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LOCAL ASYMPTOTICS FOR REGRESSION SPLINES AND
CONFIDENCE REGIONS1

BY S. ZHOU, X. SHEN AND D. A. WOLFE

Ohio State University

In this paper, we study the local behavior of regression splines. In
particular, explicit expressions for the asymptotic pointwise bias and
variance of regression splines are obtained. In addition, asymptotic nor-
mality for regression splines is established, leading to the construction of
approximate confidence intervals and confidence bands for the regression
function.

Ž .1. Introduction. Consider the regression problem of estimating f x
based on data sampled from the model
1 y � f x � � , i � 1, . . . , n ,Ž . Ž .i i i

where the � ’s are uncorrelated with E� � 0, and E� 2 � � 2 � 0, and thei i i
� 4ndesign points x are either deterministic or random. Without loss ofi i�1

� �generality, we assume that x � 0, 1 , i � 1, . . . , n. Our goal is to estimatei
Ž .f x and to construct a confidence region for it.

To estimate the regression function, we consider spline approximations. A
spline is defined as a piecewise polynomial that is smoothly connected at its

Ž . Ž .joints knots . More specifically, for any fixed integer m � 1, denote S m, t to
� 4be the set of spline functions with knots t � 0 � t � t � ��� � t � 1 .0 1 k �10

Ž .Then for m � 1, S m, t is the set of step functions with jumps at the knots
and, for m � 2,

m� 2 � �S m , t � s � C 0, 1 : s x is a polynomial of degreeŽ .Ž . �
� �m � 1 on each subinterval t , t .Ž . 4i i�1

Ž .To estimate f x , we use the least squares criterion. The regression spline
Ž .estimator of order m for f x is defined to be the least squares minimizer

Ž̂ . Ž .f x � S m, t corresponding to
n n

2 2ˆ2 y � f x � min y � s x .Ž . Ž . Ž .Ž .Ž .Ý Ýi i i i
Ž . Ž .s x �S m , ti�1 i�1

There is a large amount of literature on regression splines. In the univari-
Ž . Ž .ate case, Agarwal and Studden 1980 and Huang and Studden 1993

considered the rates of convergence and the connection between splines and
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Ž .kernels. In the multivariate case, Stone 1985, 1986, 1994 , Stone and Koo
Ž . Ž .1986 and Friedman 1991 obtained the rates of convergence for the multi-
variate regression splines and developed computation methods. For partial

Ž .linear models, Shi and Li 1994 studied the rates of convergence for M-type
Ž .regression splines. For survival models, Kooperberg, Stone and Truong 1995

studied the rates of convergence and computation methods. For splines
defined by a robust criterion such as the absolute deviation criterion, Shi and

Ž . Ž . Ž .Li 1995 , Koenker, Ng and Portnoy 1994 and Portnoy 1997 studied the
rates of convergence and computation methods. Adaptive splines with vari-

Ž .able orders and knots were studied by Shen and Hu 1995 .
Previous research on regression splines focused mainly on estimation

methods and convergence properties of the regression splines in various
function classes to which the regression function belongs. The focus of this
paper is on inference for regression splines. In particular, we study the

Ž̂ .asymptotic distribution of the regression spline f x . We establish asymptotic
ˆ �1�2Ž .normality for a properly standardized f x at a rate slower than n

depending on the amount of smoothness of the regression function; that is,
ˆ ˆ� Ž . Ž . Ž ..� Ž . Ž .f x � f x � b x 'Var f x converges to N 0, 1 , where b x is theŽ .Ž .

ˆŽ Ž .. Ž .asymptotic bias and Var f x is the variance. In addition, we show that b x
ˆŽ Ž ..can be expressed as a scaled Bernoulli polynomial and Var f x is approxi-

mated by a quadratic form. Based on these results, an asymptotic confidence
interval and an asymptotic confidence band for the regression function are
constructed. An extension to the case of heteroscedastic errors is also consid-
ered. In addition, a simulation study is carried out to exemplify the small
sample behavior of these confidence regions.

This paper is organized as follows. Section 2 presents the results for
asymptotic bias and variance in the fixed and random design cases. Section 3
provides the result for asymptotic normality. Section 4 discusses construction
of confidence regions. The simulation study for the proposed confidence
regions is reported in Section 5. Technical proofs are given in Section 6.

2. Asymptotic bias and variance. It is convenient to express functions
Ž .in S m, t in terms of B-splines. For any fixed m and t, let

m� 1� �N x � t � t t , . . . , t t � x , i � 1, . . . , k � k � m ,Ž . Ž . Ž .�i , m i i�m i�m i 0

� �where t , . . . , t g denotes the mth-order divided difference of the functioni�m i
� Ž .4kg and t � t for any i � 1 � m, . . . , k. Then N � form ai minŽmaxŽ i, 0., k �1. i, m i�10

Ž . � Ž . � Ž .basis for S m, t see Schumaker 1981 , page 124 ; that is, for any s x �
Ž . Ž . � Ž . Ž .S m, t , there exists an a such that s x � a N x , where N x �m m

Ž Ž . Ž ..� Ž . � Ž .4kN x , . . . , N x . For convenience, in the sequel, N � and N �1, m k , m m i, m i�1
Ž . � Ž .4kwill be abbreviated as N � and N � , respectively. To study the asymp-i i�1

Ž̂ .totic bias and variance of f x , we need to specify some conditions. Here we
assume that

� � �13 max h � h � o k and h min h 	 M ,Ž . Ž .i�1 i 0 i
1	i	k 1	i	k0 0
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where h � t � t , h � max h and M � 0 is a predetermined con-i i i�1 1	 i	 k i0

stant. Such an assumption assures that M�1 � k h � M, which is necessary0
for numerical computations.

REMARK 1. We see next that the local asymptotic bias and variance of
Ž̂ . Ž .f x are both independent of the magnitude of M. The assumption in 3 is a

weak restriction on the knot distribution. A commonly used condition is that
�knots are generated from a positive continuous density see, e.g., Agrawal and

Ž .� Ž .Studden 1980 . However, the assumption in 3 is adequate for our purpose.
� n4In the case where the design points x are deterministic, assume thati i�1

�14 sup Q x � Q x � o k ,Ž . Ž . Ž . Ž .n 0
� �x� 0, 1

Ž . � n4 Ž .where Q x is the empirical distribution function of x , and Q x is an i i�1
Ž .distribution with a positive continuous density q x .

Theorem 2.1 provides expressions for the asymptotic bias and variance of
Ž̂ .the regression estimator f x for the fixed design. It implies that the asymp-

totic bias can be expressed locally in terms of a scaled Bernoulli polynomial
and the asymptotic variance is related to the location of the knots and the

Ž .design density q x when the number of knots is not too large. Of course, the
Ž̂ .value of k controls the trade-off between the bias and the variance of f x .0

Ž .THEOREM 2.1 Asymptotic bias and variance: fixed design case . Suppose
Ž . Ž . m� � Ž . Ž �3 and 4 hold. If f � C 0, 1 and k � o n , then, for any x � t , t ,0 i i�1
i � 0, . . . , k ,0

ˆ m5 E f x � f x � b x � o h ,Ž . Ž . Ž . Ž . Ž .Ž .
� 2

�1� �1ˆ6 Var f x � N x G q N x � o nh ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .n
�Ž . Ž .where N x is the transpose of N x ,

f Žm. x hm x � tŽ . 1i i �b x � � B and G q � N x N x q x dx .Ž . Ž . Ž . Ž . Ž .Hm ž /m! h 0i

Ž .Here B � is the mth Bernoulli polynomial which is inductively defined asm
follows:

x
B x � 1, B x � iB z dz � b ,Ž . Ž . Ž .H0 i i�1 i

0

1 x Ž . �where b � �iH H B z dz dx is the ith Bernoulli number see Barrow andi 0 0 i�1
Ž .�Smith 1978 .

In practice, there are many situations, including many survey or other
observational studies, where the design points are not provided or controlled
by the experimenters. As a result, one may consider that the design points
are random. For random designs, we assume that the design points are
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sampled from a continuous distribution. The next theorem provides the
Ž̂ .conditional asymptotic bias and variance for f x for this random design

setting.

Ž .THEOREM 2.2 Asymptotic bias and variance: random design case . Sup-
Ž . � 4n Ž .pose 3 holds and the design points x are randomly sampled from Q x .i i�1

m� � Ž r . Ž �If f � C 0, 1 and k � o n for some r � 0, 1�2 , then, for any x �0
Ž �t , t , i � 0, . . . , k ,i i�1 0

ˆ m�E f x x � f x � b x � o h ,Ž . Ž . Ž . Ž .Ž . p

� 2
�1� �1ˆ �Var f x x � N x G q N x � o nh .Ž . Ž . Ž . Ž . Ž .Ž .Ž . pn

Ž .REMARK 2. The asymptotic bias in 5 does not depend on the design
Ž .distribution Q x . This is a reflection that the regression spline is a local

smoother and the fact that the design distribution is close to uniform locally
Ž .for large n and k . The asymptotic variance in 6 depends on both the knot0

and the design distributions as we should expect. In addition, if the knot
sequence converges to a limiting distribution with positive continuous density
Ž . Ž .p x , analysis of the leading term on the right-hand side of 6 leads to the

Ž̂ .conclusion that the pointwise variance of f x is asymptotically proportional
Ž . �2 Ž . Ž .to q x and p x for any x � 0, 1 .

REMARK 3. In many situations, the error random variables � are noti
� 4n Ž .homogenous; that is, the � are uncorrelated with mean 0 and Var � �i i�1 i

Ž . 2 Ž . � �w x � , where w � is a positive continuous weight function on 0, 1 . In suchi
settings, it is more appropriate to consider a weighted sum of squares
criterion, such as minimizing

n
2�17 w x y � s x .Ž . Ž . Ž .Ž .Ý i i i

i�1

Similarly, we can obtain

ˆ mE f x � f x � b x � o h ,Ž . Ž . Ž . Ž .Ž .
� 2

�1� �1ˆVar f x � N x G q N x � o nh ,Ž . Ž . Ž . Ž . Ž .Ž . Ž .wn
1 � ˆŽ . Ž . Ž . Ž . Ž . Ž .where G q � H w x N x N x q x dx and f x is now the minimizer ofw 0

Ž .7 .

1�Ž2 m�1. Ž .REMARK 4. When k � Cn for some C � 0, it follows by 5 and0
Lemma 6.6 of Section 5 that

�m �Ž2 m�1.b � � max b t � O nŽ . Ž . Ž .L� � �x� 0, 1
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and

ˆ �2 m �Ž2 m�1.max Var f x � O n .Ž . Ž .Ž .
� �x� 0, 1

ˆ �m �Ž2 m�1.Ž . Ž . Ž . � �Therefore f x � f x � O n uniformly for any x � 0, 1 , whichP
�says that regression splines do not suffer from boundary effects Gasser and

ˆŽ .� Ž .Miller 1984 . However, we note that the variance of f x near the boundary
� �of 0, 1 is much larger than in the interior. This phenomenon can be easily

explained by the fact that fewer observations are collected near the boundary.
In addition, for any probability measure �, we have that

21 �2 m �Ž2 m�1.ˆ8 IMSE � sup E f x � f x d� x � O n ,Ž . Ž . Ž . Ž . Ž .Ž .H
0Ž .f�C m , �

Ž . � m� � � Žm. � 4where C m, � � f � C 0, 1 : f 	 � for some � � 0. This agrees with
Ž .the result of Stone 1982 .

REMARK 5. From Theorems 2.1 and 2.2, the asymptotic optimal knot
Ž .placement can be derived. This has been done in Agarwal and Studden 1980

for the fixed design under the additional assumption that the knots are
generated from a density. Their result can be generalized to our setting using
similar arguments.

3. Asymptotic normality. In this section, we study the asymptotic
Ž̂ .distribution of a properly standardized f x .

Ž .THEOREM 3.1 Asymptotic normality . In addition to the assumptions in
� 4nTheorem 2.1, suppose that the � are independently and identicallyi i�1

distributed with mean 0 and variance � 2, and k � Cn1�Ž2 m�1. for some0
� �constant C � 0. Then, for any fixed x � 0, 1 ,

f̂ x � f x � b xŽ . Ž . Ž .Ž .
9 � N 0, 1 .Ž . Ž .dˆ'Var f xŽ .Ž .

ˆŽ . Ž Ž ..Under the assumptions in Theorem 2.2, 9 continues to hold with Var f x
ˆŽ Ž . � .replaced by Var f x x .

REMARK 6. In the case of heteroscedastic errors, under the additional
nŽ . � � � 4assumptions that w � is continuous on 0, 1 and the � � w x are' Ž .i i i�1

independently and identically distributed with mean 0 and variance � 2, we
have

f̂ x � f x � b xŽ . Ž . Ž .Ž .
� N 0, 1 ,Ž .dˆ'Var f xŽ .Ž .

where k � Cn1�Ž2 m�1..0
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4. Confidence regions. We now apply the results in Sections 2 and 3 to
Ž . 2construct confidence regions for f x when the common variance � is

known.

Ž .THEOREM 4.1 Confidence interval . In addition to the assumptions in
�1�Ž2 m�1. � �Theorem 3.1, assume that k n � �. Then for any fixed x � 0, 1 , a0

Ž . Ž .100 1 � � % asymptotic confidence interval for f x is

ˆ ˆf x � z 'Var f x ,Ž . Ž .Ž .��2

Ž .where z is the 1 � ��2 th normal percentile and��2

ˆ 2 � �1Var f x � � N x G N x �nŽ . Ž . Ž .Ž . k , n

� �1Ž Ž . Ž ..with G � nXX and X � n N x , . . . , N x .k , n 1 n

Ž̂ .The choice of k in Theorem 4.1 gives an undersmoothed f x , as we see0
from Remark 4. As a result, we cannot directly use the knots selected

� Ž .�according to GCV Craven and Wahba 1979 or other similar methods in the
Ž .construction of confidence intervals for f x . To get around this problem, we

consider an alternative two-step procedure. In the first step, we use an m� th,
m� � m, order spline to select the knots to assure that the number of knots
satisfies the required condition in Theorem 4.1. In the second step, we fit an
mth-order spline using the knots selected in step 1 to construct confidence

Ž .intervals for f x . See Section 5 for more details.
In many studies, it is desirable to obtain a simultaneous confidence band
Ž . � �for f x over all x � 0, 1 . Since regression splines are linear estimators, we

can use standard simultaneous inference theory in linear regression to
Ž̂ . �construct such confidence bands for Ef x see, e.g., Johansen and Johnstone

Ž .�1990 . Although these bands will not necessarily maintain the desired
Ž̂ .coverage probability for small sample sizes, the effect of the bias of f x

decreases as n becomes larger. As a result, these bands will provide the
desired coverage probability asymptotically, as stated precisely in the next
theorem.

Ž .THEOREM 4.2 Confidence band . In addition to the assumptions in Theo-
� 4n Ž 2 . 2rem 2.1 or 2.2, assume that the � are i.i.d. N 0, � , with � known,i i�1

and that k � Cn1�Ž2 m�1.. For large n,0

f̂ x � f xŽ . Ž .
P sup 	 c � � 1 � � ,Ž .
 0ˆ0	x	1 'Var f xŽ .Ž .

Ž . Ž .where � � 0, 1 and c � satisfies

� �� 	
210 � exp �c � �2 � 1 � 
 c � .Ž . Ž . Ž .Ž .Ž .

2 2�
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Here

d G�1�2 N� xŽ .1 k , n
� �	 �H 1�2� �1½ ž /dx0 N x G N xŽ . Ž .Ž .k , n

11Ž . 1�2
�1�2d G N xŽ .k , n

� dx .1�2� �1 5ž /dx N x G N xŽ . Ž .Ž .k , n

Ž . Ž .In other words, a 100 1 � � % asymptotic confidence band for f x is

ˆ ˆf x � c � 'Var f x .Ž . Ž . Ž .Ž .

REMARK 7. When � 2 is unknown, Theorem 4.2 continues to hold if
ˆ 2 � �1 2 1�2Ž Ž .. Ž . Ž .Var f x is replaced by � N x G N x , where � is any n -consistentˆ ˆk , n

estimator of � 2. Such an estimator can be found, for example, in Gasser,
Ž . Ž .Sroka and Jennen-Steinmetz 1986 and Hall, Kay and Titterington 1990 .

� 4nREMARK 8. In the case where the � are dependent, Theorem 4.2i i�1
Ž .continues to hold if the minimum and maximum eigenvalues of Cov � are

bounded away from 0 and �.

5. Simulation study. To illustrate the proposed method for constructing
of the confidence interval at a point and the confidence band, we perform a

Ž .simulation study using model 1 with a test function
2f x � exp �32 x � 0.5 � 2 x � 1.Ž . Ž .Ž .

� �In the simulation, the x are equally spaced in 0, 1 and the � are taken toi i
Ž Ž .2 .be i.i.d. N 0, 0.1 . Sample sizes 50, 100, 200, 400, 600 and 800 are consid-

ered and the coverage probability based on 1000 runs is reported for each
sample size. The estimated curve is obtained by fitting a cubic spline using
the knots selected by a second-order spline function according to GCV with
the forward addition procedure. In the construction of confidence regions, we

2 Ž .used the estimator for � proposed by Hall, Kay and Titterington 1990 :
n�21 2212 � � 0.809 y � 0.5y � 0.309 y .Ž . Ž .ˆ Ý i i�1 i�2n � 2 i�1

Figure 1 displays the pointwise coverage probabilities of confidence inter-
vals for different sample sizes. It suggests that these pointwise confidence
intervals provide reasonable coverage probabilities for these sample sizes.
However, there is considerable variation in the pointwise coverage probabili-
ties for smaller sample sizes. We believe that this is due to the fact that the

Žpointwise bias of the regression spline depends on the knot locations see
.Theorems 2.1 and 2.2 . When sample sizes are large, the asymptotic effect

takes control and forces the pointwise coverage probability close to 95% at
each point. It is interesting to note that the coverage probability at a large
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FIG. 1. Empirical coverage probabilities of pointwise confidence intervals for sample sizes
n � 50, 100, 200, 400, 600 and 800.
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number of points exceeds 95% for n � 50. This is due to the positive bias of
2 Ž .� in 12 , which helps increase the coverage probability. For the sameˆ

reason, the coverage probabilities of the confidence bands for small sample
Ž . Ž .sizes n � 50, 100 are larger than that for n � 200 see Figure 3 . We need to

point out that, unlike Bayesian confidence intervals for smoothing splines
where the coverage is provided in average sense, here the coverage is in the
classical pointwise sense.

Figure 2 displays simulated data, the true regression function, the esti-
mated function and the corresponding 95% confidence band based on Theo-
rem 4.2. Figure 3 plots the coverage probability versus different sample sizes.
It shows that the coverage probability increases as n increases for n � 200,

FIG. 2. Simulated data for n � 100 with the true regression function, the estimated curve and
95% confidence band.
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FIG. 3. Empirical coverage probabilities for confidence bands.

which agrees with the result of Theorem 4.2. However, the coverage is lower
Ž .than the ideal 95% even for n � 800. This is due to the fact that c � is

Ž .'increasing at a very slow rate O log n and therefore the bias effect can be
large even for n � 800. Consequently, a suitable bias correction may improve
the performance for small sample sizes and is worthy of further investigation.

6. Proofs of theorems. Before proving Theorem 2.1, we state several
technical lemmas about the matrices G and G�1 . In the proof, we use thek , n k , n

�Ž . �following result of de Boor 1978 , page 155 : There exists a constant c � 0,0
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Ž . k Ž . Ž .depending only on m, such that, for any s x � Ý a N x � S m, t ,i�1 i i

1�2 1�2k
12 2	 	c a t � t 	 s � s x dxŽ . Ž .Ý L H0 i i i�m 2 ž /ž / 0i�1

13Ž .
1�2k

2	 a t � t .Ž .Ý i i i�mž /
i�1

Ž .First we derive an analogue of 13 .

Ž .LEMMA 6.1. There exist constants 0 � c 	 c � � independent of n or k1 2 0
Ž . k Ž . Ž .such that, for any s x � Ý a N x � S m, t ,i�1 i i

k k
12 2 214 c � o 1 h a 	 s x dQ x 	 c � o 1 h a .Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý ÝH1 i n 2 i

0i�1 i�1

PROOF. To prove the right-hand inequality, note that

1 1 1 22 2 2s x dQ x � s x q x dx 	 q s x dx � q s x ,Ž . Ž . Ž . Ž . Ž . Ž . LH H Hmax max 2
0 0 0

Ž . Ž .where q � max q x � �. It follows from 13 thatmax x ��0, 1�

1 12 2s x dQ x 	 q s x dxŽ . Ž . Ž .H Hmax
0 0

k k
2 2	 q a t � t 	 q mh a .Ž .Ý Ýmax i i i�m max i

i�1 i�1

15Ž .

Ž .Using integration by parts, we have from 4 that

1 2s x d Q � Q xŽ . Ž . Ž .H n
0

112 Ž1.�� s x Q � Q x � 2 Q � Q x s x s x dxŽ . Ž . Ž . Ž . Ž . Ž . Ž .0 Hn n
0

1 Ž1.	 o h s x s x dx ,Ž . Ž . Ž .H
0

Ž1.Ž . Ž .where s x is the derivative of s x . In the last inequality, the fact that
Ž .Ž . Ž .Ž .Q � Q 1 � Q � q 0 � 0 has been used. By the Holder inequality, it¨n n
follows that

1 2 Ž1.s x d Q � Q x 	 o h s x s x .Ž . Ž . Ž . Ž . Ž . Ž .L LH n 2 2
0
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Ž . Ž1.Ž . k�1 Ž1. Ž . Ž1. ŽFrom de Boor 1972 , page 54, s x � Ý a N x , where a � m �i�1 i i, m�1 i
.Ž . Ž . Ž . Ž .1 a � a � t � t . By 13 and 3 , we havei�1 i i i�m�1

1 2s x d Q � Q xŽ . Ž . Ž .H n
0

1�2k
2	 o h a t � tŽ . Ž .Ý i i i�mž /

i�1

1�2k�1
2

� m � 1 a � a � t � tŽ . Ž . Ž .Ž .Ý i�1 i i i�m�1ž /
i�1

1�2k �1�2
1�2 2	 o h mh a m � 1 min hŽ . Ž . Ž .Ý i iž /ž / 1	i	k0i�1

16Ž .

1�2k�1
2

� a � aŽ .Ý i�1 iž /
i�1

1�2 1�2k k�11�2
22� o h h min h a a � aŽ . Ž .Ý Ýi i i�1 iž / ž / ž /1	i	k0 i�1 i�1

k
2	 o h a .Ž . Ý i

i�1

k�1Ž .2 k 2In the last inequality, the fact that Ý a � a 	 4Ý a has beeni�1 i�1 i i�1 i
Ž . Ž .used. This, together with 15 , implies the right-hand inequality of 14 .

To prove the left-hand inequality, note that

1 1 22 2s x dQ x � q s x dx � q s x ,Ž . Ž . Ž . Ž . LH Hmin min 2
0 0

Ž . Ž . Ž .where q � min q x � 0. It follows from 3 and 13 thatmin x ��0, 1�

k
1 2 2 2s x dQ x � q c a t � tŽ . Ž . Ž .ÝH min 0 i i i�m

0 i�1

k k
2 2 2 �1 2� q c min h a � q c M h a .Ý Ýmin 0 i i min 0 i

1	i	k0 i�1 i�1

Ž .By 16 , we have

k
1 12 2 2s x dQ x � o h a � s x dQ xŽ . Ž . Ž . Ž . Ž .ÝH Hn i

0 0i�1

k
2 �1 2� q c M h � o h a .Ž .Ž . Ýmin 0 i

i�1

This completes the proof of Lemma 6.1. �
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Lemma 6.2 provides lower and upper bounds for the eigenvalues of G .k , n

LEMMA 6.2.

17 c � o 1 h 	 � 	 � 	 c � o 1 h ,Ž . Ž . Ž .Ž . Ž .1 min max 2

where � and � are the minimum and maximum eigenvalues of G ,min max k , n
respectively.

PROOF. Note that

� � max a�G a and � � min a�G a.max k , n min k , n
k 2 k 2Ý a �1 Ý a �1i�1 i i�1 i

By the definition of G , we havek , n

a�G a � na� XX�ak , n

1 �� � � �� a N x , . . . , a N x a N x , . . . , a N xŽ . Ž . Ž . Ž .Ž . Ž .1 n 1 nn18Ž .
2n k1 1 2� a N x � s x dQ x ,Ž . Ž . Ž .Ý Ý Hi i i nž /n 0j�1 i�1

Ž . k Ž . Ž .where s x � Ý a N x . It follows from 18 and Lemma 6.1 thati�1 i i

1 2� � max s x dQ x 	 c � o 1 hŽ . Ž . Ž .Ž .Hmax n 2
2 0Ýa �1i

and
1 2� � min s x dQ x � c � o 1 h.Ž . Ž . Ž .Ž .Hmin n 1

k 2 0Ý a �1i�1 i

This completes the proof. �

Lemma 6.3 states that the elements of G�1 decay exponentially.k , n

Ž . Ž .LEMMA 6.3. There exist constants c � 0, � and 	 � 0, 1 such that, for3
large n,

� � �1 � i�j �� 	 c h 	 ,i j 3

Ž . �1where � is the i, j th element of G . In addition,i j k , n

k
�1 �1	 	 � �19 G � max � � O h .Ž . Ž .Ý�k , n i j

1	i	k j�1

PROOF. Noting that G is a band matrix, we apply Theorem 2.2 ofk , n
Ž . �1Demko 1977 to � G . First we verify the required conditions. Note thatmax k , n

� is the maximum eigenvalue of G . It follows thatmax k , n

1�2��1 �1 �1 2	 	 	 	� G � � G � � max z G z 	 1.Ž .2 2max k , n max k , n max k , n
k 2Ý z �1i�1 i
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On the other hand,
	 �1 	 	 �1 	� G � � �� � G 	 � �� .Ž . Ž .2 2max k , n max min min k , n max min

Ž .By Lemma 6.2, for large n, c h�2 	 � 	 � 	 2c h and � �� 	1 min max 2 max min
Ž . Ž .4c �c . By Theorem 2.2 of Demko 1977 , there exist c
 � 0 and 	 � 0, 12 1

� � � � i�j �depending only on 4c �c and m such that � � 	 c 	 . Therefore2 1 max i j

� � � �1 � i�j � �1 � i�j �� 	 c � 	 	 c h 	 ,i j max 3

where c � 2c��c . This completes the proof of Lemma 6.3. �3 1

Ž . � Ž .We now introduce a result of Barrow and Smith 1978 see 2.7 of that
� Ž .paper on the approximation error of spline functions in S m, t :

� m20 inf f x � b x � s x � o h ,Ž . Ž . Ž . Ž . Ž .L�
Ž . Ž .s x �S m , t

where
f Žm. t hm x � tŽ .i i i�b x � � B .Ž . m ž /m! hi

For other reasons, Barrow and Smith assumed that the knots are generated
Ž .according to a positive density in their paper. However, the proof of 20 uses

Ž . Ž . Ž .only the assumption of 3 . From 20 , it follows that there exists an s x �f
Ž .S m, t such that
21 f � b� x � s x � o hm .Ž . Ž . Ž . Ž .f

Ž . Ž .PROOF OF 5 OF THEOREM 2.1. By 2 , it follows from the standard least
squares calculation that

ˆ � �122 f x � N x G XY,Ž . Ž . Ž . k , n

Ž .� Ž .where Y � y , . . . , y . From 21 , we have1 n

ˆ ˆE f x � f x � s x � f x � E f x � s xŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .f f

� mˆ� b x � E f x � s x � o h .Ž . Ž . Ž . Ž .Ž . f

m� � Žm.Ž . Žm.Ž . Ž . Ž .Because f � C 0, 1 , we have f x � f t � o 1 and therefore b x �i
� Ž . Ž m.b x � o h . It follows that

mˆ ˆ23 E f x � s x � b x � E f x � s x � o h .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .f f

ˆ mŽ Ž .. Ž . Ž .Hence it suffices to show that E f x � s x � o h . Note that sincef
Ž . Ž . Ž .s x � S m, t , it follows from 22 thatf

ˆ � �1 � �124 E f x � s x � N x G X f x � s x � N x G r ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž . f k , n f k , n

Ž . 1 Ž .Ž .Ž . Ž .where r � r , . . . , r with r � H N x f � s x dQ x . Under assump-1 k i 0 i f n

Ž . Ž . Ž m� 1.tions 3 and 4 , max r � o h , as shown in the proof of Lemma1	 i	 k i
Ž . Ž . � �6.10 of Agarwal and Studden 1980 . Note that N x 	 1 for any x � 0, 1i

Ž .and 1 	 i 	 k. By 24 and Lemma 6.3, we have
�1 m�1 mˆ 	 	25 E f x � s x 	 G o h � o h .Ž . Ž . Ž . Ž . Ž .Ž . �f k , nL�

Ž . Ž . Ž .Hence 5 follows from 23 and 25 . �
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Ž . Ž .PROOF OF 6 OF THEOREM 2.1. When m � 1, 6 can be easily verified. We
Ž .now discuss the case of m � 2. From 22 , we have

� 2
� �1ˆ26 Var f x � N x G N x .Ž . Ž . Ž . Ž .Ž . k , nn

Ž . � � � Ž . �Noting that N x � 0 when x � t , t de Boor 1972 , page 52 , we havej j�m j

27 N x � 0 if j � i or j � i � m � 1,Ž . Ž .j x x

� �where i is the integer such that x � t , t . Thenx i �1 ix x

i �m i �m2 x x�ˆ28 Var f x � � N x N x ,Ž . Ž . Ž . Ž .Ž . Ý Ý i j i jn i�i j�ix x

Ž . �1where � is the i, j th element of G . By Lemma 6.4,i j k , n

� N x N x � � q N x N x � o h�1 ,Ž . Ž . Ž . Ž . Ž . Ž .i j i j i j i j

Ž . Ž . �1Ž .where � q is the i, j th element of G q . Hencei j

i �m i �m2 x x�
�1ˆVar f x � � q N x N x � o nh .Ž . Ž . Ž . Ž . Ž .Ž . Ý Ý i j i jn i�i j�ix x

Ž .From 27 , we know that
i �m i �m2 2x x� �

� �1� q N x N x � N x G q N x ,Ž . Ž . Ž . Ž . Ž . Ž .Ý Ý i j i jn ni�i j�ix x

Ž .which completes the proof of 6 . �

LEMMA 6.4.
�129 max � � � q � o h .Ž . Ž . Ž .i j i j

1	i , j	k

Ž .PROOF OF LEMMA 6.4. We first show that the elements of G � G q arek , n

Ž . Ž . Ž . Ž .of order o h . Let g and g q be the i, j th element of G and G q ,i j i j k , n
respectively. Then

1
30 g q � g � N z N z d Q � Q z .Ž . Ž . Ž . Ž . Ž . Ž .Hi j i j i j n

0

Ž .Using integration by parts and 27 , we have

�1g q � g � N z N z Q � Q zŽ . Ž . Ž . Ž . Ž . 0i j i j i j n

tminŽ i , j.� Q � Q zŽ . Ž .H n
tmaxŽ i , j.�m

31Ž .

� N Ž1. z N z � N z N Ž1. z dzŽ . Ž . Ž . Ž .Ž .i j i j

� � Ž1.Ž . Ž .for any i � j � m, where N z is the derivative of N z . Note thati i
Ž .Ž . Ž .Ž . 	 Ž1. 	Q � Q 1 � Q � Q 0 � 0, k h � M and N 	 ck , i � 1, . . . , k, forLn n 0 i 0�
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� Ž . � Ž .some constant c � 0 independent of k see de Boor 1978 , page 138 . By 4 ,0
we have

g q � gŽ .i j i j

tminŽ i , j. Ž1. Ž1.� o h N z N z � N z N z dzŽ . Ž . Ž . Ž . Ž .Ž .H i j i j
tmaxŽ i , j.�m

32Ž .

	 o h 2ck mh � o h .Ž . Ž .0

Ž . Ž . �1 Ž .Let B � b � G q G . It follows from 32 thati j k , n

Ž . Ž .min k , i�m�1 min k , i�m�1k

b � g q � � g q � � g � o h �Ž . Ž . Ž .Ž .Ý Ý Ýi j i l l j i l l j i l i j
l�1 Ž . Ž .l�max i�m , 1 l�max i�m , 1

Ž .min k , i�m�1

� � � o h � ,Ž . Ýi j l j
Ž .l�max i�m , 1

where � � 1 if i � j and 0 otherwise. Using the fact that 	 � l�j � 	 	 � i�j ��m fori j
Ž . Ž .any l � max i � m, 1 , . . . , min k, i � m � 1 we have from Lemma 6.3 that

� � � i�j ��m � i�j �33 b � � 	 o 1 m	 � o 1 	 .Ž . Ž . Ž .i j i j

Ž . �1 �1Ž . �1Ž .Ž .From 33 and the fact that G � G q � G q B � I , it follows thatk , n

k k
� l�j �34 � � � q � � q b � � � � q o 1 	 .Ž . Ž . Ž . Ž . Ž .Ž .Ý Ýi j i j i l l j l j i l

l�1 l�1

Using arguments similar to those in the proof of Lemma 6.3, we have that
Ž . Ž .there exist constants C � 0 and 	 � 0, 1 independent of k and n suchq q 0

that
t � ti i�m � i�j �� q 	 C 	 .Ž .i j q qm

Hence
�1 �1 � i�j �35 � q � C M h 	 .Ž . Ž .i j q q

Ž . Ž .It follows from 34 and 35 that
k

�1 �1 � i�j � � l�j �� � � q 	 C M h 	 o 1 	Ž . Ž .Ýi j i j q q
l�1

k k
�1 � i�l � � l�j � �1 � i�l �� � l�j �� o h 	 	 	 o h 	Ž . Ž .Ý Ýq d

l�1 l�1

Ž . Ž .min i , j k�max i , j
�1 � i�j � l� �� o h 	 i � j � � 	Ž . Ý Ýd dž /ž /l�1 l�1

�1 � � � i�j � �1� o h i � j � 2�	 	 � o h ,Ž . Ž .Ž .d d

Ž .where 	 � max 	 , 	 � 1. In the last equality, we have used the fact thatd q

� � � i�j �max i � j � 2�	 	 � c ,Ž .d d 5
1	i , j	k
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Ž .where c � � is a constant independent of k and n . This completes the5
proof of Lemma 6.4. �

� 4nPROOF OF THEOREM 2.2. In the case where the design points x arei i�1
Ž .sampled from a distribution Q x , it follows from the Glivenko�Cantelli

� Ž .�theorem see, e.g., Gaenssler and Wellner 1981 that
�1�2max Q x � Q x � O n .Ž . Ž . Ž .n p

0	x	1

Using arguments similar to those in the proof of Theorem 2.1, we complete
the proof of Theorem 2.2. �

LEMMA 6.5. If A and B are l � l nonnegative matrices, then

� A Tr B 	 Tr AB 	 � A Tr B ,Ž . Ž . Ž .min max

where � A and � A are the minimum and maximum eigenvalues of A,min max
respectively.

PROOF. There exists an orthonormal matrix C such that

A � CD AC� ,
A Ž A A. � A4 lwhere D � diag � , . . . , � and � are the eigenvalues of A. Then we1 l i i�1

have

Tr AB � Tr CD AC�B � Tr D AC�BC .Ž . Ž . Ž .
Because C�BC is also nonnegative definite, we have

� A Tr C�BC 	 Tr AB 	 � A Tr C�BC .Ž . Ž . Ž .min max

Ž � . Ž �. Ž .Lemma 6.5 then follows from the fact that Tr C BC � tr BCC � Tr B . �

LEMMA 6.6.
�1 �1 �12 �1 2ˆ36 c m � o 1 � nh 	 Var f x 	 c � o 1 � nh .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .Ž .2 1

Ž .PROOF. By 22 and Lemma 6.5, we have

ˆ �1 2 � �1 �1 2 �1 �Var f x � n � N x G N x � n � Tr G N x N xŽ . Ž . Ž . Ž . Ž .Ž .Ž . k , n k , n

k
��1 2 �1 �1 2 �1 2	 n � � Tr N x N x � n � � N xŽ . Ž . Ž .Ž . Ýmin min i

i�1

2k
�1 2 �1 �1 2 �1	 n � � N x � n � � .Ž .Ýmin i minž /

i�1

It then follows from Lemma 6.2 that

c�1 � o 1 � 2Ž .Ž .1ˆVar f x 	 .Ž .Ž .
nh
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Using similar arguments, we obtain
k

�1 2 �1 2ˆVar f x � n � � N x .Ž . Ž .Ž . Ýmax i
i�1

Ž .By 27 , we have
2i �m�1 i �m�1k x x1 122N x � N x � N x � .Ž . Ž . Ž .Ž .Ý Ý Ýi i iž /m mi�1 i�i i�ix x

Thus
� 2

ˆVar f x � .Ž .Ž .
mn�max

Ž .The left-hand inequality of 36 then follows from Lemma 6.2, completing the
proof of Lemma 6.6. �

Ž .PROOF OF THEOREM 3.1. From 36 and Theorem 2.1, we have

ˆ �mEf x f x � b x o kŽ . Ž . Ž . Ž .0 1�2 �Žm�1�2.� � � o n k � o 1 .Ž .Ž .0k �n'ˆ ˆ 0'Var f x 'Var f xŽ . Ž .Ž . Ž .
Ž .Thus 9 follows if

ˆ ˆf x � Ef xŽ . Ž .
� N 0, 1 .Ž .dˆ'Var f xŽ .Ž .

Ž .From 22 , we have
n

� �1ˆ ˆ37 f x � Ef x � N x G X� � a � ,Ž . Ž . Ž . Ž . Ýk , n i i
i�1

�Ž . �1 Ž .where a � N x G N x �n. To check the required Lindeberg�Feller con-i k , n i
ditions, it suffices to verify that

n
2 2 ˆ38 max a � o a � o Var f x .Ž . Ž .Ž . Ž .Ý Ž .i iž /1	i	n i�1

By Lemma 6.5, we have

a2 n2 � N� x G�1 N x N� x G�1 N xŽ . Ž . Ž . Ž .i k , n i i k , n

� Tr N x N� x G�1 N x N� x G�1Ž . Ž . Ž . Ž .Ž .i i k , n k , n

	 e Tr G�1 N x N� x G�1Ž . Ž .Ž .i k , n k , n

	 e ��2 Tr N x N� x ,Ž . Ž .Ž .i min

Ž . �Ž .where e is the maximum eigenvalue of N x N x . By definition, for anyi i i
� � Ž . k Ž .x � 0, 1 , 0 	 N x 	 1 and Ý N x � 1, 1 	 i 	 k. This implies thati i�1 i

Ž Ž . �Ž ..Tr N x N x 	 1 and e 	 1. Thereforei

a2 	 ��2 �n2 .i min
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Ž . Ž .It follows from 17 and 36 that

22 �2a n nh c � o 1Ž .Ž .i 1	 � .2 �1 2 �1 2ˆ c � o 1 � c � o 1 hn�Ž . Ž .Ž . Ž .Var f xŽ . c � o 1 hŽ . Ž . 2 2Ž .1

Ž .Then 38 follows from the assumption that k �n � 0, hn � �. Thus the0
Ž .proof of 9 of Theorem 3.1 is complete. For random designs, the result can be

established similarly. �

PROOF OF THEOREM 4.1. Using arguments similar to those in the proof of
Theorem 3.1, we have

f̂ x � f xŽ . Ž .
� N 0, 1 .Ž .dˆ'Var f xŽ .Ž .

Therefore the desired asymptotic confidence interval can be constructed. �

Ž .PROOF OF THEOREM 4.2. From 22 , we have

ˆ ˆf x � E f x � 	 x � ,Ž . Ž . Ž .Ž .
Ž . �Ž . �1 Ž . � Ž .where 	 x � N x G X. From Johansen and Johnstone 1990 see 2.16k , n

� Ž .on page 661 , we have, for any c � 0, 1 ,

2ˆ ˆ � �f x � E f x 	 �cŽ . Ž .Ž .
P sup � c � exp � 2 1 � 
 c .Ž .Ž .ž /� 2
 0ˆ0	x	1 'Var f xŽ .Ž .

Ž .It follows from 10 that

ˆ ˆf x � E f xŽ . Ž .Ž .
P sup 	 c � � 1 � � .Ž .
 0ˆ0	x	1 'Var f xŽ .Ž .

Hence

ˆ ˆf x � f x E f x � f xŽ . Ž . Ž . Ž .Ž .
P sup 	 c � � sup � 1 � � .Ž .
 0ˆ ˆ0	x	1 0	x	1'Var f x 'Var f xŽ . Ž .Ž . Ž .

By Lemmas 6.6 and 6.7, Theorem 2.1 and the assumption that k � Cn1�Ž2 m�1.
0

� Ž �1�Ž2 m�1..�i.e., h � O n , we have

ˆE f x � f xŽ . Ž .Ž .�1c � c � � supŽ . Ž .Ž . 
 0ˆ0	x	1 'Var f xŽ .Ž .
�1�2�1 1�2 m�1�2� 1 � O log h n h � 1.Ž .Ž .ž /
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It follows that, for large n,

f̂ x � f xŽ . Ž .
P sup 	 c � � 1 � � ,Ž .
 0ˆ0	x	1 'Var f xŽ .Ž .

completing the proof. �

Ž . ŽLEMMA 6.7. For any fixed � � 0, 1 , there exists a constant c � 0 inde-6
.pendent of k and n such that0

�1'c � � c � o 1 log h .Ž . Ž . Ž .Ž .6

Ž .PROOF. From 10 and Lemma 6.6, it suffices to show that

� � �139 	 � c � o 1 h ,Ž . Ž .Ž .7

Ž . �Ž .where c � 0 is a constant independent of k and n . From de Boor 1972 ,7 0
�page 54 , we know that

dN x �dx � DN x ,Ž . Ž .m� 1

where

D � m � 1Ž .
�1� t � t 0 ��� 0 0Ž .1 1�m�1

�1 �1t � t � t � t ��� 0 0Ž . Ž .1 1�m�1 2 2�m�1
40Ž . �1� .0 t � t ��� 0 0Ž .2 2�m�1

. . . . .. . . . .. . . . .
 0
�10 0 ��� 0 t � tŽ .k�1 k�m

Ž .It follows from 11 that
1�2� ��1 �1 �1N x G A G AG N xŽ . Ž .Ž .1 k , n k , n k , n

� �41 	 � dx ,Ž . H 3�2� �10 N x G N xŽ . Ž .Ž .k , n

where
A � DN x N� x � N x N� x D� .Ž . Ž . Ž . Ž .m� 1 m�1

� �1 ˆ �2Ž . Ž . Ž Ž ..Note that N x G N x � n Var f x � . By Lemma 6.6,k , n

�1 ��1 �1 �1 �142 c m � o 1 h 	 N x G N x 	 c � o 1 h .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .2 k , n 1

By Lemma 6.5,

N� x G�1 A�G�1 AG�1 N x � ��1 Tr AG�1 N x N� x G�1 A�Ž . Ž . Ž . Ž .Ž .k , n k , n k , n max k , n k , n

� ��1 N� x G�1 A�AG�1 N x .Ž . Ž .max k , n k , n

Ž . Ž . Ž .It follows from 41 , 42 and the above inequality that 39 holds if

1 1�2� ��1 �1 �243 N x G A AG N x dx � c � o 1 h ,Ž . Ž . Ž . Ž .Ž .Ž .H k , n k , n 8
0



S. ZHOU, X. SHEN AND D. A. WOLFE1780

Ž . Ž .where c � 0 is a constant independent of k and n . To verify 43 , let8 0
Ž . �Ž . �1 � �1 Ž .
 x � N x G A AG N x . After some calculations, we havek , n k , n

�

 x � g x N x � g x DN xŽ . Ž . Ž . Ž . Ž .Ž .1 2 m�144Ž .

� g x N x � g x DN x ,Ž . Ž . Ž . Ž .Ž .1 2 m�1

where

g x � N� x D�G�1 N x and g x � N� x G�1 N x .Ž . Ž . Ž . Ž . Ž . Ž .1 m�1 k , n 2 k , n

Ž . �Ž . Ž Ž .We now construct a vector which is orthogonal to N x . Let L x � l x ,1
Ž . Ž ..l x , . . . , l x , where2 k


1 � N x , i � i ,Ž .i xx��N x , i � i � 1, . . . , i � m � 1,l x � Ž .Ž . i x xi x�0, i � i or i � i � m ,x x

� �and i is the integer such that x � t , t . Note thatx i �1 ix x

2� 245 L x L x � 1 � N x � m � 1 N x 	 m.Ž . Ž . Ž . Ž . Ž . Ž .Ž .i ix x

Ž . Ž .From 27 and 45 , we have

i �m�1x
�L x N x � l x N xŽ . Ž . Ž . Ž .Ý j j

j�i x

i �m�1x

� 1 � N x N x � N x N xŽ . Ž . Ž . Ž .Ž . Ýi i i jx x x
j�i �1x

46Ž .

� 1 � N x N x � N x 1 � N x � 0.Ž . Ž . Ž . Ž .Ž . Ž .i i i ix x x x

Ž .By 40 ,

k�1 l x � l xŽ . Ž .j j�1�L x DN x � m � 1 N xŽ . Ž . Ž . Ž .Ým� 1 j , m�1ž /t � tj j�m�1j�1

i �m�2x l x � l xŽ . Ž .j j�1� m � 1 N xŽ . Ž .Ý j , m�1ž /t � tj j�m�1j�i x47Ž .
1 � N x � N xŽ . Ž .i ix x� m � 1 N xŽ . Ž .i , m�1xt � ti i �m�1x x

m � 1 N xŽ . Ž .i , m�1x� .
t � ti i �m�1x x
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Ž . Ž . Ž . Ž . Ž .It follows from 42 , 44 , 45 , 46 , 47 and Holder’s inequality that¨
2� �
 x m � 
 x L x L x � L x g x N x � g x DN xŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 2 m�1

2�2� g x L x DN xŽ . Ž . Ž .Ž .2 m�1

�2 22 2� g x t � t m � 1 N xŽ . Ž . Ž .Ž .2 i i �m�1 i , m�1x x x

�1 2�2 2 �2 2� c m � o 1 h m � 1 M h N x .Ž . Ž . Ž . Ž .Ž .2 i , m�1x

Hence

1 11�2 �1 �3�2 �248 
 x dx � c m � 1 Mm � o 1 h N x dx .Ž . Ž . Ž . Ž . Ž .Ž .H H2 i , m�1x
0 0

� Ž . �Using a recurrence relation of B-splines see, e.g., de Boor 1972 , page 52 ,
� �we have, for any x � t , t , i � 1, . . . , k � 1,i�1 i 0

m�2
�1m�2 m�2�m�2N x � t � x t � t � h t � x � m � 2 !.Ž . Ž . Ž . Ž .Ž .Łi , m�1 i i i�j�m�1 i

j�1

It follows that
k �101 ti m� 1 �m�2N x dx � N x dx � k h�M h � m � 1 !Ž . Ž . Ž . Ž .ÝH Hi , m�1 i , m�1 0x

0 ti�1i�1

�1m�1� M m � 1 ! .Ž .
Ž . Ž .Equation 43 then follows from 48 and the above inequality, completing the

proof. �
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