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Abstract

In this work we derive local gradient and Laplacian estimates of the Aronson–
Bénilan and Li–Yau type for positive solutions of porous medium equations posed
on Riemannian manifolds with a lower Ricci curvature bound. We also prove similar
results for some fast diffusion equations. Inspired by Perelman’s work we discover
some new entropy formulae for these equations.

Dans cet article nous établissons des bornes locales à la Aronson–Bénilan sur
le gradient et le laplacien de la pression, pour des solutions positives d’équations
des milieux poreux sur des variétés riemanniennes à courbure de Ricci minorée.
Nous obtenons des résultats similaires pour certaines équations de diffusion rapide.
Inspirés par le travail de Perelman, nous mettons en évidence de nouvelles formules
d’entropie pour ces équations.
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1 Introduction

The porous medium equation (PME for short)

(1.1) ∂tu = ∆um,

where m > 1, is a nonlinear version of the classical heat equation (case m = 1).
For various values of m > 1 it has arisen in different applications to model
diffusive phenomena like groundwater infiltration (Boussinesq’s model, 1903,
with m = 2), flow of gas in porous media (Leibenzon–Muskat model, m ≥ 2),
heat radiation in plasmas (m > 4), liquid thin films moving under gravity
(m = 4), crowd-avoiding population diffusion (m = 2), and others. The math-
ematical theory started in the 1950’s and got momentum in recent decades
as a nonlinear diffusion problem with interesting geometrical aspects (free
boundaries) and peculiar functional analysis (like generating a contraction
semigroup in L1 and in Wasserstein metrics). We refer to the monograph [V4]
for an account of the rather complete theory concerning existence, unique-
ness, regularity and asymptotic behavior of PME, mostly in the setting of the
Euclidean space and on open subsets of it, as well as the different applications.

The mathematical treatment of PME can be done in a more or less unified
way for all parameters m > 1. Our main estimates below are only valid for
nonnegative solutions, hence we will keep the restriction u ≥ 0. This is rea-
sonable from physical grounds since u represents a density, a concentration,
a temperature or a height in the usual applications. However, re-writing (1.1)
in the more general form ∂tu = ∆(|u|m−1u), solutions with changing sign can
also be considered, but the theory is less advanced. It has been proved that for
given initial data u0 ∈ L1(Rn) with u0 ≥ 0, there exists a unique continuous
weak solution u(x, t) ≥ 0 of the initial value problem of (1.1), with a number
of properties.

Some of the existence, uniqueness and regularity properties hold true for the
so-called fast diffusion equation (FDE), which is equation (1.1) with m ∈
(0, 1). FDE appears in plasma physics and in geometric flows such as the Ricci
flow on surfaces and the Yamabe flow. However, there are marked differences
between PME and FDE that justify a separate treatment of FDE, cf. [DK],
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[V3]. In particular, the qualitative properties of FDE become increasingly
complex for small m, far away from m = 1 (very fast diffusion).

As is typical of nonlinear problems, the mathematical theory of PME and
FDE is based on a priori estimates. In 1979, Aronson and Bénilan obtained a
celebrated second-order differential inequality of the form ([AB])

(1.2)
∑

i

∂

∂xi

(
mum−2 ∂u

∂xi

)
≥ −κ

t
, κ :=

n

n(m− 1) + 2

which applies to all positive smooth solutions of (1.1) defined on the whole
Euclidean space 1 on the condition that m > mc := 1 − 2/n. Note that∑ ∂

∂xi

(
mum−2 ∂u

∂xi

)
= ∆

(
m

m−1
um−1

)
when m 6= 1. Precisely for the heat equa-

tion formula (1.2) takes the form

(1.3) ∆ log u +
n

2t
≥ 0.

obtained by setting m = 1. Estimate (1.2) has turned out to be a key estimate
in the development of the theory of the PME and FDE posed in the whole
Euclidean space. In [AB] the estimate was used to prove the existence of
initial value problem for PME and FDE. However, it has turned out difficult
to find variants of (1.2) that hold for flows posed on open domains, unless in
dimension n = 1.

In 1986 Li and Yau studied a heat type flow on manifolds ([LY]). Among other
things, they proved the following Li–Yau differential Harnack inequality. If
(Mn, g) is a complete Riemannian manifold with nonnegative Ricci curvature
and u : M × [0,∞) → R is a positive solution to the heat equation ∂tu = ∆u,
then there is a lower bound for ∆g log u that has the precise sharp form (1.3).
This extends to the manifold setting the Euclidean case mentioned above. Li
and Yau also proved a local result, which implies (1.3) when u is a global
positive solution and M is a complete Riemannian manifold with nonnegative
Ricci curvature. More precisely, they proved the following theorem.

Theorem 1.1. Let (Mn, g) be a complete Riemannian manifold satisfying
Ricci curvature Ric(M) ≥ −K2 for some K ≥ 0. Let B(O, 2R) be a ball of
radius 2R centered at O. Assume that u(x, t) is a positive smooth solution to
the heat equation on B(O, 2R) × [0,∞). Then for any α > 1 the following
estimate holds on B(O, R)

sup
B(O,R)

( |∇u|2
u2

− α
ut

u

)
≤ Cα2

R2

(
α2

α2 − 1
+ KR

)
+

nα2K

2(α− 1)
+

nα2

2t
.

1 In dimension n = 1 the restriction is m > 0 for general solutions, but we may
keep m > −1 for so-called maximal solutions ([ERV]).
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Here C is a constant only depending on n.

The Li–Yau estimate implies in particular the following classical Aronson-type
upper bound on the heat kernel p(t, x, y): For any ε > 0,

p(t, x, y) ≤ C(ε, n)
e−

r2(x,y)
(4+ε)t

+C1εK2t

V
1
2 (x,

√
t)V

1
2 (y,

√
t)

,

where r(x, y) is the distance between x and y, C1 = C1(n) > 0, V (x, r) is the
volume of the ball B(x, r).

The theory of PME and FDE on manifolds has not been considered until
recently. Demange studied these equations in relation to Sobolev inequalities
[D1,D2,D3,D4]. The extension of the Aronson–Bénilan estimate (1.2) to the
PME on a complete noncompact Riemannian manifold with nonnegative Ricci
curvature was done in the book [V4, Chapter 10].

In this paper we prove an extension of the Aronson–Bénilan estimate to the
PME flow for all m > 1 (Theorem 3.3) and the FDE flow for m ∈ (mc, 1) (The-
orem 4.1) on complete Riemannian manifolds with Ricci curvature bounded
below. The estimates are of local type, hence even on Euclidean space, they
give more information. The estimates look much better when the Ricci curva-
ture is nonnegative.

Recall that for the positive solution u := e−f

(4πt)
n
2
, such that u

1
2 ∈ W 1,2(M), to

the heat equation, it was shown in [N1] that

(1.4)
dW
dt

= −
∫

M
2t

(∣∣∣∣∇i∇jf − 1

2t
gij

∣∣∣∣
2

+ Rijfifj

)
u dµ

where

W(t) =
∫

M

(
t|∇f |2 + f − n

)
u dµ.

Using a basic identity involved in the proof of Theorem 3.3, we also obtain
entropy formulae in the style of Perelman ([P]). This new entropy formula is
the PME/FDE analogue of (1.4).

Organization. In §2 we introduce the main ideas of the regularity question
for the PME in the Euclidean setting. We then pose the problems that have
to be addressed. §3 contains the new local estimate for positive solutions of
the PME on Riemannian manifolds with Ricci curvature bounded below. The
estimate admits a version valid for the FDE if m ∈ (mc, 1), which is developed
in §4. Consequences in the form of Harnack inequalities for PME and FDE
are derived in Sections 3 and 4 respectively. §5 introduces and studies the
entropies.
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2 Regularity of solutions of PME and Aronson–Bénilan estimate

A key idea in the PME theory comes from the observation that we can write
the equation as a diffusion equation for a substance with density u(x, t) ≥ 0:

(2.1) ∂tu = ∇ · (c(u)∇u),

We find a case of density-dependent diffusivity, i. e., c(u) = mum−1, so that c
vanishes at u = 0; this makes the equation degenerate parabolic. It also implies
the property of finite propagation, appearance of free boundaries, and limited
regularity. Typical solutions with free boundaries are only Hölder continuous
in space and time.

The second key idea in the study of the PME is to write the equation as a law
of mass conservation

(2.2) ∂tu = −∇ · (uV),

which identifies the speed as V = −mum−2∇u, and this in turn allows to write
V as a potential flow, V = −∇p. This gives for the potential the expression
p = mum−1/(m−1). In the application to gases in porous media the potential
is just the pressure and the linear speed-pressure relation is known as Darcy’s
law. Historically, the letter v has been used for the pressure instead of p,
and we will keep that tradition. This variable v is crucial in the study of free
boundaries and regularity. Note that the pressure v := mum−1/(m−1) satisfies

(2.3) ∂tv = (m− 1)v∆v + |∇v|2.

Thus, near the level u = 0 we have the formal approximation ∂tv ∼ |∇v|2,
that can be easily identified as movement of the front with speed −∇v. It also
means that the equation is approximately first-order so that we expect the
Lipschitz continuity of v near the free boundary.

Now we turn to regularity estimates for PME. The question of Lipschitz reg-
ularity of the pressure was solved in one space dimension, n = 1, by Aronson
who proved a local estimate for vx using the Bernstein technique ([Ar]): a
bounded solution defined in a cylinder in space-time Q = [a, b] × [0, T ] has a
uniform bound for |vx| inside the domain, i. e., in Q′ = [a′, b′] × [T ′, T ], with
a < a′ < b′ < b, 0 < T ′ < T . Bénilan proved that in that situation vt is locally
bounded in a similar way ([Be]).

The extension of such results to dimension n > 1 fails, even for globally defined
solutions. Indeed, it was shown in 1993 that the so-called focusing solutions
are not Lipschitz continuous at the focusing point ([AG]), though wide classes
of solutions can be Lipschitz continuous under special conditions ([CVW]).
And other kinds of pointwise gradient estimates also failed. The problem of
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minimal regularity was reduced to proving Hölder regularity, and this was
done around 1980 by Caffarelli and Friedman ([CF1], [CF2]). The proof of
these results and the whole theory of the porous medium equation in several
space dimensions was greatly affected by the existence of special one-sided
estimates that we discuss next.

The Aronson–Bénilan estimate (1.2) can be written as

(2.4) ∆v ≥ −κ

t
, when m > mc,

where we define v = log u for m = 1. Note that with this definition v ≤ 0 for
0 < m < 1 so care must be taken in manipulating inequalities when dealing
with fast diffusion. Using the pressure equation (2.3), it immediately implies
that for PME with m > 1

(2.5) vt ≥ |∇v|2 − (m− 1)κ

t
v.

so in particular

(2.6) vt ≥ −(m− 1)κv/t, and ut ≥ −κu/t.

Other forms of parabolic Harnack inequalities follow from such estimates, and
lead to Hölder regularity statements easily. These estimates have been used
for all kinds of purposes in the theory, like existence of solutions in optimal
classes of data, or asymptotic behavior, cf. [V4].

A striking property of the Aronson–Bénilan estimate is the fact that the con-
stant κ is optimal when m > mc. Indeed, the Barenblatt (or Barenblatt–
Pattle) solutions, in terms of the pressure, are given by v = VC , where

(2.7) VC(x, t) =
(C t2κ/n − κx2)+

2n t
, C > 0.

Equality holds in (2.4) for v = VC on the set {VC > 0}. When m = 1 the
estimates (1.2) is optimal since equality holds in (1.3) for the Gaussian kernel.
In some sense the Barenblatt solutions play for the PME a role that the
Gaussian kernel plays for the heat equation.

Many attempts have been made to obtain an extension of the estimate or a
suitable variant for problems where the PME or the FDE are not posed on
the whole Euclidean space: this can take the form of boundary value problems
in bounded domains of Rd, the PME posed on a Riemannian manifold, or
even better, a local estimate, valid in any one of the above two settings. A
straight extension of the global estimate to boundary value problems in several
dimensions has not been done. (In the case of homogeneous Dirichlet problems
a literal extension is even false, in view of explicit solutions.) But there is a
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hope for local estimates. In one space dimension, the local estimate of vxx,
hence of vt, from below was obtained in [V1], and the bound has a correction
term involving the distance to the boundary. But the method fails for n > 1
because it uses the previous knowledge of the local bound of vx. A modified
version of the local estimate will be the first objective of the present paper.

Another research direction concerns the extension of Aronson–Bénilan esti-
mate to other equations, like the p-Laplacian equation or reaction-diffusion
equations. Some work have been done, for example, in [EV] for the p-Laplacian
heat equation on Euclidean space, and recently in [KN] for the p-Lapacian heat
equation and (local and global) doubly nonlinear equation on manifolds.

3 Local Aronson–Bénilan estimates for the PME

We proceed now with the new estimates. Let u ≥ 0 be a solution to the
Porous Medium Equation (1.1), m > 1, posed on an n-dimensional complete
Riemannian manifold (Mn, g). We will assume at least a local bound from
below for the Ricci tensor. The initial and boundary-value problems for this
equation are usually formulated in terms of weak solutions, or better contin-
uous weak solutions [V4]. Our local estimate is more closely related to the
result of Li–Yau mentioned in the introduction, than that of say [SZ].

We will work with the pressure v, which satisfies equation (2.3). We see that
∇v = mum−2∇u, and in the case m < 2 this equation only makes sense over
u > 0. In order to avoid this and other regularity difficulties in our computa-
tions we will assume that the solutions are positive and smooth everywhere.
The smoothness property comes from local boundedness and positivity of u
in view of standard non-degenerate parabolic theory. Application of our re-
sults for general weak solutions proceeds in a standard way by approximating,
and using the maximum principle and the local compactness of the classes of
solutions involved. We refrain from more details on this issue, cf. [D1,D4,V4].

3.1 Assuming that u > 0 we introduce the quantities y = |∇v|2/v, and z =
vt/v and the differential operator

L :=
∂

∂t
− (m− 1)v∆.

We also introduce the differential expression Fα := αz − y. Using equation
(2.3) we can write the equivalent formulae

(3.1) Fα = (m− 1)∆v + (α− 1)
vt

v
= α(m− 1)∆v + (α− 1)

|∇v|2
v

.
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In particular, F1 = (m − 1)∆v. Though our main goal is to estimate F1, we
will use the localization technique of Li and Yau to estimate Fα for α > 1.
One reason is that sometimes the estimate of F1 is not feasible, for instance,
when we want to obtain local estimates.

The goal of this subsection is to calculate a formula for L(Fα). The following
formula is helpful in the calculation:

(3.2) L
(

f

g

)
=

1

g
L(f)− f

g2
L(g) + 2(m− 1)v

〈
∇

(
f

g

)
,∇ log g

〉
.

The Bochner-type formulae in Lemma 3.1 below is established by direct cal-
culation. We shall write vi (instead of v,i) to denote partial derivatives, and
vij to denote the Hessian tensor H(v)ij of v, while v2

ij denotes the standard
squared norm of the Hessian (with implicit summation over indices); Rij is
the Ricci tensor and Rijvivj = Ric(∇v,∇v).

Lemma 3.1. Let u be a positive smooth solution to (1.1) on manifold (Mn, g)
for some m > 0, and let v := m

m−1
um−1 be the pressure. 2 Then we have

L(vt) = 2〈∇v,∇vt〉+ F1vt,(3.3)

L(|∇v|2) = 2|∇v|2F1 + 2〈∇(|∇v|2),∇v〉
−2(m− 1)vv2

ij − 2(m− 1)vRijvivj.(3.4)

The following proposition is a generalization of the computation carried out
in Proposition 11.12 of [V4].

Proposition 3.2. Let u and v be as in Lemma 3.1. Then

L(Fα) = 2(m− 1)v2
ij + 2(m− 1)Rijvivj + 2m〈∇Fα,∇v〉

+(α− 1)
(

vt

v

)2

+ F 2
1 .(3.5)

Proof. Using (3.2) and Lemma 3.1 we have

2 Recall that when m = 1, we interpret v = log u.
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L
( |∇v|2

v

)
=

1

v

(
2|∇v|2F1 + 2〈∇(|∇v|2),∇v〉

)

−2(m− 1)v2
ij − 2(m− 1)Rijvivj − |∇v|4

v2

+2(m− 1)v

〈
∇

( |∇v|2
v

)
,∇ log v

〉
;

L
(

vt

v

)
=

1

v
(2〈∇v,∇vt〉+ F1vt)

−vt

v

|∇v|2
v

+ 2(m− 1)v
〈
∇

(
vt

v

)
,∇ log v

〉
.

Putting together gives

L(Fα) = 2(m− 1)v〈∇Fα,∇ log v〉+ 2(m− 1)v2
ij + 2(m− 1)Rijvivj

+α
vt

v
F1 − 2

|∇v|2
v

F1 − α
vt

v

|∇v|2
v

+
|∇v|4

v2

+
2

v
〈∇v, α∇vt −∇(|∇v|2)〉.

Using
〈∇v,∇(vFα)〉 = v〈∇v,∇Fα〉+ Fα|∇v|2,

we can rewrite the last term in the above formula for L(Fα) as

2

v
〈∇v, α∇vt −∇(|∇v|2)〉 = 2〈∇v,∇Fα〉+ 2Fα

|∇v|2
v

.

Hence we get

L(Fα) = 2mv〈∇Fα,∇ log v〉+ 2(m− 1)v2
ij + 2(m− 1)Rijvivj

+α
vt

v
F1 − 2

|∇v|2
v

F1 − α
vt

v

|∇v|2
v

+
|∇v|4

v2
+ 2Fα

|∇v|2
v

.

Note that the last five terms simplify, as

αz(z − y)− 2y(z − y)− αzy + y2 + 2(αz − y)y = (α− 1)z2 + (z − y)2.

This completes the proof of the proposition. ¤

When α = 1, (3.5) becomes the following formula in [V4]:

(3.6) LF1 = 2(m− 1)v2
ij + 2(m− 1)Rijvivj + 2m〈∇F1,∇v〉+ F 2

1 .

From this, for positive smooth solution u to (1.1) with m > 1 on a closed
Riemannian manifold of dimension n with nonnegative Ricci curvature, the
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following estimate follows easily from maximum principle (see Proposition
11.12 of [V4]):

(3.7) F1 ≥ −(m− 1)κ

t
, κ :=

n

n(m− 1) + 2
.

3.2 Now we prove a new local estimate for PME on complete manifolds. We
employ the localization technique of Li and Yau ([LY], see also [KN]). Denote
by B(O, R) the ball of radius R > 0 and centered O in (Mn, g), and denote
by r(x) the distance function from O to x. The following constant will appear
repeatedly in our estimates:

(3.8) a =
n(m− 1)

n(m− 1) + 2
= (m− 1)κ.

Theorem 3.3. Let u be a positive smooth solution to PME (1.1), m > 1,
on the cylinder Q := B(O, R) × [0, T ]. Let v be the pressure and let vR,T

max :=
maxB(O,R)×[0,T ] v.

(1) Assume that Ricci curvature Ric ≥ 0 on B(O, R). Then, for any α > 1
we have

(3.9)
|∇v|2

v
− α

vt

v
≤ aα2

(
1

t
+

vR,T
max

R2
(C1 + C2(α))

)

on Q′ := B(O, R/2) × [0, T ]. Here a is defined by (3.8) and the positive con-
stants C1 and C2(α) depend also on m and n.

(2) Assume that Ric ≥ −(n − 1)K2 on B(O, R) for some K ≥ 0. Then, for
any α > 1, we have, on Q′,
(3.10)
|∇v|2

v
− α

vt

v
≤ aα2

(
1

t
+ C3(α)K2vR,T

max

)
+ aα2vR,T

max

R2
(C2(α) + C ′

1(KR)) .

Here, a and C2(α) are as before and the positive constants C3(α) and C ′
1(KR)

depend also on m and n.

Acceptable values of the constants are:

C1 := 40(m− 1)(n + 2), C2(α) :=
200aα2m2

α− 1

C3(α) :=
(m− 1)(n− 1)

α− 1
, C ′

1(KR) := 40(m− 1)[3 + (n− 1)(1 + KR)].

Note that C ′
1(0) = C1.
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Proof. (i) We start with an auxiliary calculation about suitable cutoff func-
tions. We take a cut-off function η(x) of the form η(x) := θ (r(x)/R), where
θ(t) is a smooth monotone function satisfying the following conditions θ(t) ≡ 1
for 0 ≤ t ≤ 1

2
, θ(t) ≡ 0 for t ≥ 1, (θ′)2/θ ≤ 40, and θ′′ ≥ −40θ ≥ −40. (40

is just a convenient number, it could be optimized.) Direct calculation shows
that on B(O, R)

(3.11)
|∇η|2

η
≤ 40

R2
,

and also

(3.12) ∆η ≥ −40((n− 1)(1 + KR) + 1)

R2
, if Ric ≥ −(n− 1)K2,

with the help of the Laplacian comparison theorem. In particular ∆η ≥
−40nR−2 when Ric ≥ 0. We give some details about deriving (3.12). Note
that

∆η =
θ′′ |∇r|2

R2
+

θ′∆r

R
.

By the Laplacian comparison theorem when Ric ≥ −(n− 1)K2

∆r ≤ (n− 1)K coth(Kr).

Since coth is decreasing, and θ′ = 0 when r(x) < 1
2
R, this implies

∆η ≥ −40

R2
−
√

40(n− 1)

R
K coth(

1

2
KR)

where we have used |θ′| ≤ √
40. Using the inequality K coth(KR) ≤ 1

R
(1 +

KR), one has

∆η ≥ −40

R2
− 2

√
40(n− 1)

R2
(1 + KR).

(ii) To obtain the desired estimates, we apply the operator L to the func-
tion tη(−Fα), then apply the maximum principle argument. As a first easy
case, if tη(−Fα) ≤ 0 on Q, then (3.10) follows. So in the sequel we assume
max(x,t)∈Q tη(−Fα) > 0. Let (x0, t0) be a point where tη(−Fα) achieves a pos-
itive maximum. Clearly we have t0 > 0, and at (x0, t0)

∇Fα = −∇η

η
Fα, L(tη(−Fα)) ≥ 0.

All further calculations in this proof will be at (x0, t0). Let C4 := 40((n −
1)(1 + KR) + 1), ỹ := ηy = η |∇v|2

v
and z̃ := ηz = η vt

v
. Combining (3.5) with

the above estimates of η, we see that when Ric ≥ −(n− 1)K2 on B(O, R),
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0≤ ηL(tη(−Fα))

≤−tη2
(
2(m− 1)v2

ij + 2(m− 1)Rijvivj

)
+ 2mtη2〈∇(−Fα),∇v〉 − (α− 1)tη2z2

−tη2F 2
1 + 2t(m− 1)vη

|∇η|2
η

(−Fα) +
C4

R2
(m− 1)tvη(−Fα) + η2(−Fα)

≤−n(m− 1) + 2

n(m− 1)
· t(ỹ − z̃)2 + 2(n− 1)(m− 1)K2tỹηv + 2mt(ỹ − αz̃)|∇η||∇v|

−(α− 1)tz̃2 + (ỹ − αz̃)

(
(m− 1)

(80 + C4)

R2
· tv + 1

)
.

In the last inequality above we have used v2
ij ≥ (∆v)2

n
and (m−1)∆v = z−y =

F1. Now write C5 := 80 + C4 and

(ỹ − z̃)2 =
1

α2
(ỹ − αz̃)2 + 2

α− 1

α2
(ỹ − αz̃)ỹ +

(
α− 1

α

)2

ỹ2.

Also note that

2mt(ỹ − αz̃)|∇η| · |∇v| ≤ 40

R
mt(ỹ − αz̃)ỹ1/2v1/2.

Putting these together and assuming Ric ≥ −(n−1)K2 on B(O, R), we deduce

0 ≤ − t

aα2
(ỹ − αz̃)2 + t(ỹ − αz̃)

(
−2(α− 1)

aα2
ỹ +

40m

R
· ỹ1/2v1/2 + (m− 1)

C5

R2
v

)

+ (ỹ − αz̃)− 1

a

(
α− 1

α

)2

tỹ2 + 2(m− 1)(n− 1)K2tỹvη − (α− 1)tz̃2.

(3.13)

(1) When K = 0, using −Ax2 + Bx ≤ B2

4A
, it follows from (3.13)

(3.14) 0 ≤ − t

aα2
(ỹ−αz̃)2 + (ỹ−αz̃)

(
tv

R2

(
200aα2m2

α− 1
+ (m− 1)C5

)
+ 1

)
.

This gives the first estimate, (3.9).

(2) When K 6= 0, in (3.13) we handle the (ỹ − αz̃)-term as in (3.14) with
C6 := 200aα2m2

α−1
+ (m− 1)C5, and use

−1

a

(
α− 1

α

)2

tỹ2 + 2(m− 1)(n− 1)tK2ỹvη ≤ C7tv
2 ,

where

C7 :=
(m− 1)2(n− 1)2aα2K4

(α− 1)2
.

12



Then the above quadratic inequality (3.13) on (ỹ − αz̃) reduces to

0 ≤ − t

aα2
(ỹ − αz̃)2 +

(
C6

tv

R2
+ 1

)
(ỹ − αz̃) + C7tv

2.

This implies

ỹ − αz̃≤ aα2

2


C6

v

R2
+

1

t
+

√(
C6

v

R2
+

1

t

)2

+ 4
C7

aα2
v2




≤ aα2

(
C6

v

R2
+

1

t
+

(m− 1)(n− 1)K2

α− 1
v

)
.

The claimed result follows easily. ¤

Using the local estimate one can generalize Proposition 11.12 of [V4] to non-
compact complete Riemannian manifolds with nonnegative Ricci curvature.

Corollary 3.4. Let u(x, t), t ∈ [0, T ], be a smooth positive solution of the
PME (1.1) with m > 1 on a complete manifold (Mn, g).

(1) If (M, g) has nonnegative Ricci curvature, then (3.7) holds for t ∈ (0, T ],
provided that v(x, t) = o(r2(x)) uniformly in t ∈ (0, T ].

(2) If the Ricci curvature Ric ≥ −(n − 1)K2 on M for some K ≥ 0 and
vmax := maxM×[0,T ] v < ∞, then for any α > 1

(3.15) α
vt

v
− |∇v|2

v
≥ −(m− 1)κα2

(
1

t
+

(m− 1)(n− 1)

α− 1
K2vmax

)
.

Proof. (1) Taking R →∞ and then α → 1 in (3.9) we have the result.

(2) Taking R →∞ in (3.10) we have the result. ¤

Integrating along minimizing geodesic paths of the local estimate, one can
obtain the following Harnack inequality. Here we just state the most general
form. When K = 0, if we assume vmin := minM×[0,T ] v > 0, the estimate
simplifies by taking α → 1.

Corollary 3.5. Same notation and assumptions as in Theorem 3.3. Denote
v

R/2,T
min to be minB(O, R

2
)×[0,T ] v. Assume that Ric ≥ −(n− 1)K2 on B(O, R) for

some K ≥ 0. Then for any x1, x2 ∈ B(O, R
6
) and 0 ≤ t1 < t2 ≤ T , and any

13



α > 1

v(x2, t2)

v(x1, t1)

≥
(

t1
t2

)aα

exp

(
− αd2(x1, x2)

4v
R/2,T
min (t2 − t1)

− aα(t2 − t1)v
R,T
max

(
C3(α)K2 +

C2(α) + C ′
1(KR)

R2

))
.

where d(x1, x2) is the distance and the constants C2(α), C3(α) and C ′
1(KP )

are as in Theorem 3.3.

Proof. For the minimizing geodesic γ(t) joining (x1, t1) and (x2, t2) we have

log

(
v(x2, t2)

v(x1, t1)

)
=

∫ t2

t1

(
vt

v
+ 〈∇v

v
, γ̇〉

)
ds

≥
∫ t2

t1

(
vt

v
− |∇v|2

αv
− α|γ̇|2

4v

)
ds.

The result follows from the observation that γ(s) lies completely inside B(O, R
2
)

and the estimate in Theorem 3.3. ¤

A different way manipulating the integration on geodesic path can have the
following consequence of Corollary 3.4. This estimates are the analogue of the
classical one for the positive solutions to the heat equation (in viewing for the
heat equation v = log u).

Corollary 3.6. Same notation and assumptions as in Corollary 3.4. We fur-
ther assume that vmax := maxM×[0,T ] v < ∞. Let x1, x2 ∈ M and 0 < t1 <
t2 ≤ T .

(1) If (M, g) has nonnegative Ricci curvature, then

v(x2, t2)− v(x1, t1) ≥ −(m− 1)κvmax log
t2
t1
− d2(x1, x2)

4(t2 − t1)
.

(2) If Ricci curvature Ric ≥ −(n− 1)K2 for some K ≥ 0, then for any α > 1

v(x2, t2)− v(x1, t1)

≥− (m− 1)καvmax log
t2
t1
− (m− 1)2(n− 1)κα

α− 1
K2v2

max(t2 − t1)− αd2(x1, x2)

4(t2 − t1)
.

Proof. We only prove (2). Let γ(t) to be a constant speed geodesic with γ(t1) =

14



x1 and γ(t2) = x2. We compute using (3.15)

v(x2, t2)− v(x1, t1) ≥
∫ t2

t1
vt + 〈∇v, γ̇〉 dt

≥
∫ t2

t1

(
1

α
|∇v|2 − (m− 1)κα

(
1

t
+

(m− 1)(n− 1)

α− 1
K2vmax

)
v − 1

α
|∇v|2 − α

4
|γ̇|2

)
dt

≥ −(m− 1)καvmax log
t2
t1
− (m− 1)2(n− 1)κα

α− 1
K2v2

max(t2 − t1)− αd2(x1, x2)

4(t2 − t1)
.

¤

Theorem 3.3 can be used to give a local lower estimate for the Laplacian of
vβ for β > 1.

Corollary 3.7. Same assumptions and same notation as in Theorem 3.3. Let
1 < β < m/(m− 1) fixed. Define α by α−1

α
= (m− 1)(β − 1).

(1) Assume Ric ≥ 0 on B(O, R), then we have on Q′

∆vβ ≥ −καβ
(
vR,T

max

)β−1
(

1

t
+

vR,T
max

R2
(C1 + C2(α))

)

(2) Assume that Ric ≥ −(n − 1)K2 for some K ≥ 0 on B(O, R). Then we
have on Q′

∆vβ ≥−καβ
(
vR,T

max

)β−1
(

1

t
+ C3(α)K2vR,T

max

)

−καβ

(
vR,T

max

)β

R2
(C2(α) + C ′

1(KR)) .

where the constants C2(α), C3(α) and C ′
1(KP ) are as in Theorem 3.3.

Proof. Clearly α > 1. We compute

∆vβ = βvβ−1

(
∆v + (β − 1)

|∇v|2
v

)

=
β

α(m− 1)
· vβ−1

(
α(m− 1)∆v + (α− 1)

|∇v2|
v

)

=
β

α(m− 1)
· vβ−1Fα.

The corollary follows easily from Theorem 3.3. ¤
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4 Local Aronson–Bénilan estimates for FDE

The fast diffusion equation, FDE, is equation (1.1) with m ∈ (0, 1). However,
as we have seen, Aronson–Bénilan estimate for FDE on Euclidean space holds
only in the range 1 > m > mc := 1 − 2

n
, where the relevant constant κ =

n/(n(m − 1) + 2) is still a positive number. This is also the range where the
Barenblatt solutions can be written and play similar role as they play in the
theory of PME. Hence the Aronson–Bénilan estimate holds on the range as
it would be expected. There is another point needs to be made. Since m < 1,
the pressure v = m

m−1
um−1 is negative and moreover it is an inverse power of

u. But (m − 1)v is still positive, hence, as shown, the inequalities (2.5) and
(2.6) hold for all m > mc.

4.1 Let u be a smooth positive solution to FDE (1.1) with m ∈ (mc, 1) on a
closed Riemannian manifold (Mn, g) with nonnegative Ricci curvature. From
(3.6), and since m− 1 < 0 we have

L(F1)− 2m〈∇F1,∇v〉 ≤ F 2
1 − 2(1−m)v2

ij ≤ −
(

2

(1−m)n
− 1

)
F 2

1 .

The following follows easily from maximum principle

(4.1) F1 ≤ −(m− 1)κ

t
, i e., ∆v ≥ −κ

t
.

Note the direction in the F1-inequality differs from (3.7) because of m < 1; on
the other side, the ∆v-inequality is the same as in the case m > 1.

4.2 Now we prove a new local estimate for FDE with m ∈ (mc, 1) on complete
manifolds. In this subsection we employ the same notation as in §3.2 and use
a similar localization technique as that of Li and Yau. It turns out that this
case technically is slightly harder than the previous case. For example we have
to make use of the term (α− 1)tz̃2 (which was simply dropped before). As we
have seen from §4.1 for m ∈ (mc, 1) we should estimate Fα from the above
(instead of from the below). For the local estimate, another difference is that
for FDE we will estimate Fα for α < 1 (instead of α > 1).

Let (x0, t0) be a point where function tηFα achieves the positive maximum.
Clearly we have t0 > 0 and at (x0, t0)

∇Fα = −∇η

η
Fα, L(tηFα) ≥ 0.

All further calculation in this proof will be at (x0, t0). Combining (3.5) with
the estimates of η, we have that when Ric ≥ −(n− 1)K2 on B(O, R),
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0≤ ηL(tηFα)

≤ tη2
(
2(m− 1)v2

ij + 2(m− 1)Rijvivj

)
+ 2mtη2〈∇Fα,∇v〉+ (α− 1)tη2z2

+tη2F 2
1 + 2t(m− 1)vη

|∇η|2
η

Fα +
C4

R2
(m− 1)tvηFα + η2Fα

≤ n(m− 1) + 2

n(m− 1)
t(ỹ − z̃)2 − 2(n− 1)(m− 1)K2tỹηv + 2mt(αz̃ − ỹ)|∇η||∇v|

+(αz̃ − ỹ)

(
(m− 1)

(80 + C4)

R2
· tv + 1

)
− (1− α)tz̃2.

Noticing that now we have (m−1)v > 0 and a < 0 for m ∈ (mc, 1). Proceeding
as in the proof of (3.13) we then have that when Ric ≥ −(n−1)K2 on B(O, R),

0 ≤− t

−aα2
(αz̃ − ỹ)2 + t(αz̃ − ỹ)

(
2(1− α)

−aα2
(−ỹ) +

40m

R
· (−ỹ)1/2(−v)1/2 + (m− 1)

C5

R2
v

)

+ (αz̃ − ỹ)− t

−a

(
1− α

α

)2

ỹ2 − 2(m− 1)(n− 1)K2tỹηv − (1− α)tz̃2.

Here we can not do what was done in the proof of (3.13) since 2(1−α)
−aα2 the coef-

ficient in front of −ỹ (> 0) is positive instead of being negative. For simplicity
let X = αz̃ − ỹ > 0, Y = −ỹ > 0, β = 1 − α > 0, γ = −a > 0. By writing
z̃2 = 1

α2 (αz̃ − ỹ + ỹ)2, and collecting terms we then have

0≤− t

γα2

(
(1 + γβ)X2 − 2β(1 + γ)XY + β(β + γ)Y 2

)
+ 2(n− 1)[(m− 1)v]K2tY

+
40mt

R
XY

1
2 (−v)

1
2 +

tC5

R2
X [(m− 1)v] + X.

Let v̄R,T
max := maxB(O,R)×[0,T ](−v). Using that for any ε1, ε2 > 0

40mt

R
XY

1
2 (−v)

1
2 ≤ 2βε1

γα2
tXY +

tγα2

2ε1β

1600m2

R2
v̄R,T

maxX,

and

2(n− 1)[(m− 1)v]K2tY ≤ γα2 (n− 1)2(1−m)2(v̄R,T
max)

2K4

ε2
2β

2
t +

ε2
2β

2

γα2
Y 2t,

we get

0 ≤− t

γα2

(
(1 + γβ)X2 − 2β(1 + γ + ε1)XY + β(β + γ − βε2

2)Y
2
)

+ X

+
tγα2

2ε1β

1600m2

R2
v̄R,T

maxX +
tC5

R2
X [(m− 1)v] + γα2 (n− 1)2(1−m)2(vR,T

max)
2K4

β2ε2
2

t.
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Choosing ε2 small such that

(4.2) β + γ − βε2
2 > 0,

then

−2β(1 + γ + ε1)XY + β(β + γ − βε2
2)Y

2 ≥ −β
(1 + γ + ε1)

2

β + γ − βε2
2

X2

hence we have

0 ≤− t

γα2

(
1 + γβ − β

(1 + γ + ε1)
2

β + γ − βε2
2

)
X2 + X +

tγα2

2ε1β

1600m2

R2
v̄R,T

maxX

+
tC5

R2
X

(
(1−m)v̄R,T

max

)
+ γα2 (n− 1)2(1−m)2(v̄R,T

max)
2K4

β2ε2
2

t

Now for any β ∈ (0, 1) we can choose small ε1 > 0 and ε2 > 0 such that both
(4.2) and

(4.3) 1 + γβ − β
(1 + γ + ε1)

2

β + γ − βε2
2

> 0

hold. For example, any (ε1, ε2) ∈
(
0, γα2

6(1+γ)

]
×

(
0,

√
γα2

3(1+γ)

]
works. Repeating

the argument in the proof of Theorem 3.3 after (3.13), we have proved the
following result for FDE. (The constant a is defined in (3.8).)

Theorem 4.1. Let B(O, R) be a ball in a complete Riemannian manifold
(Mn, g), and let u be a positive smooth solution to FDE (1.1) with m ∈ (mc, 1)
on the cylinder Q = B(O, R) × [0, T ]. Let v be the pressure and let v̄R,T

max =
maxB(O,R)×[0,T ](−v).

(1) Assume that Ric ≥ 0 on B(O, R). Then for any 0 < α < 1, ε1 > 0
satisfying

(4.4) C̄1(a, α, ε1) := 1 + (−a)(1− α)− (1− α)
(1− a + ε1)

2

(1− α)− a
> 0,

we have

(4.5)
|∇v|2

v
− α

vt

v
≥ − (−a)α2

C̄1(a, α, ε1)

(
1

t
+

v̄R,T
max

R2

(
C̄2(a, α, ε1) + C̄3

))

on Q′ = B(O, R/2)× [0, T ] where

C̄2(a, α, ε1) := 1600m2 (−a)α2

2ε1(1− α)
> 0,

C̄3 := 40(1−m)(n + 2) > 0.
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(2) Assume that Ric ≥ −(n − 1)K2 on B(O, R) for some K ≥ 0. Then for
any 0 < α < 1 and ε1 > 0, ε2 > 0 satisfying (4.2) and (4.3) we have

|∇v|2
v

− α
vt

v
≥− (−a)α2

C̄ ′
1

(
1

t
+ C̄4(α, ε2)

√
C̄ ′

1K
2v̄R,T

max

)

− (−a)α2

C̄ ′
1

v̄R,T
max

R2

(
C̄2(a, α, ε1) + C̄5(KR)

)
(4.6)

on Q′. Here

C̄ ′
1 := C̄ ′

1(a, α, ε1, ε2) := 1 + (−a)(1− α)− (1− α)
(1− a + ε1)

2

(1− α)− a− (1− α)ε2
2

C̄4(α, ε2) :=
(n− 1)(1−m)

(1− α)ε2

C̄5(KR) := 40(1−m)[3 + (n− 1)(1 + KR)].

Notice that C̄1(a, α, ε1) → 1 as α → 1. similar to the proof of Corollary 3.4,
by taking R →∞ and then α → 1 Theorem 4.1 has the following consequence
for global solution of FDE.

Corollary 4.2. Let u(x, t), t ∈ [0, T ], be a smooth positive solution of the
FDE (1.1) with m ∈ (mc, 1) on a complete manifold (Mn, g).

(1) If (M, g) has nonnegative Ricci curvature, then

(4.7)
|∇v|2

v
− vt

v
≥ −(1−m)κ

t

holds for t ∈ (0, T ], provided that |v|(x, t) = o(r2(x)) uniformly in t ∈ (0, T ].

(2) If Ricci curvature Ric ≥ −(n− 1)K2 on M for some K ≥ 0 and v̄max :=
maxM×[0,T ](−v) < ∞, then for any α ∈ (0, 1) and ε2 > 0 satisfying

C̄ ′′
1 := C̄ ′′

1 (a, α, ε2) := 1 + (−a)(1− α)− (1− α)
(1− a)2

(1− α)− a− (1− α)ε2
2

> 0,

we have

|∇v|2
v

− α
vt

v
≥ −(1−m)

κα2

C̄ ′′
1

(
1

t
+

(1−m)(n− 1)

(1− α)ε2

√
C̄ ′′

1 K2v̄max

)
.

Remark 4.3. Demange [D1] found the exact “fundamental solution” for the
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fast diffusion equation ∂tu = ∆u1−1/n on the sphere Sn, with initial value δx0 :

u(t, x) =

(
sinh((n− 1)t)

cosh((n− 1)t)− 〈x0, x〉

)n

,

where 〈x0, x〉 stands for the scalar product of x0 and x in Rn+1, or equivalently
for cos(d(x0, x)). By direct computation, this solution satisfies

|∇v|2
v

− vt

v
= −(n− 1) 〈x0, x〉

sinh((n− 1)t)
(4.8)

≥ −min

(
(cos d(x0, x))+

t
,

(n− 1)

sinh((n− 1)t)

)

≥ −1

t
,

and these inequalities are obviously sharp as t → 0 and x0 → x. The right-
hand side of (4.7) also reduces to −1/t since κ(1 −m) = 1 for m = 1 − 1/n.
In this sense Corollary 4.2 remains sharp even in strictly positive curvature.

Integrating (4.6) along minimal geodesic, we obtain

Corollary 4.4. Same notation and assumptions as in Theorem 4.1. Denote
v̄

R/2,T
min to be minB(O, R

2
)×[0,T ](−v). Assume that Ric ≥ −(n− 1)K2 on B(O, R)

for some K ≥ 0. Then for any x1, x2 ∈ B(O, R
6
) and 0 ≤ t1 < t2 ≤ T , and

any α > 1

−v(x2, t2)

−v(x1, t1)
≤

(
t2
t1

) (−a)α

C̄′
1 · exp

(
αd2(x1, x2)

4v̄
R/2,T
min (t2 − t1)

)

· exp

(
(−a)α

C̄ ′
1

v̄R,T
max

(
C̄4(α, ε2)

√
C̄ ′

1K
2 +

C̄2(a, α, ε1) + C̄5(KR)

R2

)
(t2 − t1)

)
.

where the constants C̄ ′
1, C̄2(a, α, ε1), C̄4(α, ε2) and C̄5(KP ) are defined as in

Theorem 4.1.

Proof. For the minimizing geodesic γ(t) joining (x1, t1) and (x2, t2) we have

log

(−v(x2, t2)

−v(x1, t1)

)
=

∫ t2

t1

(
vt

v
+ 〈∇v

v
, γ̇〉

)
ds

≤
∫ t2

t1

(
vt

v
+
|∇v|2
α(−v)

+
α|γ̇|2
4(−v)

)
ds.

The result follows from the observation that γ(s) lies completely inside B(O, R
2
)

and the estimate in Theorem 4.1. ¤

An integral version of Corollary 4.2 is
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Corollary 4.5. Same notation and assumptions as in Corollary 4.2. We fur-
ther assume that v̄max < ∞. Let x1, x2 ∈ M and 0 < t1 < t2 ≤ T .

(1) If (M, g) has nonnegative Ricci curvature, then

v(x2, t2)− v(x1, t1) ≥ −(1−m)κv̄max log
t2
t1
− d2(x1, x2)

4(t2 − t1)
.

(2) If Ricci curvature Ric ≥ −(n − 1)K2 for some K ≥ 0, then for any
α ∈ (0, 1)

v(x2, t2)− v(x1, t1)

≥− (1−m)
κα

C̄ ′′
1

v̄max log
t2
t1
− (m− 1)2(n− 1)κα

(1− α)
√

C̄ ′′
1 ε2

K2v̄2
max(t2 − t1)− αd2(x1, x2)

4(t2 − t1)
.

Corollary 4.6. Same assumption and same notation as in Theorem 4.1. Let
β̄ ∈ (1,∞) fixed. Define α ∈ (0, 1) by α−1

α
= (m− 1)(β̄ − 1).

(1) Assume Ric ≥ 0 on B(O, R), then we have on Q′

∆(−v)β̄ ≤ καβ̄

C̄1(a, α, ε1)

(
v̄R,T

max

)β̄−1
(

1

t
+

v̄R,T
max

R2

(
C̄2(a, α, ε1) + C̄3

))

(2) Assume that Ric ≥ −(n − 1)K2 on B(O, R) for some K ≥ 0. Then we
have on Q′

∆(−v)β̄ ≤καβ̄

C̄ ′
1

(
v̄R,T

max

)β̄−1
(

1

t
+ C̄4(α, ε2)

√
C̄ ′

1K
2v̄R,T

max

)

+
καβ̄

C̄ ′
1

(
v̄R,T

max

)β̄

R2

(
C̄2(a, α, ε1) + C̄5(KR)

)
.

5 Entropy formulae

In this section we show that Perelman’s entropy formula [P] (see also [N1,N2])
can be adapted to the porous medium equation, with the help of the computa-
tion in §3. We also establish similar results for the fast diffusion equation, but
the monotonicity of the entropy holds only in the regime 1− 1

n
< m < 1 (it is

well-known that the “thermodynamical” properties of the fast diffusion equa-
tion change below the critical exponent 1− 1/n, see e.g. [O] or [Vi2, Chapter
24]).
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Assume that M is a compact manifold. First we derive some auxiliary integral
formulae.

Lemma 5.1. Let u be a positive smooth solution of (1.1) with m > 0, and let
v, F1 be as in §3. Then

d

dt

∫

M
vu dµ =

∫

M
F1vu dµ = −m

∫

M
|∇v|2u dµ.(5.1)

Proof. By (1.1) and (2.3) we have ∂t(vu) = (m − 1)vu∆v + |∇v|2u + v∆um.
Recall now that F1 = (m− 1)∆v. Then,

d

dt

∫

M
vu dµ =

∫

M
F1vu dµ +

∫

M

(
|∇v|2u + v∆um

)
dµ.

Using the identity ∇um = u∇v, a simple integration by parts shows that
the second term on the right-hand-side is zero. The first part (5.1) follows.
Integration by parts shows that

∫

M
F1vu dµ =

∫

M
(m− 1)(∆v)vu dµ = m

∫

M
(∆v)um dµ = −m

∫

M
|∇v|2u dµ.

¤

Lemma 5.2.

d

dt

∫

M
F1vu dµ = 2

∫

M

(
(m− 1)

(
v2

ij + Rijvivj

)
+ F 2

1

)
vu dµ.(5.2)

Proof. Using (1.1), (2.3), and the formula ∂t = L+ (m− 1)v∆, we have

d

dt

∫

M
F1vu dµ =

∫

M
∂tF1 vu + F1∂t(vu) dµ

=
∫

M
(LF1) vu dµ +

∫

M
(m− 1)v(∆F1) vu dµ

+
∫

M
F1[(m− 1)vu∆v + |∇v|2u + v∆um] dµ.

We will use (3.6) to compute the term with L, and we also use (m−1)∆v = F1.
Then,
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d

dt

∫

M
F1vu dµ =

∫

M

(
(m− 1)v(∆F1)vu + F 2

1 vu + F1v∆um
)
dµ

+2(m− 1)
∫

M

(
v2

ij + Rijvivj

)
vu dµ +

∫

M
F 2

1 vu dµ

+2m
∫

M
〈∇F1,∇v〉vu dµ +

∫

M
F1|∇v|2u dµ.

Using the identity (m− 1)∇(v2u) = (2m− 1)vu∇v, and integrating by parts,
we get

(m− 1)
∫

M
(∆F1)v

2u dµ = −(2m− 1)
∫

M
〈∇F1,∇v〉vu dµ.

Finally, since ∇um = u∇v we also have

∫

M
F1v∆um dµ =−

∫

M
〈∇F1,∇v〉vu dµ−

∫

M
F1|∇v|2u dµ.

Combining these equalities we prove (5.2). ¤

Remark 5.3. Formulas 5.1 and 5.2 are particular cases of [Vi2, Theorem
24.2]; they have an interpretation in terms of optimal transport, see [Vi2,
Chapters 15 and 24]. This relation between PME and optimal transport goes
back to the seminal paper of Otto [O].

Recall the constant a = n(m−1)
n(m−1)+2

= (m− 1)κ. We first define

(5.3) Nu(t) := −ta
∫

M
vu dµ.

By Lemma 5.1, we have that

(5.4)
d

dt
Nu(t) = −ta

∫

M

(
F1 +

a

t

)
vu dµ.

Note that the universal estimate (3.7) amounts to F1 + a
t
≥ 0. Now we define

the Perelman entropy associated with (1.1) as

(5.5) Wu(t) := t
d

dt
Nu +Nu.

Remark 5.4. When m = 1 this reduces to tI(t) + S(t), where S(t) =
− ∫

u(t) log u(t) is the Boltzmann entropy from statistical mechanics; and
I(t) =

∫
u(t)|∇ log u(t)|2, also known as Fisher information, is its time-derivative.

Formula (5.5) generalizes this construction to porous medium equations. Let
us note that the functional − ∫

uv = −m/(m − 1)
∫

um has a thermodynam-
ical content; for instance it appears as the macroscopic limit of the micro-
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scopic Boltzmann entropy in certain hydrodynamical limits of particle systems
[GOVW,K].

Using the last part of (5.1) to compute the term with F1, we get

Wu(t) = ta+1
∫

M

(
m
|∇v|2

v
− a + 1

t

)
vu dµ.

Now we show the following Perelman type entropy formula for PME. We put
b = n(m− 1), so that a = b

b+2
.

Theorem 5.5. Let u be a positive smooth solution to (1.1) with m > 0. Let
v be the pressure and let Wu(t) be the entropy defined above. Then

d

dt
Wu(t) = −2(m− 1)ta+1

∫

M




∣∣∣∣∣vij +
1

(b + 2)t
gij

∣∣∣∣∣
2

+ Rijvivj


 vu dµ

−2ta+1
∫

M

(
F1 +

a

t

)2

vu dµ.(5.6)

Proof. Note

d

dt
Wu(t) =

d

dt

(
t
d

dt
Nu

)
− ta

∫

M

(
F1 +

a

t

)
vu dµ.

By Lemma 5.1 it is easy to see that

d

dt

(
t
d

dt
Nu

)
=

d

dt

(
−ta+1

∫

M
F1vu dµ + aNu

)

= −2ta+1
(∫

M

(
(m− 1)

(
v2

ij + Rijvivj

)
+ F 2

1

)
vu dµ

)

−(a + 1)ta
∫

M
F1vu dµ− ata

∫

M

(
F1 +

a

t

)
vu dµ.

Hence,
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d

dt
Wu(t) = −2ta+1

∫

M

(
(m− 1)

(
v2

ij + Rijvivj

)
+ F 2

1

)
vu dµ

−(a + 1)ta
∫

M

(
F1 +

a

t

)
vu dµ− (a + 1)ta

∫

M
F1vu dµ

= −2ta+1
∫

M

(
(m− 1)v2

ij + (m− 1)2(∆v)2 + (m− 1)
a + 1

t
∆v

+
a2 + a

2t2

)
vu dµ− 2(m− 1)ta+1

∫

M
Rijvivjvu dµ.

Observing that a + 1 = 2(b+1)
b+2

, a2+a
2

= b(b+1)
(b+2)2

= (m− 1)n(b+1)
(b+2)2

, hence

(m− 1)v2
ij + (m− 1)2(∆v)2 + (m− 1)

a + 1

t
∆v +

a2 + a

2t2

=(m− 1)v2
ij + (m− 1)2(∆v)2 + 2(m− 1)

b + 1

(b + 2)t
∆v + (m− 1)

n(b + 1)

(b + 2)2t2

=(m− 1)

(
v2

ij +
2

(b + 2)t
∆v +

n

(b + 2)2t2

)

+

(
(m− 1)2(∆v)2 +

2n(m− 1)2

(b + 2)t
∆v +

n2(m− 1)2

(b + 2)2t2

)
.

Formula (5.6) follows from completing the squares. ¤

Corollary 5.6. Let (M, g) be a closed Riemannian manifold with nonnegative
Ricci curvature. Assume that u is a positive smooth solution to PME (1.1) with
m > 1. Then

(1) d
dt
Nu(t) ≤ 0 and d

dt
Wu(t) ≤ 0. In particular Nu(t) is a monotone non-

decreasing concave function in 1
t
.

(2) Any ancient positive solution to (1.1) must be a constant.

Proof. We only need to justify (2). For the ancient solution, (3.7) implies
F1 ≥ 0. On the other hand,

∫

M
F1uv dµ = −m

∫

M
|∇v|2u dµ

which implies that |∇v| = 0. ¤

Remark 5.7. The result can be proved for complete noncompact Riemannian
manifolds with the help of the gradient estimates from the previous section.
The interested reader can find the details for the linear heat equation case in
[Ch].

Remark 5.8. In [CT], the following Sobolev type inequality related to PME
was proved on Rn. (See also [DD] and [O] for equivalent Sobolev type inequal-
ities related to FDE.)
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For any m > 1, f ∈ L1(Rn) ∩ Lm(Rn), |∇fm− 1
2 | ∈ L2(Rn), we have

(
n +

1

m− 1

) ∫

Rn
fmdx ≤ 1

2

(
2m

2m− 1

)2 ∫

Rn

∣∣∣∇fm− 1
2

∣∣∣
2
dx + Am(‖f‖1),

where Am(K) :=
∫
Rn

( |x|2
2

u∞ + 1
m−1

um
∞

)
dx with u∞ := (C−m−1

2m
|x|2)

1
m−1
+ being

the Barenblatt solution of order m and mass K :=
∫
Rn u∞ dx.

The previous defined entropy Wu is related to the above Sobolev inequality in
the following way. First notice that A(m,n) := Am(1) is a constant depending
only on the dimension n and the constant m. Direct calculation shows that
Carrillo–Toscani’s Sobolev inequality amounts to

Wu

(
1

b + 2

)
≥ −2m

(
1

b + 2

)a+1

A(m,n).

The existence of such a relation is not surprising: the Carrillo–Toscani formula
was derived as an inequality between the functional −m/(m− 1)

∫
um and its

time-derivative.

Remark 5.9. From optimal transport theory we can expect that there are
related Lyapunov functionals involving not only Nu and its time-derivative,
but also the Wasserstein distance of order 2; for the heat equation (m = 1)
examples of such functionals appear e.g. in [Vi2, Theorem 24.2]. The relation
between monotonicity properties of the Wasserstein distance on one hand,
and Perelman’s theorem of monotonicity of the reduced volume on the other
hand, has been studied in [Lo,T]. It is likely that also these links could be
extended to porous medium equations (m 6= 1), but here we shall not explore
this possibility.

For the fast diffusion equation, the monotonicity of entropy Wu is similar to
that of PME given in Corollary 5.6.

Corollary 5.10. Let (M, g) be a closed Riemannian manifold with nonnega-
tive Ricci curvature. Assume that u is a positive smooth solution to FDE (1.1)
with m < 1. Then

(1) d
dt
Nu(t) ≤ 0 for m ∈ (mc, 1).

(2) d
dt
Wu(t) ≤ 0 for m ∈ [m′

c, 1) with m′
c = 1 − 1

n
. In particular Nu(t) is a

monotone non-decreasing concave function in 1
t

when m ∈ [m′
c, 1).

(3) Any ancient positive solution to (1.1) with m ∈ (mc, 1) must be a constant.

Proof. (1) In (5.4), v < 0 and by Corollary 4.2(1) F1 + a
t
≤ 0.

(2) Notice that
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−(m− 1)

∣∣∣∣∣vij +
1

(b + 2)t
gij

∣∣∣∣∣
2

≥− 1

n(m− 1)

(
(m− 1)∆v +

n(m− 1)

(b + 2)t

)2

=− 1

n(m− 1)

(
F1 +

a

t

)2

.

Note v < 0, the result then follows from (5.6) and 1 + (m − 1)n ≥ 0 for
m ∈ [m′

c, 1). ¤
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