302 releasates or controls were added to cells in 96-well plates 

for 24 hours. After 48 hours, cells were fixed with 4% paraformaldehyde for 15 min, 

permeabilized with 0.5% Triton X-100 in phosphate buffered saline (PBS) solution for 10 

min, followed by 30 min blocking in 5% donkey serum (Jackson ImmunoResearch). Cells 

were then stained overnight at 4°C with cardiac Troponin T (ThermoFisher, MS295) and 

Ki67 (Abcam, ab16667) primary antibodies diluted in blocking solution and then secondary 

antibodies conjugated to Alex Fluor488 and 555. Images were acquired with a Leica TCS 

SP8 microscope.

In Vivo Proliferation

Prior to use, polymers were sterilized under UV irradiation for 1 hour. Gels were formed 

with miRNAs as previously described and manually transferred to a 27-Gx½” U-100 

tuberculin syringe (Terumo) under sterile conditions on ice. Male C57BL/6 mice (7–9 

weeks) were selected to receive 10 µL total of gel or control injection (2 × 5 µL). Mice were 

anesthetized with 3% isoflurane in an induction chamber (2L) and endotracheally intubated 

(Harvard Apparatus Regenerative Technology) with 1% isoflurane. A left lateral 

thoracotomy was performed at the fourth intercostal space to expose the heart. Injections 

were made inferolateral to the proximal LAD without infarct. Following injection, the chest 

was closed in 3 layers with a 3-0 polypropylene suture and animals were allowed to recover. 

After 5 days, the heart was excised, briefly washed in PBS, weighed, fixed in 4% PFA, 

embedded in paraffin, and further processed for immunofluorescence. Slides were washed in 

PBS with 0.05% Tritron X-100 (TBST) and blocked in 10% goat serum followed by 

incubation with primary antibodies against: cardiac Troponin T (ThermoScientific, MS295), 

Ki67 (Abcam, ab16667), Histone H3 phosphorylated at serine10 (Cell Signaling, 9701), 

Aurora B kinase (LSBio, LSB6592), Yap (Cell Signaling, 4912S), von Willebrand Factor 

(Abcam, ab8822), Troponin I (Abcam, ab10231), ACTC1 (Abcam, ab46805). TUNEL 

staining (Invitrogen) was performed using the Click-iT Alexa Fluor596 kit according to 

manufacturer’s protocols. After 24 hours, sections were incubated with secondary antibodies 

conjugated to Alex Fluor488, 555 or 647 (Life Technologies). Nuclei were identified by 

counter-staining sections with DAPI (Vector Labs). Slides were then mounted in 

Vectashield. A series of confocal images (z-stack) were acquired either by Leica STED 

Super-Resolution Microscope or LSM 710 Zeiss. Images were analyzed and constructed by 

ImageJ software and Imaris (Bitplane). Cells were counted by two blinded independent 

investigators from a minimum of three representative sections per mouse. All animal 

procedures were performed in accordance with the Institutional Animal Care and Use 

Committee at the University of Pennsylvania.

Wang et al. Page 11

Nat Biomed Eng. Author manuscript; available in PMC 2018 May 27.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



MicroRNA Extraction and Expression of miR-302 and Targets

Male C57BL/6 mice (7–9 weeks) were iinjected with either gel/miR-NC or gel/miR-302 (2 

× 5 µL). At set time points after intramyocardial injection, the mice were euthanized and the 

heart, lung, and liver were collected and rapidly snap-frozen in liquid nitrogen for RNA 

extraction. RNA isolation was performed as previously described.54 The Ambion mirVana 

miRNA Isolation Kit (ThermoFisher) was used to purify samples enriched with small RNA. 

Reverse transcription was performed with TaqMan MicroRNA Reverse Transcription kit 

(Applied Biosystems) with 3 µL RNA and RT primer sets (miR-302b: ID:000531) according 

to manufacturer’s instructions. Quantitative real-time PCR was performed using the TaqMan 

MicroRNA assay kit (Applied Biosystems). Primers used for Mob1, Lats2, and Mst1 were 

ordered from IDT. These primers were also used for qPCR amplification of these targets in 

neonatal cardiomyocytes.

Mob1b Primers:

Forward: CTGTGATCCAGCTTCAGGAGGAA

Reverse: TGCCAACTCTCGTCTGTCAA

Lats2 Primers:

Forward: TAAGGGTCCTGCTTCCTGTGTTCT

Reverse: ACCTCTCATGTGAAAGAGGCCCAA

Mst1 Primers:

Forward: CAGGGCCTGCATAACATTTGCTGT

Reverse: TTCCTTGTCTGGCAAAGCCCAAAG

Confetti Mouse Generation

Mice were obtained by breeding Myh6-MerCreMer and R26R-Confetti reporter mice.

Primers to genotype My6-MerCreMer (MHC-MEM):

Forward: CGTTTTCTGAGCATACCTGGA

Reverse: ATTCTCCCACCGTCAGTACG

Primers to genotype R26R-Confetti:

Forward: AAAGTCGCTCTGAGTTGTTAT

Reverse: CCAGATGACTACCTATCCTC

Intraperitoneal tamoxifen (6.7mg/kg) single injection was used to induce stochastic labeling 

of cardiomyocytes in Myh6-MerCreMer/R26R-Confetti mice. Doses were titrated to ensure 

low levels of cardiomyocyte labeling so that individual clones could be identified. Two 

weeks after tamoxifen injection, hearts were accessed by thoracotomy and the left ventricle 

was infarcted by ligation of the left anterior descending artery. Mice were selected to receive 

gel/miR-302 or gel/miR-NC (2 × 5 µL) injections lateral to the infarct in the border zone. 28 

days post-surgery and miR302 injection, mice were euthanized to collect tissues. The hearts 
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were fixed overnight with 2% paraformaldehyde (PFA). After 24 hours, hearts were then 

transferred to 50% OCT, followed by continuous incubation in 100% OCT. Then hearts in 

OCT were frozen with dry ice and kept in −80 °C until sectioning. For WGA staining, 

sections were rehydrated and then incubated for one hour at room temperature with WGA 

conjugated to Alexa Fluor-647 (Life Technologies, W32466) in PBS. Slides were then 

rinsed in PBS and mounted in Vectashield.

Myocardial Infarction Model

Male C57BL/6 mice (7–9 weeks) were selected to receive 10 µL total of gel or control 

injection (2 × 5 µL). Mice were anesthetized with 3% isoflurane in an induction chamber 

(2L) and endotracheally intubated (Harvard Apparatus Regenerative Technology) with 1% 

isoflurane. A left lateral thoracotomy was performed at the fourth intercostal space to expose 

the heart. The LAD was ligated 2 mm below the left auricle and infarction was visualized 

from blanching of the left ventricle. Injections were made lateral to the infarct. The chest 

was closed in 3 layers with a 3–0 polypropylene suture and animals were monitored during 

recovery for signs of stroke or embolization. The number of mice for gel/miR-302 treatment 

group was at least 11 males to give 80% power to detect an effect size of 1.3 SDs using a 

two-group t test with a 0.05 two-sided significance level. Injections were not blinded (due to 

variations in consistency between gel and PBS) or randomized.

Near-IR Heart Imaging

At D0, D1, D7, D14, and D28, mice were sacrificed and hearts were explanted and scanned 

on a LI-COR Pearl® Impulse Small Animal Imaging System (Lincoln, NE) with an 

excitation filter of 745 nm and emission filter for indocyanine green (ICG). Exposure time 

was set to 2 seconds and binning factor was set to 4. Intensity was expressed as radiant 

efficiency and the color scale was set to a minimum of 1 × 107 and maximum of 1 × 108. 

Total radiant efficiency (photons s−1 cm−2 steradian−1 per µW cm−2) over hearts was 

normalized by manual measurements over the fluorescent region of interest (ROI), 

subtracting background measurements, and normalizing to initial radiant efficiency 

measurements as previously described.55

Transthoracic Echocardiography

Mice were anesthetized with 3% isoflurane induction following maintenance at 2% by nose 

cone. Hair was removed using Nair and limbs were taped onto the metal EKG leads. Echo 

was performed blinded using a VisualSonic Vevo 2100 system with a 40-MHz transducer for 

cardiac imaging. The transducer was placed parallel along the long axis of the left ventricle 

for a long axis view or rotated clockwise for short axis view. Images were analyzed using 

Vevo200 1.6 VisualSonic software. Left ventricular infernal diameters during systole 

(LVIDS) and diastole (LVIDD) were obtained from 2D M-mode imaging, where fractional 

shortening was calculated per the equation EF = [(LVIDD-LVIDS)/LVIDD]. Left ventricular 

end systolic volume (LVESV) and left ventricular end diastolic volume (LVEDV) were 

obtained from B-mode imaging by manually tracing the left ventricular endocardial border. 

Ejection fraction was calculated per the equation EF = [(LVEDV-LVESV)/LVEDV].
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Statistical Analysis

All statistics were performed in Graphpad Prism 7. All data are reported as means ± 

standard deviation (SD) and performed in triplicates unless otherwise indicated. For in vivo 

studies, there was a minimum of three mice per group unless otherwise indicated. 

Comparisons between two groups were performed by Students t-test with two-tailed criteria 

and significance determined at p < 0.05. For comparison between multiple groups, 

significance was determined by one-way ANOVA with post hoc testing. Bonferroni 

correction was used to account for multiple comparisons, with α = 0.05. Normality was 

tested by D'Agostino & Pearson normality test and equal variances by Bartlett’s test.

Data Availability

The authors declare that all data supporting the findings of this study are available within the 

paper and its supplementary information files.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Gel assembly and miR-302 interactions
a) HA was modified with AD or CD, which self-assemble into shear-thinning and self-

healing gels. Likewise, cholesterol on miR-302-chol interacts with CD to sustain release 

from the gel. b) Rhodamine/CD-HA interactions lead to quenching of rhodamine 

fluorescence, but the fluorescence is recovered by titration of cholesterol-modified miR-302 

into the system and displacement of rhodamine complexes, indicating complexation between 

cholesterol and CD. c) Release of cholesterol-modified miR-302b and miR-302c (210 µM of 

each) from gels (5 wt%) in 1.5 mL microcentrifuge tubes over three weeks quantified by 

RiboGreen, a commercially available RNA quantification kit (mean ± SD, n=3).
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Figure 2. In vitro cardiomyocyte proliferation
a) Schematic of miR-302 supernatant collection and cardiomyocyte uptake. Gel/miR-302 

(100 µL) assemblies were formed in 1.5 mL microcentrifuge tubes with cholesterol-modified 

miR-302 (210 µM of miR-302b and miR-302c) or miR-NC (420 µM). OPTI-MEM (500 µL) 

was added above gels and supernatant was collected, frozen, and replaced at D1, D4, D7, 

D10 and D15. Supernatants collected from each timepoint were added to primary neonatal 

cardiomyocytes in culture. At 48 hours, cardiomyocytes were stained for Ki67, cardiac 

Troponin T, and with DAPI to detect proliferation. b) Quantification of Ki67+cTnT+ 

neonatal cardiomyocytes from gel supernatants from D0-D1, D1-D4, D4-D7, D7-D10 and 

D10-D15 in vitro cultures demonstrating proliferative effects from early gel/miR-302 release 

out to 7 days (mean ± SD, n=3 per condition, *p<0.05). Quantification was based on 

counting of Ki67+cTnT+ co-stained cells relative to total cTnT+ cells per high power field 

(HPF). c) Representative images of Ki67+cTnT+ neonatal cardiomyocytes (yellow arrows) 

to demonstrate increased Ki67 staining up to 7 days after exposure to gel/miR-302. Scale 

bar: 25 µm.

Wang et al. Page 19

Nat Biomed Eng. Author manuscript; available in PMC 2018 May 27.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3. In vivo cardiomyocyte proliferation
a) Pre-formed gel (5 wt%, blue dye) injected from a 27Gx1/2” syringe into water, to 

demonstrate rapid reassembly and minimal dispersion of cargo upon injection. b) Schematic 

for intramyocardial gel injections into non-infarcted murine hearts. Two injections were 

made inferolateral to the proximal LAD below the left atrial appendage in non-infarcted 

mouse hearts after thoracotomy. At 5, 14, or 28 days, hearts were sectioned and stained for 

Troponin T and Ki67, pH3 or Aurora B. c) Representative images of Ki67 staining in 

cardiomyocytes (yellow arrows) and non-myocytes at D5, D14 or D28, demonstrating 

increased proliferation in gel/miR-302 treated hearts. Scale bar = 50 µm. d) Representative 

images of pH3 and Aurora B staining in cardiomyocytes (yellow arrows) at D5. Scale bar = 

50 µm. e) Quantification of cardiomyocytes (Ki67+cTnT+) from hearts treated with gel/miR-

NC or gel/miR-302, demonstrating sustained proliferation of cardiomyocytes f,g) 

Quantification of pH3 and Aurora B positive cardiomyocytes surrounding gel/miR-302 

injection sites demonstrating increased proliferation in gel/miR-302 treated groups. Scale 

bar = 50 µm (mean ± SD, n=3 animals per group, symbol shapes indicate each animal, 

*p<0.05).
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Figure 4. Gel/miR-302 induced clonal expansion in vivo
a) Schematic representation of lineage-tracing strategy and experimental design. To trace 

clonal proliferation, mice were cross-bred with Myh6MerCreMer and R26RConfetti. The 

expression of Myh6 leads to Cre-loxP recombination with consequent random activation of 

one of four fluorescent reporter proteins (nGFP, YFP, RFP and mCFP) with each color 

representing a different clone from a Myh6 positive cardiomyocyte. In our experimental 

design, mice were injected with tamoxifen intraperitoneally to induce the stochastic 

expression of nGFP, RFP, YFP and mCFP. After 14 days, the LAD was ligated to induce 

ischemic injury and gels were injected in the border zone of the infarct downstream. At 28 

days after ligation, hearts were collected for analysis of clonal expansion. b) Mechanism for 

gel/miR-302 induced clonal expansion: 1) adult cardiomyocytes are non-proliferative and 

incapable of dividing after ischemic injury; 2) tamoxifen is used to randomly label a small 

population of cardiomyocytes with one of four fluorescent reporter proteins; 3) hearts are 

infarcted and gel/miR-302 is injected into cardiomyocytes in the border zone; and 4) 

miR-302 stimulates differentiation, proliferation, and expansion of fluorescently-labeled 

cardiomyocytes, which pass the fluorescent protein gene onto daughter cells. c) Fluorescent 

scans of gross heart specimens immediately after explanting at 28 days. Fluorescence is 

displayed in the green and red channels to indicate labeling of cardiomyocytes in both gel/

miR-NC and gel/miR-302 treated groups. Scale bar = 2 mm.
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Figure 5. Clonal expansion of Confetti-labeled cardiomyocytes in mice
a) Representative sections from confocal imaging with labeled cardiomyocytes expressing 

nGFP, RFP, or YFP. Gel/miR-NC sections consisted mostly of individual cardiomyocytes 

that were spatially separated. In gel/miR-302 treated groups, multiple clones were observed 

in all three fluorescent channels in close proximity, consisting of several daughter cells from 

a single parent cell. WGA separates individual cardiomyocytes and permits identification of 

clones, specifically to differentiate multiple cardiomyocytes from multi-nucleated 

cardiomyocytes. Scale bar = 50 µm. b) Quantification of cells to a clone in the nGFP, RFP, 

and YFP channels. Clones are identified as cells within 50 µm proximity to one another (gel/

miR-NC, n=3; gel/miR-302, n=4, symbol shapes indicate each animal, *p<0.05). Clones 

consisting of one cell are not technically clones but stochastically labeled single cells, but 

are still counted as part of the analysis to demonstrate they are the ubiquitous in the gel/miR-

NC groups.

Wang et al. Page 22

Nat Biomed Eng. Author manuscript; available in PMC 2018 May 27.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 6. Gel and miR-302 retention in mouse hearts
a) Images of hearts explanted and scanned following Cy7.5-gel/miR-302 complex injection 

in MI model, demonstrating decreased gel epi-fluorescence over time. Scale bar = 1 mm. b) 

Quantification of total radiant efficiency by normalizing to the initial signal intensity and to 

background auto-fluorescence, demonstrating rapid clearance over the first week. c) qPCR 

quantification of miR-302 in the heart at various times following gel/miR-302 injection, 

normalized to miR-302 expression from gel/miR-NC, indicating sustained miR-302 

expression (n=3 mice per timepoint). d) qPCR expression of miR-302 targets Lats2, Mob1, 
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Mst1 in gel/miR-302 treated mice normalized to gel/miR-NC treated mice (n=3 mice per 

timepoint, *p<0.05).
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Figure 7. Functional outcomes after myocardial infarction in adult mice
a) End diastolic and b) end systolic volumes at 4 weeks after myocardial infarction in mice 

treated with PBS, gel/miR-NC, or gel/miR-302 by B-mode echocardiography. Volume 

increases were significantly decreased in gel/miR-302 treated groups compared to controls. 

c) Ejection fraction and d) fractional shortening at 4 weeks after myocardial infarction by 

echocardiography. Neither ejection fraction nor fractional shortening of gel/miR-302 treated 

mice were significantly different from non-infarcted mice. All groups were compared 

through 1-way ANOVA (Mean ± SD, no MI, n=10; PBS, n=13; gel/miR-NC, n=9, gel/

miR-302, n=12. *p<0.05 **p<0.01 ***p<0.001). Outliers were removed using the robust 

regression and outlier removal method (ROUT) in Prism. e) Representative Masson’s 

trichrome sections demonstrating cardiac volume improvement at 28 days. Sections are 

arranged from ligation to the apex to visualize changes in tissue remodeling. Scale bar 

(sections)= 2 mm. Scale bar (gross) = 5 mm. Representative gross heart pictures at D28 are 

also shown. f) Quantification of infarct size from gross sections. Infarct size was calculated 

from a minimum of three sections per animal where the scar was well-represented and 

expressed as Infarct Area (%) = (Infarct Area)/(Total Section Area). g) M-mode 

echocardiographs of left ventricular anterior and posterior walls demonstrating diminished 

motion in anterior wall of gel/miR-NC treated mice with improvement in gel/miR-302 

treated mice.
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