
Local Approximation Algorithms for

Scheduling Problems in Sensor Networks

Patrik Floréen, Petteri Kaski, Topi Musto, and Jukka Suomela

Helsinki Institute for Information Technology HIIT
Department of Computer Science, University of Helsinki
P.O. Box 68, FI-00014 University of Helsinki, Finland

{firstname.lastname}@cs.helsinki.fi

Abstract. We study fractional scheduling problems in sensor networks,
in particular, sleep scheduling (generalisation of fractional domatic par-
tition) and activity scheduling (generalisation of fractional graph colour-
ing). The problems are hard to solve in general even in a centralised
setting; however, we show that there are practically relevant families
of graphs where these problems admit a local distributed approxima-
tion algorithm; in a local algorithm each node utilises information from
its constant-size neighbourhood only. Our algorithm does not need the
spatial coordinates of the nodes; it suffices that a subset of nodes is des-
ignated as markers during network deployment. Our algorithm can be
applied in any marked graph satisfying certain bounds on the marker
density; if the bounds are met, guaranteed near-optimal solutions can be
found in constant time, space and communication per node. We also show
that auxiliary information is necessary—no local algorithm can achieve
a satisfactory approximation guarantee on unmarked graphs.

1 Introduction

The scalability of distributed algorithms presents a basic hurdle to the envis-
aged large-scale implementations of sensor networking, in particular due to the
bounded resources of the individual network nodes. Simply put, if we want to
operate arbitrarily large sensor networks, we cannot apply network control al-
gorithms where the communication or computation per node increases with in-
creasing network size. Indeed, if each individual network node is powered by a
battery with bounded capacity, there is always a threshold size for the network
beyond which the energy consumption for network control exceeds the battery
capacity of a node.

1.1 Local Algorithms

In this work we study local algorithms [1], where each node must operate solely
based on information that was available at system startup within a constant-
size neighbourhood of the node. A local algorithm provides an extreme form
of scalability: assuming constant-size input per node, the communication, space

and time complexity of a local algorithm is constant per node. Thus, a local
algorithm scales to an arbitrarily large (or even infinite) resource-constrained
network. We detail the model of computation in Sect. 3.

A local algorithm is clearly the ideal choice for sensor networks, but even
from a theoretical perspective it is not immediate whether such algorithms can
exist for practical computational problems arising in network control. This work
shows that various NP-hard scheduling problems admit deterministic, local ap-
proximation algorithms provided that the network meets certain assumptions on
its structure.

1.2 Scheduling Problems

We study two basic scheduling problems pertinent to sensor networks: sleep
scheduling, a fractional packing problem, and (conflict-free) activity scheduling,
a fractional covering problem. Both problems can be formulated as a linear
program (LP), but the number of variables in the LP can be exponential in the
size of the network; both problems are NP-hard to solve even in a centralised
setting.

To ease the exposition, we present the scheduling problems first in a cen-
tralised setting; the requirements for a proper distributed solution are detailed
together with the local computational model in Sect. 3. We require a few pre-
liminaries to present the definitions. All graphs are undirected. We model the
network topology by a communication graph G = (VG , EG), where each node
v ∈ VG corresponds to a sensor device and each edge {u, v} ∈ EG indicates
that u and v can directly communicate with each other. We denote by dG(u, v)
the shortest-path distance (hop count) between nodes u, v ∈ VG in G and ex-
tend the notation to subsets U ⊆ VG by dG(U, v) = minu∈U dG(u, v). For v ∈
VG and r ≥ 0, we define the closed ball of radius r centred at v in G by
BG(v, r) = {u ∈ VG : dG(u, v) ≤ r}.

Problem 1 (Sleep Scheduling). The input to the problem consists of (i) the
communication graph G; (ii) a subgraph R of G called the redundancy graph; and
(iii) a battery capacity b(v) ≥ 0 for each node v ∈ VR. Each edge {u, v} ∈ ER

indicates that the nodes u and v are pairwise redundant; each node may sleep
only if at least one of its neighbours in R is awake. The valid sets of awake
nodes are precisely the dominating sets of R. For a dominating set D, we define
D(v) = 1 if v ∈ D and D(v) = 0 if v /∈ D. Denoting by x(D) the length of the
time period associated with the dominating set D, the task in the problem is
to maximise the total length

∑
D x(D) subject to

∑
D D(v)x(D) ≤ b(v) and

x(D) ≥ 0, where v ranges over VR and D ranges over all the dominating sets of
R. To simplify subsequent analysis, we assume that the values b(v) are chosen
from a fixed, finite set of nonnegative rational numbers (say, the capacities of the
standard batteries in stock); in particular, a constant number of bits per node
suffice to encode the input, as it is enough to identify which battery is installed
in the device instead of encoding an arbitrary battery capacity.

The sleep scheduling problem is a generalisation of fractional domatic par-
tition. It captures the problem of maximising the lifetime of a battery-powered
sensor network by letting each node sleep occasionally, subject to coverage con-
straints under a pairwise redundancy model [2–6].

Problem 2 (Activity Scheduling). The input to the problem consists of
(i) the communication graph G; (ii) a subgraph C of G called the conflict graph;
and (iii) an activity requirement a(v) ≥ 0 for each node v ∈ VC . Each edge
{u, v} ∈ EC indicates that the nodes u and v are mutually conflicting; at most
one of the two nodes may be active at any given time. The valid sets of active
nodes are precisely the independent sets of C. For an independent set I, we
define I(v) = 1 if v ∈ I and I(v) = 0 if v /∈ I. Denoting by x(I) the length of the
time period associated with the independent set I, the task in the problem is to
minimise the total length

∑
I x(I) subject to

∑
I I(v)x(I) ≥ a(v) and x(I) ≥ 0,

where v ranges over VC and I ranges over all the independent sets in C. Again,
we assume that the values a(v) are chosen from a fixed, finite set of nonnegative
rational numbers.

The activity scheduling problem is a generalisation of fractional graph colour-
ing. It captures the problem of minimising the total duration of radio transmis-
sions subject to pairwise interference constraints [7].

1.3 Assumptions on Network Structure

Unfortunately, both scheduling problems just presented are hard to solve exactly
or approximately [8–10], even in a centralised setting. To arrive at problem
instances that can be solved approximately in a distributed manner, one must
impose constraints on the structure of the communication graph G. Furthermore,
to obtain a local approximation algorithm, there is a need to break symmetry
between the nodes to obtain any satisfactory approximation guarantee, as we
will make apparent in Lemma 1.

An embedding of G in a low-dimensional ambient space could be used as a
remedy for both aforementioned difficulties. Indeed, graphs with geometric con-
straints (for example, unit-disk graphs) in many cases admit efficient approxi-
mation algorithms at least in the centralised case, and the spatial coordinates of
the nodes break symmetry. However, equipping the nodes with self-positioning
capabilities (such as GPS) may not be feasible in large-scale installations, and
neither is it practical to inform each node about its physical location during
network deployment.

Rather than rely on a geometric embedding, in this work we investigate a
minimalistic solution to break symmetry—one marker bit of information per
node. Furthermore, we use purely combinatorial constraints on the marked G to
arrive at a locally tractable setting. We characterise the admissible distributions
of the nodes with the marker bit set (the markers) in G by nonnegative integer
parameters ℓ1, ℓµ, and µ, where ℓ1 < ℓµ.

Definition 1. A (∆, ℓ1, ℓµ, µ)-marked graph is a pair (G,M), where G is a graph
and M ⊆ VG is a set of markers such that, for all v ∈ VG, (i) the degree of v in
G is at most ∆; (ii) dG(M,v) ≤ ℓ1; and (iii) |M ∩ BG(v, ℓµ)| ≤ µ.

In other words, every node has at most ∆ neighbours, there is at least one
marker within ℓ1 hops from any node, and there are at most µ markers within
ℓµ hops from any node. Examples of marked graphs appear in Sect. 5.

1.4 Contributions

As the main technical contribution, we prove the following theorems in Sect. 4.
In both theorems, the marking constraint applies to the communication graph
G only.

Theorem 1. There is a local (1+ ǫ)-approximation algorithm for sleep schedul-
ing in (∆, ℓ1, ℓµ, µ)-marked graphs for any ǫ > 4∆/⌊(ℓµ − ℓ1)/µ⌋.

Theorem 2. There is a local 1/(1 − ǫ)-approximation algorithm for activity
scheduling in (∆, ℓ1, ℓµ, µ)-marked graphs for any ǫ > 4/⌊(ℓµ − ℓ1)/µ⌋.

To contrast these positive results, we also demonstrate that the algorithms
in Theorems 1 and 2 make near-optimal use of the marking information. In
particular, we present a family of marked graphs where our algorithm for sleep
scheduling (respectively, activity scheduling) achieves the approximation ratio
1 + 9ǫ (respectively, 1/(1 − 9ǫ)) while no local approximation algorithm can
achieve the approximation ratio 1 + ǫ (respectively, 1/(1 − ǫ)).

2 Earlier Work

2.1 Local Algorithms

Previous work on local algorithms mainly focuses on combinatorial problems
such as independent set and graph colouring. Linial [11] shows that any dis-
tributed algorithm requires Ω(log∗ n) communication rounds to find a maximal
independent set or a 3-colouring of a ring with n nodes, implying in particular
that no local algorithm exists for these tasks. Naor and Stockmeyer [1] present
positive results for locally checkable labelling problems; for example, it is possible
to 2-colour the nodes of a graph using a local algorithm so that each node has
at least one neighbour with a different colour, provided that all nodes have odd
degree.

Closer to the present work is the work of Kuhn et al. [12], who present
local approximation algorithms for fractional covering and packing problems.
However, in their work the size of the LP is polynomial in the size of the network,
while the size of the LPs that arise from sleep scheduling and activity scheduling
can be exponential.

2.2 Shifting Strategy

The present work can be seen as an extension of a classical design paradigm
for geometric approximation algorithms—the shifting strategy [13]—into a local,
coordinate-free, and nongeometric setting. In a typical application of the shifting
strategy [13–17], one uses a grid to partition the (low-dimensional) geometric
space into small cells. Each cell defines a subproblem; for example, the subgraph
induced by the nodes which are located within or near the cell. Each subproblem
is solved optimally, and the solutions are combined to form a feasible global
solution. A number of possible locations for the grid are evaluated and the best
one is chosen as the solution.

Unfortunately, there are two basic obstacles hindering the application of the
shifting strategy in large-scale distributed systems. First, it has been argued
that the shifting strategy is “inherently central” [18]; in particular, the final step
involves determining which of the candidate solutions is the best one. Second, a
straightforward application of the shifting strategy requires that we know how
the input is embedded in an ambient space.

Our previous work [3] partially overcomes the aforementioned obstacles in a
specific problem: sleep scheduling. To avoid the need for centralised control, we
note that the scheduling problem is of fractional nature: one can take two valid
schedules and interleave them in order to obtain another valid schedule. To avoid
a global coordinate system, we place markers in the underlying communication
graph; the constraints for the locations of the markers are geometric, but the
algorithm does not use the locations. The present work generalises this previ-
ous work in the following aspects: (i) The algorithm is extended to fractional
covering problems in addition to fractional packing problems. (ii) No geometric
constraints are required; in particular, G need not have an embedding in a low-
dimensional space. (iii) There is no lower bound for the distance between a pair
of markers.

3 Preliminaries

3.1 Model of Computation

We assume a communication graph G where each node has degree bounded
by a constant ∆. Each node in G executes the same distributed deterministic
algorithm.

An algorithm is local if there exist a constant L (“the local horizon”) such
that for every problem instance, each node v ∈ VG makes its decisions based
on information in the nodes BG(v, L) only. In the sleep scheduling problem,
this information consists of the identifiers of the nodes BG(v, L), the subset of
markers M ∩BG(v, L), the subgraph of the communication graph G induced by
BG(v, L), the subgraph of the redundancy graph R induced by BG(v, L) ∩ VR,
and the battery capacity b(u) for each node u ∈ BG(v, L) ∩ VR. The definition
is analogous for activity scheduling.

We assume that the node identifiers form an ordered set. An algorithm cannot
access the absolute value of an identifier, but only the ordering of the identifiers.
In particular, the identifiers need only be unique in BG(v, L) for each v ∈ VG .
Therefore our computational model is slightly weaker in comparison with the
model used by Linial [11]. (To motivate this weakening, see Naor and Stock-
meyer [1, Theorem 3.3].)

With these definitions, the number of bits communicated, stored and pro-
cessed by any node during the execution of a local algorithm is bounded by a
constant. Thus also the time complexity is constant per node.

In the scheduling problems, a node does not report any output; instead, a
node executes the schedule it has locally computed by controlling its sleeping
(respectively, activity). To enable execution of the schedule, it is assumed that
(i) each node has access to a clock and (ii) the clocks are (locally) synchronised.

A local (1+ ǫ)-approximation algorithm for sleep scheduling guarantees that
the nodes that are awake form a dominating set of the redundancy graph at any
point in time during the first q/(1 + ǫ) time units, where q is the length of an
optimal solution. A local (1+ǫ)-approximation algorithm for activity scheduling
guarantees that the nodes that are active form an independent set of the conflict
graph at any point in time and each node completes its activity within (1 + ǫ)q
time units, where q is the length of an optimal solution.

3.2 Limitations

The chosen local model of computation is very restrictive. For example, Linial
[11] shows that (with respect to a strictly stronger model of computation) no local
algorithm can properly 3-colour rings. Thus, it is not surprising that scheduling
problems in rings are not approximable by local algorithms.

Lemma 1. No local algorithm on an unmarked graph has an approximation
ratio better than 3 for the sleep scheduling problem or any finite approximation
ratio for the activity scheduling problem.

Proof. Consider an arbitrary local algorithm with local horizon L ∈ N. Let the
communication graph G be a ring of 6L nodes, that is, VG = {0, 1, . . . , 6L−1} and
EG = {{0, 1}, {1, 2}, . . . , {6L − 2, 6L − 1}, {6L − 1, 0}}. The node identifiers are
ordered by 0 < 1 < . . . < 6L − 1. For sleep scheduling, let R = G and b(v) = 1
for each v ∈ VR; for activity scheduling, let C = G and a(v) = 1 for each v ∈ VC .
Now the local neighbourhood BG(v, L) has the same structure for each node in
U = {L,L + 1, . . . , 5L − 1}. At any point in time, all these nodes have to make
the same decision.

In the case of sleep scheduling we can obtain a schedule of length 3 by choos-
ing the congruence classes modulo 3 as the dominating sets and by assigning 1
time unit to each. However, if each node in U makes the same decision in the
local algorithm, then all of them have to be awake at any point in time; other-
wise, e.g., the node L + 1 would not be dominated. Thus if the local algorithm

produces a feasible sleep schedule, the length of the schedule is at most 1, im-
plying that the local algorithm cannot guarantee an approximation ratio better
than 3.

In the case of activity scheduling we can obtain a schedule of length 2 by
choosing the congruence classes modulo 2 as the independent sets and by as-
signing 1 time unit to each. However, if each node in U makes the same decision
in the local algorithm, then none of them can be active at any point in time;
otherwise a conflicting pair of nodes {L,L + 1} would be active simultaneously.
Thus, the nodes in U can never complete their activities, implying that the local
algorithm cannot guarantee any finite approximation ratio. ⊓⊔

Therefore one has to incorporate auxiliary information to the communication
graph to obtain satisfactory approximation guarantees for scheduling.

4 Local Approximability of Scheduling

We assume that the marked communication graph (G,M) is a (∆, ℓ1, ℓµ, µ)-
marked graph with k = ⌊(ℓµ − ℓ1)/µ⌋ > 0. Intuitively, a large k is desirable for
a good approximation and a small ℓµ is desirable in limiting the computational
effort.

4.1 Finding Cells

Each node v ∈ VG applies the following algorithm:

Find-Cells

1 d ← dG(M,v)
2 for i ← 0 to kµ − 1
3 do m(v, i) ← min(M ∩ BG(v, d + i))

First, the node finds the distance d to its nearest marker; note that d ≤ ℓ1. Then,
for each configuration i = 0, 1, . . . , kµ − 1, the node finds the smallest marker
within the distance d + i; here we use the total order on the identifiers.

We define the cell of the marker m in configuration i by C(m, i) = {v ∈ VG :
m(v, i) = m}. We say that a node v ∈ VG is a boundary node in configuration
i if v has a neighbour u in G such that m(v, i) 6= m(u, i). The following lemma
captures a key property of the configurations (cf. Floréen et al. [3, Lemma 4]).

Lemma 2. For any v ∈ VG, there are at most 4µ configurations i such that v is
a boundary node in i.

To prove Lemma 2, we start with two technical lemmata.

Lemma 3. For any node v ∈ VG, there are at most µ different values of m(v, i).

Proof. On line 3 in Find-Cells, it holds that d + i < ℓ1 + kµ ≤ ℓµ, which
implies m(v, i) ∈ M ∩ BG(v, ℓµ) for each configuration i. By definition,
|M ∩ BG(v, ℓµ)| ≤ µ. ⊓⊔

Lemma 4. For any node v ∈ VG, there are at most µ − 1 configurations i such
that m(v, i) 6= m(v, i + 1).

Proof. Consider an arbitrary v ∈ VG . By Lemma 3, it suffices to show that each
distinct value of m(v, i) corresponds to a single interval of configurations i; once
m(v, i) changes its value from m1 to m2 6= m1, it never changes back to m1.

Assume that m(v, i1) = m(v, i2) = m for arbitrary m and i1 ≤ i2. Then m
is a member of the ball BG(v, dG(M,v) + i1), and m is the smallest marker in
the larger ball BG(v, dG(M,v) + i2). Thus, for any i1 ≤ i ≤ i2, it holds that m
is the smallest smallest marker in BG(v, dG(M,v) + i), implying m(v, i) = m for
all i1 ≤ i ≤ i2. ⊓⊔

Proof of Lemma 2. Consider an arbitrary v ∈ VG . By Lemma 4, we can divide
the list of configurations (0, 1, . . . , kµ − 1) into at most µ intervals, such that
m(v, i) is constant within each interval. We now prove that v can be a boundary
node at most 4 times on each interval.

This clearly holds for intervals of length at most 4. Next, consider an interval
from i1 to i2 with i2 ≥ i1 +4 such that m(v, i) = m for each configuration i with
i1 ≤ i ≤ i2.

Let u ∈ VG be any neighbour of v. Because dG(u, v) = 1, it holds that
|dG(M,v) − dG(M,u)| ≤ 1. By construction, m = m(v, i1) is a marker in
BG(v, dG(M,v)+ i1) ⊆ BG(u, dG(M,v)+ i1 +1) ⊆ BG(u, dG(M,u)+ i1 +2), and
m = m(v, i2) is the smallest marker in BG(v, dG(M,v) + i2) ⊇ BG(u, dG(M,v) +
i2 − 1) ⊇ BG(u, dG(M,u) + i2 − 2).

Therefore m is a marker in BG(u, dG(M,u) + i1 + 2) and furthermore m is
the smallest marker in BG(u, dG(M,u) + i2 − 2) ⊇ BG(u, dG(M,u) + i1 + 2). We
obtain m(u, i) = m = m(v, i) for i1 + 2 ≤ i ≤ i2 − 2.

As this holds for any neighbour u, the node v cannot be a boundary node in
the configurations i1 + 2 ≤ i ≤ i2 − 2. There are at most 4 configurations in the
ends of the interval such that v may be a boundary node. ⊓⊔

The algorithm Find-Cells is local. In the following sections, we use the cells
and Lemma 2 to obtain local algorithms for the scheduling problems.

4.2 Sleep Scheduling

Let C̄(m, i) = {v ∈ VG : dG(C(m, i), v) ≤ 1}. For each marker m and configura-
tion i, solve the LP

maximise
∑

K xm,i(K)

subject to
∑

K K(v)xm,i(K) ≤ b(v) for all v,

xm,i(K) ≥ 0 for all K,
(1)

where v ranges over all nodes in C̄(m, i) ∩ VR, and K ranges over all subsets
K ⊆ C̄(m, i) ∩ VR such that K dominates C(m, i) ∩ VR in R. Note that the
boundary nodes may participate in domination, but they need not be dominated.

The LP has constant size and depends on the local information only. Let qm,i =∑
K xm,i(K) be the total length of the solution.
Based on the computed solutions, each node controls its sleeping as follows.

We use the synchronised clocks to proceed in cycles of length δ time units for
some δ. Each cycle is further divided into kµ steps of length δ/(kµ). We label
the steps within each cycle by 0, 1, . . . , kµ − 1. The behaviour of each node at
step i is controlled as follows by the local solutions xm,i associated with the
configuration i.

First, consider a non-boundary node v ∈ VR. The node constructs a schedule
based on the solution xm,i where m = m(v, i). All nodes in C̄(m, i) ∩ VR con-
sider the sets K with a nonzero xm,i(K) in the same order K1,K2, . . . (say, the
lexicographic order). Let tj = δxm,i(Kj)/(kµqm,i). First, if v ∈ K1, the node is
awake for t1 time units; otherwise it is asleep for t1 time units. Then, if v ∈ K2,
the node is awake for t2 time units, and so on. This way we have scaled down
the entire schedule xm,i into one time step of length δ/(kµ).

Second, consider a boundary node v ∈ VR. As above, we construct a schedule
based on xm(v,i),i. Additionally we construct a schedule based on xm(u,i),i for
every u such that m(u, i) 6= m(v, i) and {u, v} ∈ EG . We take the union of these
schedules: at any point in time, the node v is awake if it is awake according to
at least one of the schedules.

In each configuration i, each node is a member of C(m, i) for some m, and
the local solution xm,i guarantees that C(m, i)∩VR is dominated at every point
in time. Thus, this procedure is correct in the sense that VR is dominated at
every point in time, as long as no node runs out of battery.

Proof of Theorem 1. Let x be an optimal sleep schedule in the centralised setting;
let q =

∑
D x(D). The solution x can be used to construct a feasible solution to

each local LP (1): for each dominating set D, add x(D) units to xm,i(K) where
K = D∩ C̄(m, i); as D dominates VR, it follows that K dominates C(m, i)∩VR.
Thus, qm,i ≥ q, as xm,i is an optimal solution to (1).

Consider an arbitrary node v ∈ VR. During each step i when v is not a
boundary node, it is awake for at most δb(v)/(kµqm,i) ≤ δb(v)/(kµq) time units.
When v is a boundary node, this is increased by at most a factor ∆ + 1 because
there are at most ∆ neighbours and thus at most ∆ different neighbouring cells.
By Lemma 2, the node v is a boundary node in at most 4µ configurations out of
kµ. Thus, v is awake for at most (kµ + 4∆µ)δb(v)/(kµq) = (1 + 4∆/k)δb(v)/q
time units during an entire cycle of length δ. During ⌊q/(δ(1 + 4∆/k))⌋ cycles,
v is awake for at most b(v) time units. Thus, the battery of v lasts at least
⌊q/(δ(1 + 4∆/k))⌋δ ≥ q/(1 + 4∆/k) − δ time units. By choosing a small δ, we
can obtain an approximation ratio 1 + ǫ for any ǫ > 4∆/k.

To choose a small enough δ, we need some information on q. If q > 0 then
each node has to have at least one neighbour u with b(u) > 0; by letting all
nodes be awake as long as their batteries last, we obtain a trivial constant lower
bound for q from the smallest nonzero element of the finite set of possible b(v);
we use this bound to choose δ. The obtained δ (as well as any other value) is
trivially valid also in the case q = 0. ⊓⊔

4.3 Activity Scheduling

Let C◦(m, i) be the set of nodes v ∈ C(m, i) such that v is not a boundary node
in configuration i. For each marker m and configuration i, solve the LP

minimise
∑

K xm,i(K)

subject to
∑

K K(v)xm,i(K) ≥ a(v) for all v,

xm,i(K) ≥ 0 for all K,
(2)

where v ranges over all nodes in C◦(m, i) ∩ VC and K ranges over all subsets
K ⊆ C◦(m, i) ∩ VC such that K is an independent set in VC . Note that the
boundary nodes are not considered. The LP has constant size and depends on
the local information only. Let qm,i =

∑
K xm,i(K) be the total length of the

solution.
As in Sect. 4.2, we proceed in cycles of length δ and steps of length δ/(kµ).

Also the translation of local solutions into schedules is the same for nonboundary
nodes. However, the boundary nodes are inactive.

Proof of Theorem 2. Let x be an optimal activity schedule in the centralised
setting; let q =

∑
D x(D). The solution x can be used to construct a feasible

solution to each local LP (2): for each independent set I, add x(I) units to
xm,i(K) where K = I ∩C◦(m, i); as I is an independent set in C, so is K. Thus,
qm,i ≤ q, as xm,i is an optimal solution to (2).

Consider an arbitrary node v ∈ VC . During each step i when v is not a
boundary node, it is active for at least δa(v)/(kµqm,i) ≥ δa(v)/(kµq) time units.
By Lemma 2, the node v is a boundary node in at most 4µ configurations out of
kµ. Thus, v is active for at least (1−4/k)δa(v)/q time units during an entire cycle
of length δ. During ⌈q/(δ(1−4/k))⌉ cycles, v is active for at least a(v) time units.
Thus, the node can complete its activities in ⌈q/(δ(1−4/k))⌉δ ≤ q/(1−4/k)+ δ
time units. By choosing a small δ, we can obtain an approximation ratio 1/(1−ǫ)
for any ǫ > 4/k. Again an appropriate δ can be chosen by bounding q using the
information on the possible values of a(v). ⊓⊔

4.4 A Lower Bound for Local Approximability

We proceed to show that the value ǫ in the approximation guarantees of Theo-
rems 1 and 2 cannot be improved by a constant factor larger than 9.

Select integers N ≥ 100 and µ ≥ 10. Consider an arbitrary local algorithm
with local horizon L ∈ N. Construct the communication graph G by forming a
ring of n = (6N + 1)6L nodes, that is, VG = {0, 1, . . . , n − 1}, EG = {{0, 1},
{1, 2}, . . . , {n − 2, n − 1}, {n − 1, 0}}. The identifiers are ordered by 0 < 1 < . . .
< n − 1. Place the markers at the nodes v where v ≡ 0 (mod 6N + 1). The
construction is a (2, 3N, ⌈µ(3N + 1/2)⌉ − 1, µ)-marked graph.

For sleep scheduling, let R = G and b(v) = 1 for each v ∈ VR; for activity
scheduling, let C = G and a(v) = 1 for each v ∈ VC . Consider the nodes U =
{L,L + 1, . . . , n−L− 1}. For each j ∈ {0, 1, . . . , 6N}, the local neighbourhoods

of the nodes v ∈ U with v ≡ j (mod 6N + 1) are identical; thus, each of these
nodes must make the same decision at any point in time.

In the case of sleep scheduling, there exists a schedule of length 3. However,
the local algorithm cannot achieve an optimal solution. Consider a chain of 6N+1
nodes in U . If only 2N nodes are awake at a given point in time, then only 6N
nodes are awake in a chain of 18N + 3 nodes, as each subchain of length 6N + 1
behaves identically. However, 6N nodes cannot dominate a chain of 18N + 1
nodes; thus, there is at least one node in the chain which cannot be dominated.
Therefore at least 2N + 1 nodes have to be awake, and the total lifetime of the
nodes in a subchain of 6N +1 nodes is thus at most (6N +1)/(2N +1) = 3/(1+ǫ)
for ǫ = 2/(6N + 1) > 0.33/N . Our local algorithm achieves the approximation
guarantee 1 + ǫ for any ǫ > 8/k where k ≥ 3N − 1/µ − 3N/µ − 1/2 ≥ 2.694N .
That is, we can achieve ǫ = 9 × 0.33/N .

In the case of activity scheduling, there exists a schedule of length 2. In
the local algorithm, for each chain of 6N + 1 nodes there can be at most 3N
nodes active simultaneously, implying that the length of the schedule obtained
by the arbitrary local algorithm is at least (6N + 1)/(3N) = 2/(1 − ǫ) for
ǫ = 1/(6N + 1) > 0.165/N . Our local algorithm achieves ǫ = 9 × 0.165/N .

In conclusion, we have presented an infinite family of parameters (∆, ℓ1, ℓµ,
µ) such that the ǫ in our approximation guarantees for both sleep scheduling and
activity scheduling is within factor 9 of the best possible that any deterministic
local approximation algorithm can achieve.

In this lower bound, we focused on the case ℓ1 ≈ ℓµ/µ → ∞. The following
lemma shows that the case ℓ1 ≪ ℓµ/µ is trivial to local algorithms.

Lemma 5. If ℓµ ≥ (µ+1)(ℓ1 +1/2), then the size of each connected component
of a (∆, ℓ1, ℓµ, µ)-marked graph is bounded by a constant.

Proof. Let (G,M) be a (∆, ℓ1, ℓµ, µ)-marked graph with ℓµ ≥ (µ + 1)(ℓ1 + 1/2).
To reach a contradiction, assume that there exist nodes v0, vµ ∈ VG such that
dG(v0, vµ) = µ(2ℓ1 + 1). Then there exist nodes v1, v2, . . . , vµ−1 ∈ VG such that
dG(vi, vi+1) = 2ℓ1 + 1 and a node u ∈ VG such that dG(vi, u) ≤ ⌈µ(ℓ1 + 1/2)⌉.
For i = 0, 1, . . . , µ, let mi ∈ M be a marker having the minimum distance
to vi in G; the nodes m0,m1, . . . ,mµ are distinct. Furthermore, it holds that
dG(mi, u) ≤ dG(mi, vi)+dG(vi, u) ≤ ℓ1 +⌈µ(ℓ1 +1/2)⌉ ≤ ℓ1 +µ(ℓ1 +1/2)+1/2 =
(µ + 1)(ℓ1 + 1/2) ≤ ℓµ. This implies that we have µ + 1 markers in BG(u, ℓµ),
which is a contradiction with the assumption that (G,M) be a (∆, ℓ1, ℓµ, µ)-
marked graph. Thus, the diameter of each connected component of G is less
than µ(2ℓ1 +1), and each connected component consists of at most 1+∆µ(2ℓ1+1)

nodes. ⊓⊔

5 Deploying a Marked Network

Any local algorithm for scheduling requires some auxiliary information, marking
or otherwise, to break symmetry (Lemma 1). Thus, to apply a local algorithm,

one must incorporate this information into the network when the network is de-
ployed. In particular, a practically feasible way to deploy the network is required.
We conclude this paper by developing a series of examples that illustrate how
one might go about and deploy a marked network in a physical area so that
Definition 1 is met.

An intuitive picture to keep in mind in what follows is a graduate student
walking about an area where a network is to be deployed with two (heavy) bags
of sensor devices. One bag contains devices with the marker bit set, and the
other bag devices with the bit reset.

We start with a purely combinatorial setup and proceed in steps towards
more realistic scenarios.

5.1 Grids

Consider an infinite 2-dimensional grid graph G, where VG = Z
2 and EG =

{{(x1, x2), (y1, y2)} : |x1 − y1| + |x2 − y2| = 1}. Choose an integer N > 1.
Deploy the markers at nodes MG = {(Ni,Nj) : i + j odd}. The constructed
(G,M) is a (4, N, 2N − 1, 4)-marked graph. Generalisation to higher dimensions
is immediate.

For large N we obtain an approximation ratio 1 + ǫ where ǫ ≈ 64/N for
sleep scheduling and ǫ ≈ 16/N for activity scheduling. In this sense, our lo-
cal approximation algorithm is a local approximation scheme for grid graphs:
any approximation ratio above 1 can be achieved by deploying the markers in
a sufficiently sparse manner. Furthermore, the rule for deploying the markers
is arguably practically feasible from the perspective of a combinatorial entity
traversing the grid.

5.2 Globally Grid-like Graphs

The communication topology in a real physical environment does not have a
perfect grid structure. To arrive at a more versatile model, consider an infinite
connected graph H where every node has degree at most ∆H. We assume that
the large-scale structure of H is similar to a 2-dimensional grid graph G, but the
small-scale structure of H can be arbitrary. In precise terms, we assume that
the metric spaces (VG , dG) and (VH, dH) are quasi-isometric1; that is, we assume
that there exist mappings h : VG → VH, g : VH → VG and constants C ≥ 0,
λ ≥ 1 such that dH(h(x), h(y)) ≤ λdG(x, y)+C, dG(g(u), g(v)) ≤ λdH(u, v)+C,
dG(g(h(x)), x) ≤ C, and dH(h(g(v)), v) ≤ C for all x, y ∈ VG and u, v ∈ VH.
Define the marking of H from a marking of G by MH = h(MG).

Lemma 6. Any marked graph (H,MH) that satisfies the above conditions is
a (∆H, ⌊λN + 2C⌋, ⌊2λN − (2C + 1)/λ⌋, ⌈2λ2⌉2)-marked graph where N is the
constant used to mark G.

1 Ghys [19] attributes this definition of quasi-isometry to G. A. Margulis.

Proof. Let v ∈ VH. Let m be the marker closest to g(v) in G; dG(m, g(v)) ≤ N .
We have h(m) ∈ MH and dH(h(m), v) ≤ dH(h(m), h(g(v))) + dH(h(g(v)), v)
≤ ⌊λdG(m, g(v)) + C⌋ + ⌊C⌋ ≤ ⌊λN + C⌋ + ⌊C⌋ ≤ ⌊λN + 2C⌋. We can choose
ℓ1 = ⌊λN + 2C⌋.

Let ℓµ = ⌊2λN − (2C + 1)/λ⌋. Let v ∈ VH and m ∈ MG be such that
dH(v, h(m)) ≤ ℓµ. Then dG(g(v),m) ≤ dG(g(v), g(h(m))) + dG(g(h(m)),m) ≤
λℓµ +2C ≤ 2λ2N −1 ≤ ⌈2λ2⌉N −1. For any x ∈ VG and positive integer κ there
are at most κ2 markers in BG(x, κN −1); thus there are at most ⌈2λ2⌉2 markers
in BH(v, ℓµ). We can choose µ = ⌈2λ2⌉2. ⊓⊔

Again we obtain an approximation scheme; any approximation ratio above 1
can be achieved by placing the markers in a sufficiently sparse manner in G.

Intuitively, each element of VG corresponds to a geometric area and g(v) ∈ VG

is the area where the device v ∈ VH is located. The choice of MH reflects the
following rule for deploying the markers. First, some geometric areas MG are
selected based on the grid structure. Second, one marker is deployed in each of
these geometric areas.

In the small scale, quasi-isometry allows arbitrary structure to occur; the
small-scale structure of realistic communication graphs is irregular and unpre-
dictable due to the complex nature of the physics of radio propagation. In the
large scale, quasi-isometry requires that shortest-path distances in the commu-
nication graph reflect the distances in the ambient space; this is a reasonable
assumption from a dense deployment of sensors in an area devoid of large-scale
obstructions.

5.3 Serendipity of Locality

The defining property of a local algorithm is that the behaviour of each network
node is uniquely determined by the radius-L neighbourhood of the node. In other
words, all things being equal in the neighbourhood, the large-scale topology of
the network has no effect in the operation of a network node. This is particularly
useful from the perspective of network deployment—to fulfil the intended sensing
objective, it suffices to deploy the sensor nodes in a manner that, from the
perspective of mission-critical sensor nodes, looks like a benign topology, even if
the actual topology is not.

In more concrete terms, let us assume that we have some two-dimensional
area A of arbitrary shape that we want to monitor by a sensor network. Let us
also assume that we have a method of network deployment that would produce a
(∆, ℓ1, ℓµ, µ)-marked graph if applied to the infinite two-dimensional plane; say,
the method produces a globally grid-like marked graph (H,MH).

Now, to deploy a network to monitor A, all one has to do is to apply the
deployment method to A plus its constant-width surroundings. More precisely,
we deploy so that for any node v that is placed within A, its (L + 1)-hop neigh-
bourhood is indistinguishable from its neighbourhood in (H,MH). By locality it
follows immediately that any node within A (or with a neighbour in A) operates
exactly as it would operate in the case of (H,MH). For example, if the nodes

execute the sleep scheduling algorithm, then full coverage for every node within
A is guaranteed, with a lifetime at least as good as in the case of an infinite
graph. Other nodes may fail in an arbitrary manner, but this does not affect the
operation within A; for example, in the case of activity scheduling, these nodes
cannot conflict with the nodes within A.

Again it can be argued that this deployment scheme is straightforward to
implement in practice. The overhead (in the number of extra nodes that need to
be deployed outside A) depends on the shape and size of A, but if the shape of
A is not too irregular, the relative overhead approaches zero as the surface area
of A increases.

Both the deployment of the markers and the deployment of the extra nodes
in the surroundings of A can be seen as examples of a basic tradeoff in computa-
tional effort: minor (and, from the perspective of the deployer, computationally
straightforward) extra effort invested in deployment pays off by enabling local
approximation of fundamental scheduling problems.

Acknowledgements. This research was supported in part by the Academy
of Finland, Grants 116547 and 117499, and by Helsinki Graduate School in
Computer Science and Engineering (Hecse).

References

1. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on
Computing 24(6) (1995) 1259–1277

2. Cardei, M., MacCallum, D., Cheng, M.X., Min, M., Jia, X., Li, D., Du, D.Z.: Wire-
less sensor networks with energy efficient organization. Journal of Interconnection
Networks 3(3–4) (2002) 213–229

3. Floréen, P., Kaski, P., Suomela, J.: A distributed approximation scheme for sleep
scheduling in sensor networks. In: Proc. 4th Annual IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON,
San Diego, CA, June 2007), Piscataway, NJ, IEEE (2007) 152–161

4. Koushanfar, F., Taft, N., Potkonjak, M.: Sleeping coordination for comprehensive
sensing using isotonic regression and domatic partitions. In: Proc. 25th Conference
on Computer Communications (INFOCOM, Barcelona, April 2006), Piscataway,
NJ, IEEE (2006)

5. Moscibroda, T., Wattenhofer, R.: Maximizing the lifetime of dominating sets. In:
Proc. 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS, Denver, CO, April 2005), Los Alamitos, CA, IEEE Computer Society
Press (2005) 242b

6. Pemmaraju, S.V., Pirwani, I.A.: Energy conservation via domatic partitions. In:
Proc. 7th ACM International Symposium on Mobile Ad Hoc Networking and Com-
puting (MobiHoc, Florence, May 2006), New York, NY, ACM Press (2006) 143–154

7. Jain, K., Padhye, J., Padmanabhan, V.N., Qiu, L.: Impact of interference on
multi-hop wireless network performance. Wireless Networks 11(4) (2005) 471–487

8. Feige, U., Halldórsson, M.M., Kortsarz, G., Srinivasan, A.: Approximating the
domatic number. SIAM Journal on Computing 32(1) (2002) 172–195

9. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. Journal of the ACM 41(5) (1994) 960–981

10. Suomela, J.: Locality helps sleep scheduling. In: Working Notes of the Work-
shop on World-Sensor-Web: Mobile Device-Centric Sensory Networks and Ap-
plications (WSW, Boulder, CO, October 2006) 41–44; available at http://www.

sensorplanet.org/wsw2006/

11. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing
21(1) (1992) 193–201

12. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA, Miami,
FL, January 2006), New York, NY, ACM Press (2006) 980–989

13. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. Journal of the ACM 32(1) (1985) 130–
136

14. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM Journal on Computing 34(6) (2005) 1302–
1323

15. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs. Journal of Algorithms 26(2) (1998) 238–274

16. Jiang, T., Wang, L.: An approximation scheme for some Steiner tree problems in
the plane. In: Proc. 5th International Symposium on Algorithms and Computation
(ISAAC, Beijing, August 1994), Berlin, Springer-Verlag (1994) 414–422

17. Suomela, J.: Approximability of identifying codes and locating-dominating codes.
Information Processing Letters 103(1) (2007) 28–33

18. Kuhn, F., Nieberg, T., Moscibroda, T., Wattenhofer, R.: Local approximation
schemes for ad hoc and sensor networks. In: Proc. Joint Workshop on Foundations
of Mobile Computing (DIALM-POMC, Cologne, September 2005), New York, NY,
ACM Press (2005) 97–103

19. Ghys, É.: Les groupes hyperboliques. Astérisque 189–190 (1990) 203–238
[Séminaire Bourbaki, Vol. 1989/90, Exp. No. 722]

