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Local approximability of max-min

and min-max linear programs

Patrik Floréen, Marja Hassinen, Joel Kaasinen,
Petteri Kaski, Topi Musto, and Jukka Suomela

Helsinki Institute for Information Technology HIIT
University of Helsinki

Abstract. In a max-min LP, the objective is to maximise ω
subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0. In a min-max LP,
the objective is to minimise ρ subject to Ax ≤ ρ1, Cx ≥ 1, and
x ≥ 0. The matrices A and C are nonnegative and sparse: each
row ai of A has at most ∆I positive elements, and each row ck
of C has at most ∆K positive elements.

We study the approximability of max-min LPs and min-max LPs
in a distributed setting; in particular, we focus on local algo-
rithms (constant-time distributed algorithms). We show that
for any ∆I ≥ 2, ∆K ≥ 2, and ε > 0 there exists a local algo-
rithm that achieves the approximation ratio ∆I(1− 1/∆K) + ε.
We also show that this result is the best possible: no local al-
gorithm can achieve the approximation ratio ∆I(1− 1/∆K) for
any ∆I ≥ 2 and ∆K ≥ 2.

Keywords: approximation algorithms, distributed algorithms, linear
programs, local algorithms.



1 Introduction

In a max-min linear program (max-min LP), the objective is to

maximise ω

subject to Ax ≤ 1,

Cx ≥ ω1,

x ≥ 0.

(1)

A min-max linear program (min-max LP) is analogous: the objective is to

minimise ρ

subject to Ax ≤ ρ1,

Cx ≥ 1,

x ≥ 0.

(2)

In both cases, A and C are nonnegative matrices.
In this work, we study max-min LPs and min-max LPs in a distributed

setting. We present a local algorithm (constant-time distributed algorithm)
for approximating these LPs, and we show that the approximation factor of
our algorithm is the best possible among all local algorithms.

1.1 Distributed setting

Let G = (V ∪ I ∪ K,E) be a bipartite, undirected communication graph.
The nodes v ∈ V are called agents, the nodes i ∈ I are called constraints,
and the nodes k ∈ K are called objectives; the sets V , I, and K are pairwise
disjoint. Each edge e ∈ E is of the form e = {v, i} or e = {v, k} where
v ∈ V , i ∈ I, and k ∈ K. The edges of the graph G have positive weights:
the weight of an edge {i, v} ∈ E, i ∈ I, v ∈ V is denoted by ai,v and the
weight of an edge {k, v} ∈ E, k ∈ K, v ∈ V is denoted by ck,v. Each agent
v ∈ V is associated with a variable xv. See Figure 1 for an illustration.

We define the shorthand notation

Vi = {v ∈ V : {v, i} ∈ E}, Iv = {i ∈ I : {v, i} ∈ E},

Vk = {v ∈ V : {v, k} ∈ E}, Kv = {k ∈ K : {v, k} ∈ E}

for all i ∈ I, k ∈ K, and v ∈ V . We assume that |Vi| ≤ ∆I and |Vk| ≤ ∆K

for all i ∈ I and k ∈ K for some constants ∆I and ∆K .
Let

fi(x) =
∑

v∈Vi

ai,vxv, i ∈ I, (3)

gk(x) =
∑

v∈Vk

ck,vxv, k ∈ K (4)
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Communication graph G: Max-min LP: Min-max LP:

k ∈ K

aiv

agents

Figure 1: Communication graph G and the LPs associated with it. In the
max-min LP, the task is to maximise ω, while in the min-max LP, the task
is to minimise ρ.

and

ρ(x) = max
i∈I

fi(x), (5)

ω(x) = min
k∈K

gk(x). (6)

In the max-min linear program associated with G, the task is to

maximise ω(x)

subject to ρ(x) ≤ 1,

x ≥ 0.

(7)

Analogously, in the min-max linear program associated with G, the task is
to

minimise ρ(x)

subject to ω(x) ≥ 1,

x ≥ 0.

(8)

In a max-min LP, the value of the objective function ω(x) is called the utility
of the solution x, and in a min-max LP, the value of the objective function
ρ(x) is called the cost of the solution x.

The optimisation problems (7) and (8) are equivalent to the LPs (1) and
(2), respectively. In the distributed setting, there is a node i ∈ I for each
row ai of A, and a node k ∈ K for each row ck of C. Each row of A has
at most ∆I positive elements, and each row of C has at most ∆K positive
elements.

To avoid degenerate cases, we assume that there are no isolated nodes
in G. Indeed, isolated agents and constraints can be deleted w.l.o.g. If there
was an isolated objective, the optimum of (7) would be zero and (8) would
be infeasible.
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Remark 1. The terms “constraint” and “objective” are chosen so that they
are natural from the perspective of max-min LPs. Most of our discussion
focuses on max-min LPs; analogous results for min-max LPs are then derived
by using reductions.

1.2 Local approximation

Each node in the communication graph G is a computational entity. All
nodes in the network run the same distributed algorithm A. Initially, each
node knows only its local input, which consists of the incident edges and
their weights.

During each synchronous communication round, each node in parallel
(i) performs local computation, then (ii) sends a message to each neighbour,
and finally (iii) receives a message from each neighbour. Eventually, after
D communication rounds, each agent v ∈ V in parallel produces its local
output xv, and the algorithm stops.

We say that A is a local algorithm if D is a constant [24]; D may depend
on the parameters ∆I and ∆K , but it must be independent of the number
of nodes in G. The constant D is called the local horizon of the algorithm.
For each agent v ∈ V , the output xv is a function of the local inputs of the
nodes within distance D (in number of edges) from v in the communication
graph G.

We use the convention that an approximation factor is at least 1, both in
maximisation and minimisation problems. We say that A is an α-approxi-
mation algorithm for max-min LPs if in any graph G, the output x is a
feasible solution to the max-min LP associated with G, and the value ω(x)
is at least 1/α times the global optimum of (7). Similarly, A is an α-approxi-
mation algorithm for min-max LPs if the output is a feasible solution and
ρ(x) is at most α times the global optimum of (8). We emphasise that a
local approximation algorithm need not – and cannot – know the value of
ω(x) or ρ(x). However, it must produce a globally consistent, feasible, and
near-optimal solution x.

1.3 Applications

Immediate applications of distributed max-min LPs and min-max LPs in-
clude various tasks of fair resource allocation in contemporary networking,
such as fair bandwidth allocation in a communication network and data
gathering in a wireless sensor network.

Example 1 (Fair bandwidth allocation). Assume that each k ∈ K is a
customer of an Internet service provider, and each i ∈ I is an Internet
access point. Construct the communication graph G = (V ∪ I ∪ K,E) as
follows: for each network link between a customer k ∈ K and an access
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point i ∈ I, add a new agent v to V and the weight-1 edges {i, v} and {k, v}
to E.

A vector x can be interpreted as a bandwidth allocation: if an agent
v ∈ V is adjacent to a customer k ∈ K and an access point i ∈ I, then the
customer k can transmit data at the rate xv through the access point i. In
total, we allocate gk(x) units of bandwidth to the customer k ∈ K, and the
total load of the access point i ∈ I is fi(x) units.

A solution of the max-min LP associated with the graph G hence gives a
bandwidth allocation that maximises the minimum amount of service that
we provide to each customer, subject to the constraint that each access point
can handle at most 1 unit of bandwidth.

Observe that the structure of the communication graph G is closely re-
lated to the structure of the physical network which consists of customers,
access points, and communication links between them. Hence the execution
of any distributed algorithm in the graph G can be efficiently simulated in
the physical network as well.

Example 2 (Lifetime maximisation in sensor networks). Consider a two-
tier wireless sensor network: wireless sensor nodes produce measurements of
the environment, and the data is forwarded from each sensor node, through
relay nodes, to a sink node.

Assume that each k ∈ K is a wireless sensor node in a sensor network,
and each i ∈ I is a relay node. Construct the communication graph G =
(V ∪ I ∪K,E) like we did in the previous example: whenever a relay node
i ∈ I is within the range of the radio of a sensor node k ∈ K, add a new
agent v to V and the weight-1 edges {i, v} and {k, v} to E. The variable xv
associated with the agent v represents the rate at which the sensor k sends
data through the relay i to the sink node.

Now gk(x) is the total rate at which the sensor k ∈ K produces data,
and fi(x) is the total rate at which data is forwarded through the relay
i ∈ I. If each sensor produces data at the constant rate 1, then a solution
of the min-max LP associated with G provides data flows that minimise the
maximum load of each relay. If each relay is a battery-powered device, then
this data flow maximises the lifetime of the system before the first relay runs
out the battery.

An algorithm for approximating max-min LPs or min-max LPs also en-
ables one to solve approximate mixed packing and covering LPs [29]; a
particular special case is finding an (approximate) solution to a nonnegative
system of linear equations.

1.4 Contributions

Our work provides a complete characterisation of the local approximability
of max-min LPs and min-max LPs by local algorithms. We begin with an

4



observation that covers the simple special cases where ∆I = 1 or ∆K = 1.

Theorem 1. If ∆I = 1 or ∆K = 1, there are local algorithms for finding
optimal solutions of max-min LPs and min-max LPs.

Our main contribution is a matching pair of upper and lower bounds for
all nontrivial values of ∆I and ∆K .

Theorem 2. For any ∆I ≥ 2, ∆K ≥ 2, and ε > 0, there are local approxima-
tion algorithms for max-min LPs and min-max LPs with the approximation
ratio ∆I(1− 1/∆K) + ε.

Theorem 3. For any ∆I ≥ 2 and ∆K ≥ 2, there is no local approximation
algorithm for max-min LPs or min-max LPs with the approximation ratio
equal to ∆I(1− 1/∆K).

Our results are not sensitive to the amount of auxiliary information that
we have in the communication network. On the one hand, the negative result
of Theorem 3 holds even if each node is assigned a unique identifier. On the
other hand, the positive results in Theorems 1 and 2 hold even in the case
of anonymous networks. Our algorithms do not need unique identifiers; we
merely assume that there is a port numbering [1] in the graph G, i.e., each
node has chosen an ordering on its incident edges.

Our results are not sensitive to the details of the problem formulation,
either. In particular, the negative result holds even if we require that A and
C are 0/1 matrices, while the matching positive result holds for arbitrary
nonnegative matrices. Moreover, the negative results hold even if we require
that |Iv| = 1 and |Kv| = 1 for all v ∈ V , while the positive results do not
depend on the size of Iv or Kv at all.

As our algorithms are deterministic, standard techniques [4, 5] can be
used to convert our algorithms into efficient self-stabilising algorithms; such
algorithms provide a very high degree of fault-tolerance, as they recover from
an arbitrary initial configuration. We refer to Lenzen et al. [19] for more
details on the connection between local and self-stabilising algorithms.

1.5 Related work

Few deterministic local algorithms are known for combinatorial problems.
Most of the positive results are confined to special cases, and typically auxil-
iary information such as unique node identifiers are needed. Examples of the
positive results include local algorithms for weak colourings in graphs where
each node has an odd degree [22, 24], matchings in 2-coloured graphs [11, 12],
and dominating sets in planar graphs [7, 18]. There are strong negative re-
sults that rule out the existence of local algorithms for many classical graph
problems, such as finding a maximal independent set [21] or any constant-
factor approximation of a maximum independent set [7, 20] in a cycle.
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There have been more positive results related to local algorithms for
linear programs. Prior work has primarily focused on packing LPs, which
are nonnegative linear programs of the form

maximise
∑

v

xv

subject to Ax ≤ 1,

x ≥ 0,

and on their duals, covering LPs. Among the pioneers were Papadimitriou
and Yannakakis [25] who studied local algorithms for packing LPs; we will
use their algorithm in Section 2.3. Kuhn et al. [15, 17] present a local approx-
imation scheme for packing and covering LPs; for example, a (1 + ε)-approxi-
mation can be found in O(ε−4 log2 ∆) communication rounds, assuming that
A is a 0/1 matrix with at most ∆ nonzero elements in any row or column.

While the distributed approximability of packing and covering LPs is
nowadays fairly well understood [15, 17, 23], much less is known about more
general linear programs. One of the few positive results is Kuhn et al. [16],
which studies the LP relaxation of k-fold dominating sets. Problems closely
related to max-min and min-max LPs have been studied from the perspective
of parallel algorithms – see, for example, Young [29] – but these algorithms
cannot be applied in a local, distributed setting.

To our knowledge, max-min LPs provide the first example of a natu-
ral problem where there are matching, nontrivial lower and upper bounds
for the approximation factor of a deterministic local algorithm. Recently,
another pair of matching lower and upper bounds for local algorithms has
been discovered: in bounded-degree graphs, there is a local 2-approximation
algorithm for the vertex cover problem [2, 3], and there is no local algorithm
with the approximation ratio 2− ε for any ε > 0 [7, 20]. Incidentally, this is
another example of a problem such that the lower bound holds even if there
are unique identifiers, while the matching upper bound only needs a port
numbering.

We refer to the survey [28] for more information on local algorithms.

1.6 Structure of this work

In Section 2 we show that a local approximation algorithm for max-min LPs
implies a local approximation algorithm for min-max LPs and vice versa. We
also prove Theorem 1.

In Section 3 we lay the groundwork for proving the main positive re-
sult, Theorem 2. We show that max-min LPs can be solved near-optimally
in some special cases, provided that we have auxiliary information in the
graph G.

In Section 4 we show how to use the results of Section 3 to construct
a local approximation algorithm for general max-min LPs. The reductions
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from Section 2 can be used to extend the result to general min-max LPs,
and Theorem 2 follows.

In Section 5 we prove the negative result of Theorem 3.

1.7 Previous versions

The present work is based on three preliminary conference and workshop
reports [8, 9, 10], and it also contains material from a PhD thesis [27].

The algorithm in Sections 3 and 4 is a thoroughly revised version of
the algorithm presented in our conference report [9]. The negative result in
Section 5 is a special case of the construction in our workshop report [8]. All
material related to min-max LPs is new.

2 Preliminaries

We begin by showing that solutions of max-min LPs and min-max LPs are
related to each other via local reductions, and then show how to use this
connection to prove Theorem 1.

2.1 Normalisation

To simplify the discussion we will first show that we can focus on normalised
graphs G that satisfy |Iv| ≥ 1, |Kv| ≥ 1, |Vi| ≥ 1, and |Vk| ≥ 1 for all v ∈ V ,
i ∈ I, and k ∈ K.

If we have Iv = ∅ for an agent v ∈ V , then we can set xv = +∞
w.l.o.g., both in max-min LPs and min-max LPs. Then gk(x) = +∞ for each
adjacent k ∈ Kv. In effect, we can remove v and every k ∈ Kv. Similarly, if
Kv = ∅ for an agent v ∈ V , we can set xv = 0 w.l.o.g., both in max-min LPs
and min-max LPs. In effect, we can remove v. If these two modifications
create isolated nodes, we will remove them as well. We are left with a
normalised graph.

A normalised graph G satisfies the following properties:

(i) The max-min LP associated with G is feasible and bounded.

(ii) The min-max LP associated with G is feasible and bounded.

(iii) The optimum of the max-min LP is positive. Observe that x = ε1 is
a feasible solution for a sufficiently small ε > 0.

(iv) The optimum of the min-max LP is positive. Observe that ρ(x) = 0
implies x = 0 and ω(x) = 0.

The normalisation is a local operation; it can be implemented in a con-
stant number of communication rounds. Hence it is sufficient to design a
local algorithm for max-min LPs and min-max LPs in normalised graphs;
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we can combine it with the normalisation step to obtain a local algorithm
form max-min LPs and min-max LPs in general graphs.

2.2 Reductions between max-min LPs and min-max LPs

Let us now relate the optimum values of max-min LPs and min-max LPs.

Lemma 2.1. For any normalised graph G, the optimum of the max-min
LP associated with G is s if and only if the optimum of the min-max LP
associated with G is 1/s.

Proof. Let x be a feasible solution of the max-min LP with utility at least
s > 0, that is, ω(x) ≥ s and ρ(x) ≤ 1. Then ω(x/s) ≥ 1 and ρ(x/s) ≤ 1/s,
i.e., x/s is a feasible solution of the min-max LP with cost at most 1/s.
Conversely, a feasible solution of the min-max LP with cost at most s > 0
provides a feasible solution of the max-min LP with utility at least 1/s.

Now assume that we are given a feasible solution x of the max-min LP
associated with a normalised graph G. We will construct a feasible solution y

of the min-max LP associated with G as follows: each agent v ∈ V sets

qv = min
k∈Kv

gk(x), yv =

{

0 if qv = 0,

xv/qv if qv > 0.
(9)

We can compute qv and yv in two communication rounds: first each agent
u ∈ V sends xu to all k ∈ Ku; then each objective k ∈ K computes gk(x)
and sends it to all v ∈ Vk.

Lemma 2.2. If ω(x) > 0, then the vector y in (9) is a feasible solution of
the min-max LP associated with G, and the cost ρ(y) is at most 1/ω(x).

Proof. Let us first show that y is a feasible solution. Consider an objective
k ∈ K. Then for all v ∈ Vk we have 0 < ω(x) ≤ qv ≤ gk(x). Therefore

gk(y) ≥ gk
(

x/gk(x)
)

= 1.

Let us then establish the cost of the solution. Consider a constraint i ∈ I.
We have qv ≥ ω(x) > 0 for all v ∈ Vi. Therefore

fi(y) ≤ fi
(

x/ω(x)) ≤
1

ω(x)
.

Then assume that we are given a feasible solution x of the min-max LP
associated with a normalised graph G. We will construct a feasible solution y

of the max-min LP associated with G as follows: each agent v ∈ V sets

pv = max
i∈Iv

fi(x), yv =

{

0 if pv = 0,

xv/pv if pv > 0.
(10)
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Lemma 2.3. If ρ(x) > 0, then the vector y in (10) is a feasible solution of
the max-min LP associated with G, and the utility ω(y) is at least 1/ρ(x).

Proof. Let us first show that y is a feasible solution. Consider a constraint
i ∈ I. If fi(x) = 0 then we have xv = 0 and yv = 0 for all v ∈ Vi; it follows
that fi(y) = 0. Otherwise we have 0 < fi(x) ≤ pv for all v ∈ Vi. Therefore

fi(y) ≤ fi
(

x/fi(x)
)

= 1.

Let us then establish the utility of the solution. Consider an objective k ∈ K.
We have pv ≤ ρ(x) for all v ∈ Vk. Therefore

gk(y) ≥ gk
(

x/ρ(x)) ≥
1

ρ(x)
.

Lemmas 2.1, 2.2, and 2.3 have the following corollary.

Corollary 2.4. Given a local α-approximation algorithm for max-min LPs
we can construct a local α-approximation algorithm for min-max LPs and
vice versa.

In this reduction, the running time of the algorithm increases only by 2
communication rounds. Moreover, the reduction preserves the values of the
parameters ∆I and ∆K . For example, a local α-approximation for max-min
LPs in the case ∆I = 2 and ∆K = 3 implies a local α-approximation for
min-max LPs in the case ∆I = 2 and ∆K = 3.

Thanks to this reduction, we can focus on max-min LPs; we can apply
Corollary 2.4 to both positive and negative results to get analogous results
for min-max LPs.

2.3 The safe algorithm

Papadimitriou and Yannakakis [25] present a simple local approximation
algorithm for packing LPs, the so-called safe algorithm; it turns out that
this is a local approximation algorithm for max-min LPs as well.

In the safe algorithm, the agent v chooses

xv = min
i∈Iv

1

ai,v|Vi|
. (11)

Intuitively, each constraint i ∈ I divides its “capacity” evenly among its
neighbours: if i has |Vi| neighbours, each neighbour v ∈ V of i can use at
most 1/|Vi| of the capacity – that is, ai,vxv is at most 1/|Vi|. In particular,
the node v chooses the largest possible value xv that does not violate these
allotments for any of its adjacent constraints.

Lemma 2.5. The vector x in (11) is a feasible, ∆I-approximate solution of
the max-min LP associated with G.
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Proof. Feasibility is satisfied by construction. To show the approximation
factor, let x∗ be an optimal solution. As x∗ is a feasible solution, we must
have ai,vx

∗
v ≤ 1 for all i ∈ I and v ∈ Vi, that is,

x∗v ≤ min
i∈Iv

1

ai,v
.

Hence we have xv ≥ x∗v/∆I for each agent v ∈ V . We conclude that ω(x) ≥
ω(x∗)/∆I .

2.4 Simple special cases

The safe algorithm is clearly a local algorithm, with the running time of one
communication round. In particular, Lemma 2.5 shows that a max-min LP
can be solved optimally if ∆I = 1, regardless of the value of ∆K . With
Corollary 2.4, we conclude that also min-max LPs can be solved optimally
if ∆I = 1.

Let us now consider another simple special case, namely ∆K = 1. In
this case min-max LPs are particularly easy to solve. We can simply set

xv = max
k∈Kv

1

ck,v
(12)

for each v ∈ V .

Lemma 2.6. If ∆K = 1, then the vector x in (12) is an optimal solution
of the min-max LP associated with G.

Proof. Clearly x is a feasible solution of the min-max LP associated with G:
since ck,vxv ≥ 1 for all k ∈ K and v ∈ Vk, we have ω(x) ≥ 1. On the other
hand, an optimal solution x∗ must also satisfy ck,vx

∗
v ≥ 1 for all k ∈ K and

for the unique v ∈ Vk; therefore xv ≤ x∗v and ρ(x) ≤ ρ(x∗).

Invoking Corollary 2.4 we can also construct a local algorithm that solves
max-min LPs optimally in the case ∆K = 1.

In summary, both max-min LPs and min-max LPs can be solved opti-
mally if we have either ∆I = 1 or ∆K = 1. Theorem 1 follows.

3 Layered max-min LPs

Throughout this section we focus on max-min LPs of a very specific form,
which we call layered max-min LPs. First, each node of G is assigned a layer
and each agent is also assigned one of two colours. Second, there are several
structural assumptions on G, best described by using the layers and colours.

Throughout this section, h is a positive integer constant. We use the
notation H = {1, 2, . . . , h} and H0 = {0, 1, . . . , h}.
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Figure 2: An example of a layered graph G, in the case h = 2. The set S∗(r)
is highlighted.

3.1 Colours and layers

We assume that each agent v ∈ V is assigned a colour red or blue. Let R
be the set of red agents and let B be the set of blue agents.

We also assume that there is a layer ℓ(u) associated with each node u: for
an agent v ∈ V we have ℓ(v) ∈ H0, for a constraint i ∈ I we have ℓ(i) ∈ H0,
and for an objective k ∈ K we have ℓ(k) ∈ H. For a set of nodes U , we
use the shorthand notation U [j] = {u ∈ U : ℓ(u) = j}; for example, R[0]
consists of all red agents on layer 0. We refer to Figure 2 for an example.

3.2 Orientation

We assume that all edges in G are oriented. We write S(u) for the set
of immediate successors of the node u and P (u) for the set of immediate
predecessors of u. In those cases where the successor or predecessor is unique,
we use the notation s(u) and p(u), respectively. Let

S(U) =
⋃

u∈U

S(u),

S0(U) = U,

Sj+1(U) = S(Sj(U)),

S∗(U) = S0(U) ∪ S1(U) ∪ · · · .
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We define P ∗, etc., in an analogous manner. We say that a set of nodes U
is downwards closed if U = S∗(U).

3.3 Structural assumptions

The structural assumptions on G are as follows:

(i) Each constraint i ∈ I has exactly one predecessor, which is a red agent
on the same layer ℓ(i), and exactly one successor, which is a blue agent
on the same layer ℓ(i).

(ii) Each objective k ∈ K has exactly one predecessor, which is a blue
agent on the previous layer ℓ(k)− 1, and at least one successor, all of
which are red agents on the same layer ℓ(k).

(iii) All agents in V \R[0] have at least one predecessor, and all agents in
V \B[h] have at least one successor.

In particular, it follows that G is a directed acyclic graph where each directed
path has length at most 4h + 2. The nodes along any directed path are
alternatingly from the sets R, I, B, and K, in this order, and the layers are
non-decreasing along the path; see Figure 2.

3.4 Recursive solution

Let q be a vector indexed by the blue agents b ∈ B. We can define the
vector z(q) indexed by the agents v ∈ V recursively as follows:

zb(q) = 0, b ∈ B[h], (13)

zr(q) = min
i∈S(r)

1− ai,s(i)zs(i)(q)

ai,r
, r ∈ R, (14)

zb(q) = max

{

0, max
k∈S(b)

qb −
∑

r∈S(k) ck,rzr(q)

ck,b

}

, b ∈ B \B[h]. (15)

We exploit this recursion in our local algorithm twice. The following obser-
vation is essential from the perspective of local computability.

Lemma 3.1. The value zv(q) depends only on the local inputs of the nodes
S∗(v), and the values qb for b ∈ B ∩ S∗(v).

Proof. By the structure of (13)–(15).

The intuition behind the recursion (13)–(15) is that each red node r ∈
R chooses the largest possible zr(q) such that fi(z(q)) ≤ 1 for adjacent
constraints i ∈ S(r), and each blue node b ∈ B chooses the smallest possible
zb(q) ≥ 0 such that gk(z(q)) ≥ qb for adjacent objectives k ∈ S(b). We will
analyse the properties of this recursion in more detail in Section 3.6.
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3.5 Local algorithm

We present a local algorithm that finds a (1 + ε)-approximation of a layered
max-min LP, for any constant ε > 0. We begin with the description of the
algorithm; we prove the correctness of the algorithm in Sections 3.6–3.7.

Phase I. Each agent v ∈ V sets

x̂v = min
i∈Iv

1

ai,v
,

and each objective k ∈ K sets ĝk = gk(x̂). Each agent r ∈ R[0] finds the
minimum of the values ĝk in S∗(r) ∩K; let t̂r be this value.

Phase II. In this phase, each node r ∈ R[0] initiates the computation
of z(q) within its local neighbourhood S∗(r), using the vector q = t1 for
certain values of t > 0. The relevant values of t are obtained using the
binary search as described below.

We say that t is a valid local estimate for the node r ∈ R[0] if the solution
of (13)–(15) satisfies zv(t1) ≥ 0 for all v ∈ R ∩ S∗(r). By Lemma 3.1, the
node r can test whether t is a valid local estimate in Θ(h) communication
rounds: First the red agent r broadcasts the query t to the subgraph S∗(r).
Then a solution of (13)–(15) is computed layer by layer, starting from B[h]∩
S∗(r) and propagating towards r. The entire solution does not need to be
transmitted to r: a flag indicating the nonnegativity of the solution suffices
in order to tell whether t is a valid local estimate.

Each agent r ∈ R[0] uses binary search to find a value tr in the range

1

2
t̂r ≤ tr ≤ t̂r

such that (i) tr is a valid local estimate and (ii) either (1 + ε)tr is not a valid
local estimate or (1 + ε)tr > t̂r. Note that the number of iterations only
depends on the constant ε, and we can perform this procedure concurrently
in parallel for all r ∈ R[0].

Phase III. Each blue agent b ∈ B finds the minimum of the values tr in
P ∗(b) ∩R[0]; let sb be this value. All agents compute recursively z(s) using
(13)–(15). Finally, each agent v outputs the value zv(s).

3.6 Properties of the recursive solution

Before proving the correctness of the algorithm, we analyse the properties
of the vectors z(q) from (13)–(15). To this end, it is good to note that (3)
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and (4) can be rewritten as follows in the case of layered max-min LPs:

fi(x) = ai,p(i)xp(i) + ai,s(i)xs(i), i ∈ I, (16)

gk(x) = ck,p(k)xp(k) +
∑

r∈S(k)

ck,rxr, k ∈ K. (17)

We begin with a technical lemma.

Lemma 3.2. Let U be a downwards closed set of nodes in G. Assume that
x satisfies xv ≥ 0 for all v ∈ V ∩U and fi(x) ≤ 1 for all i ∈ I ∩U . Assume
that q satisfies 0 ≤ qp(k) ≤ gk(x) for all k ∈ K ∩ U . Then

0 ≤ zb(q) ≤ xb for each b ∈ B ∩ U, (18)

xr ≤ zr(q) for each r ∈ R ∩ U. (19)

In particular, zv(q) is nonnegative for all v ∈ V ∩ U .

Proof. The base case, (18) for all b ∈ B[h] ∩ U , is immediate from (13).
Now assume that (18) holds for all b ∈ B[j]∩U . Let r ∈ R[j]∩U . Then

for all i ∈ S(r) we have

ai,rxr + ai,s(i)xs(i) = ai,p(i)xp(i) + ai,s(i)xs(i) = fi(x) ≤ 1.

Using the assumption (18) it follows that

xr ≤
1− ai,s(i)xs(i)

ai,r
≤

1− ai,s(i)zs(i)(q)

ai,r

for all i ∈ S(r). Hence (14) implies xr ≤ zr(q). We have shown that (19)
holds for all r ∈ R[j] ∩ U .

To complete the induction, assume that (19) holds for all r ∈ R[j] ∩ U .
Let b ∈ B[j − 1] ∩ U . For all k ∈ S(b) we have

ck,bxb +
∑

r∈S(k)

ck,rxr = ck,p(k)xp(k) +
∑

r∈S(k)

ck,rxr = gk(x) ≥ qp(k) = qb.

Using the assumption (19) it follows that

xb ≥
qb −

∑

r∈S(k) ck,rxr

ck,b
≥

qb −
∑

r∈S(k) ck,rzr(q)

ck,b

for all k ∈ S(b); moreover, we assumed that xb ≥ 0. Hence (15) implies
0 ≤ zb(q) ≤ xb. We have shown that (18) holds for all b ∈ B[j − 1]∩U .

The following two lemmas show, among others, that if we knew the
utility of a feasible solution x, then we could choose an appropriate q such
that z(q) is a feasible solution and at least as good as x.
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Lemma 3.3. Let x = z(q). If x is nonnegative, then it is a feasible solution
of the layered max-min LP associated with G. Furthermore, the utility ω(x)
is at least minb qb.

Proof. To verify feasibility, we first observe that xv ≥ 0 for all v ∈ V by
assumption. Next, consider a constraint i ∈ I. Let r = p(i) be its unique
predecessor, and let b = s(i) be its unique successor. Since r ∈ R and
i ∈ S(r), in (14) we have chosen an xr such that ai,rxr ≤ 1− ai,bxb, that is,
fi(x) ≤ 1.

To analyse the utility ω(x), consider an objective k ∈ K. Let b = p(k)
be its unique predecessor. Since b ∈ B \B[h] and k ∈ S(b), in (15) we have
chosen an xb such that gk(x) ≥ qb.

Lemma 3.4. Let x be a feasible solution of the layered max-min LP asso-
ciated with G, let U be a downwards closed set of nodes in G, and assume
that 0 ≤ q ≤ gk(x) for all k ∈ K ∩ U . Then zv(q1) is nonnegative for all
v ∈ V ∩ U .

Proof. A feasible solution x satisfies xv ≥ 0 for all v ∈ V ∩ U and fi(x) ≤ 1
for all i ∈ I ∩ U ; hence we can apply Lemma 3.2 with q = q1.

The following lemma provides us with flexibility in the choice of the
vector q: instead of choosing q = q1 using a global estimate q, like we did
in Lemma 3.4, we can choose each qv using a local estimate.

Lemma 3.5. Let U be a downwards closed set of nodes in G. If zv(q′) is
nonnegative for all v ∈ V ∩U , and 0 ≤ qb ≤ q′b for all b ∈ B ∩U , then zv(q)
is nonnegative for all v ∈ V ∩ U .

Proof. Set x = z(q′). By assumption, xv ≥ 0 for all v ∈ V ∩U , and from (14)
we have fi(x) ≤ 1 for all i ∈ I ∩ U ; cf. the proof of Lemma 3.3. Moreover,
we have 0 ≤ qp(k) ≤ q′

p(k) ≤ gk(x) for all k ∈ K ∩ U . Hence we can apply

Lemma 3.2 to show that zv(q) is nonnegative for all v ∈ V ∩ U .

3.7 Proof of correctness

Let x∗ be an optimal solution of the layered max-min LP. Let us first analyse
Phase I. The values x̂v are upper bounds for the variables x∗v, as shown in
the following lemma.

Lemma 3.6. For each v ∈ V it holds that x̂v ≥ x∗v.

Proof. To reach a contradiction, assume that x∗v > x̂v. Then there is a
constraint i ∈ Iv such that x∗v > 1/ai,v; hence fi(x

∗) > 1.

The following corollary is immediate.

Corollary 3.7. For each k ∈ K it holds that ĝk ≥ gk(x∗) ≥ ω(x∗).
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We can scale down the values x̂v by factor ∆I = 2 to obtain a feasible
solution. This is the essence of the safe algorithm (recall Section 2.3).

Lemma 3.8. The vector x̂/2 is a feasible solution of the layered max-min
LP.

Proof. Consider a constraint i ∈ I. By the choice of x̂, we have

x̂p(i) ≤
1

ai,p(i)
, x̂s(i) ≤

1

ai,s(i)
.

Therefore fi(x̂/2) ≤ 1.

Now we are ready to analyse Phase II.

Lemma 3.9. For each r ∈ R[0], any t ≤ ω(x∗) is a valid local estimate.

Proof. Set x = x∗, U = S∗(r), and q = t in Lemma 3.4.

Lemma 3.10. For each r ∈ R[0], any t ≤ t̂r/2 is a valid local estimate.

Proof. Lemma 3.8 shows that x̂/2 is a feasible solution, and we have t̂r/2 ≤
gk(x̂/2) for all k ∈ K∩S∗(r). The claim follows from Lemma 3.4, by setting
x = x̂/2, U = S∗(r), and q = t.

Lemma 3.11. Each r ∈ R[0] finds a valid local estimate tr such that
(1 + ε)tr > ω(x∗).

Proof. Lemma 3.5 shows that binary search can be applied: if t is a valid lo-
cal estimate, then all values below t are valid as well. Moreover, Lemma 3.10
shows that the first point of the range is a valid local estimate.

If ω(x∗) ≤ t̂r/2, binary search will return a value tr ≥ t̂r/2 ≥ ω(x∗), and
the claim follows.

Otherwise t̂r/2 < ω(x∗) ≤ t̂r by Corollary 3.7. Furthermore, ω(x∗) is
a valid local estimate by Lemma 3.9; hence the binary search will return a
point such that (1 + ε)tr is not valid or (1 + ε)tr > t̂r. Both possibilities
imply (1 + ε)tr > ω(x∗).

Finally, we analyse Phase III.

Lemma 3.12. The output z(s) is a feasible, (1 + ε)-approximate solution
of the layered max-min LP associated with G.

Proof. Consider an r ∈ R[0]. By Lemma 3.11, tr is a valid local estimate
and hence zv(tr1) is nonnegative for all v ∈ V ∩ S∗(r). Since sb ≤ tr
for all b ∈ B ∩ S∗(r), Lemma 3.5 implies that zv(s) is nonnegative for all
v ∈ V ∩ S∗(r) as well.

For every v ∈ V there is an r ∈ R[0] such that v ∈ S∗(r). Therefore the
above reasoning shows that zv(s) is nonnegative for all v ∈ V .
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As z(s) is nonnegative, Lemma 3.3 shows that z(s) is a feasible solution
of the layered max-min LP. Moreover, the same lemma shows that

ω(z(s)) ≥ min
b∈B

sb.

For each b ∈ B there is an r ∈ R[0] such that sb = tr, and Lemma 3.11 shows
that (1 + ε)tr > ω(x∗). We conclude that (1 + ε)ω(z(s)) > ω(x∗).

The main result of this section is summarised in the following corollary
of Lemma 3.12.

Corollary 3.13. There is a local (1 + ε)-approximation algorithm for lay-
ered max-min LPs for any ε > 0 and h ∈ {1, 2, . . . }. The running time of
the algorithm is O(h log 1/ε) synchronous communication rounds.

In the following section we show how to apply this algorithm to solve
more general max-min LPs.

Remark 2. If we used an exact LP solver instead of the simple binary search
in Phase II, we could also find an exact solution of the layered max-min LP.
However, that would not improve the main positive result, Theorem 2.

4 Local algorithms for max-min and min-max LPs

In this section, we prove Theorem 2. We first show how to solve max-min
LPs with ∆I = 2. Then we show how the general result follows by local
reductions.

4.1 Max-min LPs with ∆I = 2

Given a max-min LP with ∆I = 2, we construct a layered max-min LP, and
show how to use a solution of the layered max-min LP to approximate the
original max-min LP.

First, we normalise the graph as described in Section 2.1. Hence we can
focus on the case |Iv| ≥ 1, |Kv| ≥ 1, 1 ≤ |Vi| ≤ ∆I = 2, and 1 ≤ |Vk| ≤ ∆K

for all v ∈ V , i ∈ I, and k ∈ K.
Now consider a constraint i ∈ I. If Vi = {v} for some v ∈ V , we

define n(i, v) = v and āi,v = ai,v/2. Otherwise Vi = {u, v}, and we define
n(i, u) = v, n(i, v) = u, āi,u = ai,u, and āi,v = ai,v. With this notation, we
have

fi(x) = āi,vxv + āi,n(i,v)xn(i,v)

for all i ∈ I and v ∈ Vi.
Next consider an objective k ∈ K. If Vk = {v} for some v ∈ V , we

define N(k, v) = {v} and c̄k,v = ck,v/2. Otherwise |Vk| ≥ 2; then we define
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N(k, v) = Vk \ {v} and c̄k,v = ck,v for every v ∈ Vk. With this notation, we
have

gk(x) = c̄k,vxv +
∑

u∈N(k,v)

c̄k,uxu

for all k ∈ K and v ∈ Vk.
Fix a positive integer h. As in Section 3, we set H = {1, 2, . . . , h} and

H0 = {0, 1, . . . , h}. We construct a graph Gh such that the max-min LP
associated with Gh is a layered max-min LP; see Figure 3 for an illustration.
The nodes of the layered graph Gh are as follows:

(i) A red layer-ℓ agent (v, ℓ, red) for each v ∈ V and ℓ ∈ H0.

(ii) A blue layer-ℓ agent (v, ℓ, blue) for each v ∈ V and ℓ ∈ H0.

(iii) A layer-ℓ objective (k, ℓ, v) for each k ∈ K, v ∈ Vk, and ℓ ∈ H.

(iv) A layer-ℓ constraint (i, ℓ, v) for each i ∈ I, v ∈ Vi, and ℓ ∈ H0.

The edges of Gh are as follows:

(i) An edge of weight c̄k,v from (v, ℓ− 1, blue) to (k, ℓ, v) for each k ∈ K,
v ∈ Vk, and ℓ ∈ H.

(ii) An edge of weight c̄k,u from (k, ℓ, v) to (u, ℓ, red) for each k ∈ K,
v ∈ Vk, u ∈ N(k, v), and ℓ ∈ H.

(iii) An edge of weight āi,v from (v, ℓ, red) to (i, ℓ, v) for each i ∈ I, v ∈ Vi,
and ℓ ∈ H0.

(iv) An edge of weight āi,u from (i, ℓ, v) to (n(i, v), ℓ, blue) for each i ∈ I,
v ∈ Vi, and ℓ ∈ H0.

The max-min LP associated with Gh is a layered max-min LP. In the
following, we use notation such as xh to refer to a solution of the layered
max-min LP associated with Gh. We can adapt (3)–(6) as follows:

fh
(i,ℓ,v)(x

h) = āi,vx
h
(v,ℓ,red) + āi,n(i,v)x

h
(n(i,v),ℓ,blue), i ∈ I, ℓ ∈ H0, v ∈ Vi,

gh(k,ℓ,v)(x
h) = c̄k,vx

h
(v,ℓ−1,blue) +

∑

u∈N(k,v)

c̄k,ux
h
(u,ℓ,red), k ∈ K, ℓ ∈ H, v ∈ Vk,

ρh(xh) = max
i∈I
v∈Vi

ℓ∈H0

fh
(i,ℓ,v)(x

h), ωh(xh) = min
k∈K
v∈Vk

ℓ∈H

gh(k,ℓ,v)(x
h).

With this notation, the objective in the layered max-min LP is to maximise
ωh(xh) subject to ρh(xh) ≤ 1 and xh ≥ 0. The following lemma shows that
the optimum of the layered max-min LP is at least as high as the optimum
of the original max-min LP.
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(k, 1, v)
(u, 0, red)

(i, 0, u)

(v, 0, blue)

i v

N
(k, v)

u = n(i, v) k

G:

Gh:

Figure 3: Constructing the layered graph Gh; the case h = 2. The source
nodes (red agents with no predecessor) are on layer 0, the sink nodes (blue
agents with no successor) are on layer h = 2, and the layer increases when
we traverse a curved arrow.
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Lemma 4.1. Let x∗ be an optimal solution of the max-min LP associated
with G. Then there is a feasible solution xh of the layered max-min LP
associated with Gh such that ωh(xh) ≥ ω(x∗).

Proof. Set
xh(v,ℓ,red) = xh(v,ℓ,blue) = x∗v

for each agent v ∈ V and layer ℓ ∈ H0.

A local algorithm running in the graph G can simulate any local algo-
rithm in the graph Gh efficiently. In particular, we can use the algorithm
from Section 3.5 to find a (1 + ε)-approximate solution of the max-min LP
associated with Gh; let zh be such a solution. Each agent v ∈ V in the
original graph G then outputs the value

zv =
1

2|H0|

∑

ℓ∈H0

(

zh(v,ℓ,blue) + zh(v,ℓ,red)

)

. (20)

We proceed to show that the solution z is feasible, and that the approxi-
mation factor matches the lower bound of Theorem 3, in the special case
∆I = 2.

Lemma 4.2. The vector z is a feasible solution of the max-min LP associ-
ated with G.

Proof. First we note that z is nonnegative, as zh is nonnegative. Then
consider a constraint i ∈ I. Choose an arbitrary v ∈ Vi and let u = n(i, v);
observe that v = n(i, u). We have

2|H0|fi(z) = 2|H0|
(

āi,uzu + āi,vzv
)

=
∑

ℓ∈H0

āi,uz
h
(u,ℓ,red) +

∑

ℓ∈H0

āi,uz
h
(u,ℓ,blue)

+
∑

ℓ∈H0

āi,vz
h
(v,ℓ,red) +

∑

ℓ∈H0

āi,vz
h
(v,ℓ,blue)

=
∑

ℓ∈H0

fh
(i,u,ℓ)(z

h) +
∑

ℓ∈H0

fh
(i,v,ℓ)(z

h)

≤
∑

ℓ∈H0

1 +
∑

ℓ∈H0

1 = 2|H0|.

Lemma 4.3. The vector z satisfies

ωh(zh)

ω(z)
≤ 2

(

1 +
1

h

)(

1−
1

∆K

)

.
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Proof. Consider an objective k ∈ K. Let v ∈ Vk and δ = |N(k, v)|; observe
that δ does not depend on the choice of v. For any function φ(·) it holds
that

∑

v∈Vk

∑

u∈N(k,v)

φ(u) = δ
∑

v∈Vk

φ(v).

Hence we have

2δ|H0||Vk|

δ + 1
gk(z) =

2δ|H0|

δ + 1

∑

v∈Vk

(

c̄k,vzv +
∑

u∈N(k,v)

c̄k,uzu

)

= 2|H0|
∑

v∈Vk

∑

u∈N(k,v)

c̄k,uzu

=
∑

v∈Vk

∑

u∈N(k,v)

∑

ℓ∈H0

(

c̄k,uz
h
(u,ℓ,blue) + c̄k,uz

h
(u,ℓ,red)

)

≥
∑

v∈Vk

∑

u∈N(k,v)

∑

ℓ∈H

(

c̄k,uz
h
(u,ℓ−1,blue) + c̄k,uz

h
(u,ℓ,red)

)

=
∑

ℓ∈H

∑

v∈Vk

(

δc̄k,vz
h
(v,ℓ−1,blue) +

∑

u∈N(k,v)

c̄k,vz
h
(v,ℓ,red)

)

≥
∑

ℓ∈H

∑

v∈Vk

(

c̄k,vz
h
(v,ℓ−1,blue) +

∑

u∈N(k,v)

c̄k,vz
h
(v,ℓ,red)

)

=
∑

ℓ∈H

∑

v∈Vk

gh(k,ℓ,v)(z
h)

≥ |H||Vk|ω
h(zh).

The claim follows since δ ≤ ∆K − 1, |H| = h, and |H0| = h + 1.

Putting together Corollary 3.13 and Lemmas 4.1, 4.2, and 4.3, we obtain
the following result.

Corollary 4.4. There is a local 2(1 + ε)(1 + 1/h)(1− 1/∆K)-approxima-
tion algorithm for max-min LPs with ∆I = 2 and ∆K ≥ 2 for any ε >
0 and h ∈ {1, 2, . . . }. The running time of the algorithm is O(h log 1/ε)
synchronous communication rounds.

To prove Theorem 2, we need to extend the result of Corollary 4.4 to
the case ∆I > 2.

4.2 General max-min LPs

Given a general max-min LP, we replace each constraint i ∈ I with |Vi| > 2
by the

(

|Vi|
2

)

constraints

ai,uxu + ai,vxv ≤
2

|Vi|
, ∀u, v ∈ Vi, u 6= v. (21)
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7→

Figure 4: Replacing a constraint of degree 4 by
(

4
2

)

constraints of degree 2.

See Figure 4 for an illustration of how the underlying communication graph
G changes in the case |Vi| = 4.

Let us first show that a feasible solution of the modified instance is a
feasible solution to the original problem.

Lemma 4.5. If a solution x satisfies (21), then it also satisfies the original
constraint fi(x) ≤ 1.

Proof. The claim follows from the observation that

fi(x) =
∑

v∈Vi

ai,vxv

=
1

2(|Vi| − 1)

∑

v∈Vi

∑

u∈Vi\{v}

(

ai,uxu + ai,vxv
)

≤
1

2(|Vi| − 1)

∑

v∈Vi

∑

u∈Vi\{v}

2

|Vi|
= 1.

Let us then observe that the optimum of the modified instance is within
factor ∆I/2 of the optimum of the original instance.

Lemma 4.6. Consider a max-min LP with ∆I > 2. Let x∗ be an opti-
mal solution of the max-min LP. Then x = 2x∗/∆I satisfies (21) for each
constraint i ∈ I with |Vi| > 2.

Proof. Immediate from construction.

Hence we can solve an arbitrary max-min LP as follows:

1. Use the reduction in this section to construct an instance with ∆I = 2.

2. Use the reduction in Section 4.1 to construct a layered max-min LP.

3. Solve the layered max-min LP by using the algorithm of Section 3.

4. Apply (20) to map the solution of the layered max-min LP to a solution
of the original max-min LP.
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Putting together Corollary 4.4, Lemma 4.5, and Lemma 4.6, we obtain
the following approximation guarantee and running time.

Corollary 4.7. There is a local ∆I(1 + ε)(1 + 1/h)(1− 1/∆K)-approxima-
tion algorithm for max-min LPs with ∆I ≥ 2 and ∆K ≥ 2 for any ε >
0 and h ∈ {1, 2, . . . }. The running time of the algorithm is O(h log 1/ε)
synchronous communication rounds.

Theorem 2 now follows from Corollaries 2.4 and 4.7.

Remark 3. The local algorithm does not need to know the constants ∆I and
∆K . These constants are only used in the derivation of the approximation
guarantee. Therefore an implementation of the algorithm can fix some values
of ε and h and we can run the same algorithm in any graph. For example, if
we simply choose realistic values such as ε = 1/30 and h = 16 and run the
algorithm, Corollary 4.7 indicates that the worst-case approximation ratio
is always within factor 1.1 of the lower bound of Theorem 3, regardless of
the values of ∆I and ∆K . Note that the lower bound holds even if we had
designed a local algorithm for particular values of the constants ∆I and ∆K .

4.3 Discussion

In Section 4.1, we created 2|H0| copies of each agent: a red agent and a blue
agent on each layer ℓ ∈ H0.

By using the two colours, red and blue, we can break the symmetry
in the layered graph Gh. The approach is somewhat similar to the use of
bipartite double covers in local vertex cover algorithms [2, 26], in which a
2-coloured graph is constructed, and the colours are exploited in the design
of a local algorithm.

The layers play a different role. They can be be seen as an application
of the shifting strategy [6, 13], which is a classical technique for designing
polynomial-time approximation algorithms.

5 Inapproximability

We proceed to prove Theorem 3. Fix any constants ∆I ≥ 2 and ∆K ≥ 2. Let
A be a local approximation algorithm for max-min LPs; A may depend on
the choice of ∆I and ∆K . We will show that the approximation guarantee
of A is strictly larger than ∆I(1− 1/∆K).

5.1 A high-girth graph G

Let r be the local horizon of the algorithm A; again, r may depend on ∆I

and ∆K . W.l.o.g. we can assume that r is a multiple of 4.

23



H:

tt

Gt:G:

Figure 5: The lower-bound construction for ∆I = 2, ∆K = 2 and r = 4.
The shortest cycle of G has length larger than 2r + 4; hence Gt is a tree
regardless of the choice of t ∈ K.

Our lower-bound construction is based on a high-girth graph. Let G =
(V ∪ I ∪K,E) be a communication graph with the following properties; see
Figure 5 for an illustration:

(i) the degree of each constraint i ∈ I is ∆I ,

(ii) the degree of each objective k ∈ K is ∆K ,

(iii) each agent v ∈ V is adjacent to 1 constraint and 1 objective,

(iv) the weight of each edge is 1,

(v) there is no cycle of length less than 2r + 5.

Let us first show that such a graph indeed exists, for any choice of ∆I ,
∆K , and r. We say that a bipartite graph H = (I ∪K,E) is (a, b)-regular if
the degree of each node in I is a and the degree of each node in K is b.

Lemma 5.1. For any positive integers a, b, and g, there exists an (a, b)-
regular bipartite graph which has no cycle of length less than g.

Proof. We adapt a proof of a similar result [14, Theorem A.2] for d-regular
graphs to our needs; for the sake of completeness, we repeat the proof here.
We proceed by induction on g, for g = 4, 6, 8, . . . .

For the base case g = 4, we can choose the complete bipartite graph
Kb,a.

Next consider g ≥ 6. Let H = (I ∪K,E) be an (a, b)-regular bipartite
graph where the length of the shortest cycle is c ≥ g − 2. Let S ⊆ E.
Construct a graph HS = (IS ∪KS , ES) as follows:

IS = {0, 1} × I,

KS = {0, 1} ×K,

ES =
{

{(0, i), (0, k)}, {(1, i), (1, k)} : {i, k} ∈ S
}

∪
{

{(0, i), (1, k)}, {(1, i), (0, k)} : {i, k} ∈ E \ S
}

.
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The graph HS is an (a, b)-regular bipartite graph. Furthermore, HS has no
cycle of length less than c. We proceed to show that there exists a subset S
such that the number of cycles of length exactly c in HS is strictly smaller
than the number of cycles of length c in H. Then by a repeated application
of the same construction, we can conclude that there exists a graph which
is an (a, b)-regular bipartite graph and which has no cycle of length c; that
is, its girth is at least g.

We use the probabilistic method to show that the number of cycles of
length c decreases for some S ⊆ E. For each e ∈ E, toss an independent and
unbiased coin to determine whether e ∈ S. For each cycle C ⊆ E of length
c in H, we have in HS either two cycles of length c or one cycle of length
2c, depending on the parity of |C ∩ S|. The expected number of cycles of
length c in HS is therefore equal to the number of cycles of length c in H.
The choice S = E doubles the number of such cycles; therefore some other
choice necessarily decreases the number of such cycles.

To construct a communication graph G = (V ∪ I ∪K,E) that meets our
requirements, we first apply Lemma 5.1 to find a (∆I ,∆K)-regular bipartite
graph H = (I ∪K,E′), and then subdivide each edge of H. More precisely,
we begin with V ← ∅ and E ← ∅. Then for each edge {i, k} ∈ E′ we add a
new agent v to V and the weight-1 edges {i, v} and {k, v} to E.

Choose the port numbering and/or node identifiers in G in an arbitrary
manner. Then apply the local algorithm A to solve the max-min LP associ-
ated with G.

Lemma 5.2. Let y be the output of A on G. Then there exists an objective
t ∈ K such that gt(y) ≤ ∆K/∆I .

Proof. Vector y must be a feasible solution of the max-min LP. Therefore

∑

k∈K

gk(y) =
∑

v∈V

yv =
∑

i∈I

fi(y) ≤ |I| =
∆K

∆I

|K|.

5.2 A tree Gt

Now choose a t ∈ K as in Lemma 5.2. Let Gt be the subgraph of G induced
by all nodes within distance r+ 2 from t. Port numbers and node identifiers
in Gt are inherited from G.

By the construction of G, there is no cycle in Gt. As r is a multiple of 4,
the leaves of the tree Gt are constraints.

Lemma 5.3. The optimum of the max-min LP associated with Gt is greater
than ∆K − 1.

Proof. Construct a feasible solution x as follows. Let D = max {∆I ,∆K+1}.
If the distance between an agent v ∈ V and the objective t in Gt is 4j +1 for
some j, set xv = 1− 1/D2j+1. If the distance is 4j + 3, set xv = 1/D2j+2.

25



To see that x is a feasible solution, first observe that feasibility is clear for
a leaf constraint. Any non-leaf constraint i ∈ I has exactly ∆I neighbours,
and the distance between t and i is 4j + 2 for some j. One of the agents
adjacent to i is at distance 4j + 1 from t while ∆I − 1 agents are at distance
4j + 3. Thus

fi(x) = 1−
1

D2j+1
+

∆I − 1

D2j+2
< 1.

We proceed to show that gk(x) > ∆K − 1 for all k ∈ K. First, consider
the objective t. We have

gt(x) = ∆K(1− 1/D) > ∆K − 1.

Second, consider an objective k ∈ K \ {t}. The objective k has ∆K neigh-
bours and the distance between t and k is 4j for some j. Thus

gk(x) =
1

D2j
+

∆K − 1

1− 1/D2j+1
> ∆K − 1.

Now apply the algorithm A to the max-min LP associated with Gt. The
algorithm produces a feasible solution y′. The radius-r neighbourhoods of
the agents v ∈ Vt are identical in G and Gt; therefore the algorithm A must
produce the same output. In particular, gt(y

′) = gt(y) ≤ ∆K/∆I .
However, Lemma 5.3 shows that the optimum of Gt is strictly larger than

∆K − 1; hence the approximation factor of A must be strictly larger than
∆I(1− 1/∆K). Theorem 3 follows.
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