1

Local Asymptotic Normality of Ranks and Covariates in Transformation Models

P.J. Bickel ${ }^{1}$
and Y. Ritov ${ }^{2}$

1.1 Introduction

Le Cam and Yang (1988) addressed broadly the following question: Given observations $X^{(n)}=\left(X_{1 n}, \ldots, X_{n n}\right)$ distributed according to $P_{\theta}^{(n)} ; \theta \in R^{k}$ such that the family of probability measures $\left\{P_{\theta}^{(n)}\right\}$ has a locally asymptotically normal (LAN) structure at θ_{0} and a statistic $Y^{(n)}=g_{n}\left(X^{(n)}\right)$:
(i) When do the distributions of $Y^{(n)}$ also have an LAN structure at θ_{0} ?
(ii) When is there no loss in information about θ in going from $X^{(n)}$ to $Y^{(n)}$?

In this paper we exhibit an important but rather complicated example to which the Le Cam-Yang methods may, after some work, be applied.

Semiparametric transformation models arise quite naturally in survival analysis. Specifically, let $\left(Z_{1}, T_{1}\right),\left(Z_{2}, T_{2}\right), \ldots,\left(Z_{n}, T_{n}\right)$ be independent and identically distributed with Z, a vector of covariates, having distribution H, and T real. We suppose there exists an unknown strictly monotone transformation $a_{0}: R \rightarrow R$ such that, given $Z=z, a_{0}(T)$ is distributed with distribution function $F(\cdot, z, \theta)$ where $\left\{F(\cdot, z, \theta): \theta \in \Theta \subset R^{d}\right\}$ is a regular parametric model. That is, the $F(\cdot, z, \theta)$ are dominated by μ with densities $f(\cdot, z, \theta)$ and the map $\theta \rightarrow \sqrt{f(\cdot, z, \theta)}$ is Hellinger differentiable. As is usual in these models we take μ to be Lebesgue measure and $a_{0}^{\prime}>0$. The most important special cases of these models are the regression models where $\theta=(\eta, \nu)$, and defining the distribution of T given Z structurally,

$$
a_{0}(T)=\eta+\nu^{\prime} Z+\epsilon
$$

[^0]where ϵ is independent of Z with fixed known distribution G_{0}. If G_{0} is an extreme value distribution this is the Cox proportional hazards model. If G_{0} is \log Pareto this is the Clayton-Cuzick (1985) model which introduces a gamma distributed frailty into the Cox model. Finally, if G_{0} is Gaussian this is the natural semiparametric extension of the Box-Cox model (see Doksum, 1987, for instance). If θ is fixed in any of these semiparametric models it is evident that a maximal invariant under the group of monotone transformations of T is the vector
$$
\tilde{Z} \equiv\left(Z_{(1)}, \ldots, Z_{(n)}\right)
$$
where $T_{(1)}<\ldots<T_{(n)}$ are the ordered T_{i} and $Z_{(i)}$ is the covariate of $T_{(i)}$, that is, $\left(Z_{(i)}, T_{(i)}\right) i=1, \ldots n$ is the appropriate permutation of $\left(Z_{i}, T_{i}\right)$, $i=1, \ldots, n$. Knowing \tilde{Z} is equivalent to knowing the ranks of the T_{i} and the corresponding Z_{1}, \ldots, Z_{n}. It is intuitively plausible that, asymptotically, the (marginal) likelihood of \tilde{Z} which doesn't depend on a_{0} can be used for inference about θ in the usual way, without any loss of information. That is, question (i) and (ii) can be answered affirmatively if $P_{\theta}^{(n)}$ is taken to be, in some sense, the least favorable family for estimation of θ_{0}. That is, we take $a_{\theta}(T)$ given $Z=z$ to have distribution $F_{\theta}(\cdot \mid z)$ with a_{θ} so chosen as to make this the hardest parametric submodel of our semiparametric model at θ_{0} (in the sense of Stein (1956) - see also Bickel, Klaassen, Ritov, and Wellner, 1993, pages 153-175). The detailed construction is given in what follows.

Implementation of this approach for inference is well known and simple only for the Cox model where the likelihood of \tilde{Z} is the Cox partial likelihood. In general, the likelihood is expressible only as an n fold integral. Thus if Λ_{n} is the \log likelihood ratio of $\theta_{0}+s n^{-1 / 2}$ vs θ_{0}, we have,

$$
\begin{align*}
\Lambda_{n}(s)= & \log \int_{t_{1}} \int_{<\ldots<t_{n}} \cdots \prod_{j=1}^{n} f\left(t_{j}, Z_{(j)}, \theta_{0}+s n^{-1 / 2}\right) d t_{j} \tag{1.1}\\
& -\log \int_{t_{1}} \int \cdots \int_{<t_{n}} \prod_{j=1}^{n} f\left(t_{j}, Z_{(j)}, \theta_{0}\right) d t_{j}
\end{align*}
$$

However, it is possible to use Monte Carlo methods in a subtle way, drawing on some of the information we develop for our result, to compute Λ_{n} accurately enough to use it for inference. Alternatively, the analytic approximation to Λ_{n} that we develop can be used more conveniently for this purpose also - see Bickel (1986). We shall pursue these approaches elsewhere.

The paper is organized as follows. In section 2 we introduce notation and the least favorable family a_{θ} and establish LAN directly under restrictive conditions. In section 3 we state our general result and show how it follows from Le Cam and Yang's Theorem 4.

1.2 LAN - the bounded case

For simplicity we state our results for the case θ one dimensional. There is no real loss of generality since proofs carry over easily. Here is some notation. We denote the distribution of Z by H, which we take as known and independent on θ (this is irrelevant). Then if $P_{(\theta, a)}$ is the distribution of (T, Z) and $\left(\theta_{0}, a_{0}\right)$ is the true state of Nature,

$$
\frac{d P_{(\theta, a)}}{d P_{\left(\theta_{0}, a_{0}\right)}}(t, z)=\frac{a^{\prime}}{a_{0}^{\prime}}(t) \frac{f(a(t), z, \theta)}{f\left(a_{0}(t), z, \theta_{0}\right)} .
$$

It is convenient to reparametrize the model. Let $U=F_{Y} \circ a_{0}(T)$, where

$$
F_{Y}(t)=\iint_{-\infty}^{t} f\left(s, z, \theta_{0}\right) d s d H(z)
$$

is the marginal $d f$ of $a_{0}(T)$. Suppose F_{Y} is strictly increasing (this is inessential). Then the conditional density of $U \mid Z=z$ under $P_{\left(\theta, a_{0}\right)}$ is

$$
\begin{equation*}
g(u, z, \theta) \equiv f\left(F_{Y}^{-1}(u), z, \theta\right) / f_{Y}\left(F_{Y}^{-1}(u)\right) \tag{2.1}
\end{equation*}
$$

where $f_{Y}=F_{Y}^{\prime}$. So if $b \equiv F_{Y} \circ a \circ a_{0}^{-1} \circ F_{Y}^{-1}$ and $Q_{(\theta, b)}$ is the distribution of U under $P_{(\theta, a)}$

$$
\frac{d Q_{(\theta, b)}}{d Q_{\left(\theta_{0}, b_{0}\right)}}=b^{\prime}(u) \frac{g(b(u), z, \theta)}{g\left(u, z, \theta_{0}\right)}, \quad 0<u<1
$$

the likelihood ratio for a transformation model where transformations are from $(0,1)$ to $(0,1)$ and $b_{0}=F_{Y} \circ a_{0} \circ a_{0}^{-1} \circ F_{Y}^{-1}$ is the identity. The distribution of the ranks of U under $Q_{(\theta, b)}$ is the same as the distribution of the ranks of T under $P_{(\theta, a)}$. We formulate our conditions in terms of derivatives of $\lambda \equiv \log g$ which hold in all cases we have mentioned when f is related to g by (2.1). For convenience in what follows, we let $\lambda_{\theta}=\frac{\partial \lambda}{\partial \theta}$, $\lambda_{u \theta}=\frac{\partial^{2} \lambda}{\partial u \partial \theta}$ and, in general, let subscripts denote differentiation with primes used for functions of u only. We will use the following assumptions;

A1 The function $\lambda(u, z, \theta)$ is twice differentiable in (θ, u) on $V\left(\theta_{0}\right) \times(0,1)$ where $V\left(\theta_{0}\right)$ is a neighborhood of θ_{0}.

B: $\lambda, \lambda_{\theta}, \lambda_{u}, \lambda_{\theta u}, \lambda_{u u}$ are uniformly bounded in (u, z, θ) on $V\left(\theta_{0}\right)$.
B is an extremely restrictive assumption. It permits essentially only families, such that $g(u, z, \theta)$ is bounded away from 0 on $[0,1]$ and in particular rules out all our examples. However, the argument here makes clear the essential computation which, in the next section, enables us to apply the Le Cam-Yang results to all our examples.

Formal derivation of least favorable b_{θ}

Without loss of generality let $\theta_{0}=0$, but without any presumption that 0 corresponds to independency of Z and T. Let

$$
\begin{equation*}
b_{\theta}(u)=u+\theta \Delta(u) \tag{2.2}
\end{equation*}
$$

where $\Delta \in \mathcal{D}$, and $\mathcal{D} \equiv\left\{\Delta: \Delta, \Delta^{\prime}\right.$ and $\Delta^{\prime \prime}$ are all bounded on $[0,1]$ and $\Delta(0)=\Delta(1)=0\}$. Then for $|\theta|<\epsilon, \epsilon>0$ the b_{θ} are transformations of u that depend on θ and b_{0} is the identity. Under A1 and B the model $\left\{Q_{\left(\theta, b_{\theta}\right)}:|\theta|<\epsilon\right\}$ is regular and the score function at θ is,

$$
v_{\Delta}(u, z, \theta) \equiv \lambda_{\theta}(u, z, \theta)+\Delta^{\prime}(u)+\Delta(u) \lambda_{u}(u, z, \theta)
$$

This follows since the map $\theta \rightarrow \sqrt{q_{\left(\theta, b_{\theta}\right)}}$ where $q_{(\theta, b)} \equiv d Q_{(\theta, b)} / d Q_{\left(0, b_{0}\right)}$, is pointwise differentiable by A1 and therefore Hellinger differentiable by B.

By standard theory, see for example Bickel et al., if the Fisher information $\int v_{\Delta}^{2}(u, z, 0) g(u, z, 0) d u d H(z)$ is minimized over the closure in $L_{2}\left(Q_{\left(0, b_{0}\right)}\right)$ of $\left\{v_{\Delta}: \Delta \in \mathcal{D}\right\}$ by $v_{\Delta_{0}}$ with $\Delta_{0} \in \mathcal{D}$ then

$$
\begin{equation*}
E v_{\Delta_{0}}(U, Z, 0)\left(\Delta^{\prime}(U)+\Delta(U) \lambda_{u}(U, Z, 0)\right)=0 \tag{2.3}
\end{equation*}
$$

for all $\Delta \in \mathcal{D}$. Furthermore, Klaassen (1992) shows that, under regularity conditions, (2.3) holds if and only if $\Delta_{0} \in \mathcal{D}$ satisfies the Sturm-Liouville equation

$$
\begin{equation*}
\Delta_{0}^{\prime \prime}(u)-\alpha(u) \Delta_{0}(u)+\gamma(u)=0 \tag{2.4}
\end{equation*}
$$

for $0<u<1$ subject to the boundary conditions $\Delta_{0}(0)=\Delta_{0}(1)=0$, where

$$
\begin{array}{r}
\alpha(u)=-E\left\{\lambda_{u u}(u, Z, 0) \mid U=u\right\} \\
\gamma(u)=E\left\{\lambda_{\theta u}(u, Z, 0) \mid U=u\right\} . \tag{2.6}
\end{array}
$$

Expectations here and in what follows are under $\theta=0$. Equation (2.4) is equivalent to,

$$
\begin{equation*}
E\left\{\left.\frac{\partial}{\partial u} v_{\Delta_{0}}(u, Z, 0) \right\rvert\, U=u\right\}=0 \tag{2.7}
\end{equation*}
$$

given that, as one would expect from $\int g(u, z, 0) d H(z) \equiv 1$,

$$
\begin{equation*}
E\left(\lambda_{u}(u, Z, 0) \mid U=u\right)=0 . \tag{2.8}
\end{equation*}
$$

It is easy to see that A1 and B guarantee the validity of (2.3), (2.4) and (2.7), as well as the boundedness of $\Delta_{0}, \Delta_{0}^{\prime \prime}$, see Bickel (1986) and Klaassen (1992). Then $b_{\theta}^{0}(u) \equiv u+\theta \Delta_{0}(u)$ are least favorable. Let $\Lambda_{n}(s)$ be the log likelihood ratio of the ranks as defined by (1.1). Note that

$$
\begin{equation*}
\Lambda_{n}(s)=\log E\left\{\exp L_{n}\left(s n^{-1 / 2}\right) \mid \tilde{Z}\right\} \tag{2.9}
\end{equation*}
$$

where

$$
L_{n}(\theta)=\sum_{i=1}^{n} \log \frac{q_{\left(\theta, b_{\theta}^{0}\right)}}{q_{\left(0, b_{0}\right)}}\left(U_{i}, Z_{i}\right)
$$

the \log likelihood ratio of $\left(U_{i}, Z_{i}\right) i=1, \ldots, n$ for $Q_{\left(\theta, b_{\theta}^{0}\right)}$ and again, expectation is under θ_{0}. We have noted earlier that the $\left\{Q_{\left(\theta, b_{\theta}^{0}\right)}:|\theta|<\epsilon\right\}$ family is LAN at $\theta=0$, and, in fact,

$$
L_{n}\left(s n^{-1 / 2}\right)=s n^{-1 / 2} \sum_{i=1}^{n} v_{\Delta_{0}}\left(U_{i}, Z_{i}, 0\right)-\frac{s^{2}}{2} E v_{\Delta_{0}}^{2}\left(U_{1}, Z_{1}, 0\right)+o_{p}(1) \cdot(2.10)
$$

We now establish,
Theorem 1 Under A1 and B,

$$
\Lambda_{n}(s)=L_{n}\left(s n^{-1 / 2}\right)+o_{p}(1)
$$

which establishes our claim in the bounded case.
Key Lemma: If $w(u, z)$ is twice differentiable in u and,
(i) $w(U, Z) \in L_{2}\left(Q_{\left(0, b_{0}\right)}\right), E w(U, Z)=0$
(ii) $\left.w_{u}(U, Z) \in L_{2}\left(Q_{\left(0, b_{0}\right.}\right)\right), E\left\{w_{u}(u, Z) \mid U=u\right)=0$ for all u.
(iii) $\sup _{u, z}\left|w_{u u}(u, z)\right|<\infty$
then, if the $Z_{(i)}$ are the concomitants of the order statistics $U_{(i)}$ as in the introduction,

$$
\sum_{i=1}^{n} w\left(U_{i}, Z_{i}\right)=\sum_{i=1}^{n} w\left(\frac{i}{n+1}, Z_{(i)}\right)+O_{P}(1)
$$

Proof. Write, expanding around $\left(U_{(1)}, \ldots, U_{(n)}\right)$,

$$
\begin{align*}
\sum_{i=1}^{n} w\left(U_{i}, Z_{i}\right)= & \sum_{i=1}^{n} w\left(U_{(i)}, Z_{(i)}\right) \tag{2.11}\\
= & \sum_{i=1}^{n} w\left(\frac{i}{n+1}, Z_{(i)}\right)+\sum_{i=1}^{n}\left\{w_{u}\left(U_{(i)}, Z_{(i)}\right)\left(U_{(i)}-\frac{i}{n+1}\right)\right. \\
& \left.-\frac{1}{2} w_{u u}\left(U_{(i)}^{*}, Z_{(i)}\right)\left(U_{(i)}-\frac{i}{n+1}\right)^{2}\right\}
\end{align*}
$$

where $\left|U_{(i)}^{*}-\frac{i}{n+1}\right| \leq\left|U_{(i)}-\frac{i}{n+1}\right|$ for all i. Now,

$$
\begin{aligned}
& E\left\{\left.\left[\sum_{i=1}^{n} w_{u}\left(U_{(i)}, Z_{(i)}\right)\left(U_{(i)}-\frac{i}{n+1}\right)\right]^{2} \right\rvert\, U_{(1)}, \ldots, U_{(n)}\right\} \\
& \quad=\sum_{i=1}^{n} E\left\{w_{u}^{2}(U, Z) \mid U=U_{(i)}\right\}\left(U_{(i)}-\frac{i}{n+1}\right)^{2}=O_{P}(1)
\end{aligned}
$$

Here we use (ii) for the first identity and also

$$
\sum_{i=1}^{n} E\left\{w_{u}^{2}\left(U_{i}, Z_{i}\right) \mid U_{i}\right\}=O_{P}(n)
$$

The third term in (2.11) is $O_{P}(1)$ by (iii).

The theorem follows readily from the key lemma by appealing to Theorem 4 of Le Cam and Yang applied to the distinguished statistics $n^{-1 / 2} \sum_{i=1}^{n} v_{\Delta_{0}}\left(\frac{i}{n+1}, Z_{(i)}, 0\right)$. Alternatively, we can argue directly. Write

$$
\begin{aligned}
\Lambda_{n}(s)= & s n^{-1 / 2} \sum_{i=1}^{n} v_{\Delta_{0}}\left(\frac{i}{n+1}, Z_{(i)}, 0\right)-\frac{s^{2}}{2} E v_{\Delta_{0}}^{2}\left(U_{1}, Z_{1}, 0\right) \\
& +\log E\left\{\left.\frac{A_{n}}{B_{n}} \right\rvert\, \tilde{Z}\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
A_{n} & =\exp L_{n}(s) \\
B_{n} & =\exp \left\{s n^{-1 / 2} \sum_{i=1}^{n} v_{\Delta_{0}}\left(\frac{i}{n+1}, Z_{(i)}, 0\right)-\frac{s^{2}}{2} E v_{\Delta_{0}}^{2}\left(U_{1}, Z_{1}, 0\right)\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \left|E\left\{\left|\frac{A_{n}}{B_{n}}-1\right| \tilde{Z}\right\}\right| \leq E\left\{\frac{A_{n}}{B_{n}}-1\left|1\left(\frac{A_{n}}{B_{n}} \leq M\right)\right| \tilde{Z}\right\} \\
& +\frac{1}{B_{n}} E\left\{\left.A_{n} 1\left(\frac{A_{n}}{B_{n}}>M\right) \right\rvert\, \tilde{Z}\right\}+P\left\{\left.\frac{A_{n}}{B_{n}}>M \right\rvert\, \tilde{Z}\right\}
\end{aligned}
$$

But A_{n} is uniformly integrable by LAN and by the key lemma $B_{n}^{-1}=O_{P}(1)$ and $A_{n} / B_{n}=1+o_{p}(1)$. The theorem follows.

1.3 LAN - the general case

To encompass the examples of Section 1 we need to replace condition B. We do so with

A2: $\lambda, \lambda_{\theta}, \lambda_{u}, \lambda_{\theta u}, \lambda_{u u}$ are uniformly bounded in (u, z, θ) for $\epsilon \leq u \leq 1-\epsilon$, $\theta \in V\left(\theta_{0}\right)$, all $\epsilon>0$.
and
A3: $\lambda_{\theta}(U, Z, 0) \in L_{2}\left(Q_{0, b_{0}}\right)$. The functions $\lambda_{u u}(U, Z, 0), \lambda_{\theta u}(U, Z, 0)$, and $\lambda_{\theta}(U, Z, 0) \lambda_{u}(U, Z, 0)$ are all in $L_{1}\left(Q_{\left(0, b_{0}\right)}\right)$. Further, γ and α given by (2.5) and (2.7) are continuous on $(0,1)$ and satisfy: $\int_{0}^{1} \alpha(t) t(1-t) d t<$ ∞ and $\sup _{t \in(0,1)} t^{3 / 2}(1-t)^{3 / 2}|\gamma(t)|<\infty$.

It follows (see below) that (2.4) has a unique solution Δ_{0} which is bounded and differentiable. Therefore there exists $\epsilon>0$ such that b_{θ} given by (2.2) is a transformation for $|\theta|<\epsilon$. We require:

A4: $v_{\Delta_{0}}(U, Z, 0) \in L_{2}\left(Q_{\left(0, b_{0}\right)}\right)$ and the family $\left\{Q_{\left(\theta, b_{\theta}\right)}:|\theta|<\epsilon\right\}$ is regular (LAN) at $\theta=0$. That is, $L_{n}\left(s n^{-1 / 2}\right)$ obeys (2.10).
Finally, we require
A5: $\lambda_{u}(U, Z, 0) \in L_{1}\left(Q_{\left.0, b_{0}\right)}\right)$ and (2.8) holds.

Note: Klaassen (1992) shows that A1-A5 hold for the Clayton-Cuzick and normal (generalized Box-Cox) transformation models. We prove

Theorem 2 Under A1-A5 the conclusion of theorem 1 continues to hold.
It is possible under the conditions of Klaassen (1992) to extend our direct argument. However, under the general conditions A1-A5 it is much easier to appeal to theorem 4 of Le Cam and Yang. By A3, A4 and (2.9) we can consider LAN for the ranks and covariates in the context of the parametric model $\left\{Q_{\left(\theta, b_{\theta}\right)}\right\}$. By the Le Cam-Yang theorem we need only exhibit statistics $T_{n}(\tilde{Z})$ such that

$$
T_{n}(\tilde{Z})=n^{-1 / 2} \sum_{i=1}^{n} v_{\Delta_{0}}\left(U_{i}, Z_{i}, 0\right)+o_{p}(1)
$$

Let $s_{m}:[0,1] \rightarrow[0,1]$ such that $s_{m} \in C^{\infty}$ and

$$
s_{m}(u)= \begin{cases}1, & \frac{1}{m} \leq u \leq 1-\frac{1}{m} \\ 0, & 0 \leq u \leq \frac{1}{2 m}, 1-\frac{1}{2 m} \leq u \leq 1\end{cases}
$$

Consider the Sturm-Liouville equation on $[0,1]$

$$
\begin{equation*}
\Delta^{\prime \prime}(u)-\alpha_{m}(u) \Delta(u)+\gamma_{m}(u)=0 \tag{3.1}
\end{equation*}
$$

subject to $\Delta(0)=\Delta(1)=0$, where

$$
\begin{aligned}
\alpha_{m}(u) & =\alpha(u) s_{m}(u) \\
\gamma_{m}(u) & =\gamma(u) s_{m}(u)+E\left\{\lambda_{\theta}(u, Z) \mid U=u\right\} s_{m}^{\prime}(u)
\end{aligned}
$$

As discussed in Bickel (1986), Klaassen (1992) the solution $\Delta_{o m}$ to (3.1) is unique and solves uniquely the integral equation,

$$
\begin{equation*}
\Delta(u)+\int_{0}^{1} K(u, s) \alpha_{m}(s) \Delta(s) d s-\int_{0}^{1} K(u, s) \gamma_{m}(s) d s=0 \tag{3.2}
\end{equation*}
$$

where $K(u, s)=s \wedge u-s u$. Note that $\alpha>0$ and let

$$
\begin{align*}
\psi_{o m}(u) & \equiv \sqrt{\alpha_{m}(u)} \Delta_{o m}(u) \tag{3.3}\\
r_{m}(u) & \equiv \sqrt{\alpha_{m}(u)} \int_{0}^{1} K(u, v) \gamma_{m}(v) d v \tag{3.4}
\end{align*}
$$

Then, equivalently,

$$
\begin{equation*}
L_{m} \psi_{o m}=r_{m} \tag{3.5}
\end{equation*}
$$

where $L_{m}: L_{2}(0,1) \rightarrow L_{2}(0,1)$ is the operator $I+K_{m}, I$ is the identity and K_{m} is the bounded self adjoint operator,

$$
K_{m}(\chi)(u)=\int_{0}^{1} \alpha_{m}^{1 / 2}(s) K(s, u) \alpha_{m}^{1 / 2}(u) \chi(s) d s
$$

The operators L_{m} have minimal eigenvalue ≥ 1 so that $\left\|L_{m}^{-1}\right\| \leq 1$.
Lemma 3 If $\Delta_{o m}, \psi_{o m}$ are defined by (3.1), (3.5) and $\psi_{0} \equiv \alpha^{1 / 2} \Delta_{0}$, then,

$$
\begin{gather*}
\int\left(\psi_{o m}-\psi_{o}\right)^{2}(u) d u \rightarrow 0 \tag{3.6}\\
\sup _{m}\left\|\Delta_{o m}\right\|_{\infty}<\infty \tag{3.7}
\end{gather*}
$$

and, for every $\epsilon>0$,

$$
\begin{align*}
& \sup \left\{\left|\Delta_{o m}(u)-\Delta_{o}(u)\right|: \epsilon \leq u \leq 1-\epsilon\right\} \rightarrow 0 \tag{3.8}\\
& \sup \left\{\left|\Delta_{o m}^{\prime}(u)-\Delta_{o}^{\prime}(u)\right|: \epsilon \leq u \leq 1-\epsilon\right\} \rightarrow 0 \tag{3.9}
\end{align*}
$$

Proof. If $L \leftrightarrow \alpha$,

$$
\begin{align*}
& \left\|L_{m}-L\right\|^{2} \tag{3.10}\\
& \quad \leq \int_{0}^{1} \int_{0}^{1} K^{2}(s, u)\left(\left(\alpha_{m}(s) \alpha_{m}(u)\right)^{1 / 2}-(\alpha(s) \alpha(u))^{1 / 2}\right)^{2} d s d u(3
\end{align*}
$$

The integrand converges to 0 and

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{1} K^{2}(s, u)\left|\alpha_{m}(s)\right|\left|\alpha_{m}(u)\right| d s d u \\
& \quad \leq \int_{0}^{1} \int_{0}^{1} K^{2}(s, u)|\alpha(s)||\alpha(u)| d s d u
\end{aligned}
$$

for all m. So (3.6) follows by Vitali's theorem. Note that

$$
\int_{0}^{1} \int_{0}^{1} K^{2}(s, u)|\alpha(s)| \alpha(u) \mid d s d u \leq\left(\int_{0}^{1} s(1-s)|\alpha(s)| d s\right)^{2}<\infty
$$

Since $\left\|L_{m}^{-1}\right\| \leq 1$,

$$
\left\|L_{m}^{-1}-L^{-1}\right\| \rightarrow 0
$$

Next, let $r_{m}(\cdot)=r_{1 m}(\cdot)+r_{2 m}(\cdot)+r_{3 m}(\cdot)$ where

$$
\begin{aligned}
& r_{1 m}(u)= \alpha_{m}^{1 / 2}(u) \int_{0}^{1} K(u, v) s_{m}(v) g(v) d v \\
& r_{2 m}(u)= \alpha_{m}^{1 / 2}(u) \iint\left\{\left(\lambda_{\theta u}(v, z, 0)+\lambda_{\theta} \lambda_{u}(v, z, 0)\right)\right. \\
& K(u, v)\left(1-s_{m}(v)\right) g(v, z, 0) d v d H(z) \\
& r_{3 m}(u)=\left.\alpha_{m}^{1 / 2}(u) \iint \lambda_{\theta}(v, z, 0)(1(v \leq u)-u)\right\}\left(1-s_{m}(v)\right) \\
& g(v, z, 0) d v d H(z)
\end{aligned}
$$

Now, by A3, $r_{1 m} \rightarrow r$ a.e. where $r=\sqrt{\alpha(u)} \int_{0}^{1} K(u, s) \gamma(s) d s$, and, $r_{2 m}, r_{3 m} \rightarrow 0$ a.e. Further, by A3

$$
\begin{align*}
\left|r_{1 m}(u)\right| & \leq \alpha^{1 / 2}(u) \int_{0}^{1} K(u, v)\left|s_{m}(v) \| \gamma(v)\right| d v \tag{3.12}\\
& \leq C \sqrt{\alpha(u)}\left(\int_{0}^{u} \frac{1-u}{v^{1 / 2}(1-v)^{3 / 2}} d v+\int_{u}^{1} \frac{u}{(1-v)^{1 / 2} v^{3 / 2}} d v\right) \\
& =4 C(\alpha(u) u(1-u))^{1 / 2} \tag{3.13}
\end{align*}
$$

We conclude that $\int\left(r_{1 m}-r\right)^{2} \rightarrow 0$. Since $K(u, v) \leq u(1-u)$, it follows from A3 that $\int r_{2 m}^{2} \rightarrow 0$. Finally, $\left|r_{3 m}\right|<(\alpha(u) u(1-u))^{1 / 2}\left\|\lambda_{\theta}\right\|_{2}$ and we obtain that

$$
\begin{equation*}
\int\left(r_{m}-r\right)^{2} \rightarrow 0 \tag{3.14}
\end{equation*}
$$

Finally, conclude by (3.11), (3.14),

$$
L_{m}^{-1} r_{m} \rightarrow L^{-1} r
$$

in L_{2} and (3.6) follows. Next, (3.7) follows from (3.2), since then

$$
\begin{gathered}
\left\|\Delta_{m}\right\|_{\infty} \leq \sup _{u}\left(\int_{0}^{1} K^{2}(u, s)\left|\alpha_{m}(s)\right| d s\right)^{1 / 2}\left(\int_{0}^{1} \psi_{o m}^{2}(s) d s\right)^{1 / 2} \\
+\int_{0}^{1} s(1-s)\left|\gamma_{m}(s)\right| d s
\end{gathered}
$$

Finally, (3.8) and (3.9) follow from (3.6), (3.7) and (3.1) since

$$
\begin{aligned}
\sup \left\{\left|\Delta_{o m}^{\prime \prime}(t)\right|: \epsilon \leq t \leq 1-\epsilon\right\} \leq & \sup \{|\alpha(t)|: \epsilon \leq t \leq 1-\epsilon\}\left\|\Delta_{o m}\right\|_{\infty} \\
& +\sup \{|\gamma(t)|: \epsilon \leq t \leq 1-\epsilon\} .
\end{aligned}
$$

so that the families $\left\{\Delta_{m}^{\prime}(t)\right\},\left\{\Delta_{m}(\cdot)\right\}$ are uniformly bounded and equicontinuous on $[\epsilon, 1-\epsilon]$.

Proof of Theorem 2: Let

$$
\begin{aligned}
h_{m}(u, z, 0)= & \lambda_{\theta}(u, z, 0) s_{m}(u)-\Delta_{o m}^{\prime}(u)-\lambda_{u}(u, z) s_{m}(u) \Delta_{o m}(u) \\
& -E \lambda_{\theta}(U, Z, 0) s_{m}(U)+E \Delta_{o m}^{\prime}(U)+E \lambda_{u}(U, Z) \Delta_{o m}(U) .
\end{aligned}
$$

By construction, for each m, h_{m} and all its derivatives with respect to u are bounded. Furthermore,

$$
\begin{aligned}
& \frac{\partial h_{m}}{\partial u}(u, z, 0) \\
& \quad=\lambda_{\theta u}(u, z, 0) s_{m}(u)+\lambda_{\theta}(u, z, 0) s_{m}^{\prime}(u)-\Delta_{o m}^{\prime \prime}(u) \\
& \quad-\lambda_{u u}(u, z) s_{m}(u) \Delta_{o m}(u)-\lambda_{u}(u, z)\left(s_{m}^{\prime}(u) \Delta_{o m}(u)+s_{m}(u) \Delta_{o m}^{\prime}(u)\right)
\end{aligned}
$$

By (2.8) and (3.1),

$$
E\left\{\left.\frac{\partial h_{m}}{\partial u}(U, Z, 0) \right\rvert\, U=u\right\}=0 .
$$

Hence the key lemma applies and

$$
n^{-1 / 2} \sum_{i=1}^{n} h_{m}\left(U_{i}, Z_{i}, 0\right)=n^{-1 / 2} \sum_{i=1}^{n} h_{m}\left(\frac{i}{n+1}, Z_{(i)}, 0\right)+o_{p}(1) .
$$

To complete the proof of the theorem, we need only show that for some sequence $m \rightarrow \infty$

$$
n^{-1 / 2} \sum_{i=1}^{n}\left(h_{m_{n}}\left(U_{i}, Z_{i}, 0\right)-v_{\Delta_{0}}\left(U_{i}, Z_{i}, 0\right)\right)=o_{p}(1)
$$

or equivalently that, as $m \rightarrow \infty$

$$
\begin{align*}
E\left(\ell_{\theta}(U, Z, 0)\right. & \left(1-s_{m}(U)\right)-\left(\Delta_{o m}^{\prime}-\Delta_{o}^{\prime}\right)(U) \tag{3.15}\\
& \left.-\lambda_{u}(U, Z, 0)\left(s_{m} \Delta_{o m}(U)-\Delta_{o}(U)\right)\right)^{2} \rightarrow 0
\end{align*}
$$

Now by (2.3)

$$
\begin{align*}
& E\left(\ell_{\theta}(U, Z, 0)-\Delta_{0}^{\prime}(U)-\lambda_{u}(U, Z, 0) \Delta_{0}(U)\right)^{2} \tag{3.16}\\
& \quad=E \ell_{\theta}^{2}(U, Z, 0)-E\left(\Delta_{0}^{\prime}(U)+\lambda_{u}(U, Z, 0) \Delta_{o}(U)\right)^{2}
\end{align*}
$$

On the other hand, a tedious calculation using integration by parts shows that,

$$
\begin{align*}
& E\left(\ell_{\theta}(U, Z, 0) s_{m}(U)-\Delta_{o m}^{\prime}(U)-\lambda_{u}(U, Z, 0) \Delta_{o m}(U) s_{m}(U)\right)^{2} \tag{3.17}\\
& =E \ell_{\theta}^{2}(U, Z, 0) s_{m}^{2}(U)-E\left(\Delta_{o m}^{\prime}(U)-\lambda_{u}(U, Z, 0) \Delta_{o m}(U) s_{m}(U)\right)^{2} \\
& \quad-2\left\{E \ell_{\theta}(U, Z, 0) \ell_{u}(U, Z, 0) s_{m}(U)\left(1-s_{m}(U)\right)\right. \\
& \left.\quad-E \ell_{u}^{2}(U, Z, 0) \Delta_{m}^{2}(U) s_{m}(U)\left(1-s_{m}(U)\right)\right\}
\end{align*}
$$

The last two terms in (3.17) tend to 0 by dominated convergence in view of (3.7) and (3.16). Finally

$$
\Delta_{o m}^{\prime}(U)-\lambda_{u}(U, Z, 0) s_{m}(U) \xrightarrow{P} \Delta_{0}^{\prime}(U)-\lambda_{u}(U, Z, 0) \Delta_{0}(U)
$$

by (3.8) and (3.9) so that by Fatou's theorem and (3.16), (3.17),

$$
\begin{aligned}
& \underline{\lim }_{m} E\left(\ell_{\theta}(U, Z, 0) s_{m}(U)-\Delta_{o m}^{\prime}(U)-\lambda_{u}(U, Z) s_{m}(U) \Delta_{o m}(U)\right)^{2} \\
& \quad \leq E\left(\ell_{\theta}(U, Z, 0)-\Delta_{0}^{\prime}(U)-\lambda_{u}(U, Z) \Delta_{0}(U)\right)^{2}
\end{aligned}
$$

Then, (3.15) and the theorem follow from (3.18).

[^0]: ${ }^{1}$ University of California, Berkeley, USA
 ${ }^{2}$ The Hebrew University of Jerusalem, Israel

