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LOCAL BEHAVIOR OF SOLUTIONS
OF QUASILINEAR ELLIPTIC EQUATIONS

WITH GENERAL STRUCTURE

J. M. RAKOTOSON AND WILLIAM P. ZIEMER

Abstract. This paper is motivated by the observation that solutions to cer-
tain variational inequalities involving partial differential operators of the form
divA{x, u, Vu) + B(x, u, Vu), where A and B are Borel measurable, are
solutions to the equation divA(x, u, Vu) + B(x, u, Vu) = p for some non-
negative Radon measure p . Among other things, it is shown that if « is a
Holder continuous solution to this equation, then the measure p. satisfies the
growth property p\B(x, r)\ < Mrn~p+£ for all balls B(x, r) in R" . Here
e depends on the Holder exponent of u while p > 1 is given by the struc-
ture of the differential operator. Conversely, if p is assumed to satisfy this
growth condition, then it is shown that u satisfies a Harnack-type inequality,
thus proving that u is locally bounded. Under the additional assumption that
A is strongly monotonie, it is shown that u is Holder continuous.

1. Introduction

In this paper we investigate the behavior of weak solutions of quasilinear
equations of second order in an open set Q c R . The equations are of the
form

(1.1) -di\A(x, u, Vu) + B(x, u, Vu) = T,

where T is a distribution that will be specified below. The case in which T
is a measure will be of special interest to us because this situation arises in the
study of variational inequalities. Indeed, let ip be an obstacle defined on a,
and consider

(1.2) I(v)= f F(x,v, Vv)dx,
Jo.

where F = F(x , n, £,) is an integrand with suitable properties. Let

(1.3) <7=inf/(iz),
v€K

where K is the subset of the Sobolev space W^'p(0) consisting of all v that
agree with a prescribed boundary function 6 on da and v(x) > ip(x) for
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74X J. M. RAKOTOSON AND W. P. ZIEMER

almost all x e Q. If u is the extremal of problem (1.3), then it is well known
that u satisfies an inequality of the form

f OF dF(1.4) /  — (x, u, Vu)-Vcp + —-(x, u, Vu)tpdx>0Jii oc, at]

for all tp eWf 'p(OA) with cp(x) > ip(x) - u(x) for a.e. xefl. This is a special
case of the weak inequality

(1.5) / A(x, u, Vu)- Vtp + B(x, u, Vu)cpdx > 0.
Ja

In particular, (1.4) and (1.5) hold for all nonnegative cp e W0 'P(Q) and thus
define a nonnegative distribution. Consequently, m is a solution of the equation

(1.6) -divA(x, u, Vu) + B(x, u, Vu) = p,

where p is some nonnegative measure. It was shown in [MZ] that if A and B
satisfy the structure (1.7), (1.8), (1.9) below, then the solution of the obstacle
problem is continuous at a point x0 provided that the obstacle satisfies a weak
regularity condition as x0 , a so-called Wiener condition reminiscent of the con-
dition considered in [GZ]. In particular, the results of [MZ] imply that if i// is
Holder continuous, then the solution u is also Holder continuous. Variational
inequalities were also investigated in [RT], and there Holder regularity was es-
tablished by different techniques. In order to gain a better understanding of
such variational inequalities, including questions of differentiability, we begin
an investigation in this paper of equation (1.6). Investigations in problems of
this type were initiated in [LS], where the Laplace operator was considered.

We assume the functions A and B are, respectively, vector- and scalar-
valued Borel functions defined on a x (m, M) x R , -oo < m < M < +oo,
that satisfy the following structure.

For a.e. x e a, Vzy e (m, M), V£ e RN , we have

(1.7) A(x,ri,c;).Ç>u0(x)\Ç\p-vx(x),

where 1 < p < N, u0 is a positive continuous function on Q, and ux e
L^p+\a),With £, >0;

(1.8) \A(x, n, i)| < Cf(x)\i\p-1 + afx)

for c0 e L£(«), c0 > 0, and a0 e LN/{p-l)+£>(a), e2 > 0 ;

(1.9) \B(x,n,Z)\<cx(xmP+ff(x),

where c, e ¿£(Q), c, > 0, and fi0 e LxNJcp+e'(a), e3 > 0. In the sequel, we
will also consider the structure condition

(LIO) \B(x, r¡, 01 <cx(x)\cl\p-X +f0{x),

where c, e L~ (Q), c, > 0, and fi0 € L^'^a), e3 > 0.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS 749

The results of the paper are summarized as follows. In §2 we first treat equa-
tion (1.1) with T e W~x,%(a), qQ > N/(p - 1), and prove weak Harnack
inequalities for subsolutions and supersolutions that are analogous to those es-
tablished in [T] when T = 0. In §3 we focus on equation (1.1) where T is now
assumed to be a nonnegative measure p. We first show (Theorem 3.2) that
if a solution of this equation is locally Holder continuous, then the measure
p must satisfy the growth property p[B(x, r)] < Mr ~P+E for some e > 0
and all balls B(x, r). We then pursue the converse of this result. Under the
assumption that p satisfies p[B(x, r)] < Mr ~P+E for all balls, we show that
solutions u e Wxl0¿p(a) of (1.1) with structure (1.7), (1.8), (1.10) are locally
bounded (Theorem 2.10) and that u e W^iQ) for some q > p (Corollary
2.13). It is also shown that u satisfies a Harnack-type inequality (Theorem
2.14) which bears some resemblance to the classical one for solutions when
p = 0. Under the additional assumption that A is strongly monotonie (see
Definition 3.6) Theorem 3.7 establishes that weak solutions are locally Holder
continuous.

Before beginning with the analysis, we give some examples of ( 1.1 ) that have
been treated in other contexts.

1.1. Example. The following example appears in Aerodynamics and has been
recently treated in [MRS1, MRS2].

1-11)
f}2O   U

dxl
l-M2(u)d2u     1

+
p2(u) dx u

du
dx. + 1 + yM (u)

p2(u)

du
dx; 0,

flcR
The function M (called the mach number) is defined by

M(u) =

and

p(u) =

2      _1_
y+l' 1-(7-1)7(7 + 1;

,     7- 1   21-rUy+l
U(y-i)

where u is the velocity of a fluid crossing Q, p is the density fo this fluid
(see [MRS1, MRS2] for details). Problem (1.11) can be written in the form
of (1.1). The velocity at the boundary is given: u = g on da and satisfies
0 < 6 < g < 1 . It is proved in [MRS1] that there exists at least a solution u in
77 (Q) satisfying 6 < u(x) < 1 a.e. Here, m = 6, M = 1.
1.2. Example.

-div(v(u)\Vu\p~2Vu)
u = 0   onda.

+ (eu-l)\Vu\"+ uf2(x) = T(x)   in a,

Here,

u(u)
1

i + i«r TeLN/p+e(a), feü '(")■

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



750 J. M. RAKOTOSON AND W. P. ZIEMER

It is proved in [R] using the techniques of relative rearrangement that such
equation has a bounded solution, and therefore we can take

m = - essjj sup \u\,        M = essn sup \u\,

"o = Mi\\<M vi") >        ci = Max(n)<M \e"-l\,

and fif(x) = Mfi2(x). All problems considered in [R, RT, MRS1, MRS2, L]
are covered by these assumptions.

1.3. Example. In this example, we consider an unbounded domain: Q = R   .

j_dlv(^|v„rv„)+^ = rW,

I  ueW['p(RN),     TeL°°,     V(u) = -±T-,     a>0.

2. Preliminaries
Throughout, we will adopt the convention of using C as a constant that may

change from line to line in a proof. For p > 1 , we denote by p the conjugate
of p . The integral average is denoted by

-j- udx = \E\     / u(x)dx.

In this section we fix a bounded open set Q, relatively compact in Í2. Choose
numbers q and qx such that

.,,, N (    2Np'    \2. -r <q <q,\-—?    < q, .K      ' P-l ]\PQx+Np'J      Hl

In this section we also consider a distribution T in (1.1) such that

(2.2) Tew~l'q,(ax).

By the assumptions on vx , aQ , fiQ we have

(2.3) T,fifeW~x^(ax),       afeLqfax), uxeL^lP\ax).

Let e0 = ±. Since eQT + f0e W~Uq(ax), there exists / e Lq(ax ; RN) such
that EfT + fif = divfi. We set

Vf = minf0(x),    c0 = essn supc0(x),    c, = essn supc,(x) + 1.
"i

We consider x0 e Q, , and for all r > 0 such that B(x0, 4r) is contained in
Q, , we define

p(r) = rl-N/(p-l)qI(ai)

and

I(ax) = l|7'll^-'-«(n1) + ll/ollz.^(o,) + I^oIIl^"-'^,) + Wu\\\LN/il'-,)(nl)-
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS 751

Define also the function

bfx) = -LF[(f(x) + a0(x)/+ux(x)]   if /(Q,)#0

and
br(x) = 0   ifl(ax) = 0.

By an application of Holder's inequality, observe that there exists a constant c3
such that for all x0ea, and all r > 0 with B(x0, 4r) c ax we have

We now proceed to obtain weak Harnack inequalities for (1.1) with T as
in (2.2) analogous to those obtained in [T] where T = 0. Our techniques are
similar to those in [T], and therefore we will provide only those parts of the
proofs that will be necessary for the development of the remainder of this paper.

2.1. Theorem. Let u e W]o¿p(a) be a nonnegtive, locally bounded subsolution
o/(l.l) with structure (1.7), (1.8), (1.9) and Te W~cl'q°(a), q0>N/(p-l).
Then, for all x0 e a and r > 0 such that B(x0, 4r) c Í2, C Í2, and for all
Pf > p - 1, we have

sup  u < C(r~N/p°\\u\\LP0{B{    2r)) + p(r)).
B{x0 , r)

The constant C depends only on the structure, the bound on u, and the fixed
set ax.

2.2. Theorem. Let ueWXo^p(a.) be a nonnegative, locally bounded supersolu-
tion of (I.I) with structure (1.7), (1.8), (1.9). Then, for all x0 e a and r>0
such that B(x0, 4r) c Q, c a, and all p0 such that 0 < pQ < N(p- l)/(N-p)
(here Ñ = N if p < N, N < Ñ < q(p - 1 ) if p = N), we have

r~NlP0 lMll^(B(V,))<c(Ämin)W + p(z-)).

The constant C depends only on the structure, the bound on u, and the fixed
set ax

The proofs of these theorems require the following familiar test functions.
Let px > 0, p2 > 0 be arbitrary. For ß e R, and t > 0, define

(2.5) o(t) = —exp(^ (sign ß)t)tß.
z^i        \ß\ /

Then o is a solution of

(2.6) (signß)pxo' - p2o = \ß\tß'X exp (^(signß)t^ .
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752 J. M. RAK.OTOSON AND W. P. ZIEMER

So for all number b > 0, we can find two numbers cb > 0, c'b > 0 depending
only on b, px, and p2 such that

0 < o(t) < c/

For x0 e ax let r\ e Cxf(0) be such that 0 < zz < 1 and spt z/ c B(x0, 4r) c
Q, . Let 0 < X < 1 (where X tends to zero at the end of the proof). Define

ü = u + p(r)+X,     y = ß+p-l,     ß^O,
j ü"p      ify^O,

w(x) = <
[ Log u   if 7 = 0.

The following energy inequality is fundamental to the development.

2.3.    Lemma. There exists a constant C > 0 such that

\y\PCh0(\ß\) fn(brn» + \Vr,\p)wp dx    if y f 0,
if y = 0

/,„ „ .  , Í \y\pchf(\ß\)UKnp + \^v\pYl  IrjVw\ dx < < „
in" -{Chf(\ß\)lQ(brnp + \Vr,f)dx

where h0(\ß\) = I + l/\ß\+ l/\ß\p + l/\ß\" .
Proof. Define tp = t]p(sign ß)o(u), where o is the function defined in relation
(2.5) with

px = rninUf(x),        p2 = essQ supcx(x) + I.

Since u is locally bounded, we can find C > 0 such that

0 < o(U) < Cüß ,        \o'(ü)\ < C\ß\üß~x + Cüß ,

(sign ß) Pf o'(U) - Co(u) > C\ß\üß~X .

With this choice of tp employed in (1.1) with its structure, we obtain

(2.9)  j \Vu\prjP[(signß)pxo'(U) - p2o(u)]dx

<pC0 Í \Vu\t]P~{\Vu\p~xo(U) dx + p í \Vt]\np~xaf(x)o(ü)dx

+ / rjpux\o'(ü)\dx + / rffifO(ü)dx + (T, tp).

The last two terms of (2.9) can be written as

J rf o(u)fif dx + (T, tp) = (ff + (signß)T, nPo(U)).

Using relation (2.3) we can find feLq(af such that if f0 + (sign ß)T = div f,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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where / does not depend on ß . Using (2.8) we obtain

\ß\ i \Vu\pr\püß-x dx<Cf j \Vu\p-xt1p-x\Vrl\uß dx

+ cn / riP~X\^n\afx)üßdx

+ cX2(l + \ß\) j' vxrfuß-X dx + cX3 j' rf~\Vri\füß dx

+ cXA\ß\ j fi\Vu\npuß-X dx + cXijf\Vu\nPUß~X dx

Each term of the right side can be analyzed in a manner similar to [T] to obtain
the conclusion of the lemma.   G

With the basic energy inequality of Lemma 2.3, it is possible to obtain The-
orems 2.1 and 2.2 as in [T], whose argument depends critically on the Sobolev
inequality and the John-Nirenberg inequality [JM].

Theorems 2.1 and 2.2 yield the Harnack inequality

(2.10) sup  u < C inf  u + p(r)
\\B(xQ,r)

whenever B(x0, r) c Q, c Q. As Í2, is arbitrary, we obtain as a consequence

2.4. Theorem. Let ue WXçKp(a) be a nonnegative, locally bounded solution of
(1.1) with structure (1.7), (1.8), (1.9). Then u is locally Holder continuous
in a.

2.5. Remark. If u e rV¿'p(a) is a solution of (1.1) with structure (1.7), (1.8),
and (1.10), then the methods above can be modified so that Theorems 2.1 and
2.2 hold without the assumption that u is bounded. With this structure, sub-
solutions and supersolutions are bounded above and below, respectively.

3. The equation with T as a measure

In this section we consider equation (1.1) with T assumed to be a nonnega-
tive Radon measure p and seek conditions on p that will ensure that the weak
solution is locally Holder continuous. This question was considered in [LS] in
the case of the Laplacian, and it was found that if p[B(x, r)] < CrN~2+e for
all balls B(x, r), then the solution is locally Holder continuous. We will prove
that an analogous condition is necessary for equation (1.1) and also sufficient
provided that A satisfies a strong monotonicity condition. For this purpose,
the following gradient estimate is crucial. This estimate was first used in [GZ]
for investigating boundary regularity.

3.1.   Theorem. Let p be a nonnegative Radon measure on a, and let u e
lVXo¿p(a),  l < p < N, be a nonnegative, bounded solution of

- div A(x, u, Vu) + B(x, u, Vu) = p

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



754 J. M. RAKOTOSON AND W. P. ZIEMER

with structure (1.7), (1.8), (1.9). Then

(3.1) rp-N [ \Vu\pdx<C[X(r/2)-X(r) + p(r)]p-X,
JB{x,r/4)

where X(r) = infß(x   . u and C depends on the structure and the bound for u.
Proof. Since p is a nonnegative measure, u is therefore a weak supersolution
of the equation
(3.2) -divA(x,u, Vu)+ B(x,u, Vu) = 0.

First, consider an arbitrary weak supersolution v of (3.2). It follows from
the energy estimate in Lemma 2.3 and the techniques of [GZ] that

(3.3) iv-ß-xr1p\Vv\ dx<C(l + ß~ 'I"'-"{tf + \Vn\p}dx

whenever ß > 0 and n is a cut-off function. Let 6 be a positive number such
that 1 <(l-6)p< N/(N-p). Then,

ií>-iIÍA  =
lB(x,r/2)

|(P-1)/P

(3.4) / |Vu|
JB(x,r/2)

=    [ (V
JB(x,r/2)

Í iv-(
JB{x,r/2)

[ iv
J B(x ,r!2)

(l-ö),_    i'.p-l,   (l-0)(p-lk   ,|Vv|)     (v )dx

Vv\p)dx

\-6)(p-\)p, dx
Up

It follows from (3.3) that the first factor is bounded by
,{p-i)/p

Cr \-p
J B(x,r)

dx

provided r¡ is taken so that r\ = 1  on B(x, r/2) with support contained in
B(x, r). Then, by Theorem 2.2 we have

(3.5)  f-N~X f \W\p-X
JB{x ,r/2)

dx

< C(X(r/2) + p(r)fp-X)lp)(p-(X-e)p)(X(r/2) + p(r)f">^-^p-^
(p-i)<C(X(r/2) + p(r))

From the analysis in Lemma 2.3, we have

f \Vv\
JB(x,r/4)

dx<C I f /JB(x,r

It-,      lP— 1 N — p       ,    .p— 1|Vzj|      +r      p(r)
(x,r/2)

< c{[X(r/2) + p(r)]p-XrN-p + rN-pp(r)p-X}.

Now, to establish the theorem, let v = u - infB(x   . u and observe that v is a
supersolution of an equation with structure similar to that of (3.2).   o

This estimates leads immediately to the following necessary condition for a
solution to be Holder continuous.
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3.2. Theorem. If u e Wxo^p(a), 1 < p < N, is a nonnegative, bounded solu-
tion of

- div A(x, u, Vu) + B(x, u, Vu) = p

that is locally Holder continuous on Q, then there exists e > 0 such that

p[B(x,r)]<CrN~p+e

whenever B(x, I6r) c a. Here C depends on the structure of the equation
while e depends also on the Holder exponent of u.
Proof. With B(x, r) as in the statement of the theorem, let tp be a smooth
function that is 1 on B(x, r) and with support contained in B(x, 2r). Then
appealing to the structure (1.8), (1.9), and the previous theorem, we obtain

(3.6) p[B(x, r)]< J tp dp

<— \A(x,u,Vu)\dx   +C \B(x,u,Vu)\dx
r   \JB(x,2r) JB(x,2r)

< y   / |V«r' + K\dx\ +C [        [\Vu\p + \ff\]dx
r   [JB(x,2r) JB{x,2r)

<C rN p[X(Sr)-X(l6r) + p(r)]p~x

+rN~p[X(Sr) - X(l6r) + p(r)]p~x + rN~pp(r)p~x

Now using the assumption that u is locally Holder continuous and that p(r)
is bounded by a positive power of r, the conclusion follows.   D

We now proceed to determine conditions under which the converse of the
preceding theorem holds. We first prove that solutions of

- div A(x, u, Vu) + B(x, u, Vu) = p

are locally bounded. For this, we require the following result of Adams [A].

3.3. Theorem. Let p be a nonnegative Radon measure supported in Q such
that for all x e R" and 0 < r < oo, there is a constant M with the property
that

p[B(x, r)]<Mra

where a = q(N/p -1), l<p<«7<co, and p < N. If ueWx '"(O), then

(Lu\qdp)     <cVh|Vzz|I  ,
n / p

where C = C(p , q, N).

3.4.    Theorem. If u e W^oc'p(f2),  1 < p < N, is a weak solution of

-div^(x, u, Vu) + B(x, u, Vu) = p,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



756 J. M. RAKOTOSON AND W. P. ZIEMER

with structure (1.7), (1.8), and (1.10) where p is a nonnegative Radon measure
supported in a with the property that for some e > 0,

p[B(x , r)] < MrN'p+E

for all x ea and 0 < r < oo. For 0 < a < 1 and B(x, r*) c Q, there exists
a, ß > 0 such that

sup   u < —-¡- I \u\pdx + \u\pdp)     +Cr
B(x,ar") r* '"   [JB[x,r') JB(x,r") J

Nß

Proof. To simplify notation, let B(x, r) be denoted simply by B(r).  For a
value of k that will determined later, we set

k, = k(l-2 '),        i = 0, 1,2,...,
and

r¡ = or  +2   r (1 - o),

fi = Wt + ri+i) = ar* + |2"V(1 - o),        1 = 0,1,2,....
We consider the corresponding balls

B¡ = B(r¡),        B¡ = B(r¡),
and observe that

,i+i
iri~ri+i

-X'      ~r*(l-o)-

Finally, we denote by C, the cut-off function whose support is contained in B¡
such that C, = 1 on 7L+, and |VC;| < 2,+2/''*(l - o).

Let
A¡ = B(r¡)n{(u-k¡+x)+>0}.

If the test function tp = Çp(u - kj+x)+ is employed, by an analysis similar to
that used to establish Lemma 2.3, we obtain the fundamental energy estimate:

¡b    W(u-ki+x)+fdx<C   {l_al)P{rr^\(u-ki+x)+\pdx

+ L K" - k,+x)+\Pdp + (kp + X)\Al\ + p(Ai)
Jb,

because

<pdp= ¡Çp(u-ki+x)+dp< l(u-k¡+x)+dp
J J Bt JBI

< U\iu-ki+x)+\pdp\     p(A¡)

<C    i\(u-ki+]f\pdp + p(Ai)
Jb,

.i-i/p
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If q is defined by N - p + e = (q/p)(N - p), then the previous result of
Adams implies that cp e Lq(dp). Note that q/p > 1. Now

(3.7)

/     \(u-ki+x)+\pdp< f\(u-ki+l)+Qpdp
JBI+I JBi

<l^\iu-ki+x)+Qqdp\     p(Al)X-p'q

<cU„\V(u-k¡+x)+\pdx + ^\(u-k¡+x)+\p\Vt;\pdx\p(A¡

W^{lBl{u~ki)+lPdx

+ jB\(u-k¡)+\pdp + (kp + X)\A¡\ + p(A¡)\p(A¡

\-plq

C2'-
(I-a)

i-(Wi)

Now

and

p(A¡) < 22pik~p f \(u - kffdp < 22piY¡
Jb.

\A¡\ < 22pik " I \(u- kffdx < 22piYi,
JBi

where Y¡ is defined by

Y¡ = k"p j Ku-kffdx + k'" [ \(u-k¡)+fdp.

Hence, if ß is chosen so that 0 < ß < 1 - (p/q), it follows from (3.7) that

k~p f    \(u-ki+x)+\pdp
Jb.,

<
C2ip

(1-afr pr*p
(Yl)(2p'Yi)X-plq +({k" \^r^\ (2piYi)X-ß(2piYi)X-plq

kp

+ (2p'Yi)(2piYi)X-(plq)

If k is chosen so that kp > Xr*Nß and k > IImII . „ , it therefore follows that

,l+a(3-8) k~PjB+¡ \iu-kl+x)+\pdp < c(i_c^)VPy,'

for some a > 0. Now, repeating the previous analysis with the term

/    \iu-ki+x)+\"dp
J B.^,
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replaced by

/    \iu-ki+x)+fdx,

under the assumption that q < Np/(N-p), we obtain the following inequality:

/    \(u-ki+x)+\pdx

< {l ̂ 2J)Pr*P lfB\iu- kff dx + Jb(u- k,)+\p dp

+ (kp+X)\Al\ + p(Ai)\\Ai\x-plq.

Hence

(3-9) k->jB    \(u-k¡+x)+\pdx<-^2^Y¡+\

From (3.8) and (3.9), we have

y     <        C^        yx+"
i+1 - (l-o)pr*p   '     '

where b = 2P > 1 and kf > Xr* ß and k > \\u\\„. B . The recursion lemma of— —  M    "P,B0

[LU, p. 66] implies that Y¡ —► 0 provided

y0<C(p)((l-a)z-*)p/a

or
Yf = k p [      \u\pdx + k~p [      \u\" dp<C(p,i)((l-o)ff

JB(r') JB(r')3lr") JB(r)

which suffices to reach the desired conclusion.    D

3.5. Remark. By applying the interpolation technique of [DT], it is easy to see
that the above result remains valid with p replaced by q for any q > 0.

We now are able to establish regularity with operators A of the following
type.

3.6. Definition. We say that the operator A(x, r\, <*) is strongly monotonie in
a provided

(A(x,n,Z)-A(x,r\,ciy)'(!A-t)>C\!Ai-i!\p
for all xea, r\eR, and all {, ¡f e RN .

3.7. Theorem. Let u e WXxP(a),  1 < p < N, be a weak solution of

- div A(x, u, Vu) + B(x, u, Vu) = p,

where p is a nonnegative measure with the property that p[B(x, r)] < Cr ~p+l
for all balls B(x, r) with B(x, 2r) c a. If we assume structure (1.7), (1.8),
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and (1.10), and that A is strongly monotonie in a, then u is locally Holder
continuous on a.
Proof. Let Q, be an bounded, open subset whose closure is contained in a.
Let x0 e ax and consider 0 < r < dist(x0, ÖQ,). Since by Theorem 3.4 the
solution u is bounded in Q, , we may consider A(x, u(x), Ç) as A(x, £,) and
normalize the structure by taking min z/Q = 1 , thus obtaining

\A(x , 0| < Cf\c;\p-X +a0,        A(x, Í) • í > \if - vx ,

for all (x,cf)e B(Xf, r) x RN , where B(x0, r) C £!,, a0e Lq<[B(xQ, r)], and
vx e Lq^[B(Xf, rf] with qx > N/(p-l), q2 > n/p . Now let v e Wx'p[B(x0, r)]
be defined as a solution of

div^(x, Vv) = 0,

where u-v e\Vx p[B(x0, r)]. The existence of v is provided by [L, pp. 182—
183] and because u is bounded on the closure of B(x0, r), we may appeal to
[SE, Theorem 3] to conclude that v is bounded on B(x0, r). Using the strong
monotonicity of A and the fact that u-v is a test function, we obtain

(3.10)/"        \V(u-v)\p <C [        (A(x,u,Vu)-A(x,u,Vv))-V(u-v)
JB(x0,r) JB(x0,r)

= C I B(x, u, Vu)(u -v)dx+ (u - v)dp>
[JB(x0,r) JB(x0,r) J

<C{[        \Vu\p~X\u-v\dx+ [        ff(u-v)dx + rN~p+£\ .
[JB(x0,r) JB(x0,r) J

With the help of Young's and Poincaré's inequality, there exists C depending
on p and the structure such that for any real number y > 0,

ci    iv«rIi«-«i¿x<nv«i{7i¡l..f)iiii-«ii,.Jltll,if)
J B(x0,r)

(3.11) <l|V<:¿(jCo,r).r||V(M-tz)||p;i,(jCo>r)

<C(y)/ [        \Vu\" + y[        \V(u-v)\pdx.
JB(x0,r) JB(x0,r)

Consequently, (3.10) can be written as

(3.12) [        \V(u-v)\p
JB(x0,r)

<c\/ [        \Vu\pdx+ [        fif(u-v)dx + rN~p+£\ .
{       JB(x0,r) JB(x0,r) J

As for the second term in (3.12), the local boundedness of (u - v) implies

f        ff(u-v)dx<CrN~p+E',
JB(x0,r)
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where s depends on q > N/p . Thus, we conclude from (3.12) that there are
constants C and C' depending only on the given data such that

(3.13) /        \V(u-v)\pdx<c/ [        \Vu\pdx + C'rN~p+s
JB(x0,r) JB(x0,r)

for some e > 0. Since v is locally Holder continuous on compact subsets of
B(Xf, r), it follows from the fundamental energy estimate, Lemma 2.3, and an
elementary scaling argument, that

(3.14) [        \Vv\pdx<c(?-) f        \Vv\p dx
Jb(x0,p) KrJ JB(x0,r)

for all 0 < p < r and some e' > 0.
We now proceed to obtain a bound for

dx.
Jß(x0,r)

Since

/        |Vt;|
JB(xQ,r)

0=     A(x, Vv) ■ V(u - v) dx = / A(x, u, Vv) ■ V(u -v)dx,

it follows that there exist C and C' depending on (1.7), (1.8), and (1.10) such
that

/ \Vv\"dx < (A(x,u,Vv)-Vu + vx)dx
JB(x0,r) JB(x0,r)

<C f        \Vv\p~x\Vu\dx + C [        (af\Vu\ + ux)dx
JB(x0,r) JB(x0,r)

<\ [        \Vv\pdx + C'(        \Vv\"dx
2 JB(x0 , r) JB(x0 , r)

+ C' f        \Vu\pdx + C'([        \a0\q'dx)   * .rN-e+° + c'rN-p+e
JB(xa,r) \JB(x0,r) J

since qx > N/(p - 1) and q2 > N/p. Here 5 = qx/p'. Thus, there exists C
and e > 0 such that

(3.15) f        \Vv\pdx<c\[        \Vu\pdx + rf
JB(xn,r) \JB(x0,r)

N-p+e
\vv\   ux ^ ^ <.  i |vw|   ux -t r

1(x0,r) [Jb(x0,

Now u = v + (u - v) and thus, from (3.14), (3.15), (3.13), we have

C¡        \Vu\pdx<[        \Vv\pdx+ f        \V(u-v)\pdx
JB(x0,p) JB(x0,p) JB(x0,p)

< (P\N~p+e f        \w\pdx+[        \V(u-v)\pdx
\rJ JB(x0,r) JB{x0,r)

<\(E)N-p+e + /]f        \W\pdx + rN-p+E
lKrJ \JB{xn,r)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLUTIONS OF QUASILINEAR ELLIPTIC EQUATIONS 761

for every 0 < p < r. We now are able to invoke the technique in [G, p. 170]
to conclude that there exists £0 > 0 such that if

(3.16) rp~N [        \Vu\pdx<ef
JB(xn,r)

then there exists e > 0 and a constant C depending only on the structure such
that

pp-N [ \Vu\pdx<c(^
JB(x0,p) yr;

for all 0 < p < r. As in [G] we conclude that u is locally Holder continuous
in B(x0, r). This conclusion is based on (3.16) which is know to hold at all
points x0 e ax by Theorem 3.1.    D

Another result for equations of divergence form was first proved in [ME]
which states that a solution u e IV ,p(a) has the property that u e IV ?(Q)
for some q > p. A similar result is valid for the type of equations we are
considering..

3.8. Theorem. Let u e lVxxo^p(a) be a weak solution of (1.1) with structure
(1.7), (1.8), (1.10) and with Te W¿'"'+e(a) for some e > 0. Then there
exists q > p such that u e WA 'q(a) • Moreover, for B(x, r) c a,

loc
<tn\

loc

-/ \Vu\qdx)      <C\l-f       \Vu\pdx
fB(x,r/2) J \\JB(x,r)

where h = (apG + \g\p )x/p , divg = T + f0.
Proof. For fixed x such that B(x, r) c a, let

ü(r) = 4        u(y)dy
Jß{x,r)

and define a test function by tp = rf (u - U(r)), where r\ is a smooth cut-
off function such that r\ = 1 on B(x, r/2) and spt r\ c B(x, r). With tp
employed as a test function in (1.1), we obtain

Í riP\Vu\pdx

Vu\p  X\Vu\tf  X(u-U(r))dx

+ Ía0\Vri\np  x(u-u(r))dx + Ícx\Vu\"  xnp(u - U(r))dx\

+ (div£, np(u-U(r))),

where g e Lp +£(Q ; R ), div g = T+f0 , and C depends only on the structure.
The last term can be replaced by

C j\g\\V[np(u-U(r))]\dx.
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Now the analysis proceeds as in [EM] to establish the conclusion or see [G,
Theorem 2.2, p. 138] for an easy exposition.   D

This result is especially relevant for our purposes because of the following
theorem of Hedberg and Wolff [HW],

3.9.    Theorem. Let p >  1   and kp < N.   If p  is a Radon measure, then
pe(Wk-p(RN)) ifand only if

Jrk Jo
i /„trc,   -m </(/>-')(p[B(y,r)]\l{p-i] dr  ,   . .

{    /kp    ) -ydp(y) <oo.

As a consequence of Theorems 3.8 and 3.9 we have

3.10. Corollary. Let u e Wx0^p(O) be a weak solution of

- div A(x, u, Vu) + B(x, u, Vu) = p
where p is a nonnegative measure supported in Í2 with the property that
p[B(x, r)] < Cr ~P+E for all balls B(x, r) ea. Ifiwe assume structure (1.7),
(1.8), and (1.10), then there exists q > p such that u e lVxo^q(a). Moreover,
for B(x,r)ca,

(7 \Vu\qdx)      <C\(-f       \Vu\pdx)     +(-[       hqdx)      |,
\JB(x,r/2) J y\JB(x,r) J \JB(x,r) J       J

where h is as in Theorem 3.8.

As another corollary of the above results, consider the variational inequality
(1.5) which is assumed to hold for all cp e W 'p(OA) for which tp > ip - u
a.e., where ip e L°°(Q) is the obstacle. Then there is a measure p associated
with this problem as explained in (1.6). If in addition it is assumed that \p e
CXoca(a), then referring to either [MZ] or [RT] we have that u e C,°¿"'(Q). It
follows from Theorem 3.2 that for all B(x, r) c a, p[(B(x, r)] < Cr ~p+'
for some e > 0. By appealing to the previous corollary, we are led to the
following result.

3.11. Corollary. If u e Wxxo^p(a) satisfies the variational inequality

i
A(x, u, Vu) ■ Vcp + B(x, u, Vu)cp dx > 0

for all cp e Wf'p(a) with the property that tp > \p-u a.e., where \p e C]oc"(a)
then there exists q > p such that u e M^oc'?(ß) • Moreover, for B(x, r) c a,

where h is as in Theorem 3.8.

We conclude with a result that extends Theorem 3.4 and resembles the clas-
sical Harnack inequality, (2.10).
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3.12.    Theorem. Let u e WX(KP(a) be a nonnegative weak solution of

-divA(x, u, Vu) + B(x, u, Vu) = p

with structure (1.7),   (1.8), and (1.10), where p  is a nonnegative measure
supported in  a  with the property that p[B(x, r)] < Cr N-p+e for all balls
B(x, r) c a.  Then there exist a, ß > 0 and C depending on the structure
and e such that for 0 < r < 1,

and

sup   u < Cr'
B{x,r/2)

sup   u < Cr
B(x,r/2)

inf   u + p(r)
B(x,r/2)

p-\

+ C/,     ifl<p<2,

inf   u + p(r)
B(x,r/2) }

+ Crß,     ifp>2.

Proof. Choose x e a and 0 < r < 1 such that B(x, 2r) c Q. With r\ as a
smooth cut-off function such that n = 1 on B(x, r) and spt r\ c B(x, 2r), we
use the test function tp = rfu to obtain

/        udp <      tpdp =     A(x, u, Vu) ■ Vtp + B(x, u, Vu)cpdx
JB(x,r) J J

<ci í\Vu\p~Xr1p~X\Vn\udx+ Í \Vu\pt]pudx

+ / t]pua0dx+ / rfu\Vu\p~ dx +     npuf0dx\

< C ( - [ \Vu\p-X + f \Vu\p dx + rN-pp(r)p-X\ .
[r JB(x,2r) JB(x,2r) J

Here we have used the fat that u is locally bounded (Theorem 3.4) and 0 <
r < 1 . Appealing to Theorem 3.1, it follows that
(3.17)

[        udp< [ cpdp<C{[X(4r)-X(Sr) + p(r)]p~XrN~p+ rN~pp(r)p~x}.
JB(x,r) J

In order to obtain a similar bound for J urjdx, we use Theorem 2.2 and the
fact that u is locally bounded to conclude that

/       udx<c[       if~x dx<CrN[X(r/2) +p(r)f~x
JB{x,r) JB(x,r)

when 1 < p < 2 (since 0 < p - 1 < N(p - l)/(N - p)) and that

/    »Jß(x,r)
dx<Cr[X(r/2) + p(r)]

when p > 2 (since N(p-l)/(N-p) > I). These conclusions along with (3.17),
Theorem 3.4 and Remark 3.5 establish the result.   D
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