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LOCAL BISECTION REFINEMENT FOR N-SIMPLICIAL GRIDS GENERATED
BY REFLECTION*

JOSEPH M. MAUBACH?

Abstract. A simple local bisection refinement algorithm for the adaptive refinement of n-simplicial grids is
presented. The algorithm requires that the vertices of each simplex be ordered in a special way relative to those in
neighboring simplices. It is proven that certain regular simplicial grids on [0, 1]" have this property, and the more
general grids to which this method is applicable are discussed. The edges to be bisected are determined by an ordering
of the simplex vertices, without local or global computation or communication. Further, the number of congruency
classes in a locally refined grid turns out to be bounded above by #, independent of the level of refinement. Simplicial
grids of higher dimension are frequently used to approximate solution manifolds of parametrized equations, for
instance, as in [W. C. Rheinboldt, Numer. Math., 53 (1988), pp. 165-180] and [E. Allgower and K. Georg, Utilitas
Math., 16 (1979), pp. 123-129]. They are also used for the determination of fixed points of functions from R” to R”,
as described in [M. J. Todd, Lecture Notes in Economic and Mathematical Systems, 124, Springer-Verlag, Berlin,
1976]. In two and three dimensions, such grids of triangles, respectively, tetrahedrons, are used for the computation
of finite element solutions of partial differential equations, for example, as in [O. Axelsson and V. A. Barker, Finite
Element Solution of Boundary Value Problems, Academic Press, Orlando, 1984}, [R. E. Bank and B. D. Welfert, SIAM
J. Numer. Anal., 28 (1991), pp. 591-623], [W. F. Mitchell, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 146-147}, and
[M. C. Rivara, J. Comput. Appl. Math., 36 (1991), pp. 79-89]. The new method is applicable to any triangular grid
and may possibly be applied to many tetrahedral grids using additional closure refinement to avoid incompatibilities.

Key words. grid generation, grid refinement

AMS subject classification. 65M50

1. Introduction. Local grid refinement of computational grids has succesfully been ap-
plied in two dimensions in order to locally improve the approximate solution of systems of
partial differential equations. However, many interesting problems of a physical nature are
formulated in three or more dimensions, increasing the need for a local refinement method in
more dimensions. This paper presents such a local refinement method of the bisection type,
which is called n-dimensional since it is applicable to grids of n-simplices, independent of
the dimension n. The examination of the new method was initiated with a three-dimensional
bisection algorithm of the author published in [21], and stimulated by the work by Bey in [11].

Two- and three-dimensional triangulations are a subject of thorough investigation. Many
different grid generation, refinement, and improvement techniques in two and three dimensions
are now available. An extensive overview of such techniques can be found in the bibliographies
of Bern and Eppstein {8], or Baker [5]. Among the available generation methods in two, three,
or more dimensions, there are methods based on Voronoi’s tessellations, as in George and Hecht
[15]; methods based on Delaunay triangulations, as in Bern, Eppstein and Yao [9], Riedinger
etal. [25], and Schroder and Shephard [27]; and methods based on fractal concepts, as in Bova
and Carey [12]. Mesh improvement techniques include techniques changing the grid topology,
as in Frey and Field [14], and vertex moving techniques keeping the topology, as in Arney and
Flaherty [2]. Some techniques guarantee the resulting grid to have certain properties, see, for
instance Shephard and Georges [28] or Bern and Eppstein [10]. Mesh refinement techniques
will be discussed below.

The method to be introduced is a grid refinement method, applicable to simplicial grids of
any dimension. It will be compared with both triangular and tetrahedron refinement methods.
First, consider the two-dimensional case. Most frequently, a triangle is refined by dividing
it into four congruent descendants, as in [6], [4], or {11} applied to two dimensions. This
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method has the advantage that all created descendants are congruent to the parent, but in order
to prevent the coarse grid from being refined globally (which is necessary to keep the grid’s
triangles compatible), the method has to be used in combination with additional bisection
refinement, called closure refinement.

Another approach, using bisection refinement, is that of Rivara [26], where for each
triangle it is always the longest edge that is bisected. In this case, the resulting number of
congruency classes may be unlimited, but one can prove that the angles of the triangles in a
resulting locally refined grid, are uniformly bounded away from O and =, which is needed
for many finite element applications. Also here, additional closure refinement is necessary to
ensure that refined grids are compatible.

The newest vertex bisection method is introduced by Mitchell in [22]. The main advantage
of his method is that it can be applied to any coarse triangular grid, and such that the number
of congruency classes of all triangles in the locally refined grid will be at most four times
the number of coarse grid triangles. Mitchell’s bisection method is relatively simple—the
triangle’s edge to be bisected is determined without any computation.

Like the bisection method of Mitchell, the application of the local bisection refinement
method presented in this paper leads to a refined grid of simplices, such that the number
of congruency classes is finite, independent of the level of refinement. Further, the edge to
be bisected is determined without computation or global communication, i.e., without using
information concerning its own or other simplices geometry. This makes the method simple
to implement, suited for finite element methods, and highly suitable for parallel processing.

Refinement methods for grids of tetrahedrons can roughly be divided into the group
simultaneously creating eight descendants, as in Bey [11] and Ong [23]; the group creating
two descendants by bisection, as in Binsch [7], Kossaczky [19], Maubach [21], and Rivara [26];
and the method to be presented in this paper. Both the new method and that of Bey generalize
to n-dimensional grids of simplices. The division of a tetrahedron into eight descendants
is such that only four will be congruent to the parent, and in order to prevent grids from
getting uniformly refined, one has to use additional closure refinements, as in [6] and [11].
However, this refinement, in combination with the proper closure refinement, can be applied to
any coarse tetrahedral grid to yield compatible locally refined grids. Allowing for additional
closure refinement, it is likely that the new method can also be used for many coarse tetrahedral
grids. The use of proper closures will be a topic for future research.

The remainder of this introduction will list more specific properties of the new method
and compare them to properties of some of the mentioned existing techniques.

In contrast with the quadrant method for the refinement of grids of rectangles, or the
octant method for the refinement of a n-cube grid (see Lohner {20]), the presented local bisec-
tion method does not create incompatibilities. Every face of an n-simplex will be fully shared
by at most one other n-simpex. Because every simplex is compatible without exception,
algorithms can be implemented in a simple manner. Further, because the new method is a
bisection method one can use binary tree data structures independent on the dimension. Binary
tree data structures have been well investigated throughout the last decades, many optimal or
near-optimal tree traversion and tree balancing algorithms exist, as is shown in Knuth [18].

Grids of n-simplices for large n have long been used in combinatorial fixed point theory
(see Sperner [29], Freudentahl [13], and Todd [30]), giving an overview of existing combi-
natorial fixed point methods. The method presented in this paper can theoretically generate
all of the grids to be found in [30]. The number of unknowns n in fixed point theory can
be compared with the degrees of freedom resulting from a finite element discretization of a
partial differential equation, and can be easily in the order of 10,000. As n! simplices cover
an n-cube, practical generation is out of scope and in order to locate fixed points, fortunately
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not necessary. In fixed point theory, n-cube refinement is rarely used because it creates many
more new vertices to reach a certain level of refinement than bisection refinement does (3" — 2"
versus n vertices), and because the total amount of work to locate a fixed point is proportionally
related to the number of new vertices created.

The computational effort to determine the location of a grid element containing a certain
point is the same for the octant technique and the new bisection algorithm (independent on
the dimension). This can be seen as follows. Consider the three-dimensional case and assume
that the point is situated inside one of the grid’s elements. Using an octant method, the
refinement of this element (a cube) creates eight descendants via intersection of the element
with three axis-parallel planes. Therefore it takes three searches to determine in which of
the eight descendants the point is located. In contrast, using the bisection method, it can be
shown that after each n refinements the resulting descendants are exactly half the size of the
initially refined element (a tetrahedron). Each bisection creates two descendants inside the
parent, seperated by a plane whence it takes three searches to determine in which of the eight
descendants the point is located. For this case, the bisection method presented in this paper
is as efficient in the storage and location of information as the octtree approach is in [20],
especially since every grid of n-cubes can be covered with n-simplices. Potential applications
of the new method to neural networks are a topic of future investigation.

Now, consider the applicability of the bisection refinement method. Because the method
is applicable only to simplicial grids, quadrant and octant techniques will not be part of the
following discussion. This method generalizes the two-bisection method by Mitehell in {22]
to rn dimensions in the sense that that both methods make use of a special ordering of the
vertices of the elements in the grid (triangles in two dimensions). The n-dimensional method
turns out to be different from but equivalent to Mitchell’s method in two dimensions. Because
Mitchell proves that his method can be applied to every coarse grid in two dimensions, the
new method automatically inherits this property. Unfortunately, it is not yet clear whether the
new method can be applied to any coarse simplicial grid in » dimensions. Mitchell’s proof
for two dimensions uses graph theoretical results of which no multi-dimensional extensions
exist, to the knowledge of the author. It is unlikely that every simplicial grid in » dimensions
can have the vertices of each of its simplices ordered properly for the new bisection method.
However, for the case where a simplicial grid G is generated by reflections as shown in [30]
in an k; X -+ - X k, grid of n-cubes covering [a;, b1] X --- X [an, by,], this paper proves that
the vertices are properly ordered and that the refinement method can be applied. The proofs
provided admit moving of the grids vertices (see [2]) because this does not change the vertex
ordering within a simplex. The new method is also applicable to grids which are part of
the locally refined grid G. Further, any simplicial grid that is the image of a nonsingular
mapping applied to (part of a possibly locally refined) grid G is suited for refinement with the
new method because the mapping will not change the proper order of the vertices relative to
each other. This means that the method can also be used for grids which have to fit curved
boundaries, especially because the new method allows one to move the vertices of the grid.
Finally, one can also cover regions with component grids of type G, as is done for n-cube type
grids by Henshaw and Chesshire in [17].

The remainder of this paper is organized as follows. First, in §2, the construction of the
coarse grid of n-simplices covering [0, 11" is shortly introduced, mainly relying on results
obtained in [1]. Thereafter, §3 introduces the bisection step. Section 4 exploits the bisection
step in order to demonstrate that the number of congruency classes is bounded above by n,
independent on the level of refinement, and §5 employs the bisection step in the recursive local
bisection grid refinement algorithm. It is shown that the depth of the recursion is finite, and that
grid incompatibilities can easily be avoided. In §6, the grid refinement algorithm is applied
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for the generation of some locally refined grids in two and three dimensions, indicating that
the bisection type refinement is highly local in nature and not spreading. Finally, §7 provides
some conclusions, and is followed by a list of references.

2. The coarse grid. This section presents the coarse simplicial grid on [0, 1}*, which,
with the use of reflections, can be used to create a coarse simplicial grid covering an k; x
-+ X ky, grid of cubes covering [a;, ;] X - - - X [ay, b,]. The permutations used to this end are
introduced and some elementary definitions and examples are given. Thereafter, a definition
of congruency is provided, and at the end of this section it is shown that the simplices of the
coarse grid are congruent to each other. In the upcoming sections the prefix “n-" will often be
omitted, in order to simplify the notation.

The simplicial grid on [0, 1]* will be generated with the use of n-permutations. Each n-
permutation denoted by m = (iy i ... i,) can be uniquely associated with a linear functional

Aﬂ(xl""ixn) = (xils-'-’xi,,);

which represents a coordinate permutation. As an example, consider 7 = (2 1 3), which can

be represented by the matrix
010
A,=11 0 0.
0 01

In the upcoming sections, 7 (x) is meant to be an abbreviation of A,x.

In order to enable to examine congruency classes, two simplices are said to be congruent
if the first one is the image of the second one under a congruency mapping, which is of the
type

where « is a positive real number, A an orthonormal matrix, and b an n-vector. Note that
mappings of the type A, are congruency mappings. Actually, mappings of the type A, are
a concatenation of simple coordinate reflections and rotations. As an example, (2 1 3) has a
corresponding linear functional with matrix representation

01 0 0 -1 07 [1 0 0
Agin=|1 0 0{=|1 0 0|o|0 -1 O],
00 1 0 0 1] {0 o 1

a combination of a reflection in the x;-axis and a rotation in the x;x;-plane.

For the covering of [0, 1]" the following so-called reference simplex (different from that
usually found in finite element methods) is needed. This reference simplex is identified with
an ordered row of n + 1 vertices Xy, X1, X2, . .. , X, where £ = (0, ..., 0) and

i
X = E e;,
j=1

with e; being the ith unit vector. Using the reference simplex, for a permutation 7, the simplex
T, is identified with the ordered row of vertices

N(fo), T[(f]), JT(xAz), ey n()?,,) .

In this paper, a simplex is always identified with its ordered row of vertices. This is important,
since the bisection step proposed in §3 exploits the ordering of the vertices.
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In [1] it is shown that the collection of simplices {7, : 7 an n-permutation} covers the
unit cube such that all simplices are compatible, i.e., every face of every simplex is shared
with at most one other simplex. Now consider the algorithm below, for the generation of the
coarse simplicial grid covering [0, 1]".

Construct coarse grid:
BEGIN
FOR every n-permutation 7
DO
Create Ty, : w(Xp), w(X1), m(X2), ..., w(X,);
END;
END.

Note that the vertices 0 = (0,...,0) and 1 = (1,..., 1) are invariant under every
permutation 7, whence they are shared by every coarse grid simplex. As an example of a
coarse grid, consider the six tetrahedrons covering [0, 17,

Ti23:00,0,00,(1,0,0),(1,1,0,(1,1, 1)
Tu32:00,00),(1,0,0),(1,0,1), (1,1, 1)
T213:00,0,00,0,1,0,(1,1,0),(1, 1, 1)
T312:(0,0,0),(0,1,0),(0,1,1),(1, 1,1
T321:(0,0,0),(0,0,1),(0,1,1), (1,1, 1)
IERY . 0,0,0),0,0,1), (1,0, 1), (1, 1, 1),

where each tetrahedron is identified with the row of its vertices. Here, the first tetrahedron is
obtained by applying the identity permutation w = (1 2 3) to the reference tetrahedron, and
the second one is the image of the reference tetrahedron under the application of the coordinate
permutation 7 = (1 3 2).

Now, the number of congruency classes of simplices of the coarse grid is easy to determine,
as the following lemma shows.

LEMMA 2.1. The number of the coarse n-grid congruency classes is 1.

Proof. All coordinate permutations are congruency mappings. d

Finally, using the above coarse grid of simplices on a single cube, a coarse grid of k1 x

- X k, cubes (filled with simplices) covering [a;, b1] X -+ X [an, bs] is constructed by

reflecting the above coarse grid cube across its faces in all coordinate directions, as in [1].

3. The bisection step. This section introduces the n-dimensional bisection step for n-
simplices, and examines the descendants obtained with repeated application of this bisection
step. The number of congruency classes obtained by the proposed bisection step is determined
in §4.

The bisection of an n-simplex presented below only involves the ordering of the vertices
of this simplex. Initially, all coarse grid n-simplices T are said to be of level [(T) = 0. If a
simplex T is bisected, the two created simplices are called its descendants, and the ordering
of their vertices is defined by the following bisection step:

Bisect (simplex):

BEGIN
Let k := n - I(simplex) mod n;
Get simplex vertices: Xg, X1, ..., Xn—1, Xn}

Create the new vertex: z := %{xo +xr};
Create descendanty: Xo, X1, ..., Xk—1,Zy Xkt1s + + + s X5
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Create descendant;: X1, X2, ..., Xk » 2, Xty - - - » X0}
Let I(descendanty) := 1(simplex) + 1;

Let 1(descendant;) := l(simplex) + 1;

END.

The first thing to be observed is that this algorithm actually represents a bisection re-
finement step. This is caused by the fact that edge xox; is bisected, and by the fact that the
descendants each get one of the two vertices x¢ and x;. Since the parent is the union of its
descendants and the coarse grid covers [0, 1]7, it can be concluded that any grid resulting from
the repeated application of this bisection step will properly cover [0, 1].

Second, the above bisection step may lead to grid incompatibilities, because it only
focusses on one simplex, neglecting its neighboring simplices. In order to avoid these in-
compatibilities, the bisection step is incorporated in the local bisection refinement algorithm
presented in §5.

Further, in order to reduce computer storage, the parent simplex can be deleted after its
descendants are created, but for some applications it is advisable to keep the whole binary tree,
resulting from the bisection refinement, in the computer memory. One of these applications
would be the determination of a simplex containing a prescribed point x.

Applied to the case of two dimensions, this bisection step is slightly different from that
proposed in Mitchell [22]. Mitchell’s newest vertex method for the bisection of a triangle can
be defined as follows. If a triangle has vertices ordered xg, x1, X3, then x1x; will be bisected,
and the new vertex z = %{xl + x,} is created. The first vertex of both descendants will be
the new vertex z, the second one will be xg, and the last one will be x, respectively x,. The
difference between the newest vertex method and the above bisection step is demonstrated by
Figs. 1 and 2, which show the different order of the vertices of a triangle and its two descendants.
Note, however, that the methods are equivalent in two dimensions, and that the new method
therefore can be applied to every two-dimensional triangular grid. Using the above bisection
method, the “newest vertex” of a simplex of level I > 0 is given by n — (I — 1) mod n; with
Mitchell’s method the “newest vertex” is always at position 0.

FIG. 1. Newest vertex bisection refinement in two dimensions.

As an example, consider the bisection step applied to one of the initial coarse grid tetra-
hedrons introduced earlier:

Tu3zz: (0,0,0),(1,0,0),(1,0,1),(1,1,1).
The bisection of this tetrahedron creates two descendants,
(0,0,0), (1,0,0), (1,0, 1), (J, %, Hand (1,0,0), (1,0, 1), (1, 1, 1), (5, 5. ) -
Again applying the bisection step, the second descendant T} is bisected into

(1,0,0), (1,0, 1), (1, 5, 1, (3. §, Hand 1,0,1), (1,1, 1), (1, 5, 5. G- 3. )
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F1G. 2. n-dimensional bisection refinement in two dimensions.

and its first descendant 7, will be bisected into the simplices
(1,0,0),(1,0,3),(1,3. ). G, 3. Hand 1,0,1), (1,0, ), 1, 3, D, &, L, D

of level 3. For the sake of simplicity, denoting

Ty : 100)(101)(111)(%, )
T,:(1,0,0,(1,0,),(1,5. D). G. 4 D
I3 :(1,0,1), (1,0, %).(1,5,%) G.3 0,

one finds that T; 3 o) is the grandparent of T3, T3, and Ty, and that the level of 7; is equal to i
foralli =1, 2, 3. Also, observe that the congruency mapping

y=2(x-[10,11)

maps 73 onto (0, 0,0), (0,0, —1), (0,1, 1), (-1, 1, —1). Hence,y = 2R(x — [1,0, 17)
with R = Diag(—1, 1, —1) maps T3 onto the coarse grid tetrahedron T3 2 1y, which at its
turn is congruent with T 3 7). This indicates that in three dimensions it takes precisely three
bisection steps to create a tetrahedron which is a factor 2 smaller in all directions than its
grandparent, and that tetrahedrons of level 3 are congruent to their grandparent of level 0,
modulus reflections.

It can be observed that the created descendants of level 1 and 2 are not congruent to
one of the coarse grid simplices. However, in §4 it is shown that descendants of the same
level (modulus n) are mutually congruent. This will limit the possible number of congruency
classes considerably, since there clearly are 2" descendants of level n to each of the n! coarse
grid simplices.

4. The number of congruency classes. This section examines the number of congruency
classes created by the bisection step defined in §3. With the use of Theorem 4.1, it is shown that
the amount of created congruency classes is precisely equal to the dimension », independent
of the level of refinement k. Theorem 4.1 provides more information than that needed to
count the number of congruency classes; it describes the geometry of a simplex created by
repeatedly applied bisection.

THEOREM 4.1. Let T be an n-simplex created by the repeated application of the bisection
step in §3 to one of the coarse grid simplices defined in §2. Assume that T is of level 0 <[ <n
with ordered vertices

xO»xlaxZa -'~sxn .
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Further, definey, = x; —xo foralli € {1, ..., n}. Then there exists an n-permutation = and
a reflection matrix R = Diag(+1, ..., £1) such that

i
yi=aRY we),
=1

Joralli € {1,...,n}, where

o =2"UmM  ifie{l,...,n—( modn)},
o =271 fieln—(1 modn)+1,...,n}

only depends on the level of the simplex.

Proof. The induction hypothesis is obviously satisfied for coarse grid simplices, tak-
ing R = [, the identity matrix. Now, consider a level 0 < | < n simplex with vertices
Xy, X1, X2, ...,X,, and assume that a permutation 7 and diagonal matrix R exist such that
the induction hypothesis holds. For each of its two level [ 4+ 1 descendants it will be shown
that there exists a permutation 7’ and a diagonal matrix R’ such that the induction hypothesis
holds. Note that 2~/?] = 1, and that! mod n = I.

First consider the first descendant, with vertices x, x}, x5, ..., x,. This satisfies the
induction hypothesis, taking the associated permutation 7’ = 7 and R’ = R (the scalars ]
are determined by the level of the descendant). In order to see this, note that there are three
cases to be distinguished:

X, =x;, ief{0,...,n—1-1},
X, = %{xo +x,}, i=n-—1,
X, =x;, ie{n—=1+1,...,n}

First, foralli € {1,...,n —1 — 1}, o; = 1, yielding

Yi=X,—x5=x —x0 =Y, —-a,RZn(e])*RZn(e,)_aR Zn (ej).

Second, fori =n — 1, o,y = 1, leading to
1 1
yﬁ:z{xo +Xp} — Xo= Pn-t= a,, ,RZn(e,)——RZn(e,)—cx _,RZn (ej),

and finally, fori e (n -1 4+1,...,n},o4 = %, showing that

i 1 < i
yi=y, =R Zn(ej) = ER Zn(ej) =R Zn/(ej) .
Jj=1 j=1 j=1

Now consider the second descendant, with vertices xj, x], x5, ..., x;,. This satisfies the in-
duction hypothesis, taking the associated permutation 7’ to be such that

n'(e;) =m(eir1), i€{0,...,n—-1-1},

n'(e;)) =m(e), i=n-—I,

n'(e)=nrn(e), ief{n—I+1,...,n},
and taking the reflections matrix R' = R o Ry(,), Where Ry, stands for a reflection in the
7 (ey) axis. In order to see this, there are again three cases to be distinguished:

X, =Xi41, ief0,...,n—1—1},

X, ={xo+xam}, i=n-—I,
x; =x;, ie{n—-I1+1,...,n}

FEOA NP P
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First, fori € {1,...,n — [ — 1} one finds that
Vi =Xig1 —X1 =Y — Y
i+l

=auR)_ 7(e) —a1Rn(er)

ji=1
i+1
=R n(e;) — Ru(er)
j=1

J

i
= a;R’Zn’(ej),
j=1

using the facts that oy = o; ;1 = Isince 1 <i <i 4+ 1 <n —1!and R can be replaced by R/,
since w(e;) = 7’(e,—;) is not part of the summation. Second, fori =n — 1

1 1
y: = E{x() +x,,_1} —X) = Eyn—l s

n—I

1
= SR ,; n(e;) — a1 Rm(e;)

1 n-l
= >R ;n(ej) — Rr(ey)

1 1
=R ;n(ej) - SRmen)

1 n—Il—1 1
= *2—R J; n'(e,-) - ‘iRﬂ,(en—l)

1 n—l-1 1
= ER’ PIEACHES —2‘Rln/(en—l)
j=1

1 n—lI
=Ry e
j=1

n—l
=a, R Z ' (e;)
j=1
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since @; = &,—; = 1 and because R’ only differs from R by an additional reflection in the
m(ey)-axis. Finally, fori € {n —1 41, ..., n}, one finds that

Yi=Xxi—x1 =y, -y

=o;RY m(e)) —arR(er)

j=1
1 i

= ER j;n(ej) — Rn(ey)

1 1
=§Rj;rr(ej)—Rn(e1)+§R > wlep)

jenmi+1

_ 1R’HZ—I: ’ 1R : ’

=3 e+ R Y ')
= jen—l+1

i
=R Z n'(e;) .
=1
Note that 7’ = 7 in the case of the first descendant, and that

=mom-011,2,...,n-I—-1,n—1+1,...,n)

in the case of the second one. Note that for 0 <! < n,x; —xp =y, = oy (e;) = n(ey).
Therefore, using induction, one can easily show that for each simplex of level 0 <! < n, R
is given by R = Diag(1 — 2xy).

This completes the induction proof for simplices of level 0 <! < n. Note thatfor/ = n
all coordinates of all y; are equal to 0, or to % showing that the induction hypothesis also
holds in the case where n < | < 2n. As this can be repeated for every (k — 1)n <! < kn, the
induction holds for all levels 0 < /. 0

The unique representation of a simplex formulated by Theorem 4.1 straightforwardly
leads to some elementary results, stated in the following lemmata.

LEMMA 4.1. Every created simplex of level n is congruent to a coarse grid simplex.

LEMMA 4.2. The number of congruency classes of simplices of each level 0 < k < n is
equal to 1.

Proof. Assume that T represented by @, R, and 7 is of the same level as T’ represented
by o/, R’, and 7r’. Because they are of the same level, @ = ’. The vertices of T are given by
X0, . . ., Xn, and those of T’ by x, ..., x},. Set C(x) = x — xp, C'(x) = x — x;, and note that
these are linear congruency mappings. Because x € T implies that there exists nonnegative
coefficients A; such that

n n
x=x0+ZA,-[xj—xo] and ijgl,
j=1 j=1
one finds that

C@x) =Y Alx; —xo
j=1

= Z)»jyj
j=1
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n
=Y Ao R (%))
Jj=t

n
= Ran' 'RV Aal R (%))
j=1

= Rrn' 'R'C'),

where
n
o Iy
x -_x0+E Ajlx; —xpl.
j=1

As the mapping C~'Rm’~' R"~'C’ is a congruency mapping from T’ onto T, these simplices
are congruent. 1]

LEMMA 4.3. The number of congruency classes of simplices of all levels 0 < k < n is
equal to n.

Clearly, this shows that the number of created congruency classes is bounded by n,
independent on the level of refinement. The following lemma will be used in §5.

LEMMA 4.4. Assume thati # j are such that 0 < i, j < n. Lety, be defined as in
Theorem 4.1 for all k = 1,...,n. Then the absolute value of all nonzero coordinates of
Yi — ¥, is identical and equal to ¢ € {%, 1} if and only if @i = «a; = c. Otherwise one of «;,
o; is equal to %, the other is equal to 1.

Finally, note that in the bisection step in §3 it is not necessary to take the new vertex equal
to

1
z = E{X() +xi}.

In compliance with the local bisection algorithm provided in §5, one can also choose A € (0, 1)
and take

Z:=Axg+ (1 —A)xg,

i.e., move the new vertex to a more suitable position along the edge spanned by xo and xy.
However, if this is done the number of congruency classes will change and Theorem 4.1 will
no longer be straightforwardly applicable. However, a grid for which the vertices have been
moved like this can still be easily de-refined. Moving vertices will be a topic of future research.

Theorem 4.1 applies to any unstructured coarse grid consisting of N n-simplices which is
refined with the use of the bisection step introduced in §3, showing that the resulting number of
congruency classes will be bounded above by 2" - N independent on the level of refinement. As
mentioned in §3, the application of the bisection step is likely to lead to grid incompatibilities.
It should be pointed out that in many cases one can eliminate the incompatibilities by using
additional closure refinement, as for instance in [11] and [26]. However, one has to prevent
the situation where a shared face has neighbors bisecting different edges, see for instance [7].

5. Thelocal bisection refinement algorithm. This section introduces the n-dimensional
local bisection refinement algorithm, using the local bisection step defined in §3. The presented
algorithm is an extension to the refinement algorithm for two dimensions, given by Mitchell

in [22]. It will ensure that the resulting locally refined grid of simplices remains compatible
at all times.
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In order to be able to introduce to refinement algorithm, we first need some elementary
definitions. A simplex T is called a neighbor of T if they have a face in common. Second, a
simplex 7" is called compatibly divisible with 7 if it is a neighbor and if T and T’ will bisect
the same edge. Now, avoiding incompatibilities by the assumption that a simplex and its
neighbors can be bisected simultaneously, the recursive local bisection refinement algorithm
for the refinement of an n-simplex is given by

Refine (simplex):
BEGIN
WHILE A neighbor is not compatibly divisible
DO
Refine (neighbor);
END;
Bisect (simplex);
FOR each neighbor:
DO
Bisect (neighbor);
END;
END.

In this case, contrary to the proofs to be found in [22], it is not graph theory but Theorem
4.1 that provides the bases for the following theorem, which guarantees that the refinement
algorithm terminates.
THEOREM 5.1. Let T and a neighor T’ be as in Theorem 4.1. Then there exists a unique
n+ 1 permutation o of {0, ..., n}, denoted by o = (c(0), ..., o(n)),such that for all but one
vertex x; of T, Xq(;) is a vertex of T'. Assume that T’ shares the edge of T to be bisected.
Then, under the assumption that x; and x; are shared
) Ifi # jsuchthatO <i,j <k:=n—IUT), then0 <o(),o(j) <k':=n-—I(T".
In addition one finds 6 (j) = 0 (0) + j forall j, oro(j) = o(0) — j forall j.

Q) If jissuchthati <k < j <n, thenk’ < o(j) <n. Inadditiono(j) = j.

() Either I(T") = I(T"), or I(T") = I(T) — 1. In addition, in the first case T and T’ are
compatibly divisible, and in the second case T will be compatibly divisible with one
of the descendants of T'.

Proof. The existence of a unique permutation o follows from the fact that T and 7’ share
n vertices out of their n + 1. First, assume that x; and x; are different shared vertices such that
0 <, j < k (for instance, vertex xy and x; are shared). Then

/ / / /
Yi =Y =X =X = Xoi) ~ Xg(j) = Vo) T Va(j) -

Due to the choice of i and j, o; = &; = 1 whence Lemma 4.4 implies that a;(i) = a;( »=1
At its turn this leads to 0 < o (i), o (j) < k’. Second, choosing i <k < j < n, one finds

J / / /
Vi =Y =Xj =X =Xy T Xo)) T Vo) T Vo)

where y; —y, has nonzero coordinates of absolute value % and 1. Because o], @ = 1, it follows
that oz",( B = -%, implying that ¥’ < o(j) < n. The last claim follows from a pigeonhole
principle, since all but one vertex of T is shared by 7’. All additional properties follow from
a pigeonhole principle, or by counting the number of nonzero entries iny; —y;. 0

With the use of induction, Theorem 5.1 guarantees that the refinement algorithm termi-
nates because neighbors are either compatibly divisible, or of lower level, and because the n!
coarse grid simplices in every one of the k; x - -+ x k, n-cubes form a compatibly divisibie
group.
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Theorem 5.1 points out that even if 7 and T’ are compatibly divisible one can encounter
the situation where the row of vertices xy, ..., Xx is pointwise equal to x}, ..., x; but for at
most one point. Theorem 4.1 admits this case. Whether this case actually occurs depends on
numbering of the vertices of the coarse initial grid.

For the initial grid presented in §2, compatibly divisible simplices T and T’ are observed
to always share vertices xo = x;,. Inorder to see that this is very special, consider the following.
Assuming thatx = x; = x} is shared by T and T’, one finds thaty, = x; —xg = x} —xp = y},
implying that i = j. Applying Theorem 4.1, this straightforwardly implies that for R, =,
and o describing T, and for R’, 7/, and o’ describing T, one finds R* = R, ¢’ = ¢, and
' = v, where T is an exchange permutation. Hence, in this special case, one can determine
the compatibly divisible neighbors of T by determining their associated permutation (note
that 7" has n — 1 neighbors sharing the edge to be bisected).

Finding neighbors to be bisected seems to depend on the datastructures used to represent
the grid. One of the possibilities is to store the pointer to the neighbor across every face of
every simplex. However, Theorem 4.1 shows that every simplex is uniquely determined by
a combination of reflections, a permutation, and a scaling determined by its level. Further,
Theorem 5.1 implies that it is possible to compute the reflections, the permutation, and scaling
of a compatibly divisible neighbor, given those descriptors of the current simplex. Therefore,
instead of storing pointers to all neighbors for every simplex, the neighbor pointers can be
computed on demand, as in the three-dimensional case shown in Hebert [16]. This reduces
the computer storage per simplex and increases the parallelism already present in the local
refinement method. The author’s nonoptimized Fortran 77 implementation of the presented
bisection step and refinement algorithm takes less than three pages. It stores the pointers
to neighbors and is fast, mainly due to the absence of local and global communication and
computations.

6. Applications. This section provides some examples of grids obtained with the use of
the local bisection refinement method introduced in §5. Thereafter, a short discussion on the
upperbounds derived in §§4 and 5, is provided.

In order to show that the proposed bisection refinement method is applicable for the finite
element solution of partial differential equations, consider Fig. 3. This figure shows a triangular
grid, generated with the local bisection refinement algorithm of §5, along the position of a layer
of the solution of a partial differential equation. This layer has the form of a curve, closely
resembling the straight line y = 0.45x. The grid is generated as follows. First, a coarse grid
of small squares is generated on an 8 by 5 division of the domain [0, 1] x [0, 0.625]. Second,
each rectangle is covered with a coarse grid of two triangles, analogously to the coarse grid
covering [0, 1]2. Then, for every level £, a finite element solution is computed on the grid of
level k, and those triangles where the gradient of the computed finite element solution is larger
than a certain threshold are bisected. In Fig. 3, grid 12 stands for the grid obtained after 12
levels of refinements along the curve. Because the level of refinement is already too high to
distinguish details, Fig. 4 shows a magnification of a part of the previous grid. Note that the
grid is compatible, and that all angles are either %n, or %n.

As a second example, consider some applications of the bisection refinement applied
to the three-dimensional unit-cube [0, 1], shown in Figs. 5-10. In all cases, refinement is
applied repeatedly to those tetrahedrons and their descendants intersecting a plane (Fig. 5),
intersecing a line (Fig. 6), or intersecting the hemi-sphere

1 2+ 1 2+ 1n\? 1 s )
- = - = — =) =— withx> -,
2 Y73 ) 16 =2

as shown in Figs. 7-10. In all examples, the number of congruency classes is equal to 3, and
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FiG. 3. Triangular grid 12 on [0, 1] x {0, 0.625].
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&

FiG. 4. Magnification of grid 12 shown in Fig. 3.

the figures clearly show the local nature of the repeatedly applied refinement. As the occuring
angles are well bounded away from 0 and r, the grids are well suited for the computation of
finite element solutions to partial differential equations, as was done in [21].

Finally, a short note concerning the recursion depth of the refinement algorithm. In two
dimensions, the recursion depth can actually be equal to the maximum k, for any value of
k. This maximum recursion depth will be attained in the following example, where for the
sake of simplicity the initial coarse grid only consists of the triangle {(0, 0), (1, 0), (1, DH}.
Bisecting this triangle and one of its descendants repeatedly, one obtaines a row of triangles
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F1G. 6. A cube which is nine levels refined along the line {(x, y,2) : x =0Ay =12}

SV
Zo WO 90 *90

FiG. 7. Vertices of grid 18 around the hemisphere (x — %)2 + - %)2 +(z— %)2 = —1]3 with x > %

Fic. 8. View on grid 18 from above.
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F1G. 9. Cross-intersection with'y = %.

EE

ST
s zo WO 99

F1G. 10. Cross-intersection with x = %

{(0,0), (1,0), (1, D}, {(1,0), (1, D, (5, PL A, D, (1, D, G, P},
{(,D, (1,5, G PLIAD, A, D, G, DI

Together with the latter simplex, the simplex {(1, %), a, %), (%, %)} has been created. It is
easy to verify that the recursion depth involved with the local bisection refinement of the latter
simplex of level 4 is equal to 4. Since this refinement is actually the refinement around the
coarse grid vertex (1, 1) it obvious that the recursion depth upper bound k is obtained for every

dimension n, for instance by refining the reference simplex as above around its vertex 1.

7. Conclusions. The n-dimensional local bisection refinement of grids of n-simplices is
possible, without causing grid incompatibilities. The presented bisection algorithm is simple
to implement, and the edges to be bisected are determined without using any communication
or computation. This makes this bisection method eminently applicable for grid refinement
in parallel. The refinement algorithm is applicable to a variety of grids, as long as the vertices
of every simplex in the grid are properly ordered. This paper proves that special regular grids
of simplices on {0, 1]" admit the desired ordering of the vertices. In addition, it is argued
that the refinement method is also applicable to grids which are the image of (part of) the
(possibly locally refined) special grid on [0, 1]" under a nonsingular mapping. The bisection
method is applicable to every triangular grid because it is equivalent to Mitchell’s method in
[22], and can possibly be applied to many tetrahedral grids with the use of additional closure
refinement. Moving the grid by shifting the vertices is allowed since this does not alter the
vertices’ ordering. Further, it is highly likely that many more simplicial grids admit a proper
ordering of the vertices. This is a topic for future research.

The new bisection refinement method can locate an element containing a certain point as
fast as the quadrant and octant methods can. Independent of the dimension, it allows for the
usage of binary data structures, and therefore may make use of many well-known binary tree
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traversal and balancing techniques. In addition, it may be well suited for the determination of
fixed points, where the dimension is usually large.

Further, the number of congruency classes created is n, independent of the level of refine-
ment, which means that the bisection method is naturally suited for finite element applications,
as the smallest and largest angle are a priori determined and bounded by the initial coarse grid,
independent of the level of refinement. For arbitrary unstructured coarse simplicial grids,
allowing for incompatibilities, the number of congruency classes turns out to be 2" - N, where
N stands for the number of congruency classes of coarse grid simplices.

The recursion depth of the refinement algorithm and the number of simplices to be pro-
cessed during the refinement of one simplex are a function of the level &, and are a priori
determined, simplifying the implementation of this algorithm.

Finally, note that the local bisection refinement algorithm can largely reduce the number
of simplices to be used for the approximation of solution manifolds of parametrized equations.
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