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Abstract
We consider a nonnegative self-adjoint operator L on L2(X), where X ⊆ R

d . Under
certain assumptions, we prove atomic characterizations of the Hardy space

H1(L) =
{

f ∈ L1(X) :
∥∥∥∥sup

t>0
|exp(−t L) f |

∥∥∥∥
L1(X)

< ∞
}

.

We state simple conditions, such that H1(L) is characterized by atoms being either
the classical atoms on X ⊆ R

d or local atoms of the form |Q|−1χQ , where Q ⊆ X is
a cube (or cuboid). One of our main motivation is to study multidimensional operators
related to orthogonal expansions. We prove that if two operators L1, L2 satisfy the
assumptions of our theorem, then the sum L1 + L2 also does. As a consequence, we
give atomic characterizations for multidimensional Bessel, Laguerre, and Schrödinger
operators. As a by-product, under the same assumptions, we characterize H1(L) also
by the maximal operator related to the subordinate semigroup exp(−t Lν), where
ν ∈ (0, 1).
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410 E. Kania-Strojec et al.

1 Background andmain results

1.1 Introduction

Let us first recall that the classical Hardy space H1(Rd) can be defined by themaximal
operator, i.e.

f ∈ H1(Rd) ⇐⇒ sup
t>0

|Ht f | ∈ L1(Rd).

Here and thereafter Ht = exp(t�) is the heat semigroup on R
d given by Ht f (x) =∫

Rd Ht (x, y) f (y) dy,

Ht (x, y) = (4π t)−d/2 exp

(
−|x − y|2

4t

)
. (1.1)

Among many equivalent characterizations of H1(Rd) one of the most useful is
the characterization by atomic decompositions proved by Coifman [4] in the one-
dimensional case and by Latter [19] in the general case d ∈ N. It says that f ∈ H1(Rd)

if and only if f (x) = ∑∞
k=1 λkak(x), where λk ∈ C are such that

∑∞
k=1 |λk | < ∞

and ak are atoms. By definition, a function a is an atom if there exists a ball B ⊆ R
d

such that:

supp a ⊆ B, ‖a‖∞ ≤ |B|−1,

∫
B

a(x) dx = 0,

i.e. a satisfies well-known localization, size, and cancellation conditions.
Later, Goldberg in [16] noticed that if we restrict the supremum in the maximal

operator above to the range t ∈ (0, τ 2), with τ > 0 fixed, then still the atomic
characterization holds, but with additional atoms of the form a(x) = |B|−1χB(x),
where χ is the characteristic function and B is a ball of radius τ (see Sect. 2 for
details).

Then, many atomic characterizations were proved for various operators including
operators with Gaussian (or Davies-Gaffney) estimates, operators on spaces of homo-
geneous type, operators related to orthogonal expansions, Schrödinger operators, and
others. The reader is referred to [1,2,6,9–11,17,21,22] and references therein.

In this paper we deal with atomic characterizations of the Hardy space H1 for
operators, such that H1 admits atoms of local type, i.e. atoms of the form |B|−1χB .
We shall consider operators defined on L2(X), where X ⊆ R

d with the Lebesgue
measure. Our main focus will be on sums of the form L = L1 + · · · + Ld , where
each Li acts only on the variable xi , where x = (x1, ..., xd). For such L we look
for atomic decompositions. As an application, we can take operators related to some
multidimensional orthogonal expansions. Additionally we prove characterizations of
H1 by subordinate semigroups.
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Local atomic decompositions for multidimensional Hardy spaces 411

1.2 Notation

Let X = (a1, b1)×· · ·×(ad , bd) be a subset ofRd .We allowa j = −∞ and b j = ∞ so
that we consider products of lines, half-lines, and finite intervals. We equip X with the
Euclidean metric and the Lebesgue measure. In the product case it is more convenient
to use cubes and cuboids instead of balls, so denote for z = (z1, ..., zd) ∈ X and
r1, ..., rd > 0 the closed cuboid

Q(z, r1, ..., rd) = {x ∈ X : |xi − zi | ≤ ri for i = 1, ..., d} ,

and the cube Q(z, r) = Q(z, r , ..., r).We shall call such z the center of a cube/cuboid.
For a cuboid Q by dQ we shall denote the diameter of Q.

Definition 1.2 Let Q be a set of cuboids in X . We call Q an admissible covering of
X if there exist C1, C2 > 0 such that:

1. X = ⋃
Q∈Q Q,

2. if Q1, Q2 ∈ Q and Q1 	= Q2 , then |Q1 ∩ Q2| = 0,
3. if Q = Q(z, r1, ..., rd) ∈ Q, then ri ≤ C1r j for i, j ∈ {1, ..., d},
4. if Q1, Q2 ∈ Q and Q1 ∩ Q2 	= ∅, then C−1

2 dQ1 ≤ dQ2 ≤ C2dQ1 .

Let us note that 3. means that our cuboids are almost cubes. In fact, we shall often
use only cubes.

By Q∗ we shall denote a slight enlargement of Q. More precisely, if Q =
(z, r1, ..., rd), then Q∗ := Q(z, κr1, ..., κrd), where κ > 1. Observe that if Q is an
admissible covering of Rd , then choosing κ close enough to 1 the family {Q∗∗∗}Q∈Q
is a finite covering of Rd , namely

∑
Q∈Q

χQ∗∗∗(x) ≤ C, x ∈ R
d (1.3)

and, for Q1, Q2 ∈ Q,

Q∗∗∗
1 ∩ Q∗∗∗

2 	= ∅ ⇐⇒ Q1 ∩ Q2 	= ∅. (1.4)

In this paper we always choose κ such that (1.3) and (1.4) are satisfied. Let us empha-
size that Q and Q∗ are always defined as a subset of X , not as a subset of Rd .

Having two admissible coverings Q1 and Q2 on R
d1 and R

d2 we would like to
produce an admissible covering on R

d1+d2 . However, one simply observe that prod-
ucts {Q1 × Q2 : Q1 ∈ Q1, Q2 ∈ Q2}, would not produce admissible covering (in
general, 3. would fail). Therefore, for the sake of this paper, let us state the following
definition.

Definition 1.5 Assume that Q1 and Q2 are admissible coverings of X1 ⊆ R
d1 and

X2 ⊆ R
d2 , respectively.We define an admissible covering of X1× X2 in the following

way. First, consider the covering {Q1 × Q2 : Q1 ∈ Q1, Q2 ∈ Q2}. Then we further
split each Q = Q1 × Q2. Without loss of generality let us assume that dQ1 > dQ2 .
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412 E. Kania-Strojec et al.

We split Q1 into cuboids Q[ j]
1 , j = 1, ..., M , such that all of them have diameters

comparable to dQ2 and satisfy 3. ofDefinition 1.2. Then the cuboids Q[ j] = Q[ j]
1 ×Q2,

j = 1, ..., M , satisfy:

• Q = ⋃M
j=1 Q[ j],

• for i, j ∈ {1, ..., M}, i 	= j , we have |Q[i] ∩ Q[ j]| = 0,
• each Q[ j] satisfies 3. from Definition 1.2.

Notice that M ≤ [dQ1/dQ2 ]d1 . We shall denote such covering byQ1 �Q2. One may
check that the definition above leads to an admissible covering of X1 × X2.

Having an admissible coveringQ of X ⊆ R
d we define a local atomic Hardy space

H1
at (Q) related to Q in the following way. We say that a function a : X → C is a

Q − atom if:

(i) either there is Q ∈ Q and a cube K ⊂ Q∗, such that:

supp a ⊆ K , ‖a‖∞ ≤ |K |−1,

∫
a(x) dx = 0;

(ii) or there exists Q ∈ Q such that

α(x) = |Q|−1χQ(x).

HavingQ-atoms we define the local atomic Hardy space related to Q, H1
at (Q), in

a standard way. Namely, we say that a function f is in H1
at (Q) if f (x) = ∑

k λkak(x)

with
∑

k |λk | < ∞ and ak beingQ-atoms. Moreover, the norm of H1
at (Q) is given by

‖ f ‖H1
at (Q) = inf

∑
k

|λk | ,

where the infimum is taken over all possible representations of f (x) = ∑
k λkak(x)

as above. One may simply check that H1
at (Q) is a Banach space.

In the whole paper by L we shall denote a nonnegative self-adjoint operator and by
Tt = exp(−t L) the heat semigroup generated by L . We shall always assume that there
exists a nonnegative integral kernel Tt (x, y) such that Tt f (x) = ∫

X Tt (x, y) f (y) dy.
Our initial definition of theHardy space H1(L) shall be given bymeans of themaximal
operator associated with Tt , namely

H1(L) =
{

f ∈ L1(X) : ‖ f ‖H1(L) :=
∥∥∥∥sup

t>0
|Tt f |

∥∥∥∥
L1(X)

< ∞
}

.

Moreover,we shall consider the subordinate semigroup Kt,ν = exp(−t Lν), ν ∈ (0, 1),
and its Hardy space, which is defined by

H1(Lν) =
{

f ∈ L1(X) : ‖ f ‖H1(Lν ) :=
∥∥∥∥sup

t>0

∣∣Kt,ν f
∣∣∥∥∥∥

L1(X)

< ∞
}

.
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Local atomic decompositions for multidimensional Hardy spaces 413

1.3 Main results

Let us assume that an admissible covering Q of X is given. Recall that Ht (x, y) is
the classical semigroup on R

d given in (1.1), and denote by Pt,ν = exp(−t(−�)ν)

the semigroup generated by (−�)ν , ν ∈ (0, 1), and given by Pt,ν f (x) =∫
Rd Pt,ν(x, y) f (y) dy. The kernel Pt,ν(x, y) is a transition density of the symmet-
ric 2ν-stable Lévy process in Rd . It is well-known that

0 ≤ Pt,ν(x, y) ≤ Cd,ν

t(
t1/ν + |x − y|2) d

2 +ν
, x, y ∈ R

d , t > 0, ν ∈ (0, 1), (1.6)

see e.g. [18, Subsec. 2.6], [15]. Let us mention that in the particular case of ν = 1/2,
the semigroup Pt,1/2 is the well-known Poisson semigroup on Rd .

Assume that an operator L is as in Sect. 1.2. Let ν ∈ (0, 1) and suppose that T̃t (x, y)

is either Ht (x, y) or Ptν ,ν(x, y). Consider the following assumptions:

0 ≤ Tt (x, y) ≤ C
tν(

t + |x − y|2) d
2 +ν

, x, y ∈ X , t > 0, (A′
0)

sup
y∈Q∗

∫
(Q∗∗)c

sup
t>0

Tt (x, y)dx ≤ C, Q ∈ Q, (A′
1)

sup
y∈Q∗

∫
Q∗∗

sup
t≤d2

Q

∣∣Tt (x, y) − T̃t (x, y)
∣∣ dx ≤ C, Q ∈ Q. (A′

2)

Theorem A Assume that for L, Tt , and an admissible covering Q the conditions (A′
0)–

(A′
2) hold. Then H1(L) = H1

at (Q) and the corresponding norms are equivalent.

The proof of Theorem A is standard and uses only local characterization of Hardy
spaces as in [16]. For the convenience of the reader we present the proof in Sect. 3.

Our first main goal is to describe atomic characterizations for sums of the form
L1 + · · · + L N , where each L j satisfies (A′

0)–(A
′
2) on a proper subspace. This is

very useful in many cases such as multidimensional orthogonal expansions. Instead of
dealingwith products of kernels of semigroups, we can consider only one-dimensional
kernel, but we shall need to prove slightly stronger conditions. More precisely, we
consider X1 × · · · × X N ⊆ R

d1 × · · · × R
dN = R

d . Assume that Li is an operator
on L2(Xi ), as in Sect. 1.2. Slightly abusing the notation we keep the symbol Li for
I ⊗ ... ⊗ Li ⊗ ... ⊗ I as the operator on L2(X) and denote

L f (x) = L1 f (x) + · · · + L N f (x), x = (x1, ..., xN ) ∈ X . (1.7)
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414 E. Kania-Strojec et al.

For xi , yi ∈ Xi , by T [i]
t (xi , yi ) we denote the kernel of T [i]

t = exp (−t Li ). We
shall assume that each T [i]

t (xi , yi ) , i = 1, ..., N , is nonnegative and has the upper
Gaussian estimates, namely

0 ≤ T [i]
t (xi , yi ) ≤ Ci t

−di /2 exp

(
−|xi − yi |2

ci t

)
, xi , yi ∈ Xi , t > 0. (A0)

Obviously, (A0) implies (A′
0) for Tt (x, y) = T [1]

t (x1, y1)...T
[N ]

t (xN , yN ). Moreover,
we shall assume that for each i ∈ {1, ..., N } there exist a proper covering Qi of Rdi

such that the following generalizations of (A′
1) and (A

′
2) hold: there exists γ ∈ (0, 1/3)

such that for every δ ∈ [0, γ ) and every i = 1, .., N ,

sup
y∈Q∗

∫
(Q∗∗)c

sup
t>0

tδT [i]
t (x, y)dx ≤ Cd2δ

Q , Q ∈ Qi , (A1)

sup
y∈Q∗

∫
Q∗∗

sup
t<d2

Q

t−δ
∣∣∣T [i]

t (x, y) − Ht (x, y)

∣∣∣ dx ≤ Cd−2δ
Q , Q ∈ Qi . (A2)

Here Ht is the classical heat semigroup on R
di , depending on the context. Now, we

are ready to state our first main theorem.

Theorem B Assume that for i = 1, ..., N kernels T [i]
t (xi , yi ) are related to Li and

suppose that for T [i]
t (xi , yi ) together with admissible coverings Qi the conditions

(A0)– (A2) hold. If L = L1 + · · · + L N is as in (1.7), then

H1(L) = H1
at (Q1 � ... � QN )

and the corresponding norms are equivalent.

Our second main goal is to characterize H1(L) by the subordinate semigroup
Kt,ν = exp(−t Lν), for 0 < ν < 1. Obviously, one can try to apply Theorem A, but
for many operators the subordinate kernel Kt,ν(x, y) is harder to analyze than Tt (x, y)

(e.g., in some cases a concrete formula with special functions exists for Tt (x, y), but
not for Kt,ν(x, y)). However, it appears that under our assumptions (A0)– (A2) we
obtain the characterization by the subordinate semigroup essentially for free.

Theorem C Under the assumptions of Theorem B, for ν ∈ (0, 1), we have that

H1(Lν) = H1
at (Q1 � ... � QN ).

Moreover, the corresponding norms are equivalent.
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Local atomic decompositions for multidimensional Hardy spaces 415

1.4 Applications

One of the goals of this paper is to verify the assumptions of Theorems B and C for
various well-known operators. In this subsection we provide a list of such operators.

1.4.1 Bessel operator

For β > 0 let L [β]
B = − d2

dx + β2−β

x2
denote the one-dimensional Bessel operator on the

positive half-line X = (0,∞) equipped with the Lebesgue measure. The semigroup
TB,t = exp(−t L [β]

B ) is given by TB,t f (x) = ∫
X TB,t (x, y) f (y) dy, where

TB,t (x, y) = (xy)1/2

2t
Iβ−1/2

( xy

2t

)
exp

(
− x2 + y2

4t

)
, x, y ∈ X , t > 0. (1.8)

Here, Iτ is the modified Bessel function of the first kind. The Hardy space H1(L [β]
B )

for the one-dimensional Bessel operator was studied in [2]. In Sect. 4.1 we check that
the assumptions (A0)–(A2) are satisfied for L B with the admissible covering

QB =
{
[2n, 2n+1] : n ∈ Z

}

of X = (0,∞). This gives a slightly simpler proof of the characterizations of H1(L [β]
B )

by the maximal operators of the semigroups exp(−t L [β]
B ) and, also, gives a charac-

terization by exp(−t(L [β]
B )ν), 0 < ν < 1. We have the following corollary for the

multidimensional Bessel operator.

Corollary 1.9 Let β1, ..., βd > 0 and L B = L [β1]
B +· · ·+L [βd ]

B , be the multidimensional
Bessel operator on L2((0,∞)d). Then, the Hardy spaces H1(L B), H1(Lν

B), ν ∈
(0, 1), and H1

at (QB � ...�QB) coincide (Fig. 1). Moreover, the associated norms are
comparable.

Fig. 1 The coveringQB � QB

2n−1 2n 2n+1

2n−1

2n

2n+1
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416 E. Kania-Strojec et al.

1.4.2 Laguerre operator

Let α > −1/2 and L [α]
L = − d2

dx2
+ x2 + α2−1/4

x2
denote the Laguerre operator on

X = (0,∞). The kernels associated with the heat semigroup TL,t = exp
(
−t L [α]

L

)
are defined by

TL,t (x, y) = (xy)1/2

sinh 2t
Iα

( xy

sinh 2t

)
exp

(
− cosh 2t

2 sinh 2t
(x2 + y2)

)
, x, y ∈ X , t > 0. (1.10)

The one-dimensional version of H1
(

L [α]
L

)
was studied in [7]. The admissible

covering is the following

QL =
{
[2n + k2−n−1, 2n + (k + 1)2−n−1] : k = 0, . . . , 22n+1 − 1, n ∈ N

}
∪
{
[2−n, 2−n+1] : n ∈ N+

}
,

see Fig. 2 for Ql � QL . Using methods similar to those in [7] we verify (A0)– (A2)
in Sect. 4.2.

Corollary 1.11 Let α1, ..., αd > −1/2 and L L = L [α1]
L + · · · + L [αd ]

L , be the mul-
tidimensional Laguerre operator on L2((0,∞)d). Then, the Hardy spaces H1(L L),
H1(Lν

L), ν ∈ (0, 1), and H1
at (QL � ... � QL) coincide. Moreover, the associated

norms are comparable.

1.4.3 Schrödinger operators

Let L S = −� + V denote a Schrödinger operator on R
d , where V ∈ L1

loc(R
d) is a

nonnegative potential. Since V ≥ 0, we have

0 ≤ TS,t (x, y) ≤ Ht (x, y), x, y ∈ R
d , t > 0, (1.12)

where TS,t = exp(−t L S) and Ht = exp(t�), see (1.1). Following [11], for fixed V ,
we assume that there is an admissible covering QS of Rd that satisfies the following

Fig. 2 The coveringQL � QL

11
2 2 4

1

2
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conditions: there exist constants ρ > 1 and σ > 0 such that

sup
y∈Q∗

∫
Rd

TS,2nd2
Q
(x, y) dx ≤ Cρ−n, Q ∈ QS, n ∈ N, (D’)

sup
y∈Rd

∫ t

0

∫
Rd

Hs(x, y)χQ∗∗∗(x)V (x) dx ds ≤ C

(
t

d2
Q

)σ

, Q ∈ QS, t ≤ d2
Q . (K)

The Hardy spaces related to Schrödinger operators have been widely studied. It
appears that for some potentials the atoms for H1(L S) have local nature (as in our
paper), but this is no longer true for other potentials. The interested reader is referred
to [5,8,9,11–14,17].

In [11] the authors study potentials as above, but instead of assuming (D’) they have
a bit more general assumption (D), which instead of ρ−n has an arbitrary summable
sequence (1 + n)−1−ε on the right-hand side of (D’). Moreover, the assumptions
(D’) and (K) are easy to generalize for products, see [8, Rem. 1.8]. Therefore, for
Schrödinger operators Theorem B is a bit weaker than results of [11]. However, Theo-
rem C gives additionally characterization by the semigroups exp

(−t Lν
S

)
, 0 < ν < 1,

provided that the stronger assumption (D’) is satisfied. Let us notice that indeed (D’)
is true for many examples, including L S in dimension one with any nonnegative
V ∈ L1

loc(R), see [5].
In Sect. 4.2 we prove that (D’) and (K) imply the assumptions of Theorems B and

C , which leads to the following.

Corollary 1.13 Let L S be given with a nonnegative V ∈ L1
loc(R

d) and an admissible
covering QS of Rd . Assume that (D’) and (K) are satisfied. Then the spaces H1(L S),
H1(Lν

S), ν ∈ (0, 1), and H1
at (QS) coincide and the corresponding norms are equiva-

lent.

1.4.4 Product of local and nonlocal atomic Hardy space

As we have mentioned, all atoms on the Hardy space H1(Rd1) satisfy cancellation
condition, i.e. they are nonlocal atoms. However, if we consider the product Rd =
R

d1 ×R
d2 and the operator L = −�+ L2, where L2 andQ2 satisfies the assumptions

(A0)– (A2) on Rd2 then the resulting Hardy space H1(L) shall have local character.
More precisely, if Rd1 � Q2 is the admissible covering that arise by splitting all

the strips R
d1 × Q2, Q2 ∈ Q2, into countable many cuboids Q1,n × Q2, where

Q1,n = Q(zn, dQ2). Then we have the following corollary (see Sect. 4.4).

Corollary 1.14 Let L = −� + L2, where −� is the standard Laplacian on R
d1 and

L2 with an admissible covering Q2 of Rd2 satisfy (A0)– (A2). Then the spaces H1(L),
H1(Lν), ν ∈ (0, 1), and H1

at (R
d1 � Q2) coincide and the corresponding norms are

equivalent.
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1.5 Organization of the paper

The paper is organized in the following way. Section 2 is devoted to prove some
preliminary estimates and to recall some known facts about local Hardy spaces on
R

d . In Sect. 3 we prove our main results, namely Theorems A, B, and C . In Sect. 4
we prove that the examples given in Sect. 1.4 satisfy assumptions (A0)– (A2). We use
standard notation, i.e. C denotes some constant that can change from line to line.

2 Preliminaries

2.1 Auxiliary estimates

For an admissible coveringQ of X let us denote for Q ∈ Q the functionsψQ ∈ C1(X)

satisfying

0 ≤ ψQ(x) ≤ χQ∗(x),
∥∥ψ ′

Q

∥∥∞ ≤ Cd−1
Q ,

∑
Q∈Q

ψQ(x) = χX (x). (2.1)

It is easy to observe that such family
{
ψQ

}
Q∈Q exists, provided that Q satisfies

Definition 1.3. The family
{
ψQ

}
Q∈Q shall be called a partition of unity related toQ.

Proposition 2.2 Assume that Tt , and an admissible covering Q satisfy (A′
0) and (A′

1).
Let ψQ be a partition of unity related to Q. Then

sup
y∈Q∗

∫
Q∗∗

sup
t>d2

Q

Tt (x, y)dx ≤ C, Q ∈ Q, (2.3)

and

sup
y∈X

∑
Q∈Q

∫
Q∗∗

sup
t≤d2

Q

Tt (x, y)
∣∣ψQ(x) − ψQ(y)

∣∣ dx ≤ C . (2.4)

Proof By (A′
0) we have Tt (x, y) ≤ Ct−d/2. Obviously, |Q∗∗| ≤ C |Q| ≤ Cdd

Q , hence

sup
y∈Q∗

∫
Q∗∗

sup
t>d2

Q

Tt (x, y) dx ≤
∫

Q∗∗
sup

t>d2
Q

t−d/2 dx ≤ C .

��
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Local atomic decompositions for multidimensional Hardy spaces 419

Wenow turn to prove (2.4). Fix y ∈ X and Q0 ∈ Q such that y ∈ Q0.Denote N (Q0) ={
Q ∈ Q : Q∗∗∗

0 ∩ Q∗∗∗ 	= ∅} (the neighbors of Q0) . Notice that |N (Q0)| ≤ C , see
(1.3). Then

∑
Q∈Q

∫
Q∗∗

⎡
⎣ sup

t≤d2
Q

Tt (x, y)
∣∣ψQ(x)−ψQ(y)

∣∣
⎤
⎦ dx=

∑
Q∈N (Q0)

...+
∑

Q∈Q\N (Q0)

... =: S1 + S2.

Notice that for Q ∈ N (Q0) we have dQ � dQ0 . To deal with S1 we use (A′
0) and

the mean value theorem for ψQ ,

∑
Q∈N (Q0)

∫
Q∗∗

sup
t≤d2

Q

Tt (x, y)
∣∣ψQ(x) − ψQ(y)

∣∣ dx

≤ C
∑

Q∈N (Q0)

∫
Q∗∗

sup
t>0

tν
(

t + |x − y|2
)−d/2−ν |x − y|

dQ
dx

≤ C
∑

Q∈N (Q0)

d−1
Q

∫
Q∗∗

|x − y|−d+1 dx

≤ C |N (Q0)|d−1
Q0

∫
C Q0

|x − y|−d+1 dx ≤ C .

To estimate S2 we use
∥∥ψQ

∥∥∞ ≤ 1 and (A′
1), getting

∑
Q∈Q\N (Q0)

∫
Q∗∗

sup
t≤d2

Q

Tt (x, y)
∣∣ψQ(x) − ψQ(y)

∣∣ dx ≤ 2
∑

Q∈Q\N (Q0)

∫
Q∗∗

sup
t>0

Tt (x, y) dx

≤ C
∫

(Q∗∗
0 )c

sup
t>0

Tt (x, y) dx ≤ C .

Lemma 2.5 Assume that Tt satisfy (A′
0). Then, for f ∈ L1(X) + L∞(X),

‖ f ‖L1(X) ≤
∥∥∥∥sup

t>0
|Tt f |

∥∥∥∥
L1(X)

.

The proof of the Lemma 2.5 goes by standard arguments. For the convenience of
the reader we present details in Appendix.

2.2 Local Hardy spaces

In this section, we recall some classical results on local Hardy spaces, see [16]. Let
τ > 0 be fixed. We are interested in decomposing into atoms a function f such that

∥∥∥∥∥ supt≤τ 2
|Ht f |

∥∥∥∥∥
L1(Rd )

< ∞. (2.6)

123



420 E. Kania-Strojec et al.

It is known, that (2.6) holds if and only if f (x) = ∑
k λkak(x), where

∑
k |λk | < ∞

and ak are either the classical atoms or the local atoms at scale τ . The latter are atoms
a supported in a cube Q of diameter at most τ such that ‖a‖∞ ≤ |Q|−1 but we do
not impose the cancellation condition. In other words one may say that this is the
space H1

at (Q{τ }) introduced in Sect. 1.2, where Q{τ } is a covering of Rd by cubes
with diameter τ . The next proposition states the local atomic decomoposition theorem
in a version that will be suitable for us in the proof of Theorem A. This proposition
can be obtained by known methods from the global characterization of the classical
Hardy space H1(Rd). One may also check the assumptions from a general result of
Uchiyama [23, Cor. 1’]. The details are left for the interested reader.

Proposition 2.7 Let τ > 0 be fixed and T̃t denote either Ht or Ptν ,ν , see (1.1) and
(1.6). Then, there exists C > 0 that does not depend on τ such that:

1. For every classical atom a or an atom of the form a(x) = |Q|−1χQ(x), where
Q = Q(z, r1, ..., rd) is such that r1 � ... � rd � τ we have∥∥∥∥∥ supt≤τ 2

∣∣T̃t a
∣∣∥∥∥∥∥

L1(Rd )

≤ C .

2. If f is such that supp f ⊆ Q∗, where Q = Q(z, r1, ..., rd) is such that r1 � ... �
rd � τ , and ∥∥∥∥∥ supt≤τ 2

∣∣T̃t f
∣∣∥∥∥∥∥

L1(Q∗)
= M < ∞,

then there exist sequences {λk}k and {ak(x)}k , such that f (x) = ∑
k λkak(x),∑

k |λk | ≤ C M, and ak are either the classical atoms supported in Q∗ or ak(x) =
|Q|−1χQ(x).

Remark 2.8 Proposition 2.7 remains valid for many other kernels T̃t satisfying (A′
0)

and, therefore, Theorem A holds for such kernels.

3 Proofs of Theorems A, B, and C

3.1 Proof of Theorem A

Proof Recall that by the assumptions and Proposition 2.2 we also have that (2.3) and
(2.4) are satisfied. We shall prove two inclusions.

First inequality: ‖ f ‖H1(L) ≤ C ‖ f ‖H1
at (Q). It suffices to show that for every Q-

atom a we have
∥∥supt>0 |Tt a|∥∥L1(X)

≤ C , where C does not depend on a. Let a

be associated with a cuboid Q ∈ Q, i.e. supp a ⊂ Q∗. Recall that T̃t is either Ht

or Ptν ,ν , see (1.1) and (1.6). Observe that by using (A′
1), (A

′
2), (2.3), and part 1. of

Proposition 2.7 we get
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∥∥∥∥sup
t>0

|Tt a|
∥∥∥∥

L1(X)

≤
∥∥∥∥sup

t>0
|Tt a|

∥∥∥∥
L1((Q∗∗)c)

+
∥∥∥∥∥∥ supt≤d2

Q

|(Tt − T̃t )a|
∥∥∥∥∥∥

L1(Q∗∗)

+
∥∥∥∥∥∥ sup

t>d2
Q

|Tt a|
∥∥∥∥∥∥

L1(Q∗∗)

+
∥∥∥∥∥∥ supt≤d2

Q

|T̃t a|
∥∥∥∥∥∥

L1(Q∗∗)

≤ C .

Second inequality: ‖ f ‖H1
at (Q) ≤ C ‖ f ‖H1(L). Assume that

∥∥supt>0 |Tt f |∥∥L1(X)

< ∞. LetψQ be a partition of unity related toQ, see (2.1).We have f = ∑
Q∈Q ψQ f .

Denote fQ = ψQ f and notice that since supp fQ ⊂ Q∗, then

T̃t fQ = (T̃t − Tt ) fQ + (
Tt fQ − ψQ · Tt f

) + ψQ · Tt f . (3.1)

Clearly,

∑
Q∈Q

∥∥∥∥∥∥ supt≤d2
Q

∣∣ψQ Tt f
∣∣
∥∥∥∥∥∥

L1(Q∗∗)

≤ C

∥∥∥∥sup
t>0

|Tt f |
∥∥∥∥

L1(X)

. (3.2)

Using (A′
2),

∑
Q∈Q

∥∥∥∥∥∥ supt≤d2
Q

∣∣(T̃t − Tt ) fQ
∣∣
∥∥∥∥∥∥

L1(Q∗∗)

≤ C
∑
Q∈Q

∥∥ fQ
∥∥

L1(X)
≤ C ‖ f ‖L1(X) . (3.3)

By (2.4),

∑
Q∈Q

∥∥∥∥∥∥ supt≤d2
Q

∣∣Tt fQ − ψQ · Tt f
∣∣
∥∥∥∥∥∥

L1(Q∗∗)

≤
∑
Q∈Q

∫
X

| f (y)|
∫

Q∗∗
sup

t≤d2
Q

Tt (x, y)
∣∣ψQ(y) − ψQ(x)

∣∣ dx dy

≤ C ‖ f ‖L1(X) . (3.4)

Using (3.1)–(3.4) and Lemma 2.5 we arrive at

∑
Q∈Q

∥∥∥∥∥∥ supt≤d2
Q

∣∣T̃t fQ
∣∣
∥∥∥∥∥∥

L1(Q∗∗)

≤ C

∥∥∥∥sup
t>0

|Tt f |
∥∥∥∥

L1(X)

.

Now, from part 2. of Proposition 2.7 for each fQ we obtain λQ,k , aQ,k . Then

f =
∑

Q

fQ =
∑
Q,k

λQ,kaQ,k
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and

∑
Q

∑
k

∣∣λQ,k
∣∣ ≤ C

∑
Q∈Q

∥∥∥∥∥∥ supt≤d2
Q

∣∣T̃t fQ
∣∣
∥∥∥∥∥∥

L1(Q∗∗)

≤ C

∥∥∥∥sup
t>0

Tt f

∥∥∥∥
L1(X)

.

Finally, we notice that all the atoms aQ,k obtained by Proposition 2.7 are indeed
Q-atoms. ��

Remark 3.5 The assumption (A′
0) has only been used in Proposition 2.2. Therefore,

in Theorem A one may replace the assumption (A′
0) by the pair of assumptions (2.3)

and (2.4).

3.2 Proof of Theorem B

Proof We shall show the following claim. If the assumptions (A0)– (A2) hold for
T [ j]

t (x j , y j ) together with admissible coveringsQ j for j = 1, 2, then (A0)– (A2) also

hold for Tt (x, y) = T [1]
t (x1, y1) · T [2]

t (x2, y2), together with Q = Q1 � Q2. This is
enough, since by simple induction we shall get that in the general case Tt (x, y) =
T [1]

t (x1, y1)·...·T [N ]
t (xN , yN )withQ1�...�QN satisfy (A0)– (A2), and, consequently,

the assumptions of Theorem A will be fulfilled.
To prove the claim let T [ j]

t (x j , y j ) andQ j satisfy (A0)– (A2) with γ j for j = 1, 2.
Let 0 < γ < min(γ1, γ2) and fix δ ∈ [0, γ ). Suppose thatQ � Q ⊆ Q1 × Q2, where
Q1 ∈ Q1, Q2 ∈ Q2, and without loss of generality we may assume that dQ1 ≥ dQ2 .
Hence, Q = K × Q2, where K ⊆ Q1, see Definition 1.5 and Fig. 3. Denote by
z = (z1, z2) the center of Q = K × Q2. Obviously, (A0) for the product follows from
(A0) for the factors.

Proof of (A1) for L1 + L2. Let y ∈ Q∗. Recall that dQ � dK � dQ2 ≤ dQ1 . Let
us write (Q∗∗)c = S1 ∪ S2 ∪ S3, where

S1 = (K ∗∗)c × Q∗∗
2 , S2 = K ∗∗ × (Q∗∗

2 )c, S3 = (K ∗∗)c × (Q∗∗
2 )c.

We start with S1.

Fig. 3 Partition of Q1 × Q2

Q2

Q1
K
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∫
S1
sup
t>0

tδT [1]
t (x1, y1)T [2]

t (x2, y2) dx ≤ C
∫

(K ∗∗)c
sup
t>0

t−d1/2−1/2 exp

(
−|x1 − y1|2

ct

)
dx1

·
∫

Q∗∗
2

sup
t>0

t−d2/2+1/2+δ exp

(
−|x2 − y2|2

ct

)
dx2

≤ C
∫

(K ∗∗)c
|x1 − z1|−d1−1 dx1 ·

∫
Q∗∗
2

|x2 − z2|−d2+1+2δ dx2

≤ Cd−1
K · d1+2δ

Q2
= Cd2δ

Q .

The set S2 is treated similarly. To estimate S3 recall that δ < γ . Using (A0) for
T [1]

t (x1, y1) and (A1) for T [2]
t (x2, y2) we arrive at

∫
S3
sup
t>0

tδT [1]
t (x1, y1)T

[2]
t (x2, y2) dx ≤ C

∫
(K ∗∗)c

sup
t>0

t−γ+δ−d1/2 exp

(
−|x1 − y1|2

ct

)
dx1

·
∫

(Q∗∗
2 )c

sup
t>0

tγ T [2]
t (x2, y2) dx2

≤ Cd−2γ+2δ
K d2γ

Q2
≤ Cd2δ

Q .

Proof of (A2) for L1 + L2. Let y ∈ Q∗. In this proof Ht is the classical heat
semigroup on Rd1 , Rd2 or on Rd , depending on the context. First, notice that by (A0),
for constant C > 1 and i = 1, 2, we have

∫
Q∗∗

i

sup
C−1d2

Qi
≤t≤Cd2

Qi

t−γ
∣∣∣T [i]

t (xi , yi ) − Ht (xi , yi )

∣∣∣ dxi

≤ Cd−2γ
Qi

∫
Q∗∗

i

d−di
Qi

exp

(
−|xi − yi |2

cd2
Qi

)
dxi

≤ Cd−2γ
Qi

. (3.6)

Using the triangle inequality,

∫
Q∗∗

sup
t≤d2

Q

t−δ |Tt (x, y) − Ht (x, y)| dx ≤ I1 + I2,

where

I1 =
∫

Q∗∗
sup

t≤d2
Q

t−δT [1]
t (x1, y1)

∣∣∣T [2]
t (x2, y2) − Ht (x2, y2)

∣∣∣ dx,

I2 =
∫

Q∗∗
sup

t≤d2
Q

t−δ Ht (x2, y2)
∣∣∣T [1]

t (x1, y1) − Ht (x1, y1)
∣∣∣ dx .
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Applying (A0) for T [1]
t (x1, y1) and (A2) together with (3.6) for T [2]

t (x2, y2),

I1 ≤ C
∫

K ∗∗
sup

t≤d2
Q

tγ−δT [1]
t (x1, y1) dx1 ·

∫
Q∗∗
2

sup
t≤Cd2

Q2

t−γ
∣∣∣T [2]

t (x2, y2) − Ht (x2, y2)
∣∣∣ dx2

≤ Cd2γ−2δ
K d−2γ

Q2
� Cd−2δ

Q ,

since 0 ≤ δ < γ < min(γ1, γ2). Similarly, by (1.1), (A2), and (3.6), we have

I2 ≤ C
∫

Q∗∗
2

sup
t≤d2

Q

tγ−δ Ht (x2, y2) dx2 ·
∫

Q∗∗
1

sup
t≤Cd2

Q1

t−γ
∣∣∣T [1]

t (x1, y1) − Ht (x1, y1)
∣∣∣ dx1

≤ Cd2γ−2δ
Q d−2γ

Q1
≤ Cd−2δ

Q ,

since dQ1 ≥ dQ2 � dQ . ��

3.3 Proof of Theorem C

Proof For ν ∈ (0, 1) the subordination formula introduced by Bochner [3] states that

Ptν ,ν(x, y) =
∫ ∞

0
Hts(x, y)dμν(s), (3.7)

and

Ktν ,ν(x, y) =
∫ ∞

0
Tts(x, y)dμν(s), (3.8)

where μν is a probability measure defined by the means of the Laplace transform
exp(−xν) = ∫ ∞

0 exp(−xs)dμν(s). By inverting the Laplace transform one obtains
that dν(s) = gν(s) ds with

0 ≤ gν(s) =
∫ ∞
0

exp
(
ws cos θν + wν cos θν

)
sin

(
sw sin θν − wν sin θν + θν

)
dw, s > 0,

where θν = π
1+ν

∈ (π
2 , π), see [25, Rem. 1]. Notice that cos θν < 0 and, therefore,

gν(s) ≤
∣∣∣∣∣
∫ s−1

0
... dw

∣∣∣∣∣ +
∣∣∣∣
∫ ∞

s−1
... dw

∣∣∣∣ ≤
∫ s−1

0
dw +

∫ ∞

s−1
exp(ws cos θν) dw ≤ Cs−1. (3.9)

Assume that Tt andQ satisfy (A0)– (A2). Then, Theorem C follows from Theorem A,
provided that we prove (A′

0)– (A
′
2) for Ktν ,ν and Q. First, notice that (A′

0) for Ktν ,ν

follows from (3.8) and (A0) for Tt . Coming to (A′
1), let Q ∈ Q and y ∈ Q∗. Since μν

is a probability measure, using (3.8) and (A′
1) for Tt , we obtain

123



Local atomic decompositions for multidimensional Hardy spaces 425

∫
(Q∗∗)c

sup
t>0

Ktν ,ν(x, y) dx =
∫

(Q∗∗)c
sup
t>0

∫ ∞

0
Tst (x, y)dμν(s) dx

≤
∫ ∞

0

∫
(Q∗∗)c

sup
t>0

Tst (x, y) dx dμν(s) ≤ C .

Having (A′
1) proved, we turn to (A

′
2). By (3.7)–(3.9), and (A2) for Tt , we have∫

Q∗∗
sup

t≤d2
Q

∣∣Ktν ,ν(x, y) − Ptν ,ν(x, y)
∣∣ dx

=
∫

Q∗∗
sup

t≤d2
Q

∣∣∣∣
∫ ∞

0
(Tu(x, y) − Hu(x, y)) gν(u/t)

du

t

∣∣∣∣ dx

≤ C
∫

Q∗∗
sup

t≤d2
Q

∫ ∞

0
|Tu(x, y) − Hu(x, y)| (u/t)−1 du

t
dx

≤ C
∫

Q∗∗

∫ d2
Q

0
|Tu(x, y) − Hu(x, y)| du

u
dx

+C
∫

Q∗∗

∫ ∞

d2
Q

|Tu(x, y) − Hu(x, y)| du

u
dx

≤ C
∫ d2

Q

0
u−1+δ

∫
Q∗∗

sup
u≤d2

Q

u−δ |Tu(x, y) − Hu(x, y)| dx du

+C
∫

Q∗∗

∫ ∞

d2
Q

u−d/2−1 du dx

≤ Cd−2δ
Q

∫ d2
Q

0
u−1+δ du + Cdd

Qd−d
Q ≤ C .

This ends the proof of Theorem C. ��
Remark 3.10 It is worth to notice, that in the proof of (A′

2) for the subordinate semi-
group Kt,ν we needed (A2) for Tt , not only (A′

2).

4 Applications

In this section for simplicity, we use the same notation Tt (x, y) for the integral kernels
of semigroups generated by different operators.

4.1 Bessel operator

Let us start with the following asymptotics of the Bessel function Iτ ,

Iτ (x) = Cτ xτ + O(xτ+1), for x ∼ 0, (4.1)
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Iτ (x) = (2πx)−1/2ex + O(x−3/2ex ), for x ∼ ∞, (4.2)

see e.g. [24, pp. 203–204].

Proposition 4.3 Let X = (0,∞) and β > 0. Then (A0)– (A2) hold for L [β]
B with QB.

Proof We shall use similar ideas to those of [2]. The proof of (A0) is well-known
and follows almost directly from (1.8), (4.1) and (4.2). We skip the details. Let γ ∈
(0,min(1/2, β/2)) and δ ∈ [0, γ ). Take QB � Q = [2n, 2n+1], for some n ∈ Z, and
fix y ∈ Q∗.

Proof of (A1). Notice that y � dQ � 2n . We have

∫
(Q∗∗)c

sup
t>0

tδTt (x, y) dx ≤
∫ ∞

0
sup
t>xy

tδTt (x, y) dx +
∫

(Q∗∗)c
sup
t≤xy

tδTt (x, y) dx =: I1 + I2.

Using (1.8) and (4.1), we obtain

I1 ≤ C
∫ ∞

0
sup
t>xy

(xy)β tδ−β−1/2 exp

(
− x2 + y2

4t

)
dx

≤ C
∫ ∞

0
(xy)β(x2 + y2)δ−β−1/2 dx

= Cy2δ
∫ ∞

0
xβ(x2 + 1)δ−β−1/2 dx ≤ Cd2δ

Q ,

where in the last inequality we used the fact that 2δ < β.
Denote z = 3 · 2n−1 (the center of Q). By (1.8) and (4.2),

I2 ≤ C
∫

(Q∗∗)c
sup
t≤xy

tδ−1/2 exp

(
−|x − y|2

4t

)
dx

� C
∫

(Q∗∗)c
sup
t≤xy

tδ−1/2 exp

(
−|x − z|2

ct

)
dx

≤ C
∫ 2n

0
sup
t>0

tδ−1/2 exp

(
− z2

c1t

)
dx + C

∫ ∞

2n+1
sup
t≤xy

tδ−1/2 exp

(
− x2

c2t

)
dx

≤ Cz2δ−12n + C
∫ ∞

2n+1
(xy)δ−1/2 exp

(
− x

c2y

)
dx

≤ Cd2δ
Q .

Proof of (A2). Now observe that if y ∈ Q∗ and x ∈ Q∗∗, then x � y � dQ .
Therefore, xy

2t ≥ c, when t ≤ d2
Q . Using (1.8), (4.2), and δ < 1/2, we arrive at

∫
Q∗∗

sup
t≤d2

Q

t−δ |Tt (x, y) − Ht (x, y)| dx
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≤
∫

Q∗∗

√
xy

2
sup

t≤d2
Q

t−1−δ exp

(
− x2 + y2

4t

) ∣∣∣∣∣∣Iβ− 1
2

( xy

2t

)
− e

xy
2t√
πxy

t

∣∣∣∣∣∣ dx

≤ C
∫

Q∗∗
sup

t≤d2
Q

t1/2−δ(xy)−1 exp

(
−|x − y|2

4t

)
dx

≤ Cd1−2δ
Q · d−2

Q · dQ ≤ Cd−2δ
Q .

��

4.2 Laguerre operator

Using the asymptotic estimates for the Bessel function (4.1) and (4.2) in formula
(1.10), one can obtain

Tt (x, y) ≤ Ct−1/2 exp

(
−c

|x − y|2
t

)
e−ctxy min(1, (xy/t)α+1/2), x, y ∈ X , t > 0,

(4.4)

see [7, Eq. (2.12) and (2.13)].

Proposition 4.5 Let X = (0,∞) and α > −1/2. Then (A0)– (A2) hold for L [α]
L

with QL .

Proof We shall use similar estimates to those of [7]. Note that (A0) follows immedi-
ately from (4.4). Let us fix positive constants γ < min(1/4, α/2+1/4) and δ ∈ [0, γ ).
Fix Q ∈ QL and y ∈ Q∗.

Proof of (A1). We write

∫
(Q∗∗)c

sup
t>0

tδTt (x, y) dx =
∫

(Q∗∗)c∩(0,dQ)

... +
∫

(Q∗∗)c∩(dQ ,∞)

... =: I1 + I2.

Since |x − y| ≥ CdQ and δ < 1/2, we have

I1 ≤ C
∫

(Q∗∗)c∩(0,dQ)

sup
t>0

tδ−1/2 exp

(
−|x − y|2

ct

)
dx

≤ C
∫

(Q∗∗)c∩(0,dQ)

|x − y|2δ−1 dx

≤ Cd2δ−1
Q dQ ≤ Cd2δ

Q .

In order to estimate I2 we consider two cases depending on the localization of Q.
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Case 1: Q = [2−n, 2−n+1], n ∈ N+. In this case y � dQ = 2−n . Observe that if
x ∈ (Q∗∗)c ∩ (dQ,∞), then |x − y| ∼ x and

sup
t>0

tδTt (x, y) ≤ C sup
t>0

tδ−1/2
( xy

t

)α+1/2
exp

(
− x2

ct

)

≤ Cdα+1/2
Q x2δ−α−3/2.

Therefore, I2 ≤ Cdα+1/2
Q

∫ ∞
dQ

x2δ−α−3/2 dx ≤ Cd2δ
Q , since δ ≤ α/2 + 1/4.

Case 2: Q ⊂ [2n, 2n+1], n ∈ N. Then y−1 � dQ � 2−n . Recall that δ < 1/2. By
using the inequality exp (−cxyt) ≤ C(xyt)−1 in (4.4), we get

I2 ≤ C
∫

(Q∗∗)c∩(dQ ,∞)

sup
t>0

(xy)−1tδ−3/2 exp

(
−|x − y|2

ct

)
dx

≤ CdQ

∫
(Q∗∗)c∩(dQ ,∞)

x−1|x − y|2δ−3 dx

≤ CdQd2δ−1
Q

∫
(Q∗∗)c∩(dQ ,∞)

x−1|x − y|−2 dx

≤ Cd2δ
Q

(∫
(Q∗∗)c∩

(
dQ ,d−1

Q /4
) d−1

Q y−2 dx

+
∫

(Q∗∗)c∩
(

d−1
Q /4, ∞

) dQ |x − y|−2 dx

)
≤ Cd2δ

Q .

Proof of (A2). For x ∈ Q∗∗, y ∈ Q∗ and t ≤ d2
Q , we apply an estimate that can be

deduced from the proof of [7, Prop. 2.3], namely

|Tt (x, y) − Ht (x, y)| ≤ Ct1/2
(

xy + (xy)−1
)

≤ Ct1/2d−2
Q ,

where the second inequality follows from the relation between dQ and the center of Q.
Thus, for δ < 1/2,∫

Q∗∗
sup

t<d2
Q

t−δ|Tt (x, y) − Ht (x, y)| dx ≤ Cd−2
Q

∫
Q∗∗

sup
t<d2

Q

t1/2−δ dx ≤ Cd−2δ
Q .

��

4.3 Schrödinger operator

This subsection is devoted to proving the following proposition.

Proposition 4.6 Let L S = −�+V be a Schrödinger operator with0 ≤ V ∈ L1
loc(R

d).
Assume that for some admissible covering QS the conditions (D’) and (K) hold. Then
(A0)– (A2) are satisfied for L S and QS.
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Proof In the proof we use estimates similar to those in [11]. For the completeness
we present all the details. As we have already mentioned in (1.12), (A0) holds since
V ≥ 0. Let us fix a positive γ < min(log2 ρ, σ ), where ρ and σ are as in (D’) and
(K), see Sect. 1.4.3. Consider Q ∈ QS , δ ∈ [0, γ ), and y ∈ Q∗.
Proof of (A1). We have that

∫
(Q∗∗)c

sup
t>0

tδ Tt (x, y) dx ≤
∫

(Q∗∗)c
sup

t≤4d2
Q

tδ Tt (x, y) dx +
∑
n≥2

∫
X

sup
2nd2

Q<t≤2n+1d2
Q

tδ Tt (x, y) dx

=: I1 + I2.

Denote by z the center of the cube Q. For y ∈ Q∗ and x /∈ Q∗∗ we have dQ ≤
C |x − y| � |x − z|. Using (A0) we obtain that

I1 ≤ C
∫

(Q∗∗)c
sup

t≤4d2
Q

t−d/2+δ exp

(
−|x − z|2

ct

)
dx

≤ C
∫

(Q∗∗)c
d−d+2δ

Q exp

(
−|x − z|2

c d2
Q

)
dx ≤ Cd2δ

Q .

By (A0) and (D’),

I2 ≤
∑
n≥2

∫
Rd

∫
Rd

sup
2nd2

Q<t≤2n+1d2
Q

tδTt−2n−1d2
Q
(x, u)T2n−1d2

Q
(u, y) du dx

≤ C
∑
n≥1

(2nd2
Q)δ

∫
Rd

T2nd2
Q
(u, y)

∫
Rd

(2nd2
Q)−d/2 exp

(
−|x − u|2

c2nd2
Q

)
dx

︸ ︷︷ ︸
≤C

du

≤ Cd2δ
Q

∑
n≥1

2δnρ−n ≤ Cd2δ
Q ,

where in the last inequality we have used that 2δ < ρ.
Proof of (A2). As in [11, Lem. 3.11] we write V = χQ∗∗∗ V + χ(Q∗∗∗)c V =:

V ′ + V ′′. The perturbation formula states that Ht (x, y) − Tt (x, y) = ∫ t
0

∫
Rd Ht−s

(x, u)V (u)Ts(u, y) du ds, so

t−δ |Ht (x, y) − Tt (x, y)| = t−δ

∫
Rd

∫ t

0
Ht−s(x, u)V ′′(u)Ts(u, y) ds du

+ t−δ

∫
Rd

∫ t/2

0
Ht−s(x, u)V ′(u)Ts(u, y) ds du

+ t−δ

∫
Rd

∫ t

t/2
Ht−s(x, u)V ′(u)Ts(u, y) ds du

=: I3(x, y) + I4(x, y) + I5(x, y).
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For 0 < s < t ≤ d2
Q , x ∈ Q∗∗, u ∈ (Q∗∗∗)c, we have that dQ ≤ C |x − u| and

t−δ Ht−s(x, u) ≤ (t − s)−δ Ht−s(x, u) ≤ Cd−d−2δ
Q exp

(
−|x − u|2

c d2
Q

)

and, consequently,

∫
Q∗∗

sup
t≤d2

Q

I3(x, y) dx ≤ C
∫

Q∗∗

∫
Rd

∫ ∞

0
d−d−2δ

Q exp

(
−|x − u|2

c d2
Q

)
V ′′(u)Ts(u, y) ds du dx

≤ Cd−2δ
Q

∫
Rd

∫ ∞

0
V ′′(u)Ts(u, y) ds dz

≤ Cd−2δ
Q .

In the last inequality we have used equivalent form of [11, Lem. 3.10]. To estimate I4,
denote t j = 2− j d2

Q for j ≥ 1. Notice that

I4, j (x, y) : = sup
t j ≤t≤t j−1

I4(x, y) ≤ C sup
t j ≤t≤t j−1

∫
Rd

∫ t/2

0
(t−s)−δ Ht−s(x, u)V ′(u)Ts(u, y) ds du

≤ C
∫ t j

0

∫
Rd

t−d−δ
j exp

(
−|x−u|2

c t j

)
V ′(u)Hs(u, y) du ds.

(4.7)

Using (4.7) and then applying (K) we obtain∫
Q∗∗

sup
t≤d2

Q

I4(x, y) dx ≤
∑
j≥1

∫
Rd

sup
t j ≤t≤t j

I4, j (x, y) dx

≤ C
∑
j≥1

t−δ
j

∫
Rd

∫ t j

0

∫
Rd

t−d
j exp

(
−|x − u|2

c t j

)
dx︸ ︷︷ ︸

≤C

V ′(u)Hs(u, y) ds du

≤ Cd−2δ
Q

∑
j≥1

2 jδ

(
t j

d2
Q

)σ

≤ Cd−2δ
Q

∑
j≥1

2− j(σ−δ) ≤ Cd−2δ
Q ,

since δ < σ . Finally, I5(x, y) can be estimated by a similar argument. We skip the
details. ��

4.4 Products of local and nonlocal atomic Hardy spaces

In this section we consider operator L = −� + L2, where −� is the standard
Laplacian on R

d1 and L2 together with an admissible covering Q2 of X2 ⊆ R
d2

satisfies (A0)– (A2). Obviously, the kernel of exp (−t L) is given by Tt (x, y) =
Ht (x1, y1) · T [2]

t (x2, y2), where x = (x1, x2) ∈ R
d1 × X2 ⊆ R

d1 × R
d2 = R

d .
One immediately see that Tt (x, y) satisfies (A0). Moreover, almost identical argu-
ment as in the proof of Theorem B shows that Tt with Q = R

d � Q2 satisfies (A1)
and (A2). The details are left to the interested reader.
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for helpful comments.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

This appendix is devoted to prove Lemma 2.5. This proof uses standard methods, see
e.g. [20]. We present details for the sake of completeness. In fact we prove a more
general Proposition 4.12, from which Lemma 2.5 follows immediately. Recall that we
consider a semigroup of operators Tt that is strongly continuous on L2(X) and has
integral kernel Tt (x, y) satisfying (A′

0). We start with the following lemma.

Lemma 4.8 Suppose that Tt satisfies (A′
0). There exists a sequence {tn}n such that

tn → 0 and for every r > 0 we have:

lim
n→∞

∫
|x−y|>r

Ttn (x, y) dy = 0, (4.9)

lim
n→∞

∫
|x−y|≤r

Ttn (x, y) dy = 1, (4.10)

for a.e. x ∈ X.

Proof Let ν ∈ (0, 1) be the constant from (A′
0). Observe that∫

|x−y|>r
Tt (x, y) dy ≤ C

∫
|x−y|>r

tν

(t + |x − y|2) d
2 +ν

dy

= C
∫

|y|> r√
t

(1 + |y|2)−d/2−ν dy → 0,

as t → 0, and (4.9) is proved (for every {tn}n such that tn → 0).
To show (4.10) observe that for f ∈ L2(X) we have limt→0 Tt f converges to f in

L2(X), so we can choose a sequence with a.e. convergence. Applying this to functions
fn(x) = χQ(0,n)(x) and using a diagonal argument we obtain a sequence {tn}n , which
goes to 0, and such that for a.e. x ∈ X we have

lim
n→∞

∫
X

Ttn (x, y) dy = 1. (4.11)

Thus, (4.10) follows from (4.11) and (4.9). ��
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Proposition 4.12 Assume that Tt satisfies (A′
0) and let f ∈ L1(X) + L∞(X). There

exists a sequence {tn}n such that tn → 0 and for almost every x ∈ X,

lim
n→∞ Ttn f (x) = f (x).

Proof Let {tn}n be the sequence from Lemma 4.8. By the Lebesgue differentiation
theorem we have

lim
s→0

|Q(x, s)|−1
∫

Q(x,s)
| f (y) − f (x)| dy = 0 (4.13)

for almost every x ∈ X , since f ∈ L1(X) + L∞(X) ⊂ L1
loc(X). Consider the set

A of points x ∈ X such that we have (4.13), and, additionally, (4.9)–(4.10) hold for
all rational r > 0. Obviously, such set has full measure. Fix ε > 0 and x ∈ A. We
will show that

∣∣Ttn f (x) − f (x)
∣∣ ≤ Cε for large n ∈ N. Let r > 0 be a fixed rational

number such that for s < r we have

∫
Q(x,s)

| f (y) − f (x)| dy ≤ ε |Q(x, s)| . (4.14)

Assume that
√

tn < r for large n. Write

Ttn f (x) − f (x) = f (x)

(∫
|x−y|≤r

Ttn (x, y) dy − 1

)
+

∫
|x−y|>r

Ttn (x, y) f (y) dy

+
∫

|x−y|<√
tn

Ttn (x, y) ( f (y) − f (x)) dy

+
∫

√
tn≤|x−y|≤r

Ttn (x, y) ( f (y) − f (x)) dy

=: I1 + I2 + I3 + I4.

Applying (4.10) we obtain that |I1| < ε for n large enough. To treat I2 we consider
two cases.

Case 1: f ∈ L∞. Using (4.9) we have that |I2| < ε for n large enough.
Case 2: f ∈ L1. By (A′

0),

|I2| ≤ C
∫

|x−y|>r

tνn
(tn + |x − y|2)d/2+ν

| f (y)| dy ≤ C
tνn

(tn + r2)d/2+ν
‖ f ‖L1(X) < ε,

for tn small enough. To estimate I3 observe that Ttn (x, y) ≤ Ctn−d/2 and∣∣Q(x,
√

tn)
∣∣ � td/2

n . Since
√

tn < r , by applying (4.14) we obtain

|I3| ≤ Ct−d/2
n

∫
|x−y|<√

tn
| f (y) − f (x)| dy < Cε.
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To deal with I4 let N = �log2(r/
√

tn)�, so that r ≤ √
tn2N ≤ 2r . Define

Sk =
{

x ∈ X : r2−k < |x − y| < r2−k+1
}

for k = 1, ..., N . Using (A′
0) and (4.14) we get

|I4| ≤ Ctνn

N∑
k=1

∫
Sk

(tn + |x − y|2)−d/2−ν | f (y) − f (x)| dy

≤ Ct−d/2
n

N∑
k=1

(r2−k/
√

tn)−d−2ν
∫

Sk

| f (y) − f (x)| dy

≤ Cεtνn

N∑
k=1

(r2−k)−d−2ν(r2−k)d

≤ Cε(
√

tnr−12N )2ν ≤ Cε.

��
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8. Dziubański, J., Preisner, M.: On Riesz transforms characterization of H1 spaces associated with some

Schrödinger operators. Potential Anal. 35(1), 39–50 (2011)
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