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1 INTRODUCTION

SUMMARY
We derive a new Bayesian formulation for the discrete geophysical inverse problem that
can significantly reduce the cost of the computations. The Bayesian approach focuses on
obtaining a probability distribution (the posterior distribution), assimilating three kinds
of information: physical theories (data modelling), observations (data measurements)
and prior information on models. Once this goal is achieved, all inferences can be
obtained from the posterior by computing statistics relative to individual parameters
(e.g. marginal distributions), a daunting computational problem in high dimensions.

Our formulation is developed from the working hypothesis that the local (subsurface)
prior information on model parameters supercedes any additional information from other
parts of the model. Based on this hypothesis, we propose an approximation that permits
a reduction of the dimensionality involved in the calculations via marginalization of
the probability distributions. The marginalization facilitates the tasks of incorporating
diverse prior information and conducting inferences on individual parameters, because
the final result is a collection of 1-D posterior distributions. Parameters are considered
individually, one at a time. The approximation involves throwing away, at each step,
cross-moment information of order higher than two, while preserving all marginal
information about the parameter being estimated. The main advantage of the method
is allowing for systematic integration of prior information while maintaining practical
feasibility. This is achieved by combining (1) probability density estimation methods
to derive marginal prior distributions from available local information, and (2) the
use of multidimensional Gaussian distributions, which can be marginalized in closed
form.

Using a six-parameter problem, we illustrate how the proposed methodology works.
In the example, the marginal prior distributions are derived from the application of the
principle of maximum entropy, which allows one to solve the entire problem analytically.
Both random and modelling errors are considered. The uncertainty measure for
estimated parameters is provided by 95 per cent probability intervals calculated from
the marginal posterior distributions.

Key words: Bayesian inversion, local prior probabilities, marginalization.

infer a function from a finite number of data. In practice, the
infinite-dimensional earth models are often approximated

In geophysical inference the goal is to combine information
from physical theories and experiments in order to draw con-
clusions about a given Earth property (for example, density,
conductivity, seismic velocity or the shape of a geological
body). The first difficulty that has to be addressed comes
from the fact that these properties of the Earth are described
by functions, whereas the result of any real measurement can
only be a finite number of data. In general, it is impossible to
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by finite-dimensional projections, so that an earth model is
described by a finite number of parameters. Further, geo-
physical data are usually contaminated by noise, both random
(not deterministically reproducible) and systematic (unmodelled
physics). Whether the noise is truly random or simply infor-
mation we choose not to fit, the net result is that data fitting—
the procedure by which physical theories are linked with experi-
ment—is only performed up to some tolerance. No matter how
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many parameters are used, if there is a single model that fits
the data, there will be an infinite number of them, since model
parameters are continuous variables.

The inference problem is often replaced by an optimization
problem; for example, find the model that ‘best’ fits the data in
a least-squares sense. However, as the optimization problem is
likely to be ill-posed, these calculations generally require some
sort of regularization. For any sufficiently rich parametrization
of the subsurface, both reasonable and unreasonable models
will fit the data. Therefore, some sort of prior information
is essential to narrow the range of inferences, for example,
to rule out models with negative densities. This information
can be either deterministic (density is positive) or probabilistic
(we may have a histogram of previous measurements of a
property). In this paper, we will adopt the Bayesian strategy
and treat all prior information probabilistically. (However,
see Scales & Sneider 1997 for a discussion of both sides of
this issue.) The term Bayesian is used here in a broad sense to
describe any method that employs model-based probability
theory as a method of inference (e.g. Tarantola 1987; Jaynes
1994; Backus 1988a; Gouveia & Scales 1998). This is in contrast
to frequentist methods in which probabilities enter via the data
alone (e.g. Parker 1975; Backus 1989; Stark 1992a,b).

In principle, the issues of integration of complex prior
information and uncertainty analysis can be handled in the
Bayesian framework. The Bayesian approach begins with
the specification of probability distributions that encapsulate the
prior information (the prior distribution) and the information
from data fit (the likelihood function). Once these are available,
all inferences can be drawn from their normalized product,
which is the posterior distribution. Thus, performing integration
of prior information and uncertainty analysis depends essentially
on one’s ability to handle these probability distributions, never
a trivial task for high-dimensional problems. The problems
with high dimensions are twofold. The first consists of coming
up with high-dimensional probabilities that incorporate the
available information without overspecifying that information.
The second is that even if we manage to conservatively build all
required probabilities, extracting information about the para-
meters from the posterior can be time consuming, since this
involves integration or sampling in high dimensions (see e.g.
Press et al. 1992, Section 4.6, and Tierney 1994), and the function
we are sampling is often expensive to compute and can only
be evaluated pointwise. While the latter problem (sampling)
is largely computational, the former (assigning probabilities)
involves the fundamental aspects of the probabilistic formulation
of the inverse problem.

The very existence of probability distributions over model
spaces can be questioned (see e.g. Parker 1994 Section 4.08).
Even if one accepts prior probabilities on models, translating
available prior information into probability assignments has
been the subject of research since the time of Bernoulli
(Jeffreys 1939; Jaynes 1957, 1968, 1978; Backus 1988b, 1996;
Scott 1992; Scales 1996; Gouveia et al. 1996). Jaynes (1968)
gives extensive discussions on objective ways of assigning prior
probabilities, pointing out that more general principles are
still needed. The main rule used by Bayesians for objectively
assigning probabilities, which is maximum entropy (Jaynes
1957; Gouveia et al. 1996), cannot handle some types of prior
information such as non-linear constraints on models. Part of
these remarks is related to the old debate involving frequentist
and Bayesian interpretations of probabilities. It is not our

intention to contribute to this debate, but the interested reader
may refer to Jaynes (1994) for an extensive discussion and list of
references. This paper is mainly concerned with the develop-
ment of the Bayesian approach for cases where the main goal is
to make inferences about finite-dimensional subsets of earth
models and diverse prior information from observations is
available. [Good examples of inference in infinite-dimensional
spaces can be found in Backus (1989), Fitzpatrick (1991), Stark
(1992a) and Parker (1994).]

The developments here are centred on inferences for individual
parameters, because results in high dimensions are difficult to
interpret. Previous geophysical applications of Bayesian infer-
ence have usually taken the multidimensional approach. Most
commonly, parametric statistical models, usually Gaussian,
are employed. In this way, the work reduces to that of finding
the corresponding parameters of the statistical model, exploring
connections between inference and optimization. For example,
the Gaussian distribution is described entirely by the mean and
covariance, both of which can be estimated using standard
least-squares methods (Tarantola 1987; Duijndam 1988a,b;
Gouveia & Scales 1998). One group of published works takes
the Bayesian approach to derive maximum a posteriori (MAP)
estimators; some examples are given by Richard et al. (1984),
Yabuki & Matsu’ura (1992) and Sacchi & Ulrych (1995). A
more general Bayesian strategy would be to avoid parametric
assumptions in the construction of priors. The issue then is
how to extract marginal distributions from the posterior; this is
discussed by Mosegaard & Tarantola (1995) and Tierney (1994).
In the most general case, Monte Carlo sampling methods must
be employed, since reliable estimation of statistics requires con-
vergence in probability of the Markov chain used. For a modern
comparative review of the convergence properties of Markov
chain Monte Carlo methods, see Cowles & Carlin (1996). The
application of Monte Carlo integration methods in geophysics
is limited to small problems (see e.g. Tarits ez al. 1994).

This work addresses issues of both building prior probabilities
on models and computing posterior marginal distributions
in the same way: by reducing the dimensionality involved in
Bayesian calculations. To do this, we adopt a Gaussian model
for the likelihood function and divide the prior distribution
into two parts: the marginal prior distribution for one specific
parameter and a normal approximation to the joint distri-
bution for all other parameters. Then, by marginalization of
normal distributions, the multidimensional problem can be
replaced by a sequence of 1-D problems. Each time, a different
parameter is kept in the problem and the rest are eliminated.

Our theoretical study begins in the next section with the
derivation of our modified Bayesian formulation. This modi-
fication involves making one approximation, which is discussed
in detail in Section 3. To conclude, we present a simple analytical
gravity example and discuss the results.

2 THE LOCAL BAYESIAN APPROACH

Consider the problem of making inferences about a discrete
set of Earth parameters me.# c #™ from experimental data
de Z2<#", a physical theory and prior information. The
physical theory yields a mathematical operator g used for
predicting observed data according to d =g(m)+n, where n is
the sum of observational and theoretical errors. Prior infor-
mation, generically represented by .7, is all information about
m obtained independently of the data.
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The main goal in the Bayesian approach is to obtain the
posterior distribution, which is the joint probability distri-
bution for the parameters given all available information:
experimental and theoretical data and prior information. The
posterior is, by application of Bayes’ theorem, the normalized
product of the prior distribution and the likelihood function,
which carry, respectively, the prior information and infor-
mation from the data fitting (both observed and modelled
data). We write the posterior as

pm|d, 7)oc s(m|.7) [(m|d), (M

where s and / are, respectively, the prior and the likelihood
function (see e.g. Box & Tiao 1973 for a detailed description of
the Bayesian formulation).

As all functions in eq. (1) have the same dimensionality of
the parameter vector, which is usually high in most geo-
physical applications, we are interested in alternative Bayesian
formulations to avoid solving the full multivariate problem.
In particular, we want to avoid having to build the multi-
dimensional prior distribution. Instead, we want the solution
to incorporate all prior information .# processed into marginal
(local) prior distributions for single parameters, using methods
such as non-parametric geostatistics. The problem is how to
incorporate the marginals in the full formulation, eq. (1). One
way is to seek the solution one parameter at a time. To carry
out this approach, the first step is to divide the parameter
vector m into two parts, m; and my, i.e.

2]
my

where m; e #' and mye . #' =M1,

Next, it is necessary to eliminate the parameters m, from the
problem to have a solution expressed only in terms of m;. We
can then construct an iterative scheme with a different para-
meter serving as m; at each iteration until all parameters have
been estimated. This can be done by treating m, as nuisance
parameters*. If we carry this idea to the general Bayesian
formulation, we can rewrite eq. (1) as

pmy, my |d, #) oc t(my | F)u(my |my, S)I(m, my |d, .7), (3)

where #(m;|.#) is the marginal prior distribution and
t(my | H)u(my |my, #)=s(m;, my | .#). If the marginal prior
distribution can be constructed using local regression methods
(e.g. parametric and non-parametric geostatistics), the main
task is to determine a computing scheme for the posterior
distribution for the parameter m;. In the nuisance parameter
approach, the standard procedure is to eliminate parameters m,
by marginalization, which we discuss next.

2.1 Eliminating parameters m,

Eliminating parameters m, involves finding a marginal
distribution for m; from the posterior, which can be represented
by

w(m |d, #)= [ pmy, my |d, #)dm,. 4)

*Term usually employed in Bayesian inference to denote parameters
one is obligated to infer, but has no immediate interest in.
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Applying this idea to eq. (3), we obtain
w(m, |d, J)=xt(m; | F)

XJ u(mz\ml,f)l(ml,mﬂd, f)dmz, (5)
M

where x is the normalizing constant providing integration
of w to unity. In the integrand of this equation, we have the
likelihood function / and the prior distribution u for m,. The
latter is an (M — 1)-dimensional distribution, which means that
we still need to handle integration in a high-dimensional space.
The ability to overcome this difficulty will depend on the nature
of the data modelling operator and the functions u and /. In
dealing with function u, consider that, in each step of this
iterative approach, we are only interested in making inferences
about my. It is, then, intuitive to expect that we may discard
some prior information about the parameters m,, as long as
sufficient information about m; is introduced through the
marginal prior distribution 7. Following this idea, the prior
information can be divided into two parts: one part that defines
a normal distribution (i.e. mean and covariance information)
and another part that complements this information (i.e.
higher-order moment information) in such a way that

I=In+IcC. (6)

That is, the total information () equals the logical sum
of normal information (#n) and its complement (4¢).
Furthermore, we may assume that for parameters my, only the
information .y is used in each step. We can then write

u(my [my, J) > u'(my [my, SN) (7
and
S(my, m; |.7x)
W(my | my, SN)=——"——=. 8
N TCNEN ®
Eq. (8) can be substituted into eq. (5) to yield
t(m1 ‘])
wmy |d, $) =k ———
(m |d, ) Zm 7%

) J//’ S(my, my | /N) [(my, my [d, S)dm; . (9)

The integral in the above equation is still analogous to the
likelihood function for the 1-D posterior w because it is a term
that carries information from the observed and modelled data.
However, it is possible to see that this integral also carries
prior information related to moments up to second order
(i.e. mean and covariance) that is contained in f. Because of
this, we define an extended likelihood function, denoted by /.
and given by

Ly |4, 7)= j F(my, my | #x) lmy, my | d, #)dms. (10)
M

With this definition, eq. (9) can be rewritten as

H(my |.%)
g(my | IN)

This is now a 1-D version of Bayes’ theorem for m;, which can
be handled in a straightforward way if we have the extended
likelihood in closed form. All steps leading to eq.(11) are
summarized in Fig. 1. We next consider the case where / is
also Gaussian and the forward model is linear (i.e. d=Gm+n).

w(m, |d, #)=x l(m; |d, £). (1)
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posterior oc prior x likelihood
(m) (m)

(m)
N~

t(myp)
oc X f(my,my) X [(mj,mj)

q(my)

Jdm,

1
posterior  prior extended
ratio likelihood

Figure 1. Schematic representation of the local Bayesian inversion.
At the top level is the original multidimensional Bayesian problem
involving functions of the full vector of parameters m. At the inter-
mediate level the prior is approximated by the product of three
functions ¢, 1/¢q and f, where f and ¢ are normal distributions and # is
the marginal prior distribution for parameter m;. Then, for a proper
choice of the likelihood function / the parameters m; can be integrated
out of the problem, leaving a 1-D version of the Bayesian theorem.

This implies that the extended likelihood is also Gaussian. A
detailed derivation of the expressions ¢ and /. can be found in
Appendix A. Below we just present the results.

To represent solutions for the whole set of parameters,
it is convenient to abandon the vector notation to represent

parameters as my;, j=1, ..., M, and the marginal posterior
distribution for each parameter as
ti(m;|.#)
wim; |d, ) =x L2 [,.(m; |d, .£), (12)
J J | qj(mj ‘ ]N) I\ |
where
1 1 2
4my | IN) = — = XD | — 35— =ty | (13)
napriorj prior j
and
1
lej(mj|d, J)= T
\/ 2TCO—Gaussj
1 >
X eXp|— 202 (mjfluGaussj) . (14)
Gauss j

Eq.(14) corresponds to the posterior marginal distribution
derived from the familiar Gaussian Bayesian formulation (see
e.g. Tarantola 1987). This involves elements { iy, ;} from the
prior estimates for the parameter vector and the corresponding
prior variances {ogrior ;1 Means and variances resulting from
the Gaussian problem are represented by fig,yss; and 02 s j,
respectively.

3 DISCUSSION

The main goal of this section is to discuss the nature and con-
sequences of using the approximation given by eq. (7) based on
three different perspectives.

We first consider an expansion of the general prior distri-
bution u for parameters m; (see eq.3) in terms of normal
prior information £y and its complementary information ¢
(Appendix B). This expansion shows that the terms that carry
information about cross-correlations of order higher than

two for the parameters have been eliminated by the approxi-
mation (eq.7). However, if the marginal prior distributions ¢
(see eq.12) are well constructed (that is, truly represent the
state of knowledge about each parameter given by the prior
information .#), marginal higher-order moment information is
still being incorporated through z. Consequently, neglected
cross-moment information should not influence the results
significantly. The cross-moment information is necessary
when lacking sufficient information on individual parameters,
since it helps the determination of one parameter upon
knowledge of others. In fact, when the true marginal prior
distributions are known, it is possible to neglect even second-
order cross-correlations, which may be desirable to facilitate
the marginalization procedure when using a non-Gaussian
likelihood model. The cross-correlations become important in
stabilizing the computations for the estimated vector of para-
meters. Cross-correlations are also important whenever it is
necessary to stabilize the computations, as is often the case for
Gaussian likelihood functions written in a data-translated
form (eq. AS).

Another way to look at the approximation is to use the
maximum-entropy distribution and the ratio ¢/¢. For this,
consider a parameter m, without any particular subscript. The
maximum-entropy distribution for m, for the case of a constant
reference and constraints given by moment information up to
Kth order (see e.g. Tarantola 1987, prob. 1.15, Jaynes 1994 or
Gouveia et al. 1996) can be written as

K
t(m|.7) oc exp {— > /lkmk] , 15)
k=1

where the /; are Lagrange multipliers associated with the
maximum-entropy problem. Using eq.(15) for ¢ and eq. (13)
for g, the ratio is given by

t(m ‘ f) Hprior
q(m|fN)OceXp{ </11+02 m

prior

K
- (;»2— 2021 )mz— > /lkmk} . (16)

prior k=3

When the total information .# equals the normal part .y (i.e.
# ¢ vanishes), the corresponding maximum-entropy problem is
constrained by the first two moments of the unknown distri-
bution. This leads to a normal distribution for the marginal
prior ¢, as discussed in Gouveia et al. (1998). More precisely,
the Lagrange multipliers 4; =0, for k=3, 4, ..., and

)4 = —— and ;,2

B 1
a2 T 2427

where u and ¢ are the mean and the variance input to the
maximum-entropy problem (see Tarantola 1987 problem 1.15).
Of course, when constructing the maximum-entropy distri-
bution ¢, for consistency, we need = pyio, and o*=a7 ;. For
this case, the ratio ¢/¢ is unity, which means that ¢ is actually
the normal part of z. Thus, all that is left in eq.(12) is the
extended likelihood function, which is simply a multinormal
Bayesian inversion procedure. This result can be summarized
by saying that when all we know are the first- and second-order
moments, the proposed methodology reduces to the more
traditional Gaussian Bayesian formula (see e.g. Tarantola 1987).
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Finally, consider a general prior distribution s in eq. (1),
which is also written as

s(my, mp | F)=1t(m; | S) u(my | my, 5). 17
By using the approximation given by eq.(7), the prior s
becomes

f(m2am1 |¢N) }

smy, my | )~ t(m | S
(my, my | )= t(my |.7) 1 [ )

(18)

If we apply marginalization with respect to parameters m;
to both sides of eq. (18), we obtain

J s(my, my | #)dmy =t(m, | .¥), (19)
because

S(my, my | £N)

2 " Y dmy=1.

[ g [ )

This indicates that the approximation (7) preserves the
marginal prior for parameter m;.

These properties of the local Bayesian method make it
possible to obtain reliable confidence intervals efficiently for
individual parameters. However, there are some limitations.
An evident limitation is that the marginalization sacrifices
the cross-moment information, which is necessary to construct
joint confidence regions for parameters. This means that the
local approach is not recommended for such studies. Another
important issue is the well-known fact that Gaussian likeli-
hoods are sensitive to outliers. The use of more robust likelihood
functions such as Laplace or Cauchy distributions would
make it difficult to perform the marginalization step, because
the resulting extended likelihood function would be non-
Gaussian. The same complication arises when the forward
model is non-linear, even in the Gaussian case. For these cases,
marginalization would require methods for multidimensional
integration that we have been trying to avoid. One attractive
alternative is the application of asymptotic methods of approxi-
mation (Tierney et al. 1989; DiCiccio et al. 1993; Shun &
McCullagh 1995), which to the authors’ knowledge have never
been applied to Bayesian geophysical inverse problems. To
overcome modest non-linearity of the data modelling operator,
one can adopt standard procedures of non-linear optimization
and linearize the function around the solution point.

4 ANALYTICAL EXAMPLES

Consider the problem of density inversion from gravity data,
where the sources are six rectangular cells of constant density
contrasts with respect to some constant background value
(Fig. 2). The true density contrasts for the cells are derived by
imposing an exponential correlation function on a sequence of
uncorrelated Gaussian pseudo-random numbers. From this
model, the synthetic gravity field is generated using the formula
for the gravity of prismatic bodies (see e.g. Telford et al. 1976,
p- 74). The synthetic gravity data are corrupted with two
different levels of uncorrelated Gaussian noise, respectively
1 and 10 per cent of the maximum synthetic gravity value,
modelling errors and a combination of both random and
modelling errors (dashed curves of Fig.3). The modelling
errors are generated from an additional source (the grey cell in
Fig.2) not incorporated in the interpretative model (Fig. 4).
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Figure 2. Simple earth model consisting of six rectangular cells,
numbered 1-6, with centre coordinates (x, z), width d and height / as
indicated in the figure. The problem is to estimate the density contrast
in each cell from the gravity field and prior information. The grey box
above the cells is used to simulate modelling errors.

For the prior information, we use the true correlation and two
well logs measuring density contrasts through the cells (Fig. 4).
The well logs are built from pseudo-random numbers from six
different probability density distributions, so that each cell
density contrast has its own underlying process (solid line plots
in Fig.5). All theoretical probability models used to generate
the logs are centred on the true density contrast and truncated
to the interval [—7, 7]. This introduces an error that causes
sample means taken from the logs to deviate from the true
contrasts (Table 1).

Table 1. Comparison between the true value set for the density con-
trast in each cell and values derived from the truncated distributions
and from the samples drawn from these distributions.

Mean values
True values Truncated means Sample means

1 1.50634 1.50237 1.51462
2 0.26004 0.26004 0.25899
3 2.05991 2.04381 2.03918
4 1.79565 1.79561 1.82460
5 1.28441 1.24882 1.16753
6 0.17437 0.14920 0.21767
2.5 ] 25
3 . @1 =
S (O]
£ € 15
= 15 = 4
£ 1 £ 0.5
s s 0.5
© ©
= 05 = 0
° © o5l
0 10 20 30 40 0 10 20 30 40
Observations Observations
2.5
25
= ©1i =
8 2 3 2
~E' 1.5 é 15
Z 2 1
E ! E 0.5 4
o 05 S
0 10 20 30 40 0 10 20 30 40

Observations Observations

Figure 3. Estimated gravity curve (solid) from the synthetic gravity
(dashed) contaminated with two levels of random noise (a and b),
modelling errors (c) and modelling and random errors combined (d).
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. d

Figure 4. Interpretative model using the inversion and pseudo-
random density logs generated from different distributions (Fig. 5) to
represent prior information about the density contrast in each cell.

The implementation of the methodology can be summarized
in three main steps: analysis of prior information for the
determination of the local prior distributions; least-squares
inversion (in connection with the determination of the extended
likelihood); and Bayesian update, which combines the results
from the two previous steps. Each step is discussed in detail
below.

4.1 Prior probabilities

The local prior probabilities, t;, are derived from application
of the maximum-entropy principle using the moment infor-
mation obtained from the logs of Fig.4. Let o;; be the ith log

0.6 2
0.5 25
N 0.4 - 2
S o3 o158
0.2 1
0.1 / 0.5
0 4“/ 0
6 4 -2 0 2 4 6 6 4 -2 0 2 4 6
Density (g/cm®) Density (g/cm?®)
0.3 3 4:
0.25 04
e 0.2 .03
£0.15 €02
0.1
0.05 J/ 0.1
0 0
6 4 -2 0 2 4 6 6 -4 2 0 2 4 6
Density (g/cm’) Density (g/cm’)
5 0.4
0.6 0.3
S o4 £ 02
0.2 0.1
ol
6 4 2 0 2 4 6 6 4 2 0 2 4 6
Density (g/cm’) Density (g/cm®)

Figure 5. Probability density functions (pdfs) selected from theoretical
models to simulate the prior information corresponding to the density
contrast in each cell (solid lines). The models in each cell corresponding
to the numbers 1 to 6 are 1 Laplace, 2 beta, 3 logistic, 4 Raleigh,
5 exponential and 6 Cauchy. The distributions shown in dashed lines
are the approximations to the theoretical distributions computed using
maximum entropy with sample moments up to fourth order and a
constant reference.

sample in the jth cell. The prior information is thus defined
as J;={a;:a;=(oy, ..., o)}, where a; is the vector of log
samples corresponding to the jth cell and N=1000 in this
example. Therefore, the required moments can be found by
using just sample averages given by

1 N
= D %is (20)

i=1

where k is the order of the average value <a). The subscript
notation for .7 reflects the fact that by construction each set of
samples corresponding to a cell of the model was generated
independently of the others. This greatly simplifies the esti-
mation of the moments, as can be seen from eq. (20). In real
applications, methods for conditional moment estimation
such as parametric geostatistics have to be employed. This will
provide the local uncertainty given the spatial variability of the
medium.

The computed sample moments up to fourth order and a
constant reference are used to determine the Lagrange multi-
pliers of the maximum-entropy distribution following Mead
& Papanicolau (1984). In particular, the implementation for
this example uses the Newton method with a line search. The
iterations of the algorithm are stopped when the moments of
the resulting maximum-entropy distribution agree with the
input sample moments to the order of 10~° or better. For this
example, it usually takes six or seven iterations for conver-
gence. The final approximations of the theoretical distributions
are shown by dashed lines in Fig.5. The overall agreement
between the estimated and true distributions is good, except for
the Cauchy distribution (number 6 in Fig. 5).

The maximum-entropy distribution (#;) is normalized by
the corresponding Gaussian marginal prior distribution (g;)
according to eq. (12). The logic behind this procedure is that it
avoids incorporating the same information into the problem
twice. ¢; is given by eq.(13), which is easily constructed by
making

)upriorj=<<x>lj (21)
and
Opsior; =202y — <01 j=1, ..., 6. (22)

In real Earth applications, one possible alternative to
using maximum-entropy constrained by conditional moment
information is the application of non-parametric geostatistics.
These methods can take advantage of the much smaller length
scales usually found in the subsurface (local) data in com-
parison with the surface data, thus allowing for inferences
about one parameter independently of the others. In this way,
we achieve general treatment of the prior information, but the
computational cost is reduced by not having to form the full
multidimensional prior distribution. The use of both non-
parametric geostatistics and maximum-entropy methods is
discussed in detail by Moraes (1996).

4.2 Least squares (extended likelihood)

The extended likelihood corresponds to marginals resulting
from the well-known Bayesian inversion using normal variables,
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which is extensively discussed in the literature (e.g. Tarantola
1987). Therefore, the parameters of the extended likelihood
(eq.14) can be estimated using conventional stochastic least
squares, which requires myjor, Cry and Cy, the prior vector of
parameters and covariance matrices for parameters and data,
respectively.

Myior is the vector whose elements are prior means
{Mpriorj}> =1, ..., 6. Cpy is built by combining the infor-
mation from the correlation matrix of the parameters, which is
assumed known, and the first two sample moments. Thus, if the
normalized correlations for parameters i and j are represented
by r;;, the covariance matrix is given by

0’%1’11 crc 0106116
Cn= : : . (23)

2
0601761 " 0666

The data error covariance matrix Cq can be defined as either
the random noise covariance C,, the covariance for modelling
error Ci, or by C,+C, if both types of errors are present
(see e.g. Tarantola 1987, p. 68). Both are computed as the
power of the noise vector n, which can be written as

C,=diag(n’) and C,=G,Ap,Ap'GS

nGn s 24
where Ap, and G, are, respectively, the density contrast and
the Green’s function for all the effects not accounted for in the
parametrization of the problem, the grey box of Fig.2 in this
case. The above quantities allow for the computation of both
the estimated vector of parameters mgayss and the covariance
C,, by least squares (see eq. A6 in Appendix A). It is important
to note that the least squares need to be solved only once. To
determine the extended likelihood at each iteration, pig,ygs ; and
aéauss ; are given, respectively, by the jth elements of mgayss
and the diagonal of C,.

4.3 Bayesian update

This last step just involves computing the product between the
extended likelihood function and the prior ratio #;/¢g; according
to eq.(12). This can be better illustrated by examining Fig. 6,
which shows the prior ratio and the extended likelihood for all
cells. The extended likelihood (solid line) is Gaussian and the
prior ratio (dashed line) has an unusual shape imposed by
the Gaussian normalization applied to the maximum-entropy
distribution. This multiplication process can be interpreted
as a correction to the shape of the extended likelihood to
account for the marginal moments of order higher than two.
As a result, the final posterior distribution is non-Gaussian. In
addition, because all functions involved in this example are
known analytically, it is possible to find the posterior distri-
bution in closed form, combining eqs (12), (13), (14) and (15)
(after determination of the Lagrange multipliers).

The first series of tests investigates the behaviour of the
methodology applied to data contaminated by different levels
of random noise (Figs 3a and b). The marginal posteriors,
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Figure 6. The two probability density functions (pdfs) that com-
prise the 1-D Bayes theorem of the proposed methodology. They are
the prior ratio, which is the maximum-entropy prior normalized by the
Gaussian prior, and the extended likelihood, which is equivalent to
a Gaussian posterior. The density axis corresponds to values for
the density contrast of the corresponding cell indicated by the numbers
1-6.

considering the 10 per cent noise-level problem, are given by
wi(m)=1.510"" exp (29.6 m; —10.3 ]

—0.12n13 +0.02m7), (25)
wa(my) =0.1exp (42.5my — 144.3 m3

+131.8m3—77.3m3), (26)
w3(m3)=2.0 10~ *exp (6.8 m3 — 1.4m3

—0.04m3 +0.006m3), @7
wa(my)=1.210""exp (17.7my— 5.4}

+0.3m3 —0.03m3), (28)
ws(ms)=0.5exp (1.4 ms— 1.3 m?

+0.07 m3 —0.006 m?) (29)
and
we(m6) = 0.8 exp (0.8 mg — 2.6 m?

—0.002 m} 40.005 m) (30)

where all distributions are conditioned on d and .#. These
distributions are shown in Fig.7. Table 2 presents the result-
ing means and modes of the posteriors in comparison with
the mean of the normal extended likelihood (which is also the
mode in this case).
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Figure 7. Inversion results depicted by the posterior marginal for
each parameter. The 95 per cent interquantile regions are represented
by the shaded areas and the true values for the parameter are given by
the solid circles. This example uses 10 per cent of the maximum gravity
value as the standard deviation for the noise. The density axis corre-
sponds to values for the density contrast of the corresponding cell
indicated by the numbers 1-6.

At very low noise levels (1 per cent), there is a general
agreement between the three estimates. As we increase the
noise level to 10 per cent of the maximum gravity value,
the mean and the mode of the posterior distribution start to
move apart, but the mean values for the posterior and for the
extended likelihood are still very close. Additional examples
(not shown) indicate that this behaviour continues for pro-
gressively higher noise conditions up to a point where the mode
differs significantly from the mean. Overall, the two mean
values are equivalent, with only a marginal advantage for the
posterior mean in the case of extreme noise (at 80 per cent
noise level or higher). Cases where the mean for the posterior
has moved away from the true parameter in comparison with
the mean for the extended likelihood are indicated by bold
numbers in Table 2. Table 3 shows a comparison amongst the

Table 2. Means and modes of the marginal posterior distributions
and mg,,ss (the least-squares solution). Bold numbers indicate that
the posterior mean moved away from the true values in comparison
with MGayss-

Parameter estimates
1% noise 10% noise
True Mean Mode mgGu,s Mean Mode mgGayss

1.506 1.491 1491 1491 1410 1410 1.408
0.260 0.291 0.291 0.293 0.197 0.189 0.210
2.060 2.163 2.163 2166 2316 2310 2.346
1.796 1.659 1.659 1.663 1912 1906 1.947
1284 1135 1.135 1.163 0.784 0.549 0.966
0.174 0303 0.303 0.304 0.160 0.160 0.161

AN R W —

Table 3. Comparison between the variances computed from the prior,
the extended likelihood (Gaussian) and the posterior distributions at
different noise levels. Bold numbers indicate posterior variances that
are greater than their Gaussian counterparts.

Variances
1% noise 10% noise
Prior  Gaussian Posterior Gaussian Posterior

1 1.19684 0.00168  0.00168  0.04814  0.04727
2 0.02227 0.00061  0.00062  0.00629  0.00567
3204926 0.03321  0.03302  0.35629  0.33958
4 0.81267 0.00947  0.00947  0.11950  0.12284
5 1.22102  0.03151  0.03214  0.34828  0.25422
6 3.21465 0.01127  0.01124  0.20426  0.19390

variances computed from the prior, the extended likelihood
(Gaussian) and the posterior distributions. Overall, there is a
marginal reduction in the posterior variances when compared
with the Gaussian variances. However, on a few occasions,
shown as bold numbers in Table 3, the posterior variances
increase. These increases tend to be associated with the
asymmetrical prior distributions.

Fig.7 also shows shaded areas representing 95 per cent
probability regions. These areas also define on the horizontal
axis interquantile intervals, which can be obtained independently
of any estimates for the density contrasts. Density estimates,
however, are still necessary to compute the estimated gravity
field used in the fitting procedure, which is shown in Fig. 3. The
mean of each posterior distribution is used to compute the
synthetic gravity field.

Another useful type of analysis is to perform several runs
of the inversion scheme for different noise values with the
same standard deviation. Table 4 shows the results for 3 runs
using the 10 per cent noise level. The overall behaviour of the
solutions is basically the same as discussed above, denoting
that the inversion is stable.

The next series of tests considers modelling errors. In the
case where only the modelling errors are considered, the data
covariance is C; and the inversion results are shown in Table 5.
The results show that when the correct error information is
introduced, the estimated parameters match the true ones
almost exactly. When random and modelling errors are com-
bined, the data covariance becomes the sum C;+C,. The
results for this case (Table 5) are comparable with the other
tests for random noise only. These tests indicate that the right
covariance information completely eliminates the effect of
unmodelled sources.

Table 4. Comparison between the Gaussian means and the posterior
means in several inversion runs considering different noise realizations
with the same variance. Bold numbers indicate that the posterior mean
(second column) moved away from the true values in comparison with
MGgyss (first column).

Parameter estimates
First run Second run Third run
MGyuss Mean mgGuss Mean mgu,s Mean

1 1.301 1.305 1.523 1.521 1.464 1.464
2 0.211 0198 0201 0.191 0242 0225
3 2.408 2372 2138 2115 2313 2.288
4 1.691 1.645 1366 1.323 1.666 1.617
5
6

1.598 1.389 1.293 1.088 0.929 0.758
—0.160 —0.143 0.499 0473 0416 0.404
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Table 5. Results for inversion considering modelling errors only and a
combination of modelling and random errors (10 per cent noise level).

Modelling errors

Modelling Modelling + Random

True Mean Variance Mean Variance
1 1.506 1.506 10-16 1.527 0.067
2 0.260 0.260 1016 0.206 0.011
3 2.060 2.060 1016 1.513 0.363
4 1.796 1.796 10-16 1.643 0.166
5 1.284 1.284 10— 1.276 0.246
6 0.174 0.174 101 0.639 0.372

5 CONCLUSIONS

Probability densities give a synthetic representation of what
we know about parameters of earth models, providing an
adequate framework to integrate information of diverse origin.
In addition, they can serve many different purposes such as the
estimation of parameters (e.g. mean or mode of the posterior
distribution), uncertainty analysis (e.g. variance and con-
fidence intervals) and simulations (e.g. sampling models from
the posterior). Therefore, it is important to focus attention on
difficulties that have prevented wide application of Bayesian
methods. These difficulties include the specification of the prior
probability and the marginalization of the posterior to extract
information about specific parameters.

The most important contribution of this research is that
it offers an alternative strategy for treating complex multi-
dimensional problems by reducing the dimensionality of the
problem before the final solution is found. When this is done,
the main difficulties in Bayesian inference are automatically
addressed. To construct prior distributions, we make available
methods of probability density estimation that are awkward
in many dimensions such as maximum-entropy and non-
parametric density estimation methods. These methods allow
one to process subsurface data into marginal distributions,
which can be directly incorporated into the calculations via
the proposed formulation. Local quantities are a safety device
against non-homogeneity in the medium. Of course, the
permissible degree of locality is a function of the density of
information in a particular region. When the information is
sparse, we can expect that local methods will perform like
global ones. In this sense, even when all distributions in the
proposed methodology are Gaussian, it is important to deter-
mine the mean vector and the covariance matrix based on the
local information. In addition, the other difficulty of extracting
information from the posterior practically disappears because
this methodology produces posterior distributions that are
already 1-D.

As discussed in Section 3, the proposed methodology
is suitable for inferences about individual parameters and is
not recommended for high-dimensional problems such as the
construction of joint confidence regions. Other limitations
arise in the cases of non-Gaussian likelihoods and fully non-
linear forward models, where marginalization cannot be per-
formed in closed form. This is one topic where new research
can bring significant advances to the methodology.

Finally, a small synthetic problem demonstrates the
applicability of the method. In particular, it shows that local
probabilities are an efficient way to represent prior knowledge
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(or uncertainty) about parameters. Using moments of the
first four orders in a maximum-entropy probability density,
a variety of probability densities are well approximated. The
wider applicability of the methodology is currently being
investigated with real data examples.
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APPENDIX A: MARGINALIZATION OF
GAUSSIAN DISTRIBUTIONS

The Gaussian approximation for the prior distribution for
parameters m, defined in eq. (8) requires that we find ¢, which
is the marginal of f. Let f ~ N(mpor, Crn) be given by

fm|s)=Qn) M2 Cp |2

1 _
X €Xp |:7 z (m _mprior)TCm 1(m - mprior) . (A1)

The covariance matrix can be partitioned as

lel lez
Cm21 CmZZ
where Cy,,, CLz:CmZI and Cp,, are 1 x1, (M—1)x1 and

(M —1) x (M — 1) matrices, respectively. With these definitions,
g can be found by integration of all parameters but m;.

For normal distributions the result is also normal (see e.g.
Theorem 10.6.1 of Graybill 1983) and can be written as

gy |.93)=2m) " | Coy |12
“ 1 Tl .
CXp| — 2 (ml — Mprior 1) lel(ml — Mprior 1) .

(A3)

Since we are defining m; as a 1-D vector, we may drop the

vector notation and introduce the prior variances agrior defined

as the diagonal elements of C,,. This yields eq. (13).

We now look at the extended likelihood function for
the Gaussian case. Taking the definition given in eq. (10) and
considering linear forward modelling, we can write

le(my |d, .7x)=2m) VM2 Cq |7 Cp |
1
X J exp{ —5 [(d—Gm)"'C;'(d—Gm)
M

+ (m - mprior)TCI; : (m - mprior)] } dmZ . (A4)

Representing eq. (A4) by I, we rewrite it in a data-translated
form to obtain

I=Qm) N M2y |72 C |2 explS(mGauss)]
1 _
X J exp{— 5 [(m_mGauss)TCp l(m_mGauss)]}dmZ 5 (AS)
R

where mg,yss 1S the estimated vector of parameters given by
conventional least squares,

MGauss = Mprior + CpG' C; ' (d— Gmyicr) (A6)

with the posterior covariance matrix C,, given by

C,=(G'ci'c+c,H". (A7)

S(mg,uss) 18 the estimated misfit value given by

S(MGauss) = (A~ GMGauss) €y ' (d—GMGaus) (A8)
+ (MGauss — Mprior) ' Con ' (MGauss — Mprior) - (A9)

The next main problem is to evaluate the integral / for
parameters m,. This is facilitated if we suppress all the constant
terms in eq. (AS) to obtain

1
L= J eXP{ ) [(m*mGauss)TCpil(m*mGauss)]}dm2 .
R

(A10)
We now let the inverse of the covariance be given by
R=C,'=G'c;'G+C,'. (Al1)
The above matrices can be partitioned as

Ri1 Ryp
Ry Ry

Cpl 1 CPI 2
CP21 szz

and C, =
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According to theorem 10.6.1 of Graybill (1983),

]2 =(27‘E)7M71/2 ‘ R22 ‘7]/2

1 _
X exp{ - E [(ml —MGauss I)TCle (ml —MGauss 1)]} . (AIZ)

Substituting this result back into eq. (A5), we finally obtain
1=Qm "2 Cq T Cn T

_ 1
X |R22 | 172 eXp l:_ 5 S(mGauss):l

1
X exp{ - i [(ml —MGauss I)Tcglll(ml —IMGauss l)]} . (Al?’)

Evaluating the constant terms, dropping the vector notation
and introducing the Gaussian posterior variances o2, as the
diagonal entries of C, leads to the definition of the extended
likelihood (eq. 14).

The above derivation for the marginal extended likelihood
assumes that the inverse matrix appearing in the expression for
the posterior covariance matrix exists. This is often not the case
in ill-posed problems. For such cases, regularization needs to
be applied and, as result, the marginal extended likelihood will
be approximated. On the other hand, nothing in Bayesian
theory requires that we write the likelihood function in the
data-translated form (that is, no explicit inversion is required).
We may instead expand the argument of the exponential in
eg. (A4) to obtain

le(my |d, x)=2r) VM2 |7 Cp |12

x exp(@"Cy'd+m’, Cp'mpyrior)

prior ~'m

x J exp{ —% m"(G'C;'G+C,")m
M

prior

—2d"C;'G+m], C;')m]}dmz , (A14)
or simply
L(m; |d #x)=p J exp[f % (mTAmbeTm)} dm,. (Al5)
M

The resulting marginal extended likelihood is available in
closed form (see e.g. Gradshteyn & Ryzhik 1980, p. 307) and
can be expressed in the form

1
le(m; |d, SN)=7exp {— 3 (m{Em, _Zmel):| . (Al6)
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where E and f are constant coefficients. Eq. (14) is obtained
by dropping vector notation, completing the squares in the
argument of the exponential and evaluating the normalizing
constant y.

APPENDIX B: NATURE OF THE
APPROXIMATION

We can better understand the nature of the approximation
made in eq. (7), considering the definitions for .#, 4 and Y ¢ in
eq.(6), by fully expanding the conditional probability u
according to

S
P(m2|m1,f)=P(m2\m1,fN+fc)=Si, (B1)

where in general
Sy =P(my, m; | .#N) P(IN)+P(my, my | .I¢),
X P(Sc)—Pmy, my | SN, Jc) P(IN, ) (B2)
and
Sy =P(m, | I\) P(IN)+P(m; | Ic) P(Sc)
—P(my | SN, Ic) P(IN, Jc)- (B3)

However, according to the definition of 4N and .#¢, they are
independent, in which case

S1=P(my, m; | SN) P(SN)+P@my, my | Ic) P(S¢) (B4)
and
Sy =P(m; |.9N) P(IN)+P(my | .Ic) P(Ic). (BS)

In either case

P(IN)+P(Ic)—P(IN, Io)=1 (B6)
or
P(IN)+P(Fo)=1. (B7)

Thus the statement made by eq.(7) becomes clear. It says
that the weight of the information .#y for m; is such that
P(IN)>»>P(Ic)—P(IN, Fc) or P(IN)> P(F¢), depending on
the case. This amounts to having practically no information
about cross-correlations of order higher than two for the
parameters.
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