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LOCAL APPROXIMATION 
BY CERTAIN SPACES OF EXPONENTIAL POLYNOMIALS, 

APPROXIMATION ORDER OF EXPONENTIAL BOX SPLINES, 
AND RELATED INTERPOLATION PROBLEMS 

N. DYN AND A. RON 

ABSTRACT. Local approximation order to smooth complex valued functions by 
a finite dimensional space jf', spanned by certain products of exponentials 
by polynomials, is investigated. The results obtained, together with a suitable 
quasi-interpolation scheme, are used for the derivation of the approximation 
order attained by the linear span of translates of an exponential box spline. 

The analysis of a typical space jf' is based here on the identification of 
its dual with a certain space .9 of multivariate polynomials. This point of 
view allows us to solve a class of multivariate interpolation problems by the 
polynomials from .9 , with interpolation data characterized by the structure of 
jf' , and to construct bases of .9 corresponding to the interpolation problem. 

1. INTRODUCTION 

This paper is primarily concerned with local approximation to smooth com-
plex valued functions by finite dimensional spaces Jr , spanned by certain mul-
tivariate exponential-polynomials (i.e., products of exponentials by polynomi-
als). Our interest in this subject was stimulated by the introduction of exponen-
tial box (EB)-splines [Rd, and the question of their approximation order. Yet, 
we found that the investigation of these spaces of exponential-polynomials of 
special structure leads to the understanding of other related topics. In particu-
lar, the study of the dual space of Jr allows us to solve a class of multivariate 
polynomial interpolation problems. 

A typical Jr considered here is defined as the intersection of the null spaces 
of a certain family of hyperbolic differential operators with constant coefficients. 
To introduce Jr and its defining operators let r be a finite multiset consisting 
of pairs of the form 

(1.1 ) 

Hereafter we always assume that X := Xr := {:ry } YEr spans IRs . The collection 
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382 N. DYN AND A. RON 

of aU subsets of r is decomposed into the following two disjoint sets: 

( 1.2) 

(1.3) 

K(r) = {K c rj span{:!.l'}l'EI\K =j:.JRs }, 

L(r) = {K c rl span{:!.l'}l'Er\K = JRs }. 

Now, the space 2(r) is defined as 

(1.4) 2(r) = {I E:;g' (JRS) I PK(D)I = 0 VK E K(rn, 

where 9' (JRs ) is the space of all s-dimensional complex-valued distributions, 
and PK(D) is the differential operator induced by the polynomial 

( 1.5) P K (:!.) : = IT (:!. . :!.l' - A) . 
l'EK 

It is known [DM2' BR] that 2(r) is of finite dimension and spanned by 
exponential-polynomials. 

First, we present the local approximation property of spaces of type 2 (r) . 
For this purpose let 

( 1.6) d(X) = min{IKIIK E K(rn - 1, 

where as usual I· I denotes the cardinality of a set. Note that d(X) is a 
nonnegative integer, which is indeed determined by the set X. 

Theorem 1.1. Let n be a convex open subset 01 JRs and let r be a set as in 
(1.1). Then lor every Q. En and 1 E clrl -s+ 1(n) there exists g E 2(r) such 
that 

(1.7) 1(/-g)(:!.)1 :5cll/llln_S+l,oo,nll:!'-Q.II~X)+l V:!.En, 

where c is a constant depending on rand nand 

(1.8) 

To prove Theorem 1.1 we identify a polynomial space 9'(X) so that the set 
of linear functionals 

( 1.9) J1.p : 1 -. [P(D)f](Q) , P E9'(X), 

represents the dual of 2(r). Denoting the kernel of 9'(X) by 9'1. (X) c 
Coo(JRs), in the sense of (1.9), leads to the direct sum decomposition 

(1.10) 

Given 1 E COO (JRs) , we choose the function g, for the case Q. = Q in Theorem 
1.1, to be the projection of 1 on 2(r) with respect to (1.10). The desired 
approximation rate follows from the fact that 9'(X) contains all polynomials 
of total degree :5 d(X) . 
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LOCAL APPROXIMATION AND APPROXIMATION ORDER 383 

Once Theorem 1.1 is established it is used in the derivation of the degree of 
approximation by the linear span of translates of an EB-spline. The h-scaled 
EB-spline based on a defining set r, B h (q:!) , is defined by the equation 

(1.11) ls Bh(rj;K)cP(;;SJd;K=hs- ,n l r (IIi .. rtr ) cP (Ety;Ky) dL 
R [O,h] yEr yEr 

where cP is taken from a suitable space of test functions. The alternative defi-
nition in terms of the Fourier transform is 

(1.12) Bh(rj;K) = hs- 1n II lh e(Ay-iKy";5..l t dt. 
yEr 0 

It is known that Bh(rl;K) is a compactly supported piecewise ~(r)-function 
[Rd· 

We are interested in ~(r) because ofthe fact that for small enough h [R2]: 

(1.13) 

A suitable quasi-interpolation scheme, together with the local approximation 
result of Theorem 1.1, yields 

Theorem 1.2. Let 0 c ]Rs be open and convex and assume f E cln-s+ 1 (0) . 
Then for every compact A c {} 

(1.14) 

It seems important to view the results of Theorem 1.2 in light of the so-called 
"Strang-Fix Conditions" [SF]. For a given compactly supported function cP, 
the authors in [SF] examined the degree of approximation attained by 
span{cPh(' - hg')l Q. E Z/} with the scaled version cPh(') = cP(·jh). They proved 
that this degree of approximation is determined by the maximal d that satisfies 
7rd C span{ cP(· - Q.)} aEZS • In view of this result, Strang and Fix pointed out that 
a piecewise-polynomial cP should be an advantageous choice. 

We emphasize that the Strang-Fix Conditions are not applicable to the scaled 
exponential box spline of (1.11). In the nonpolynomial situation the "correct" 
choice of the scaled function cPh should be that which preserves the local struc-
ture of cP, e.g., by taking {cPh}h>O to be piecewise H-functions for a certain 
fixed space H with a "good" local approximation property (as in tbe case of the 
univariate L-splines, see, e.g., [S, Chapter 10]). Thus from this point of view 
the Strang-Fix Conditions indicate that the scaling cPh (.) = cPU h) is appropriate 
only for special classes of piecewise-polynomial functions cP. 

We illustrate the above by a simple example. 
Example 1.1. Let 

( 1.15) 
O,'S,x<h, 
otherwise. 
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384 N. DYN AND A. RON 

Given a function f(x) bounded and uniformly continuous on lR., define 

(Qhf)(x) = L f(P)¢h(x - P)· 
PEhZ 

For a fixed x, choose 0 E hZ so that x E [0,0 + h). Then 
If(x) - (Qhf)(x)1 = If(x) - f(o)(x - 0 + 1)1 

:$ If(x) - f(o)1 + If(o)llx - 01 :$ wh(f) + Mh. 
Thus, the scaled version (1.15) of ¢,(x) yields approximation order 0(1). On 
the other hand it is clear that such a result fails to hold for the scaling 

¢(h-'X)={h-'X+l, O:$x~h, 
, 0, otherwIse, 

as is guaranteed by the Strang-Fix Conditions. 
The third part of the paper is concerned with a class of interpolation problems 

from the polynomial space 9'(X) , defined with respect to a set of directions 
X as "dual" to all spaces JP'(r), Xr = X, in the sense of (1.9). We identify 
various sets of linear functionals minimally total over 9'(X). Each such set 
consists of the linear functionals of the form 

These interpolation schemes are intimately related to the schemes considered 
in [GM]. The above point of view enables us to give a unified analysis of the 
interpolation problems, and also to construct bases for 9'(X) induced by such 
problems. 

Throughout this paper, the cardinality of a set is denoted by I· 1 ,while (-) 
stands for the (real) linear span of a vector set. Given K c r (where r is as 
in (1.1)) we also use 

(K) := span{~Y}YEK. 
Finally, all polynomial spaces considered herein are with complex coefficients, 
and hence the linear span of polynomials is always regarded here with respect 
to complex scalars. 

2. SOME PRELIMINARIES ON JP'(r) 

We briefly review here some of the results from [BR] on JP'(r) (see also 
[DM2]). For this purpose we first define the set of all "bases" in r: 
(2.1 ) 

Theorem 2.1. JP'(r) is a finite dimensional space spanned by exponential-poly-
nomials. Its dimension equals IJ(r)l. 

To describe the structure of JP'(r) denote for fl E res 
(2.2) 
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LOCAL APPROXIMATION AND APPROXIMATION ORDER 385 

and define 

(2.3) 

We have 

Theorem 2.2. ~(r) admits the following direct sum decomposition: 

(2.4) ~(r) = E9 ~(r.lt). 
!!.E9(r) 

Furthermore, each function in ~ (r.lt) has the form 

(2.5) 

where ~(Xo) is the space of polynomials corresponding to r = (X.It, Q), X.It:= 
Xr . -

!!. 

A particularily simple structure for ~(r) is obtained when r is a "simple" 
defining set [R1], i.e., when for each fl E 8(r) the set r 0 consists of exactly 
s elements (and hence is an element of J(r)). In this case ~(r) is spanned 
by pure exponentials, namely 

(2.6) o·x 
~(r) = span{e- -I fl E 8(rn· 

Simple defining sets and their corresponding simple exponential box splines 
were intensively investigated in [R1]. Note that in view of (2.6) the result of 
Theorem 2.1 is rather trivial for the simple case. This observation, together 
with a suitable limit process, was used in [BR] for the derivation of Theorem 
2.1. The "simple" notion plays an important role in this paper as well: we use it 
to construct a basis for ~(r) and its dual for general r, and hence to compute 
the dimension of this dual. Also, the interpolation problems discussed in §7 are 
in the simple case of a Lagrange type. 

Finally, we note that, for a given defining set, one can always find a simple 
defining set r l such that Xr = Xr . (For a more precise statement see [Rd.) 

I 

3. A-APPROXIMATION 

We collect here some basic algebraic facts about duality in the finite dimen-
sional case, and describe in a general algebraic setting the approach taken here 
towards the proof of Theorem 1.1. 

Let F be a vector space over C. Let A be an n-dimensional space of 
complex linear functionals defined on F. Denote by A.l the kernel of A in 
F, that is 

(3.1 ) A.l = {f E FIIl(f) = 0 'Ill E A}. 

Suppose that A is a dual space for some H c F . 
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386 N. DYN AND A. RON 

Proposition 3.1. Let F, A, A -L ' and H be as above. Then 

(3.2) 

Assume now that H admits a direct sum decomposition: 

(3.3) 

Definition 3.1. A decomposition 

(3.4) 

is said to be dual to (3.3) if 
(a) Aj is dual to Hj for j = I, ... , m. 
(b) IJ)fk) = 0 whenever f.J j E Aj' fk E Hk , j =I k. 

We have 

Proposition 3.2. Suppose that A is dual to H = EB7=1 Hj . Let {Aj}~l be a set 
of m subspaces of A. If 

(a) dim A j ~ dim Hj' j = I , ... , m, 
(b) f.Jj(fk) = 0 whenever f.Jj E Aj' hE Hk , j =I k, 

then EB7=1 Aj is a decomposition of A which is dual to EB7=1 Hj . 

Proof. Fix I ::; k ::; m and denote ilk = EB7=1 ,j# Hj . Since by (b) Hk is 
orthogonal to A k , then 

dimAk ::; dimH - dim ilk = dimHk' 

hence by (a), dim Ak = dim Hk and ilk is the kernel of Ak in H. Since 
Hk n ilk = 0 it follows that Hk is dual to Ak . To verify that EB7=1 Aj is 
direct, note that every element in (U~l ,j# A) is orthogonal to Hk while Ak 
is dual to Hk , hence Ak n (U7=1 ,j# A) = O. 0 

Closely related to dual decompositions are dual bases: given a basis {f.J j }]=l 
to A, its dual basis Uj}]= 1 in H is the unique basis in H which satisfies 

(3.5) f.Jj(fk) = Jj , k' 1 ::; j, k ::; n. 

Denote by IfIH the projection of F on H with respect to (3.2) (i.e., with kernel 
A -L)' 

Proposition 3.3. Let {f.J j }]=l and Uj}]=l be dual bases of A and H respec-
tively. Then 

n 
(3.6) IfIH = L fjf.Jj' 

j=l 
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LOCAL APPROXIMATION AND APPROXIMATION ORDER 387 

Let us now consider a family {HJ ;EI of subspaces of F, each of which 
has A as its dual. For i, j E I denote by",; the restriction of "'H to H;. 

J 

Since ker "'; = H; n ker '" H = H; n A 1.. = 0, we see that "'; is injective. But 
J • 

dim H; = dim Hj = dim A = n and therefore we conclude that "'; induces 
isomorphism between H; and Hj which is termed herein "the canonical A-
isomorphism". Some properties of the canonical A-isomorphism are recorded 
below. 

Proposition 3.4. For i, j, k E I 
() j; ; 
a "'k "'j = "'k' 

(b) ( ;)-1 j "'j = "'; . 

Proof. Let f E F; then "'HI - f E A 1.. and therefore "'Hk("'H! - f) = o. 
J J 

Hence 

(3.7) 

and (a) follows. Since "'H is a projector to H; , then "': is the identity mapping 
and thus the choice i = k in (a) gives (b). 0 

The next result deals with local approximation to smooth functions induced 
by projectors of the type "'H. Let F = COO (JRs) and let 

(3.8) A = {.upl PEP}, 
where P is a finite dimensional polynomial space satisfying 

(3.9) 1Cd C P c 1Cil' 

and .up retains its meaning as in (1.9). 
Let A 1.. and H be as before and assume that H is translation invariant, 

namely 

(3.10) 

(Actually by the above assumption H is necessarily spanned by exponential-
polynomials, see [BR, Theorem 1.3].) 

Theorem 3.1. Let n be a convex set in JRs. Let f E Coo(JRs) and g En. Then 
there exists g E H , dependent on f and g, such that for every :!. E Q 

d+1 
(3.11) I(f - g)(:!.) 1 :5 cnllfllmax{d,d+l}.oo,nll:!. - glloo ' 

where cn depends only on A, H, and Q (but not on g and f), and IIfll k , 00 , n 
is as in (1.8). 
Proof. Let Uj}7=1 and {.upJ7=1 be (arbitrary) dual bases of H and A respec-

J 

tively. Define 
n 

(3.12) g(:!.) = L[Pj (D)f](g)Jj (:!. - g) . 
j=1 
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Since H is translation-invariant, g E H, and it is easy to verify that 

(3.13) p(D)(f - g)(~) = 0 Vp E P. 

Since lrd C P it follows that all the Taylor coefficients up to order d in the 
expansion of f - g at ~ must vanish. This shows that 

(f - g)C~) = O(ll,~ _ ~II~!). 

To see that (3.11) is valid, we make use of (3.12). First note that 

where cj is dependent only on Pj' Therefore if I~I = d + 1 then 

n 

ID~g(~')1 ::; Ilfll(l,oo,n L Ic) Ilfjlld+! ,oo,n =: collfll(l,oo,n' 
j=! 

and our claim follows from the usual remainder expression in the Taylor for-
mula. 0 

In order to guarantee that cn and Ilfllmax{(l,d+!},oo,n will be finite, one 
may require n to be relatively compact. Note that the choice of the norm 
in Theorem 3.1 was quite arbitrary: clearly the same results hold for every 
Lp-norm. 

Finally, we note that the results and the proofs here remain unchanged when 
replacing Coo(JRs) by Cm(JRs) with m ;::: max{d, d + I}. 

4. THE DUALITY BETWEEN ~(r) AND ,9O(X) AND 

LOCAL APPROXIMATION BY ~ (r) 

Let X be a fixed finite set of nontrivial vectors which spans JRs. Every 
defining set r (see (1.1)) for which Xr = X is termed "an X-defining set". 
X itself is also treated as the defining set composed of (X, Q). Thus the sets 
K(X) , L(X) retain their meaning as in (1.2), (1.3). 

In this section we consider the space 

(4.1) ,9O(X) := span {PY(,~.) = II (,)::'. :~:)I Y E L(X)} . 
!::EY 

First, we compute its dimension, construct bases to this space and determine 
exactly the maximal d that satisfies lrd C ,9O(X). Then, we prove that ,9O(X) 
forms a dual of ~(1) (in the sense of (3.8)), and thus Theorem 3.1, when 
applied to the present specific situation, allows us to establish the order of the 
local approximation by ~(1) to smooth functions. 

Clearly ,9O(X) is a space of polynomials of degree not exceeding IXI - s. 
Our first aim is to describe a basis for ,9O(X) . 
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Theorem 4.1. Assume r is an X -defining set which is simple. Then the polyno-
mials 

(4.2) 

form a basis for 9(X). 
Proof. Denote temporarily by 9(X) the linear span of the polynomials in 
(4.2). First, note that for each L E L(r) the polynomial h (;sJ belongs to 
9(X): For L E L(r) we have XL E L(X); thus, given an arbitrary subset 
Y of XL it follows that Y E L(X) and hence Py E 9(X). Since PL is a 
linear combination of such Py'S we see that indeed PL E 9(X). Now, for 
each J E J(r), r\~ E L(r) , therefore each of the polynomials in (4.2) lies in 
9(X) and hence 9(X) C 9(X). To establish the inverse inclusion we need 
the following two lemmas. 

Lemma 4.1. h(;~J E 9(X) for every L E L(r). 

Lemma 4.2. Let r 1 be an X-defining set (not necessarily simple). Then the 
polynomials {hC~JIL E L(r1)} span 9(X). 

The proof of Lemma 4.1 proceeds by induction on Ir\LI. Since we assume 
L E L(r) , then we always have Ir\LI ~ s. If Ir\LI = s, then r\L is a basis 
J in J(r) and therefore h(:&) is one of the polynomials in (4.2). Assume 
Ir\LI > s. Since r is simple so is r\L, and hence Proposition 4.1 in [R1] 

ensures the existence of {cy} yEr\L such that 

(4.3) (i) L Cypl~J = 1 , 
yEr\L 

(4.4) (ii) (r\(Luy))#lRs onlyifcy=O. 

Thus 
(4.5) pJ~J = h(&) L CyPy(;~J = L Cyhuy(;~J, 

yEr\L yEr\L 

where, if L U Y E L(r) , then the induction hypothesis implies PLu/~J E 9(X) 
and otherwise (4.4) implies cy = O. Consequently (4.5) shows that PL(;~J E 

9(X) and thereby establishes Lemma 4.1. 0 

To prove Lemma 4.2, it is enough to show that for every Y E L(X) , the poly-
nomial Py(:&) is in the span of {h (:&)IL E L(r1)}. We prove it by induction 
on I YI ~ O. For Y = 0 the claim is obvious. Assume I YI > 0, Y E L(X) . 
Let L E L(r1) be the corresponding set (i.e., with XL = Y). Then 

(4.6) PL(:&) - p y (:&) E span{pv(:&)I V C Y, V # Y}. 

Since Y E L(X) then V E L(X) for every V c Y, so by the induction hypothe-
sis the right-hand side of (4.6) is spanned by {h(:&)IL E L(r1)}. Consequently 
the same is true for Py (:&) , and the claim of Lemma 4.2 is established. 0 
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To prove-2'heorem 4.1, note first that Lemma 4.1 together with Lemma 4.2 
show that .9'(X) = .9'(X). It remains to show that the polynomials in (4.2) are 
linearly independent: fix Jo E J (r) and let fl. E 8(r) be the unique solution of 
the equations P./fl.) = 0, Vy E Jo ' Since r is simple, Py(fl.) = 0 if and only if 
y E Jo' So, for J E J(r) 

Prv(fl.) =f:. 0 <=> (r\J) n Jo = 0 <=> J = Jo . 
We conclude that the polynomials of (4.2) are linearly independent, and there-
fore form a basis for .9'(X) as claimed. 0 

Since we can always assign to a given X a simple X -defining set r, Theorem 
4.1 leads to: 

Corollary 4.1. I dim.9'(X) = IJ(X)I. 

Our next result characterizes the maximal d that satisfies 7Cd C .9'(X) . 

Theorem 4.2. Let d(X) be as in (1.6). Then 
(a) 7Cd (X) C .9'(X) . 
(b) 7Cd (X)+1 ct .9'(X). 

Proof. We prove (a) by induction on d in the claim: Let d be a nonnegative 
integer and let X c IRs be a set of nontrivial vectors satisfying (X) = IRs. If 
d(X) 2: d, one has 7Cd C .9'(X) . 

Choosing Y = 0 in (4.1) we see that .9'(X) always contains the constants 
hence the case d = 0 of the claim is trivial. Let 0 < d ~ d(X) , and assume by 
induction that 
(4.7) 7Cd _ 1 C .9'(Y) for all Y with d(Y) 2: d - 1. 

We need to show 7Cd c .9'(X). Substituting X = Y in (4.7) gives 7Cd _ 1 C 

.9'(X). So it remains to show that for every !!.. E Z: with I!!.. I = d , the monomial 
~!!.. belongs to .9'(X). Fix such !!... Since d > 0 there exists 1 ~ j ~ s 
such that Vj > O. Denote !1. = (vI' ... , v j _ 1 ' Vj - 1, v j +1 ' ..• , v s ). Since 
d(X) 2: d > 0 then by (1.6) (X\y) = IRs for all y EX. Furthermore, it is 
clear that d(X\y) 2: d(X) - 1 and-ll1l = d - 1 ~ leX) - 1, so we can use the 
induction hypothesis to conclude that ~!J.. E .9'(X\r) Vr, EX. 

Moreover, it is easy to see that 
(4.8) p(~) E .9'(X\r,) ~ (r, . ~)p(~) E .9'(X) , 

so substituting p(~) =~!J.. in (4.8) we obtain 

(4.9) ~!J..(r,.~) E .9'(X) Vr, EX. 

Finally, the fact that (X) = IRs implies the existence of {CY}YEX such that 
Xj = 2:YEXCy(r, .~), hence (4.9) readily implies that ~!!.. = ~!J..~ E.9'(X). This 
ends the proof of part (a) of Theorem 4.2. 

I Recently we have learned from [DM21 that the space 9'(X) has already been investigated by 
H. Hakopian, who has proved Corollary 4.1 as well. 
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To prove part (b), note that by the definition of d(X) there exists Xo eX 
such that IXol = d(X) + 1 and (X\Xo) "# lRs • Let ~ E lRs be orthogonal to 
(X\Xo)' Define q(,K) = (~',K)d(X)+' E 7ld(X)+' . We contend that q(,K) ¢. 9'(X). 
To see this let Y E L(X) and denote 

Y, = Y n (X\Xo) , Y2 = Y\ Y, . 
It follows that Y2 is a proper subset of Xo and therefore IY21 ~ d(X). Further-
more, ~.:!:'. = 0 for every :!:'. E Y, and consequently we must have q(D)py :::: O. 
Since this holds for every Y E L(X) we conclude that q(D) annihilates 9'(X) . 
But q(D) does not annihilate q(,K) , whence q(,K) ¢. 9'(X). D 

Now, let 9'1. (X) be the kernel of 9'(X) i.e., 

(4.10) 9'1.(X) = {I E Coo(lRs)lllp(f) = 0 Vp E 9'(X)}. 

To establish the duality between K(r) and 9'(X) we first need 

Theorem 4.3. For every X -defining set r 
(4.11) 9'1. (X) nK(r) = O. 
Prool. Let IE 9'1. (X) n K(r). We claim that 
(4.12) PL(D)/::::O VLcL 

Assume for contradiction that (4.12) is not valid and let L c r be a maxi-
mal subset that does not satisfy (4.12). Since IE K(r), then by definition 
PK(D)I = 0 for every K E K(r) , hence L E L(r), which means that r\L 
contains some basis J E J(r). Set g = h(D)/. Since L is maximal we know 
that for each I' E J, py(D)g = huy(D)/:::: 0, thus 

g E n kerpy(D). 
yEJ 

Let fl be the unique element of 8(J) , then (with Px (,K) =,Ky ',K) 
-~ 

-8'x -8'x Px (D)(e --g(,K)) = e --(py(D)g(,K)) = 0 VI' E J, 
-~ 

and since ({,Ky}YEJ) = lRs , it follows that g(,K) = ce!l:!.. 
Finally, the assumption L E L(r) implies PL(,K) E 9'(X) , which together 

with IE 9'1. (X) yields 
c = g(Q) = [PL(D)/](Q) = O. 

Thus g:::: 0, in contradiction to the choice of L. We conclude that (4.12) is 
valid and substitution of L = 0 in (4.12) completes the proof of (4.11). D 

For the discrete analog of Theorem 4.3 see [BR, Theorem 4.1; DM2 , Theorem 
6.1.III]. 

Theorem 2.1 together with Corollary 4.1 leads to 
dimK(r) = dim9'(X) , 

and this can be combined with Theorem 4.3 to yield the following. 
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Corollary 4.2. Let r be an X-defining set. Then 9'(X) forms a dual for %(r) . 

By Theorem 4.2 we know that 'ltd (X) C 9'(X) , hence Theorem 1.1 follows 
now by an application of Theorem 3.1 to the present situation. 

We proceed now to another application of the duality between %(r) and 
9'(X) : 

Corollary 4.3. %(X) consists ofpolynomials of degree ~ IXI- s. 
Proof. The fact that %(X) consists of polynomials is well known (see [BH]). 
Given p E 9'(X) and q E %(X) we note that p(D)q(Q) = q(D)p(Q) , and 
therefore, by Corollary 4.2, %(X) can be regarded as the dual of 9'(X). 
Furthermore, since %(X) is scale-invariant, it stratifies (i.e., it is graded by 
its homogeneous components). Now 9'(X) C 'lt 1x1 _s ' and so every differential 
operator, induced by a homogeneous polynomial of degree > IXI-s , annihilates 
9'(X) , hence its corresponding polynomial does not belong to %(X). 0 

We mention that under the assumption X C 7// the above corollary has 
already been proved in [BH]. 

Finally, note that Theorem 1.1 gives only a lower bound for the local approx-
imation order by % (r). This bound is shown below to be the exact approxi-
mation order. 

Theorem 4.4. Let r be an X -defining set. Then the local approximation order 
by %(r) to smooth functions is d(X) + 1. 
Proof. In view of Theorem 1.1, it suffices to show that there exists a smooth 
function q which fails to be approximated to the order d(X) + 2. Let q 
be the homogeneous polynomial of degree d(X) + 1 constructed in the proof 
of Theorem 4.2(b); by that proof we know that the differential operator q(D) 
annihilates 9'(X). Let f be the best local approximation (at 0) for q from 
%(r) and let g be the Taylor expansion of f up to degree d(X) + 1 . Once we 
show that q I- g, it will follow that f approximates q to an order ~ d(X) + 1 . 

To prove that indeed q I- g, we assume for a contradiction that q = g 
and pick K E K(r). Now, the homogeneous component of highest degree of 
the polynomial p K is p x ,while the first nontrivial homogeneous component 

K 
in the Taylor expansion of f is g = q. Thus, since we have PK(D)f = 0 
it follows that Px (D)q = O. Since the above K E K(r) was arbitrary, we 

K 
conclude that 

[:y(D)q = 0 'v'Y E K(X) , 

i.e., q E %(X). Yet, this last consequence, together with the fact that q(D) 
annihilates 9'(X) contradicts the duality between %(X) and 9'(X). 0 

5. ApPROXIMATION ORDER FOR EXPONENTIAL BOX SPLINES 

Here we use Theorem 1.1 and a modified version of the quasi-interpolation 
scheme of [CD] to establish the approximation order for exponential box 
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splines, i.e., to prove Theorem 1.2. Throughout this section we assume that 
r is a fixed X -defining set and X c 'Z/ . Let 
(5.1) ~h(r) = span{Bh(rj· -g)1 g E h'Z}}, 

and define the map sf: C(lIe) --+ ~h(r) by 

(5.2) Sr(f) = L f(g)Bh(rj· -g). 

For the proof of Theorem 1.2 given here, we need to know that 
(5.3) K(r) c ~h(r). 
A sufficient condition for (5.3) was derived in [BR] (see also [R2 , Theorem 4.1; 
DM2 , Proposition 4.2]). 
Theorem 5.1 [BR, Theorem 6.2]. For fi E S(r), the following conditions are 
equivalent: 

(a) sf induces an automorphism on K(rtz). 
(b) Bh(rl- ifi) # O. 

Thus, in order to guarantee (5.3) it is sufficient to demand 
(5.4) 

But for a fixed ;r E CS 

(5.5) h-sBh(rj;r) = h-1rl II (lh e(A1-i:!·,~)t dt) --+ 1 as h --+ 0, 
rEr 0 

and we deduce from Theorem 5.1 the following 
Corollary 5.1. For every defining set r, there exists hr > 0 such that for every 
h < hr 
(5.6) 
(5.7) 

(a) Bh(rl- ifi) # 0 Vfi E S(r), 
(b) K(r) c ~h(r). 

Given f E K(r fl) , we also need the following information on sf f . 
o·x d Theorem 5.2 [R2 , Corollary 5.1]. Let f(;r) = e--p(;r) E K(r!l) an assume 

Bh(rl- ifi) # O. Then 
r o·x Sh (f) = e- -q(;r) , 

where deg(p(;r) - hS Bh (rl - ifi) -I q(;r)) < degp(;r) . 

To introduce the quasi-interpolant Qr denote first r fl. = jr fl.1 - s + 1 and 
Po h = hSBh(rj - ifi)-I , and define 
-' 

(5.8) Qr = I - II (I - pfl..,hSr)'!, 
fl.E9(f) 

where I is the identity mapping. 
The basic properties of Qr are recorded in the next two propositions. 
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Proposition 5.1. Assume that (5.6) holds. Then 

(5.9) Q~(f) = f Vf E ~(r). 

Proof. To prove (5.9) we need to show that I1~Ee(r)(I - P~,hSk)'!!. annihilates 
~(f). In view of Theorem 2.2 this will follow as soon as we know that 

(5.10) (J - p~'hSr)r!!.I~(r!!.) == 0 Vft E 8(f). 

To verify (5.10), note that by Theorem 5.2 J - P~, hSk is degree reducing on the 
polynomial part of every e~·J.p(2SJ E ~(ro)' But by Corollary 4.3 and the fact 

that ~(ro) = e~·J.~(Xo)' we have degp(~) ~ Wol-s = ro -1, thus (5.10) is 
verified and (5.9) folloWS. 0 --

Proposition 5.2. Qk is bounded and local. More precisely, there exist k, c5 > 0 
dependent only on r, such that for every f E C(JRs ), ~ E JRs and 0 < h < 1 

r 
I(Qhf)(~)1 ~ kllflloo,ball(J.;Jh)' 

where ball(~; c5h) is the open ball centered at ~ with radius c5h. 

The proof of Proposition 5.2 is based on 

Lemma 5.1. For every defining set rand 0 < h < 1 

(5.11) IIBh(r)ll oo ~ II el)-yI . 
YEr 

Proof of Lemma 5.1. Let qJ be a positive compactly supported COO function 
for which JRs qJ(~) d~ = 1 . By (1.11) 

11, Bh(n~)qJ(~) d~1 = hs- 1n 1 Ifl (II eA/ Y ) qJ (L: ~/y) d! 
R [O,h] yEr YEr 

< hs- 1n II elAyl r qJ (""' x t ) d! - 111 If! ~-Y Y yEr [0. h] yEr 

= II elAyl1, Bh(XI~)qJ(~) d~, 
YEr R 

where Bh(XI~) is the box spline based on the defining set composed of (Xr' Q). 
Clearly Bh(XI') is nonnegative. Also we know from [BH] that 

L Bh(XI' -g.) == 1, 
Q,Eh'l.' 

and hence IIBh(X)ll oo ~ 1. Consequently we conclude 

11, Bh(n~)qJ(~) d~1 ~ II e lAyi 1, qJ(~) d~ = II elAyl . 
R YEr R yEr 
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It follows therefore that IBh(q~)1 ~ TI),Erel.l.rl at all points of continuity 
of Bh(rl·); since Bh(rl·) in continuous a.e. (IRs) (see [BH, RID, we obtain 
(5.11). 0 

Proof of Proposition 5.2. First we expand the right-hand side of (5.8) to obtain 

(5.12) Q~ = - E (~) ( II P;~h) (-Sr)I~1 , 
O~~~[ - ftE9(r) 

with r. = {r ft} ftE9(r) and !!.. = {v ft} ftE9(r)' By (1.11) supp B h (r) C U:::)'Er t)'~) 

o ~ t)' ~ h} , so there exists an integer kl such that for every h > 0 and :!. E IRs 

(5.13) I{g E hZsl Bh(rj:!. - g) # O}I ~ kl . 

(Actually the right-hand side of (5.13) is essentially independent of hand :!., 
see [DMI ' Theorem 3.1].) Applying Lemma 5.1 we obtain 

1 (Srf) (:!.)1 = E f(g)Bh(rj:!. - g) ~ II el.l.rlkl IIflloo ,ball(,r, J1h) , 
gEZ~ ),Er 

where c51 is the diameter of supp B I (r). Repeated use of this result leads to 

(5.14) I[(S~/ f](:!.) 1 ~ II e}l.l.rlk{lIflloo,ball(,r,}J1h)' 
)'Er 

Substituting (5.14) into (5.12) and taking into account the uniform boundness 
of {Pft,h}ftE9(r),O<h<1 give the desired result with c5 = 1r.lc5I. 0 

ProofofTheorem 1.2. Assume h is small enough for (5.6) to hold. Fix:!. EA. 
Then for every g E Jt"(r) we get from Propositions 5.1 and 5.2 

If(:!.) - (Q~f)(:!.)1 ~ I(f - g)(:!.) 1 + IQ~(f - g)(:!.) 1 

~ cilif - glloo,ball(,r,Jh)' 

Thus, Theorem 1.1 implies 
f rf hd(X)+1 f 1 (:!.) - (Qh )(:!.)I ~ c2 II IIln-s,oo,Ah' 

where Ah = UXEA ball(:!., c5h). The compactness of A implies that Ah c Q 
for sufficiently small h, thereby ensures (1.4). 0 

Note that, as is seen by the proof above, Theorem 1.2 is valid for every set 
A satisfying Ah C Q for some h. 

6. MORE ON THE DUALITY BETWEEN Jt"(r) AND 9'(X) 

Denote by IfIr the projector of COO (IRs) on Jt" (r) with kernel 9'1. (X) . 
Given two X-defining sets r l , r 2 , the canonical 9'-isomorphism obtained 
when restricting IfIr to Jt"(r l ) is denoted by IfIJl. Some of the properties of 

2 2 

the maps IfIr and IfIP were discussed in the general framework of §3. Here we 
2 

derive several additional properties which are specific to the present situation. 
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Proposition 6.1. py(D)lfIr = IfIr\yp/D) for every y E 1. 

Proof. Let f E COO (Rs) . Since py(D) maps ~(1) into ~(I\Y) then 

py(D)lfIrf E ~(l\y). 

Given L E L(I\Y) it is clear that L U Y E L(1) , therefore 

h(D)[Py(D)lfIrf](Q) = huy(D)lfIrf(Q) = pLuy(D)f(Q) 
= PL(D)py(D)f(Q) = [PL(D)lfIr\ypy(D)J](Q). 

From Lemma 4.2 we know that {hC~JhEL(r\y) span .9'(X\~), thus Theorem 
4.3 implies that 

py(D)lfIrf - IfIr\ypy(D)f E ~(I\Y) n.9'.1 (X\,ry) = O. 0 

The usefulness of Proposition 6.1 is already illustrated in the following 

Corollary6.1. Forevery K c 1, the operator PK(D) maps ~(1) onto ~(I\K). 
Proof. It is enough to prove the claim for K = {y}. Fix f E ~(I\Y) and 
choose gl E cOO(Rs) such that py(D)gl = f. Define g = IfIrgl' Then by 
Proposition 6.1 

py(D)g = py(D)lfIrgl = IfIr\y(py(D)gl) = IfIr\yf = f. 0 

Our next aim is to construct a basis of ~ (1). In case 1 is simple, a natural 
basis for ~(1) , in view of (2.6), is Er := {e-~·,r}~Ee(r) . For this case it is easy 
to verify that the dual basis of .9'(X) is given by 

-I 
(6.1) p~(,r):=[Pr\rf({t)] Pr\rf(,r), (tE8(1). 

In case 1 is not simple, we may choose a simple X-defining set 11' and 
define the ''11 -basis of ~ (1)" as the image of Er under the canonical .9'-

I 

isomorphism 1fI~1. Denoting this basis by {f~(,r)}~Ee(rl)' we can combine 
(3.6) together with Proposition 3.3 to conclude 

Corollary 6.2. Assume 1 and 11 are X-defining sets, with 11 simple. For 
(tE8(11) define f~(,r) = 1fI~I(e~·,r). Let {P~(,r)}~Ee(n be as in (6.1). Then 

(6.2) IfIrf = L I1Pe (f)f~, 
~Ee(rl) 

In order to compute {f~ (,r)} ~Ee(rl)' one may use the fact that for a fixed 
(to E 8(1 I) the conditions 

( 6.3) 

( 6.4) 

determine f~o uniquely. 

[P~(D)f~o ](Q) = l5~,~o , 
PK(D)f~o == 0 VK E K(I) , 
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A special important case occurs when r = X (namely r = (X, Q)). In this 
case Corollary 4.3 guarantees that .2'(X) C 1t1xl _s ' and hence (6.3) and (6.4) 
are reduced to a system of linear equations in the unknowns: 

{D£ff(Q)}O~£~lxl-s . 

Although in general a basis of .2'(r) is not easily constructed, the explicit di-
rect sum decomposition of Theorem 2.2 is always valid. Thus, we are interested 
in characterizing its dual decomposition in .9'(X) . 

Theorem 6.1. Let r be an X -defining set. For fl E 9(r) define 

(6.5) .9'f = {p E .9'(X) I Pr\r!!. (,~) divides p(,~)}. 

Then .9'(X) = EBQE9(r).9'f' and this decomposition is dual to that o/Theorem 
2.2. 
Proof. Denote 

(6.6) 

(6.7) 

where, as before, PvC!) = IlYEv(~·:!.)· 
Let q(:!.) E .9'(X\Y) = #(XlJo). Using (6.7) it is easily seen that p(:!.) := 

Pr\r9 (:!.)q(:!.) E .9'(X). Combining this observation together with Theorem 2.2 
and -Corollary 4.1 (when applied to rQo and XQo respectively) we obtain 

dim.9'Qo ~ dim.9'(XQo) = dim.2'(rQo). 

On the other hand we know that Pr\r 90 (D) maps .2' (r\ (r\r QO )) = .2' (r t) , 

so Pr\r90 (D) annihilates EBQE9(r) .Q;iQo-.2'(r f)' It follows therefore that for 

P E .9'i, P (D) annihilates EB QE9(r) ,Q;iQo .2' (r Q) and in particular .9'Qo is or-
thogonal to that space. Application of Proposition 3.2 completes the proof. 0 

Corollary 6.3. Let r be an X -defining set and fl E 9(r). Then 

.9'f = {Pr\r!!. (:!.)q(:!.) I q(:!.) E .9'(Xf )}· 

7. RELATED INTERPOLATION PROBLEMS 

Given the polynomial space .9' (X) defined by the direction X in ]Rs, we 
describe here a class of interpolation problems induced by all the X -defining 
sets r, and apply the duality between .2'(r) and .9'(X) to show the solvability 
of these problems. The method of analysis provides a unified theory for a large 
class of the interpolation problems considered in [GM]. 
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Let {fj(~)}j~;)1 be any basis of 2'(r). Let {Pj}j~;)1 c C be arbitrary 
numbers. From the duality between .9i(X) and 2'(r) we know that there 
exists a unique p(~) E .9i(X) such that 
(7.1) J.lp(fj) := [P(D)fj](Q) = Pj , j = 1, ... , IJ(X)I. 

To reveal the dual meaning of (7.1), assume that fj E 2'(ro) for some fl. E 

8(r). Then fj(~) = e!!.·'!'q(~), q E 1C, and since -

D!!.[e!!.·,!~t]lx=o= -- -(!!=!!.)!' -_Q.,. { 
()a-p a! P < 

- - 0 , othefWlse, 
one obtains 
(7.2) o·x J.lp(fj) = p(D)[e- -q(~)]I'!=Q = [q(D)p](fl.) . 

In particular, if fj(x) = e!!.·'!~!!., Q. E '!/ , then 

(7.3) J.lp(fj) = (D!!'p)(fl.). 

We therefore obtain 
Theorem 7.1. Let f: CS -+ C be a smooth function and let r be an X -defining 
set. Then there exists a unique p f(~) E .9i(X) such that for every fl. E 8(r) and 
q E 2'(X!!.) 

(7.4) [q(D)Pf](fl.) = [q(D)fJ(fl.) , 

where, as before, Xo = Xr . 
- ! 

Note that in (7.4) any interpolation point fl. E e(r) c CS is the intersection 
of the hyperplanes 
(7.5) ~)'.~-A.)'=O, YEro. 
Corollary 7.1. Let f: CS -+ C and let r be an X-defining set which is simple. 
Then there exists a unique p f(~) E .9i(X) solving the Lagrange interpolation 
problem 

(7.6) 

The special case of the above problem, when X is a general position (i.e., 
any s elements of X form a basis for ]Rs) and r is simple has been studied 
in [CY]. 

The structure of the X -defining sets which induce solvable Hermite interpo-
lation problems on .9i(X) is "locally in general position", which means that 
for each fl. E 8(r) the set Xo is in general position. (Of course, all simple 
defining sets are locally in general position .. Also, if X is in general position 
then r is locally in general position regardless of the choices of ~.) In this case 
2' (r) admits a very simple structure. In fact (as can be easily deduced from 
Theorems 2.1 and 2.2 and Corollary 4.3) a basis of 2'(r) is 

O·x /I 
(7.7) {e- -~-I fl. E 8(r), I~I ~ Ir!!.l- s}. 
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Thus Theorem 7.1 implies 

Corollary 7.2. Let J: CS ~ C be a smooth Junction and let r be an X -defining 
set locally in general position. Then there exists a unique p f(,!) E 9'(X) solving 
the Hermite interpolation problem 

(7.8) 

Remark 7.1. It should be emphasized that the interpolation problem induced 
by a set r locally in general position is significantly simpler than those induced 
by general sets r. This is so since the solution of the interpolation problem is 
crucially based on the dimension result of Theorem 2.1, which is rather trivial 
in the case of defining sets locally in general position. 

More information on the interpolation p(;~J E 9'(X) can be deduced from 
the dual decompositions 

,2'(r) = E9 ,2'(rf!) 
f!E8(f) 

and 
9'(X) = E9 9'f! 

f!E8(f) 

(see Theorems 2.2 and 6.1). In fact we have 

Lemma 7.1. Let §.O E 8(r), let J: CS ~ C be a smooth Junction and let Pf be 
the interpolant Jrom 9'(X) to J induced by r. Then the Jollowing conditions 
are equivalent: 

(a) [q(D)J](§.) = 0 V§. E 8(r)\{§'o}, q E ,2'(Xe)' 
(b) p f(;J..) = Pr\r~o (;J..)q(;J..) , q(;J..) E 9'(Xf!) . -

ProoJ. Assume that (a) holds. In this case, since Pf interpolates J, we have 

which, in view of (7.2), shows that P f is orthogonal to E9f!E8(r)\f!0 ,2'(r[) . 
Thus (b) is established by an application of Theorem 6.1 and Corollary 6.3. 
Conversely, assume (b). Then, as in the proof of Theorem 6.1, Pf(D) annihi-
lates each ,2'(rfl) , §. t- §.O , and again (7.2) implies the validity of (a). 0 

Corollary 7.3. Let J: CS ~ C be a smooth Junction, and let P f E g (X) be its 
interpolant obeying the conditions induced by an X-defining set r. Then 

(7.9) Pf(;J..) = L Pr\ro(;J..)Pf!(;J..), 
f!E8(r) -

where Pf!(;J..) E 9'(Xf!) is determined by r and the values 

[q(D)J](§.) , 
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The representation (7.9) is of "Lagrange type". For simple r it becomes 

(7.10) p /~J = L p~\~o (!l.)Pr\ro (;~Jf(fl.), 
t!.E8(r) -

since Irel = sand 2'(re) = {et!.·~}. The polynomials in the sum (7.10) 
constitute the basis of .9'(X) introduced in (6.1) (see also Theorem 4.1). This 
basis depends on the values of the A's in r. 

Using Newton type interpolation formulae, as in [GM], for the simple defin-
ing set r = (X,~), and taking ~ -+ Q, we are able to construct a basis of 
.9'(X) independent of the values ~. (This basis corresponds to the interpo-
lation problem induced by r = (X, Q).) Introducing such a basis for each 
.9'(Xe) in Corollary 6.3 and Theorem 6.1, we obtain a natural basis for g(X) 
corresponding to a given r. 

The construction of this basis is by recursion on s. First we treat the case 
s = 2. 

Let {K1 , ••• , Kn} c ]R2 be a set of nontrivial vectors satisfying (K1 , K2) = 
]R2. Denote Xk = {Kl, ... , Kk}. For the trivial cases k = 1, 2, we choose 
our basis for .9'(Xk) to be 0, {I} respectively. 

Theorem 7.2. For k = 2, ... , n define 
(7.11) 

Zk = {.~E ]R2111.~11 = 1, (x, Kk) =]R2, 3Ki, 1 ~ i ~ k - 1,3 (Ki) = (x)}, 

and denote l~ = I (x) n Xk-11 for X E Zk' Then, for k = 2, ... , n, the polyno-
mials 

(7.12) (X'Kt II (Ki 'K), 
~' (/; (~) 

l:'Oi:'O)-1 

form a basis for .9'(Xk). 

j=2, ... ,k, XEZ), v=O, ... ,I~-l, 

Proof. Denote the set of all polynomials in (7.12) by Vk. It is easy to see 
that Vk c .9'(Xk), k = 2, ... , n. Moreover, for a fixed j the number of 
polynomials in (7.12) equals the number of bases in X) that contain ~) . Hence 

k k 

IVkl = U Vj\Vj-l = U J(X))\J(X)-l) = IJ(Xk)l. 
)=2 )=2 

Thus, in view of Corollary 4.1, our claim will follow as soon as we show that 
the polynomials of Vk are linearly independent. We prove this by induction on 
k 2: 2. For k = 2 the linear independence is trivial. Assume k > 2 and fix 
X E Zk' Choose t/ E]R2 such that X· t/ = 0 and let q(K) = (t/ . K)k-l!.-I . It is 
clear that q(D) a-;;nihilates .9'(Xk- 1) ~nd in particular all th~ polynomials in 
Vk _ 1 • Furthermore, q(D) annihilates each polynomial in (7.12) corresponding 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LOCAL APPROXIMATION AND APPROXIMATION ORDER 401 

to j = k and ~ t ~, since such a polynomial contains no more than k -I;.. - 2 
factors 2fi .2f with 2fi f!. (~). Finally 

v ~ 0, 

with c to, and since (~. 2ft, v = 0, ... , Iz - 1 , are linearly independent, 
one concludes that all the polynomials in l'k are linearly independent too. This 
completes the proof of the inductive step and thereby the proof of Theorem 
7.2. 0 

We now discuss the extension of the construction of Theorem 7.2 to IRs, 
s> 2. 

Let {2fI , ... , 2fn} C IRs be a set of nontrivial vectors, (2fI , ... , 2fs) = IRs . 
As before we choose ~ = {I} ,where ~ is the basis for 

.9(Xi) := .9( {2f1 , ... , 2fi}) . 

To construct the basis Vk to .9(Xk) , k > s, we first introduce the following 
set of hyperplanes in IRs: 

(7.13) Zk={HCIRsldimH=s-l, 2fk f!. H, (HnXk)=H}. 

Each H E Zk can be identified with IRS-I, and hence we assume the existence 
of a basis Vk H to .9(Xk n H), constructed in the previous step. 

Theorem 7.3. The polynomials 

(7.14) j=2, ... ,k, HEZi , qE~,H' 

form a basis for .9 (Xk) . 

The proof of Theorem 7.3 is obtained by a straightforward modification of 
the arguments used in the proof of Theorem 7.2. Indeed, it is easy to see that, 
denoting the set of polynomials in (7.14) by Vk , we have Vk C .9 (Xk) and 
since I~,HI = IJ(HnXk)1 (s 5:. j 5:. k, HE Z) we conclude IVkl = IJ(Xk)l. 
Thus, as before, the proof is reduced to proving the linear independence of 
the elements of (7.14). This is established by induction on k, where now, 
for H E Zk' the differential operator q(D) corresponds to the polynomial 
q(2f) = (17· 2f)k-IH -I ,where 17 E HJ.. and IH = IH n Xkl. 

The recursion in the construction of the basis for .9(X) was mainly for the 
clarity of the presentation. This basis can be described explicitly as follows: Let 
J = {2fi, , ... ,2fi,} be an element of J(X), where jl < j2 < ... < js' With 
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this J we associate a subset YJ of X defined as 
.. . J 

(7.15) YJ := {~J E XI ~J t. (XJ nXJ - )}; 

and finally we set 
(7.16) qJ(~) := II (r . ~) . 

!:EYJ 

The set {qJ}JEJ(X) is identical with the basis introduced in (7.14). 
The basis for .9'(X) described above may sometimes be valuable for the 

understanding of the structure of 2'(X). This point of view is illustrated in 
the following example. 
Example 7.1. Let X consist of the three bivariate vectors {( 1 , 0), (1, 1), 
(0, I)} with respective multiplicities kJ' k2' k3 • From Corollary 4.3 we know 
that 2'(X) C 1lIxl _2 ' We wish to find the dimension of the subspace of 2'(X) 
which consists of homogeneous polynomials of degree IXI - 2. Now, the fact 
that both .9'(X) and 2'(X) are scale-invariant, together with the duality be-
tween these two spaces, ensures us that we can compute this number from the 
corresponding subspace of .9'(X). Since the basis elements described in (7.16) 
(or (7.12)) are homogeneous we only need to count those of the appropriate 
degree. Suppose that the order induced on the set X puts first all the (1, 0) 's, 
then the (1, l)'s and then the rest. To obtain a set YJ in (7.15) of maxi-
mal cardinality, one must choose the last element of X for the basis, together 
with either the last (1, 0) vector or the last (1, 1) vector. This shows that 
the desired dimension is always 2, regardless of the multiplicities of the three 
vectors. 

The same argument shows that if X C ]R2 consist of k different vectors with 
arbitrary multiplicities, the dimension of the largest homogeneous component 
of 2'(X) would be k - 1 . 
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