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Chapter Abstract 

The potential fields method for autonomous robot navigation consists essentially in the 
assignment of an attractive potential to the goal point and a repulsive potential to each of 
the obstacles in the environment. Several implementations of potential fields for 
autonomous robot navigation have been reported. The most simple implementation 
considers a known environment where fixed potentials can be assigned to the goal and the 
obstacles. When the obstacles are unknown the potential fields have to be adapted as the 
robot advances, and detects new obstacles. The implementation of the potential fields 
method with one attraction potential assigned to the goal point and fixed repulsion points 
assigned to the obstacles, has the important limitation that for some obstacle configurations 
it may not be possible to produce appropriate resultant forces to avoid the obstacles. 
Recently the use of several adjustable attraction points, and the progressive insertion of 
repulsion points as obstacles are detected online, have proved to be a viable method to 
avoid large obstacles using potential fields in environments with unknown obstacles. In this 
chapter we present the main characteristics of the different approaches to implement local 
robot navigation algorithms using potential fields for known and partially known 
environments. Different strategies to escape from local minima, that occur when the 
attraction and repulsion forces cancel each other, are also considered. 

1. Introduction: The Potential Fields Method for Obstacle Avoidance 

The local autonomous robot navigation problem consists of the calculation of a viable path 
between two points, an starting and a target point. The local navigation approach should 
produce an optimum (usually shortest) path,  avoiding the obstacles present in the working 
environment. In general, the obstacles and the target could be static or dynamic. The 
obstacles could also be known a priory (e.g. the different walls in a building) or could be 
unknown (e.g. persons walking nearby the robot).  In this chapter are presented the 
following aspects of a potential fields scheme for autonomous robot navigation: The 
potential and force field functions; The use of single or multiple attraction points; The 
construction of an objective function for field optimization; The field optimization approach 
in known and unknown environments. In the last section of the chapter we present hybrid 

www.intechopen.com



Mobile Robots Motion Planning, New Challenges 

 

2 

approaches to recover from local minima of the potential field. During the chapter we have 
only considered potential fields defined in cartesian space, where attractive or repulsive 
potentials are a function of the position of the target or the obstacle. Recently, potential 
fields defined in a 2D trajectory space, using the path curvature and longitudinal robot 
velocity, have been reported (Shimoda et al., 2005). 

1.1 Previous works on artificial potential fields for autonomous robot navigation 

Artificial potential fields for autonomous robot navigation were first proposed by  Khatib 
(1990). The main idea is to generate attraction and repulsion forces within the working 
environment of the robot to guide it to the target. The target point has an attractive influence 
on the robot and each obstacle tends to push away the robot, in order to avoid collisions. 
Potential field methods provide an elegant solution to the path finding problem. Since the 
path is the result of the interaction of appropriate force fields, the path finding problem 
becomes a search for optimum field configurations instead of the direct construction (e.g. 
using rules) of an optimum path. Different approaches have been taken to calculate 
appropriate field configurations. 
Vadakkepat et al. (2000) report the development of a genetic algorithm (GA) for 
autonomous robot navigation based on artificial potential fields. Repulsion forces are 
assigned to obstacles in the environment and attraction forces are assigned to the target 
point. The GA adjusts the constants in the force functions. Multiobjective optimisation is 
performed on 3 functions which measure each: error to the target point, number of collisions 
along a candidate path, and total path length. This scheme requires a priory knowledge of 
the obstacle positions in order the evaluate the number of collisions through each candidate 
path. Kun Hsiang et al. (1999), report the development of an autonomous robot navigation 
scheme based on potential fields and the chamfer distance transform for global path 
planning in a known environment, and a local fuzzy logic controller to avoid trap situations. 
Simulation and experimental results on a real AGV are reported for a simple (4 obstacles) 
and known environment. McFetridge and Ibrahim (1998) report the development of a robot 
navigation scheme based on artificial potential fields and fuzzy rules. The main contribution 
of the work consists in the use of a variable for the evaluation of the importance of each 
obstacle in the path of the robot. Simulation results on a very simple environment (one 
obstacle) show that use of the importance variable produces smoother and shorter 
trajectories. Ge and Cui (2002) describe a motion planning scheme for mobile robots in 
dynamic environments, with moving obstacles and target point. They use potential field 
functions which have terms that measure the relative velocity between the robot and the 
target or obstacle.  
The main disadvantage of artificial potential field methods is its susceptibility to local 
minima (Borenstein and Koren, 1991), (Grefenstette and Schultz, 1994). Since the objective 
function for path evaluation is usually a multimodal function of a large number of variables. 
Additionally, in the majority of works on artificial potential fields for robot navigation, a 
single attraction point has been used. This approach can be unable to produce the resultant 
forces required to avoid  a large or several, closely spaced, obstacles ( Koren and Borenstein, 
1991). An scheme based on a fixed target attraction point and several, moving, auxiliary 
attractions points was reported in Arámbula and Padilla (2004). Multiple auxiliary 
attractions points with adjustable position and force intensity enable navigation around 
large obstacles, as well as through closely spaced obstacles, at the cost of increased 
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complexity of the field optimisation. A GA has been successfully used to  optimise  potential 
fields with a large number of unknown obstacles and four auxiliary attraction points. The 
approach is fast enough for on-line control of a mobile robot.  
In the following section we present different potential and force field functions which have 
been used for robot navigation. In section 3 we present the main characteristics of potential 
fields with one, as well as several attraction points. In section 4 we present the basics of field 
optimization: objective function construction; function optimization in known and unknown 
environments. In section 5 we introduce a hybrid method to avoid local minima during field 
optimization.  

2. Potential field and force field functions 

The first formulation of artificial potential fields for autonomous robot navigation was 
proposed by Khatib (1990). Since then other potential fields formulation have been proposed 
(Canny 1990, Barraquand 1992, Guldner 1997, Ge 2000, Arámbula 2004).  
In general, the robot is represented as a particle under the influence of an scalar potential 

field U ,  defined as: 

 repatt UUU +=  (1) 

 where attU  and repU
 are the attractive and repulsive potentials respectively. 

The attraction influence tends to pull the robot towards the target position, while repulsion 
tends to push the robot away from the obstacles. The vector field of artificial forces   F(q) is 

given by the gradient of U : 

 repatt UU ∇+−∇=)(qF  (2) 

where U∇ is the gradient vector of U  at robot position  q(x, y) in a two dimensional map. 

 In this manner, F is defined as the sum of two vectors attatt U−∇=)(qF  and 

reprep U∇=)(qF , as shown in eq. 3. 

 )()()( qFqFqF repatt +=  (3) 

2.1 Artificial Potential Fields Formulation 

The most commonly used form of potential field functions proposed by Kathib (1990) is 
defined as: 
Attraction potential field 

 
2

2

1
dU att ξ=  (4) 

where d= aqq − ; q is the current position of the robot; aq is the position of  an attraction 

point; and  ξ is an adjustable constant. 
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Repulsion potential field 
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where d= oqq −  for the robot position q and the obstacle position qo, 0d  is the influence 

distance of the force and η  is an adjustable constant. 
The corresponding force functions are: 
Attraction force 

 ( )aattatt U qqqF −−=−∇= ξ)(  (6) 

where q is again the robot position, aq  the position of the attraction point and ξ is an 

adjustable constant. 
Repulsion force 
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where d= oqq −  for the robot position q and the obstacle position qo, 0d  is the influence 

distance of the force and η  is an adjustable constant. 
The above formulation is popular due to its mathematical elegance and its simplicity; 
unfortunately, it suffers of oscillations and local minima under some obstacle configurations 
could cause problems, such: trap situations due to local minima, oscillations in narrow 
passages or impossibility of passing between closely spaced obstacles.  
Some different potential fields have been reported in the past in order to solve these 
problems. Ge and Cui (2000) proposed a modified formulation of Eq. 5 and Eq. 7 for 
repulsion forces for solving the problem of having a non-reachable target when it is placed 
nearby obstacles due to the fact that as the robot approaches the goal near an obstacle, the 
attraction force decrease and becomes drastically smaller than the increasing repulsion 
force. The modified repulsion potential takes the form of: 
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 (8) 
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The term 
goal

q -q is the distance between the robot and the goal position. The 

introduction of this term ensures that the total potential repatt UUU +=  arrives at its 

global minimum 0, if and only if =
goal

q q . The corresponding repulsion force is given by: 

 rep1 rep2 0

0

F F

0

OR RG

rep

d d
U

d d

+ ≤⎧
= ∇ = ⎨

>⎩
rep

n n
F (q)  (9) 

where 

 1 2

0

1 1
( )

n

goal

d d d
η

−
= −

rep

q q
F  (10) 

 

2
1

2

2

0

1 1
( )

2

n

goal
d d

η −
= − −

rep
F q q  (11) 

OR d= ∇n and RG goal= −∇ −n q q are two unit vectors pointing from obstacle to the 

robot and from the robot to the goal, respectively. In this way, 1rep ORF n  repulses the robot 

away from the obstacle, while 2rep RGF n attracts the robot toward the goal. Although this 

approach solves the problem of nonreachable goals which are nearby, still suffers of local 

minima at some obstacle configurations and combinations of η and ξ . 

Arámbula and Padilla (2004) modified equations 6 and 7 experimentally in order to amplify 
the effect of repulsion in obstacles and designed a potential field scheme with movable and 
adjustable, in real time, auxiliary attraction points in order to reduce the risk of the robot to 
being trapped in local minima. The modified artificial attraction force Fatt used for the target 
point and for each of the auxiliary attraction points is: 

 ( )
a

aattatt U
qq

qqqF
−

−−=−∇=
1

)( ξ   (12) 

The aim of normalization of Eq. 6 is to produce an attraction force independent of the 

distance between the robot and the target point (Eq.12). The artificial repulsion force repF is 

defined as: 

 

( )
03

0

0

1 1

( )

0

o

rep rep

sqrt d d
U d d d

d d

η
⎧ −⎛ ⎞

⋅ − ≤⎪ ⎜ ⎟
= ∇ = ⎨ ⎝ ⎠

⎪ >⎩

q q

F q  (13) 

As the robot gets closer to an obstacle, the repulsion force of the closest obstacle points 
grows in the opposite direction of the robot trajectory. If the robot distance to an obstacle 
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point is higher than 0d , that obstacle position has no  effect on the robot. An steep repulsion 

force function is needed in order to enable navigation through narrow passages, however it 

was observed that taking the square root  of 
0

1 1( )
d d

−  in Eq.13 provides a light 

increase of the repulsion forces at mid distances (as shown in Fig.1) enabling, in turn, a safer 
obstacle avoidance. The constant η is also adjustable in real time as the robot moves by a 

genetic algorithm as is explained in section 4.   
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Figure 1. Plot of the magnitude of equation 9 (diamonds) and the same equation without 
taking the square root of (1/d-1/d0) (stars) 

2.2 Distance Fields as Potential Fields 

Canny and Lin (1990) and Barraquand et al (1992) used a similar approach based on distance 
functions for building the potential field. Canny and Lin (1990) used the Euclidean distance 
field as a non-negative continuous and differentiable function defined as: 

 min ( ( , ))att i i
i

U U D O xη= =  (14) 

where ( , )i iD O x  is the shortest Euclidean distance between an obstacle iO and the 

position x of the robot and η is and adjustment constant. In this manner, the potential 

tends to zero as the robot approaches the obstacles, so the robot moves along the skeleton of 
the distance field that represents the path of maximum attraction potential. Unfortunately, 
under certain obstacle configurations the resulting potential field may contain local maxima, 
specially if the robot is near obstacle concavities.  

Barraquand et al (1992) used a simple algorithm that computes the potential U as a grid 

where at the goal position goalx  is setting up the value of 0 and then progressively by 

region growing incrementing in 1 the value of the free obstacle neighbors and infinity in 
obstacle positions. Then the navigating path is found by tracking the flow of the negative 
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gradient vector field U−∇ starting from the initial robot position initx . The idea behind 

this approach is to produce a free of local minima potential field.   
Fig. 2 shows an example of an obstacle workspace and the potential fields produced by the 
calculation of the distance fields of both approaches. 

   
(a) (b) (c) 

Figure 2. Example of a workspace with distance field as potential field. a) Obstacle 
configuration; b) Skeleton of the potential field produced by Canny and Lin (1990); c) 
Skeleton of the potential field produced by Barraquand et al (1992) 

2.3 Harmonic Artificial Potential Fields 

Some authors have proposed the use of harmonic functions for building artificial potential fields 

which satisfies the 0T U∇ ∇ =  in order to avoid the problem of local minima (Connolly 1990, 

Utkin 1991, Guldner 1997). The generalized harmonic potential of a point charge q is: 

 

2
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for 0r > in  
nℜ where 

2

1 2, ( , ,..., )i n

n

r x x x x x= =∑  and the gradient 

U−∇ described by: 
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n e n

r
U r

q
e n
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−
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− =⎪⎪
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⎪⎩

f

f
 (16) 

where re
f

denotes a unit vector in radial direction.  

In particular, Guldner et al (1997) introduced the harmonic dipole potential based on 
electrostatics, where points on the workspace represent point charges within a security zone 
inside ellipsoidal gradients. For a single obstacle, they defined the gradient of the harmonic 
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potential field for a dipole charge as a security circle with radius R with a unit charge at the 

target point in the origin of the circle and a positive obstacle charge 1q <  defined as: 

 
R

q
R D

=
+

 (17) 

where D is the distance between the two charges. For multiple obstacles, independent 
security zones are determined for each obstacle in a transformed space and mapped in the 
original space without overlapping. When computing the navigation path, the method only 
considered the closest obstacle to the robot at each time and requires to switch obstacle 
potentials when the robot cross between security zones; in order to avoid discontinuities 
when switching potentials between obstacles, the resultant potential near the border of two 
zones is calculated by the weighted contribution of the obstacles, where the weight depends 
on the distance to the security borders of the obstacles. 

2.4 Physical Fields as Artificial Potential Fields 

Physical analogies for potential fields for robot navigation have been reported in the past for 
electrostatics (Guldner et al 1997), incompressible fluids dynamics (Keymeulen et al 1994), 
gaseous substance diffusion (Schmidt and Azarm 1992), mechanical stress (Masoud et al 1994) 
and steady-state heat transfer (Wang and Chirikjian 2000). For example, Wang and Chirikjian 
(2000) used temperature as the artificial potential field because in heat transfer the heat flux 
points in the direction of a negative temperature gradient; temperature monotonically decreases 
on the path from any point to the sink. In the analogy, the goal is treated as the sink that pulls 
the heat in and the obstacles as zero or very low thermal conductivity. With this approach the 
temperature is characterized as the harmonic field without local minima of the form: 

 qTK =∇⋅∇ )(  (18) 

 dV 0q
Ω

=∫  (19) 

 0
T

n Γ

∂⎛ ⎞
=⎜ ⎟

∂⎝ ⎠
 (20) 

 f K T= − ∇  (21) 

where T is the temperature over the workspace, q indicates the heat sources and sink, K is 

the thermal conductivity which is a function of space coordinates, Ω  is the configuration 

space where the robot moves and Γ is the boundary of this configuration space, n expresses 

the unit normal vector and f is the heat flux. Numerical solution is obtained from finite 

difference or finite element methods. 

3. Attraction point configurations 

In order to avoid trap situations or oscillations in the presence of large or closely spaced 
obstacles (Koren and Borenstein, 1991), in a map modelled as a two dimensional grid, 
several auxiliary attraction points can be placed around the goal cell (Fig. 3). Each attraction 
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force 
i

attF  located at cell ic , depends on the corresponding value of iξ  (Eq. 6), which needs 

to be adjusted by an optimization algorithm as described in the next section. The effect of 
auxiliary attraction points has been evaluated in two modalities (Arámbula and Padilla, 
2004): (1) auxiliary points placed at a fixed distance (of 15 cells) from the goal cell; and (2) 
auxiliary points placed at a variable distance ( between 0 and 15 cells), which is adjusted 
automatically with a GA. Results from both approaches are shown in section 4. The use of 
auxiliary attraction points with a force strength and position  automatically adjusted with a 
GA, allows for the generation of resultant force vectors which enable the robot to avoid 
large obstacles, as shown in Fig. 4. 

3.1. Multiple attraction points  

 
Figure 3. Attraction field composed of 5 attraction cells with adjustable position and force 
intensity 

  
a) b) 

Figure 4. a) A large obstacle which can not be avoided with one attraction point only; b) use 
of auxiliary attraction points of varying force intensity and position allow for the generation 
of resultant forces which guide the robot around the obstacle 

www.intechopen.com



Mobile Robots Motion Planning, New Challenges 

 

10 

4. Potential field optimization for obstacle avoidance 

4.1 Pre-calculated potential fields 

When the environment where a robot navigates is of the type of an office or a house, and it 
is known in advance, then the objects and walls can be represented using polygons.  

 

Figure 6. Representation of the testing environment using polygons 

Each polygon consists of a clockwise ordered list of its vertices. Representing the obstacles 
as polygons makes easier the definition of forbidden areas, which are areas which are not 
allowed for the robot to enter. They are built by growing the polygons that represent the 
objects by a distance greater than the radius of the robot, to consider it as a point and not as 
a dimensioned object (Lozano Pérez 1979). It is possible to create the configuration space in 
this way when the robot has a round shape. Fig. 6. shows a representation of a polygonal 
testing environment example testing environment. From the polygonal representation it is 
found the free space where the robot can navigate with this approach, which is formed by a 
set of equally spaced cells in which there are not obstacles, as it is shown in Fig. 7. 

 

Figure 7. Representation of the free space using cells 
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For each cell it is calculated the repulsion forces that each of the obstacles generates, they are 
added and the resulting force is obtained, Fig. 8 shows the repulsion force map for the 
environment. 

 

Figure 8. Repulsion force map for the environment shown in Fig. 6 

By calculating in advance the repulsion force map liberates the robot’s processors to perform 
other tasks, then knowing the destination the attraction force is calculated in each of the cells 
and added to the repulsion force calculated before. Figure 9 shows the attraction and repulsions 
force map, in which a robot navigates from the upper left corner to the lower right one. 

 

Figure 9. Attraction and repulsions force map 
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The use of this kind of repulsion and attraction force maps improves the performance of the 
robot, because it is not necessary to calculate for each of the robot positions the repulsion 
forces on-line. 

4.2 Optimization approaches 

4.2.1 Objective functions 

An objective function for robot navigation should measure the optimality of a path between 
two points. The main criteria to determine the optimality are: minimum travel distance, and 
safe obstacle avoidance throughout the path. Then the objective function should provide 
optimum values (minima or maxima) for the shortest travel paths, with maximum distances 
to each obstacle in the path. Objective functions are usually constructed by the system 
developer, according to the navigation conditions: known or unknown obstacles; one or 
several attraction points; navigation map. To illustrate we present two objective functions 
which have been succesfully used for local obstacle avoidance. 
As mentioned in the introduction Kun Hsiang et al. (1999), reported the development of an 
autonomous robot navigation scheme based on potential fields and the chamfer distance 
transform for global path planning in a known environment, and a local fuzzy logic 
controller to avoid trap situations. The chamfer distance transform produces a matrix where 
each entry is the distance to the closest obstacle, these distances are used to calculate the 
repulsion forces exerted by the obstacles on the robot. The attraction force of the goal point 
is a constant with a user defined magnitude. A fuzzy logic controller based on two objective 
functions was developed to avoid trap situations where the robot is not able to avoid an 
obstacle using only the potential field functions. The objective functions measure: the angle 
between the repulsive force of the closest obstacle and the resultant force (Ec. 22); the 
distance to the closest obstacle (Eq. 23). The controller tries to maximize the distance to the 
obstacles. An stop condition is used when the robot reaches the goal. 

 φ=θobs – θ (22) 

where: 
θobs is the angle of the repulsive force; 
θ is the angle of the resultant force. 

 diff=M(xi+1, yi+1)- M(xi,yi)  (23) 

where: 
M(xi+1, yi+1) is the distance to the closest obstacle at the next position; 
M(xi,yi) is the distance to the closest obstacle at the current position. 
In Arambula and Padilla (2004) is reported an objective function to evaluate force field 
configurations which correspond to an optimum robot position (i.e. positions closer to the 
goal cell which also avoid obstacles). The objective function value of each candidate force 

field configuration is evaluated with two criteria: minimisation of the error distance E  
between the robot and  the goal cell; and maximisation of the distance dmin to the closest 
obstacle cell. Equation 24 shows the objective function, which produces optimum 
(minimum) values for minimum E, and maximum dmin 
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q  (24) 

where:  
dmin is the distance to the closest obstacle cell 

gyrygxrx qqqqE −+−=  

qr is a candidate cell for the new robot position;  
qg is the  goal cell; 
The construction of the objective function (f ) favors robot paths that run away from the 
obstacles and result in decreasing distance to the goal cell. The case where dmin= 0  (which 
corresponds to a collision) is severely penalised. In Fig. 5a is shown the plot of Eq.24 for: 
0<=E<=44 and  0.1<= dmin<=5. 

 

0
10

20
30

40
50

0
1

2
3

4
5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

Edmin

f

0
10

20
30

40
50

5
5.5

6
6.5

7
7.5

8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Edmin

f

 

 (a) (b) 
Figure 5.(a) Plot of Eq.24 for: 0<=E<=44, 0.1<= dmin<=5;  (b) Plot of Eq.24 for: 0<=E<=44, 5<= 
dmin<=8 

As shown in Fig. 5a, f gives non-optimum high values for small dmin and large E, although 
smaller values of f can be achieved through  increased dmin or smaller E, the absolute 
optimum value of f=0 will only be achieved for E=0. In Fig. 5b is shown the plot of f in the 
range: 0<=E<=44, 5<=dmin<=8;  as can be observed, at a predefined maximum value of 
dmin=5,  f still shows an slope which guarantees that optimum values correspond to 
decreasing E. 

4.2.2 Adaptive potential fields 

If the robot navigates in an environment with unknown obstacles it is necessary to detect 
and avoid obstacles as the robot moves towards the goal. In Arámbula and Padilla (2004) 
was reported an scheme for online obstacle detection. The robot is represented as a particle 
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R  that moves in the configuration space C , modelled as a two dimensional grid, where 

each cell ic  inside C can be occupied by the robot, the goal or the obstacles. There is also an 

associated obstacle map M of the same size of C . The obstacle map is initially empty, and 

it is filled at the positions of the obstacles detected by the robot, as it moves inside C . The 
goal cell, and 4 auxiliary attraction points exert an attraction force on R given by Eq. 12, 
while each of the detected obstacle cells exerts repulsion forces given by Eq. 13. For obstacle 

detection,  a 55x  grid simulates the robot sensors. When R  moves, the positions of the 

sensors in the mask are updated and used to calculate the distance mind  to the closest 
detected obstacle (Fig. 10a). A predefined distance is assigned to obstacles outside of the 
detection mask, as shown in Fig. 10b. 

 

 

 

 (a) (b) 

Figure 10. Examples of obstacle sensing. a) The robot detects an obstacle at mind = 1; b) The 

robot does not detect any obstacle and sets mind to a predefined value of 5 

In order to avoid trap situations or oscillations in the presence of large or closely spaced 
obstacles (Koren and Borenstein, 1991), 4 auxiliary attraction points have been placed 

around the goal cell (Fig. 3). Each attraction force 
i

attF  located at cell ic , depends on the 

corresponding value of iξ , which is automatically adjusted by a genetic algorithm 
described in the next section. The effect of auxiliary attraction points was evaluated in two 
modalities: (1) auxiliary points placed at a fixed distance (of 15 cells) from the goal cell; and 
(2) auxiliary points placed at a variable distance ( between 0 and 15 cells), which is adjusted 
automatically by the GA. Results from both approaches are reported in section 4.3. Use of 
auxiliary attraction points with a force strength and position  automatically adjusted by the 
GA, allows for the generation of resultant force vectors which enable the robot to avoid 
large obstacles, as shown in Fig. 12. 
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4.2.2.1 Adaptive field optimization using genetic algorithms 

Genetic algorithms are an efficient  technique to optimise difficult functions in large search 
spaces. By testing populations of solutions represented as strings  (called chromosomes) in 
an iterative process, a GA is able to find a near optimal solution in a robust manner, with the 
ability to produce a “best guess” from incomplete or noisy data (Goldberg, 1989) . A GA was 

used to optimise the values of the variables ( iξ ) of 5 attraction points and the values of the 

variables  ( jη )  of up to 155 obstacle cells. Each variable has a range of {0, 1000} and was 

binary coded with 20 bits of resolution in order to maintain a large number of values for the 
repulsion and attraction forces. A chromosome is formed by concatenation of the 160 binary 
coded variables. As mentioned above two modalities of the approach were evaluated: (1) 
with auxiliary attraction points placed at fixed positions, and (2) with auxiliary attraction 
points placed at variable distance from the goal cell. To implement modality (2), four 
additional binary variables in the range {0, 15} and coded with 4 bits  each, are included in 
the chromosomes.  

The GA searches for optimum values of iξ  and jη  in a given binary string (chromosome) 

which move the robot to a position such that f (Eq. 24) has a minimum value. Only those  

jη  which correspond to obstacle cells detected by the robot are used to calculate the force 

fields given by Eq. 13, the rest of the repulsion weights in the string is ignored. At each 
generation of the GA, every chromosome in the current population is decoded and the value 
of Eqs. 12, and 13 is calculated, with this values is calculated the resultant force and the 
corresponding robot position. This robot position is evaluated with Eq. 24 and assigned a 
selection probability based on its objective function value (smaller values of the objective 
function correspond to higher selection probabilities). Each chromosome in the current 
population is assigned a number of copies with probability Ps using stochastic universal 
sampling (SUS) for selection and the ranking method to assign probabilities (Chipperfield 
et. al, 1995). Single point crossover is applied to the copies (offspring) with a probability of 
0.6, mutation is applied to each string with a probability of 0.01 per bit. Finally, the next 
generation of the GA is formed using fitness based reinsertion  with a generation gap of 0.8. 
This process continues until the robot reaches the goal cell or 200 generations (robot steps) 
are completed. Below is shown the pseudocode of the GA for robot navigation. 
 
Pop= Random initialisation of 50 binary chromosomes 
Step_count=0 
While step_count<200 

Calculate  Fatt (Eq.8),  Frep (Eq.9), and the next robot position for each chromosome 
in Pop; 
Calculate f  (Eq.10) for each robot position ; 
Assign a probability of selection  (Ps) to each chromosome  using the ranking 
method; 
Assign copies to each chromosome using SUS with probability of selection Ps;  
Mutate and cross the copies (offspring); 
Reinsert offspring in Pop with a generation gap of 0.8; 
Calculate f for Pop; 
Select best chromosome and move the robot to the corresponding position; 
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Increment step_count;  
If(d=0) 

finish 
end 

4.3 Potential Field Optimization in a Partially known environment: Experiments and 
results 

The genetic algorithm described above was implemented in Matlab using the GA toolbox 
developed at the University of Sheffield (Chipperfield et. al, 1995). A cell map of 40x40 cells 
simulating a five-room floor was used for evaluation. Random obstacle distributions were 
used, as shown in Fig. 11.  
 

 

Figure 11. Cell map simulating a five-room floor with random obstacle 

Ten experiments were performed, the start and goal positions for each experiment are 
shown in table 1, the origin is placed at the top-left corner of the cell map. Two intermediate 
goal points have been used to guide the robot through the corridor corner as well as through 
the door of the appropriate room. The positions of the intermediate goal points are also 
shown in table 1. The robot travels from the start position to each successive intermediate 
goal point and to the final goal point. 

Two modalities of the navigation algorithm were evaluated: (1) with auxiliary attraction 
point placed at fixed positions, and (2) with auxiliary attraction points placed at variable 
distance from each goal cell. In table 2 are shown the results of the 20 experiments 
performed, the first column shows the experiment number corresponding to table 1. 
Columns two and three show respectively, the total distance traveled by the robot 
(measured in cells), and the deviation (as a percentage) from the optimum shortest path. 
Auxiliary attraction points were placed at a fixed distance of five cells from each goal 
position. Columns four and five show respectively, the total distance traveled by the robot 
and the deviation percentage, for auxiliary attraction points placed at a variable distance, 
which is automatically adjusted by the GA. 
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Exp. No (start)-(goal) intermediate goal 1 intermediate goal 2 

1 (34, 9)-(11, 3) (20,10) (15,10) 

2 (34, 9)-(13, 14) (20,10) (15,21) 

3 (34, 9)-(3, 26) (20,10) (15,38) 

4 (34, 9)-(36, 27) (20,10) (25,38) 

5 (34, 9)-(37, 14) (20,10) (25,22) 

6 (34, 4)-(3, 6) (20,10) (15,10) 

7 (34, 4)-(3, 14) (20,10) (15,21) 

8 (34, 4)-(12, 26) (20,10) (15,38) 

9 (34, 4)-(30, 30) (20,10) (25,38) 

10 (34, 4)-(38, 22) (20,10) (25,22) 

Table 1. Start-goal and intermediate goal positions of each experiment 

Exp.No. 
Total distance 1 

(cells) 
Deviation from 
optimum 1  (%) 

Total distance 2 
(cells) 

Deviation from 
optimum 2 (%) 

1 34 17.2 48 65.5 

2 44 29.4 34 0 

3 collision Collision 69 6.1 

4 68 21.4 81 44.6 

5 46 15.0 65 62.5 

6 40 21.2 43 30.3 

7 49 11.4 48 9.0 

8 70 27.2 81 47.3 

9 75 41.5 70 32.0 

10 48 17.0 72 75.6 

  Average: 22.3%  Average: 37.3% 

Table 2. Experiment results: Total distance 1, and Deviation from optimum 1 obtained with 
auxiliary attraction points placed at fixed distance (five cells) from the goal; Total distance 

2, and Deviation from optimum 2 obtained with auxiliary attraction points placed at 
variable distance from the goal 

From the results shown in table 2, the average deviation from the optimum path length is 
larger (37% vs. 22%) for the second approach, this is most likely because we have a larger 
and more complex search space which results in a higher probability of suboptimal points 
being chosen by the GA. However the second approach was able to produce a feasible path 
without collisions for all the experiments. In contrast the first approach (using fixed 
auxiliary attraction points) was not able to reach the goal for experiment 3. In Fig. 12 are 
shown five paths produced by the second approach. The average time for path completion 
on a Pentium III PC at 750MHz is 115s with an average path length of 56 cells (i.e.2.05 
s/step). 
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(3) (4) 
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Figure 12. Paths produced by the navigation algorithm, using auxiliary attraction points 
placed at variable distance from the goal cell. Start-goal positions are as given in table 1 
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5. Hybrid Approaches to Recover from Local Minima 

Hybrid approaches can be used to modify a potential field configuration in which a local 
minimum has been detected, for example Fig. 13, shows a robot that found an obstacle in the 
middle of the path between the origin and the goal and it is oscillating back and forth, due 
to the repulsion and attraction forces. First the repulsion forces repealed the robot from the 
obstacle, and when the robot is a little far away from it, the attraction force pushed it back to 
the obstacle, and then the repulsion force acts again repeating the whole process. 
The potential field configuration can be modified by the addition of attraction forces that 
allow the robot to exit the local minima. By using the position of the known obstacle, 
additional attraction forces are added in places that will take the robot out of the local 
minimum. Usually additional attraction points are added in some of the vertices of the 
obstacles, as is shown in Fig. 14. 

 

Figure 13. The robot is stuck in a local minimum 

Basically the hybrid approach finds the obstacle in which the robot got stuck, then using its 
vertices V=(v1,v2,...,vN ) it selects the vertices vi, vi+1,...,vk-1,vk, where vi is the closest vertex 
from the stuck point, vi+1 is the clockwise vertex from vi and vk is the closest vertex to the 
goal. Using these selected vertices the approach places a new goal to reach at vi+1 disabling 
the original goal, after the goal in vi+1 is reached a new goal is issued at the next selected 
vertex and so on until vk is reached. Finally the original goal is set again. In the Fig. 14 we 
can see that four additional attraction forces where added to the space to take the robot 
away from the local minimum.  
There are cases in which this approach does not work because there are obstacles so large 
that can generate several local minima in which the robot can get stuck again. In this case 
another approach is to have a robotics behavioral architecture that consists of several 
behaviors in parallel (Arkin 1998), each of the behaviors generates an output according to 
the readings of the sensors connected to them and its internal state. Then a referee selects the 
output of one of the behaviors according to a selection mechanism and sends it to the robot’s 
actuators. Figure 15 shows this type of architecture with two behaviors, one with potential 
fields and the other with an state machine.  
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Figure 14. Four additional attraction forces are added to the environment to take the robot 
out of the local minima 

 

 

Figure 15. Behavior architecture used to control the movements of a robot 

The function of the state machine behavior is to detect when the robot gets stuck in a local 
minima and take it out of it. After it takes the robot out of the local minima the referee 
selects again the potential field behavior. Figure 16 shows the behavior that the robot 
follows to avoid an obstacle. When the robots senses an obstacle in the left or in the right it 
will go backward first and then turn to the right or to the left accordingly, if it finds the 
obstacle in front of it, it goes backward then turns to the left 90 degrees, goes forward and 
then turns to the right and forward again. This simple behavior allows the robot to avoid 
local minima. 
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Figure 16. Robot behavior to take a robot out of a local minimum 
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